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Constrained Nevanlinna-Pick interpolation in Weighted
Hardy and Bergman spaces

Rachid Zarouf

Abstract

Given a finite set σ of the unit disc D = {z ∈ C :, |z| < 1} and a holomorphic function f in D

which belongs to a class X, we are looking for a function g in another class Y (smaller than X) which
minimizes the norm ‖g‖Y among all functions g such that g|σ = f|σ. For Y = H∞, X = lpa(wk) =


f =
∑

k≥0

f̂(k)zk : ‖f‖p =
∑

k≥0

|f̂(k)|pwp
k < ∞




 , with a weight w satisfying wk > 0 for every k ≥ 0 and

limk(1/w
1/k
k ) = 1, and for the corresponding interpolation constant c (σ, X, H∞), we show that if p = 2,

c (σ, X, H∞) ≤ aϕX

(
1 − 1−r

n

)
where n = #σ, r = maxλ∈σ |λ| and where ϕX(t) stands for the norm of

the evaluation functional f 7→ f(t) on the space X. The upper bound is sharp over sets σ with given n

and r. For X = lpa(wk), p 6= 2 and X = Lp
a

((
1 − |z|2

)β
dxdy

)
(the weighted Bergman space), β > −1,

1 ≤ p < 2, we also found upper and lower bounds for c (σ, X, H∞) (sometimes for special sets σ) but
with some gaps between these bounds.

0. Introduction

We recall that the problem considered in [Z] is the following: given two Banach spaces X and Y
of holomorphic functions on the unit disc D = {z ∈ C : |z| < 1} , X ⊃ Y , and a finite set σ ⊂ D,
what is the best possible interpolation by functions of the space Y for the traces f|σ of functions
of the space X, in the worst case?

Looking at this problem, we are lead to define and compute/estimate the interpolation constant

c (σ, X, Y ) = supf∈X, ‖f‖X≤1inf
{
‖g‖Y : g|σ = f|σ

}
,

(which is nothing but the norm of the embedding operator
(
X|σ, ‖.‖X|σ

)
→
(
Y|σ, ‖.‖Y|σ

)
). Let us

notice that the following question was especially stimulating (which is a part of a more complicated
question arising in an applied situation in [BL1] and [BL2]): given a set σ ⊂ D, how to estimate
c (σ, H2, H∞) in terms of n = card(σ) and maxλ∈σ |λ| = r only? Here and everywhere below, H2

is the standard Hardy space of the disc,

H2 =




f =
∑

k≥0

f̂(k)zk : ‖f‖H2 =

(
∑

k≥0

∣∣∣f̂(k)
∣∣∣
2
)1

2

<∞




 ,

1
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and H∞ stands for the space (algebra) of bounded holomorphic functions in the unit disc D

endowed with the norm ‖f‖∞ = supz∈D |f(z)| . The issue of estimating/computing c (σ, H2, H∞)
has been treated in [Z].

More precisely, we have treated in [Z] the cases X = Hp, L2
a, where Hp (1 ≤ p ≤ ∞) stands

for the standard Hardy space of the unit disc and where L2
a stands for the Bergman space of all

holomorphic functions f such that ∫

D

|f(z)|2 dA <∞,

where dA stands for the area measure, and proved the following result, through Theorems A,

B&C (see the Introduction of [Z]) .

Theorems A, B&C.

(1)

1

4
√

2

√
n√

1 − r
≤ c(σr,n, H

2, H∞) ≤ Cn, r

(
H2, H∞) ≤

√
2

√
n√

1 − r
,

1

32

n

1 − r
≤ c(σr,n, L

2
a, H

∞) ≤ Cn, r

(
L2

a, H
∞) ≤

√
14

n

1 − r
,

for all n ≥ 1, 0 ≤ r < 1,where σr, n is the one set point {r, r, ..., r} (n times).
(2) Let 1 ≤ p ≤ ∞. Then

1

32
1
p

(
n

1 − |λ|

) 1
p

≤ c (σr,n, H
p, H∞) ≤ Cn,r (Hp, H∞) ≤ Ap

(
n

1 − r

) 1
p

,

for all n ≥ 1, 0 ≤ r < 1, where Ap is a constant depending only on p and the left hand side
inequality is proved only for p ∈ 2Z+.

In this paper, we extend those results to the case where X is a weighted space X = lpa(wk),

lpa(wk) =

{
f =

∑

k≥0

f̂(k)zk : ‖f‖p =
∑

k≥0

|f̂(k)|pwp
k <∞

}
,

with a weight w satisfying wk > 0 for every k ≥ 0 and limk(1/w
1/k
k ) = 1. The latter condition

implies that lpa(wk) is continuously embedded into the space of holomorphic functions Hol(D) on
the unit disc D = {z ∈ C : |z| < 1} (and not on a larger disc, i.e. lpa(wk) does not contained in
Hol(rD) for every r > 1).

As in [Z], in order to find an upper bound for c (σ, X, H∞), we first use a linear interpolation:

f 7→
n∑

k=1

〈f, ek〉 ek,



3

where 〈., .〉 means the Cauchy sesquilinear form 〈h, g〉 =
∑

k≥0 ĥ(k)ĝ(k), and (ek)
n
k=1 is the explic-

itly known Malmquist basis of the space KB = H2ΘBH2, B = Πn
i=1bλi

being the corresponding
Blaschke product, bλ = λ−z

1−λz
(see N. Nikolski, [N1] p. 117)). Next, we use the complex inter-

polation between Banach spaces, (see H. Triebel [Tr] Theorem 1.9.3 p.59). Among the technical
tools used in order to find an upper bound for ‖

∑n
k=1 〈f, ek〉 ek‖∞ (in terms of ‖f‖X), the most

important is a Bernstein-type inequality
∥∥f ′
∥∥

p
≤ cp

∥∥B′
∥∥
∞ ‖f‖p for a (rational) function f in the

star-invariant subspace Hp∩BHp

0 generated by a (finite) Blaschke product B, (K. Dyakonov [Dy]).
For p = 2, we give an alternative proof of the Bernstein-type estimate we need.

The lower bound problem (for Cn, r (X, H∞)) is treated by using the “worst” interpolation
n−tuple σ = σλ, n = {λ, ..., λ}, a one-point set of multiplicity n (the Carathéodory-Schur type

interpolation). The “worst” interpolation data comes from the Dirichlet kernels
∑n−1

k=0 z
k trans-

planted from the origin to λ. We notice that spaces X = lpa(wk) satisfy the condition X ◦ bλ ⊂ X
when p = 2 , whereas this is not the case for p 6= 2 and this makes the problem of upper/lower
bound harder.

Our principal case is p = 2, where l2a(wk) is a reproducing kernel Hilbert space on the disc D. It
is important to recall that

l2a

(
1

(k + 1)α−1

)
= L2

a

((
1 − |z|2

)2α−3
dA
)
, α > 1,

where L2
a

((
1 − |z|2

)β
dA
)
, β > −1, stand for the Bergman weighted spaces of all holomorphic

functions f such that ∫

D

|f(z)|2
(
1 − |z|2

)β
dA <∞.

Theorem. 1.0 Let σ be a sequence in D. Then

c

(
σ, l2a

(
1

(k + 1)α−1

)
, H∞

)
≤ A

(
n

1 − r

) 2α−1
2

.

Otherwise,

Cn, r

(
l2a

(
1

(k + 1)α−1

)
, H∞

)
≤ A

(
n

1 − r

) 2α−1
2

,

Cn, r

(
L2

a

((
1 − |z|2

)β
dA
)
, H∞

)
≤ A

′

(
n

1 − r

)β+2
2

,

for all n ≥ 1, 0 ≤ r < 1, α ≥ 1, β > −1, where A = A(α − 1) is a constant depending only on α
and A

′
= A

′
(β) is a constant depending only on β.

Later on, in Section 7 we show that for α = N+1
2

, where N ≥ 1 is an integer, the latter estimate
is sharp.

Theorem. 7.0 Let N ≥ 1 be an integer and σλ, n = {λ, ..., λ} (n times). Then,

c

(
σλ,n, l

2
a

(
1

(k + 1)
N−1

2

)
, H∞

)
≥ a

(
n

1 − |λ|

)N
2
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for a positive constant a = aN depending on N only. In particular,

a

(
n

1 − r

)N
2

≤ Cn, r

(
l2a

(
1

(k + 1)
N−1

2

)
, H∞

)
≤ A

(
n

1 − r

)N
2

,

for all n ≥ 1, 0 ≤ r < 1, where A = A
(

N−1
2

)
is a constant defined in Theorem 1.0. Moreover,

a and A are such that a ≍ 1
23N (2N)!

and A ≍ N2N , N standing for the integer part of α. (The

notation x ≍ y means that there exists numerical constants c1, c2 > 0 such that c1y ≤ x ≤ c2y).

In Sections 2, 3 and 4 , we deal with an upper estimate for Cn, r (X, H∞) in the scale of

spaces X = lpA

(
1

(k+1)α−1

)
, α ≥ 1, 1 ≤ p ≤ +∞. (The case p = 2 is solved in Section 1 (for the

upper bound) and in Section 7 (for sharpness) ). We start giving a result for 1 ≤ p ≤ 2.

Theorem. 3.0 Let 1 ≤ p ≤ 2 , α ≥ 1. Then

B

(
1

1 − r

)α− 1
p

≤ Cn, r

(
lpa

(
1

(k + 1)α−1

)
, H∞

)
≤ A

(
n

1 − r

)α− 1
2

,

for all r ∈ [0, 1[, n ≥ 1, where A = A(α− 1, p) is a constant depending only on α and p and
B = B(p) is a constant depending only on p.

It is very likely that the bounds of Theorem 3.0 are not sharp. The sharp one should be

probably
(

n
1−r

)α− 1
p . In the same way, for 2 ≤ p ≤ ∞, we give the following theorem, in which we

feel again that the upper bound
(

n
1−r

)α+ 1
2
− 2

p is not sharp. The sharp one probably should be the

lower bound
(

n
1−r

)α− 1
p .

Theorem. 5.0 Let 2 ≤ p ≤ ∞ , α ≥ 1. Then

B

(
1

1 − r

)α− 1
p

≤ Cn, r

(
lpa

(
1

(k + 1)α−1

)
, H∞

)
≤ A

(
n

1 − r

)α+ 1
2
− 2

p

,

for all r ∈ [0, 1[, n ≥ 1, where A = A(α− 1, p) is a constant depending only on α and p and
B = B(p) is a constant depending only on p.

In Section 6 , we suppose that X is equal to Lp
a

((
1 − |z|2

)β
dA
)
, β > −1, 1 ≤ p ≤ 2, where

dA stands for the area measure, the Bergman weighted spaces of all holomorphic functions f such
that ∫

D

|f(z)|p
(
1 − |z|2

)β
dA <∞.

Notice that for p = 2, the two latter series of spaces coincide:

l2a

(
1

(k + 1)α−1

)
= L2

a

((
1 − |z|2

)2α−3
dA
)
, α > 1.
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Our goal in this section is to give an estimate for the constant for a generalized Carathéodory-Schur
interpolation, (a partial case of the Nevanlinna-Pick interpolation),

c(σλ,n, X,H
∞) = sup

{
‖f‖H∞/bn

λ
H∞ : f ∈ X, ‖f‖X ≤ 1

}
,

where ‖f‖H∞/bn
λ
H∞ = inf {‖f + bnλg‖∞ : g ∈ X}, and σλ,n = {λ, λ, ..., λ}, λ ∈ D. The

corresponding interpolation problem is: given f ∈ X, to minimize ‖h‖∞ such that
h(j) (λ) = f (j) (λ) , 0 ≤ j < n.

For this partial case, we have the following generalization of the estimate from Theorem 1.0.

Theorem. 6.0 Let λ ∈ D, β > −1 and 1 ≤ p ≤ 2. Then,

c
(
σλ, n, L

p
a

((
1 − |z|2

)β
dA
)
, H∞

)
≤ A

′

(
n

1 − |λ|

)β+2
p

,

where A
′
= A

′
(β, p) is a constant depending only on β and p.

Before starting Section 1 and studying upper estimates for c (σ, X, H∞) , we give the follow-
ing lemma which is going to be useful throughout this paper, in particular in view of applying
interpolation between Banach spaces.

Lemma 0. Let X be a Banach space of holomorphic functions in the unit disc D and
σ = {λ1, λ2, ..., λn} ⊂ D a finite subset of the disc . We define the Blaschke product
Bσ = Πn

i=1bλi
where bλ = λ−z

1−λz
. Let T : X −→ H∞/BσH

∞ be the restriction map defined by

Tf = {g ∈ H∞ : f − g ∈ BσX} ,
for every f ∈ X. Then,

‖ T ‖X→H∞/BσH∞= c (σ, X, H∞) .

Proof. The proof is obvious. �

1. An upper bound for c
(
σ, l2a (wk) , H

∞)

In this section, we generalize the upper bound obtained in [Z] for Cn, r (X, H∞) where X =

H2, L2
a to the case of spaces X which contain H2: X = l2a

(
1

(k+1)α−1

)
, α ≥ 1, the Hardy weighted

spaces of all f(z) =
∑

k≥0 f̂(k)zk satisfying

∑

k≥0

∣∣∣f̂(k)
∣∣∣
2 1

(k + 1)2(α−1)
<∞.

It is also important to recall that

l2a

(
1

(k + 1)α−1

)
= L2

a

((
1 − |z|2

)2α−3
dA
)
, α > 1,
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where L2
a

((
1 − |z|2

)β
dA
)
, β > −1, stand for the Bergman weighted spaces of all holomorphic

functions f such that ∫

D

|f(z)|2
(
1 − |z|2

)β
dA <∞.

Notice also that H2 = l2a(1) and L2
a(D) = l2a

(
1

(k+1)
1
2

)
, where L2

a(D) stands for the Bergman space

of the unit disc D.

Theorem. 1.0 Let σ be a sequence in D. Then

c

(
σ, l2a

(
1

(k + 1)α−1

)
, H∞

)
≤ A

(
n

1 − r

) 2α−1
2

.

Otherwise,

Cn, r

(
l2a

(
1

(k + 1)α−1

)
, H∞

)
≤ A

(
n

1 − r

) 2α−1
2

,

Cn, r

(
L2

a

((
1 − |z|2

)β
dA
)
, H∞

)
≤ A

′

(
n

1 − r

)β+2
2

,

for all n ≥ 1, 0 ≤ r < 1, α ≥ 1, β > −1, where A = A(α − 1) is a constant depending only on α
and A

′
= A

′
(β) is a constant depending only on α.

First, we recall the following lemma (see [Z]). In fact, Lemma 1.1 below is a partial case
(p = 2) of the following K. Dyakonov’s result [Dy] (which is, in turn, a generalization of M. Levin’s
inequality [L] corresponding to the case p = ∞): for every p, 1 < p ≤ ∞ there exists a constant
cp > 0 such that ∥∥∥f

′
∥∥∥

Hp
≤ cp

∥∥∥B
′
∥∥∥
∞
‖f‖Hp

for all f ∈ KB, where B is a finite Blaschke product (of order n) and ‖.‖∞ means the norm in
L∞(T). For our partial case, our proof (in [Z]) is different and the constant is slightly better. We
notice that in general, Bernstein type inequalities have already been the subject of a lot of papers.
Among others, Chapter 7 of P. Borwein and T. Erdélyi’s book, see [BoEr], is devoted to such
inequalities. This is also the case of A. Baranov’s work, see [B1], [B2] and [B3], and also of R. A.
DeVore and G. G. Lorentz’s book, see [DeLo].

Lemma. 1.1 Let B = Πn
j=1bλj

, be a finite Blaschke product (of order n), r = maxj |λj| , and
f ∈ KB =: H2ΘBH2. Then, ∥∥∥f

′
∥∥∥

H2
≤ 5

2

n

1 − r
‖f‖H2 .

Corollary. 1.2 Let B = Πn
j=1bλj

, be a finite Blaschke product (of order n), r = maxj |λj| , and

f ∈ KB =: H2ΘBH2. Then,

∥∥f (k)
∥∥

H2 ≤ k!

(
5

2

)k (
n

1 − r

)k

‖f‖H2 ,

for every k = 0, 1, ...
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Indeed, since f (k−1) ∈ KBk , we obtain applying Lemma 1.1 for Bk instead of B,

∥∥f (k)
∥∥

H2 ≤
5

2

kn

1 − r

∥∥f (k−1)
∥∥

H2 ,

and by induction,
∥∥f (k)

∥∥
H2 ≤ k!

(
5

2

n

1 − r

)k

‖f‖H2 . �

Corollary. 1.3 Let N ≥ 0 be an integer and σ a sequence in D. Then,

c

(
σ, l2a

(
1

(k + 1)N

)
, H∞

)
≤ A

(
n

1 − r

) 2N+1
2

,

where A = A(N) is a constant depending on N (of order N2N from the proof below).

Indeed, if f ∈ l2a

(
1

(k+1)N

)
= H then |PBf(ζ)| = |〈PBf, kζ〉| = |〈f, PBkζ〉|, where 〈., .〉 means

the Cauchy pairing and kζ =
(
1 − ζz

)−1
. Denoting H⋆ the dual of H with respect to this pairing,

H⋆ = l2a
(
(k + 1)N

)
, we get

|PBf(ζ)| ≤ ‖f‖H ‖PBkζ‖H⋆ ≤ ‖f‖H KN

(
‖PBkζ‖H2 +

∥∥∥(PBkζ)
(N)
∥∥∥

H2

)
,

where

KN = max

{
NN , supk≥N

(k + 1)N

k(k − 1)...(k −N + 1)

}
=

= max

{
NN ,

(N + 1)N

N !

}
=

{
NN , if N ≥ 3

(N+1)N

N !
, if N = 1, 2

.

(Indeed, the sequence
(

(k+1)N

k(k−1)...(k−N+1)

)

k≥N
is decreasing since (1+x)−N ≥ 1−Nx for all x ∈ [0, 1],

and
[
NN > (N+1)N

N !

]
⇐⇒ N ≥ 3). Since PBkζ ∈ KB, Corollary 1.2 implies

|PBf(ζ)| ≤ ‖f‖H ‖PBkζ‖H⋆ ≤ ‖f‖H KN

(

‖PBkζ‖H2 +N !

(
5

2

n

1 − r

)N

‖PBkζ‖H2

)

≤

≤ A(N)

(
n

1 − r

)N+ 1
2

‖f‖H ,

where A(N) =
√

2KN

(
1 +N !

(
5
2

)N)
, since ‖PBkζ‖2 ≤

√
2n√
1−r

. �

Proof of Theorem 1.0. Applying Lemma 0 with X = l2a

(
1

(k+1)α−1

)
, we get

‖ T ‖
l2a

“

1
(k+1)α−1

”

→H∞/BσH∞= c

(
σ, l2a

(
1

(k + 1)α−1

)
, H∞

)
,

where T and Bσ are defined in Lemma 0. Moreover, there exists an integer N such that N ≤ α ≤
N + 1. In particular, there exists 0 ≤ θ ≤ 1 such that α− 1 = (1− θ)(N − 1) + θN . And since (as
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in Theorem 4.0 of [Z]), we use the notation of the interpolation theory between Banach spaces see
[Tr] or [Be])

[
l2a

(
1

(k + 1)N−1

)
, l2a

(
1

(k + 1)N

)]

θ,2

= l2a

((
1

(k + 1)N−1

)2 1−θ
2
(

1

(k + 1)N

)2 θ
2

)

=

= l2a

(
1

(k + 1)(1−θ)(N−1)+θN

)
= l2A

(
1

(k + 1)α−1

)
,

this gives, using Corollary 1.3 and (again) [Tr] Theorem 1.9.3 p.59,

‖ T ‖
l2a

“

1
(k+1)α−1

”

→H∞/BσH∞≤

≤
(
c

(
σ, l2a

(
1

(k + 1)N−1

)
, H∞

))1−θ (
c

(
σ, l2a

(
1

(k + 1)N

)
, H∞

))θ

≤

≤
(

A(N − 1)

(
n

1 − r

) 2N−1
2

)1−θ(

A(N)

(
n

1 − r

) 2N+1
2

)θ

=

= A(N − 1)1−θA(N)θ

(
n

1 − r

) (2N−1)(1−θ)
2

+
(2N+1)θ

2

.

It remains to use θ = α−N and set A(α− 1) = A(N − 1)1−θA(N)θ.

�

2. An upper bound for c
(
σ, l1a (wk) , H

∞)

The aim of this section is to prove the following theorem, in which the upper bound
(

n
1−r

)α− 1
2

is not as sharp as in Section 1. We suspect
(

n
1−r

)α−1
is the sharp bound for the quantity

Cn, r

(
l1a

(
1

(k+1)α−1

)
, H∞

)
.

Theorem. 2.0 Let α ≥ 1. Then,

Cn, r

(
l1a

(
1

(k + 1)α−1

)
, H∞

)
≤ A1

(
n

1 − r

)α− 1
2

,

for all r ∈ [0, 1[, n ≥ 1, where A1 = A1(α− 1) is a constant depending only on α.

First, we prove the following lemma.

Lemma. 2.1 Let B = Πn
j=1bλj

, be a finite Blaschke product (of order n), r = maxj |λj| , and
f ∈ KB. Then,

∥∥f (k)
∥∥

H1 ≤ k!

(
2n

1 − r

)k

‖f‖H1

for every k = 0, 1, ...
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Proof. By A. Baranov (see [B1] Theorem 5.1 p.50),
∥∥∥f

′
∥∥∥

H1
≤
∥∥∥B

′
∥∥∥
∞
‖f‖H1

for every f ∈ KB. (A private communication with A. Baranov shows that Theorem 5.1 of [B1]
is also true for the Hardy spaces of the unit disc D; see also [B2] Corollary 1.4, and [B3]). Since
f (k−1) ∈ KBk , we obtain, applying Baranov’s inequality for Bk instead of B,

∥∥f (k)
∥∥

H1 ≤
∥∥∥kB

′

Bk−1
∥∥∥
∞

∥∥f (k−1)
∥∥

H1 ,

and by induction,
∥∥f (k)

∥∥
H1 ≤ k!

∥∥∥B
′
∥∥∥

k

∞
‖f‖H1 .

On the other hand,
∣∣B′
∣∣ =

∣∣∣∣−
∑

j
1−|λj |2

(1−λjz)
2 .

B
bλj

∣∣∣∣ ≤
∑

j
1+|λj |
1−|λj | ≤

2n
1−r

, which completes the proof. �

Corollary. 2.2 Let N ≥ 0 be an integer. Then,

Cn, r

(
l1a

(
1

(k + 1)N

)
, H∞

)
≤ A1

(
n

1 − r

)N+ 1
2

,

for all r ∈ [0, 1[, n ≥ 1, where A1 = A1(N) is a constant depending only on N (of order N2N from
the proof below).

Indeed, the proof is exactly the same as in Corollary 1.3: if f ∈ l1a

(
1

(k+1)N

)
= H then |PBf(ζ)| =

|〈PBf, kζ〉| = |〈f, PBkζ〉|, where 〈., .〉 means the Cauchy pairing and kζ =
(
1 − ζz

)−1
. Denoting

H⋆ the dual of H with respect to this pairing, H⋆ = l∞a
(
(k + 1)N

)
, we get,

|PBf(ζ)| ≤ ‖f‖H ‖PBkζ‖H⋆ ≤

≤ ‖f‖H KNmax

{
sup0≤k≤N−1

∣∣∣P̂Bkζ(k)
∣∣∣ , supk≥N

∣∣∣∣
̂

(PBkζ)
(N) (k −N)

∣∣∣∣

}
≤

≤ ‖f‖H KNmax
{
‖PBkζ‖H1 ,

∥∥∥(PBkζ)
(N)
∥∥∥

H1

}
,

where KN is defined in the the proof of Corollary 1.3. Since PBkζ ∈ KB, Lemma 2.1 implies

|PBf(ζ)| ≤ ‖f‖H ‖PBkζ‖H⋆ ≤ ‖f‖H KN

(
‖PBkζ‖H1 +N !2N

(
n

1 − r

)N

‖PBkζ‖H1

)
≤

≤ KN ‖f‖H ‖PBkζ‖2

(
1 +N !2N

(
n

1 − |λ|

)N
)

≤ KN ‖f‖H

(
2n

1 − r

) 1
2

(
1 +N !2N

(
n

1 − r

)N
)
,

which completes the proof setting A1(N) =
√

2
(
1 +N !2N

)
KN .

�
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Proof of Theorem 2.0. This is the same reasoning as in Theorem 1.0. Applying Lemma 0 with

X = l1a

(
1

(k+1)α−1

)
, we get

‖ T ‖
l1a

“

1
(k+1)α−1

”

→H∞/BσH∞= c

(
σ, l1a

(
1

(k + 1)α−1

)
, H∞

)
,

where T and Bσ are defined in Lemma 0. It remains to use Corollary 2.2 and (again) [Tr] Theorem
1.9.3 p.59 to complete the proof.

�

3. An upper bound for c (σ, lpa (wk) , H
∞) , 1 ≤ p ≤ 2

The aim of this section is to prove the following theorem, in which the upper bound
(

n
1−r

)α− 1
2

is not sharp as sharp as in Section 1. We suppose that the sharp upper (and lower) bound here

should be of the order of
(

n
1−r

)α− 1
p .

Theorem. 3.0 Let 1 ≤ p ≤ 2 , α ≥ 1. Then

B

(
1

1 − r

)α− 1
p

≤ Cn, r

(
lpa

(
1

(k + 1)α−1

)
, H∞

)
≤ A

(
n

1 − r

)α− 1
2

,

for all r ∈ [0, 1[, n ≥ 1, where A = A(α − 1, p) is constant depending only on α and p and
B = B(p) is a constant depending only on p.

Proof. We first prove the right hand side inequality. The scheme of the proof is completely the
same as in Theorem 1.0 and Theorem 2.0, but we simply use interpolation between l1 and l2 (the

classical Riesz-Thorin theorem). Applying Lemma 0 with X = lpa

(
1

(k+1)α−1

)
, we get

‖ T ‖
lpa

“

1
(k+1)α−1

”

→H∞/BσH∞= c

(
σ, lpa

(
1

(k + 1)α−1

)
, H∞

)
,

where T and Bσ are defined in Lemma 0. It remains to use both Theorem 1.0&2.0 and (again)
[Tr] Theorem 1.9.3 p.59 to complete the proof of the right hand side inequality.

Now, we prove the left hand side one. Firstly, it is clear that

Cn, r

(
lpa

(
1

(k + 1)α−1

)
, H∞

)
≥ ‖ϕr‖

lp
′

a ((k+1)α−1)
=

=

(
∑

k≥0

(k + 1)(α−1)p
′
(
rp

′
)k
) 1

p
′

,

where ϕr is the evaluation functional

ϕr(f) = f(r), f ∈ X,

and p
′
is the conjugate of p: 1

p
+ 1

p′
= 1. Now, since

∑

k≥1

ksxk ∼
∫ ∞

1

tsxtdt ∼ Γ(s+ 1)(1 − x)−s−1, as x→ 1,
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for all s > −1, we get
∑

k≥0

(k + 1)(α−1)p
′
(
rp

′
)k

∼
∫ ∞

1

t(α−1)p
′

rp
′
tdt, as r → 1.

But
∫ ∞

1

t(α−1)p
′

rp
′
tdt =

(
1

p′

)1+(α−1)p
′ ∫ ∞

p′
t(α−1)p

′

rtdt ∼

∼
(

1

p′

)1+(α−1)p
′ ∫ ∞

1

t(α−1)p
′

rtdt ∼
(

1

p′

)1+(α−1)p
′

Γ
(
(α− 1)p

′

+ 1
)

(1 − r)−(α−1)p
′−1, as r → 1.

This gives
(
∑

k≥0

(k + 1)(α−1)p
′
(
rp

′
)k
) 1

p
′

∼
(

1

p′

) 1

p
′ +(α−1) (

Γ
(
(α− 1)p

′

+ 1
)) 1

p
′

(1 − r)
−(α−1)− 1

p
′ , as r → 1.

This completes the proof since 1
p′

= 1 − 1
p
. �

4. An upper bound for c (σ, l∞a (wk) , H
∞)

The aim of this section is the following theorem, in which -again- the upper bound
(

n
1−r

)α+ 1
2 is

not as sharp as in Section 1. We can suppose here that the constant
(

n
1−r

)α
is the sharp bound

for the quantity Cn, r

(
l∞a

(
1

(k+1)α−1

)
, H∞

)
.

Theorem. 4.0 Let α ≥ 1. Then

Cn, r

(
l∞a

(
1

(k + 1)α−1

)
, H∞

)
≤ A∞

(
n

1 − r

)α+ 1
2

,

for all r ∈ [0, 1[, n ≥ 1, where A∞ = A∞(α− 1) is a constant depending only on α.

First, we prove the following partial case of Theorem 4.0.

Lemma. 4.1 Let N ≥ 0 be an integer. Then,

Cn, r

(
l∞a

(
1

(k + 1)N

)
, H∞

)
≤ A∞

(
n

1 − r

)N+ 3
2

,

for all r ∈ [0, 1[, n ≥ 1, where A∞ = A∞(N) is a constant depending on N (of order N2N from
the proof below).

Proof. We use literally the same method as in Corollary 1.3&2.2. Indeed, if f ∈ l∞a

(
1

(k+1)N

)
= H

then |PBf(ζ)| = |〈PBf, kζ〉| = |〈f, PBkζ〉|, where 〈., .〉 means the Cauchy pairing and kζ =(
1 − ζz

)−1
. Denoting H⋆ the dual of H with respect to this pairing, H⋆ = l1a

(
(k + 1)N

)
, we

get

|PBf(ζ)| ≤ ‖f‖H ‖PBkζ‖H⋆ ≤ ‖f‖H KN

(
‖PBkζ‖W +

∥∥∥(PBkζ)
(N)
∥∥∥

W

)
,
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where W =
{
f =

∑
k≥0 f̂(k)zk : ‖f‖W :=

∑
k≥0

∣∣∣f̂(k)
∣∣∣ <∞

}
stands for the Wiener algebra, and

KN is defined in Corollary 1.3. Now, applying Hardy’s inequality (see [N2] p.370, 8.7.4 (c)),

|PBf(ζ)| ≤ ‖f‖H KN

(
π
∥∥∥(PBkζ)

′
∥∥∥

H1
+ |(PBkζ) (0)| + π

∥∥∥(PBkζ)
(N+1)

∥∥∥
H1

+
∣∣∣(PBkζ)

(N) (0)
∣∣∣
)
,

which gives using Lemma 2.1,

|PBf(ζ)| ≤

≤ ‖f‖H KNπ

((
2n

1 − r

)
‖PBkζ‖H1 + |(PBkζ) (0)|+

+ (N + 1)!

(
2n

1 − r

)N+1

‖PBkζ‖H1 +
∣∣∣(PBkζ)

(N) (0)
∣∣∣

)
≤

≤ ‖f‖H KNπ

((
2n

1 − r

)
‖PBkζ‖H2 + ‖PBkζ‖H2 +

+(N + 1)!

(
2n

1 − r

)N+1

‖PBkζ‖H2 +N ! ‖PBkζ‖H2

)

.

This completes the proof since ‖PBkζ‖H2 ≤
(

2n
1−r

) 1
2 . �

Proof of Theorem 4.0. This is the same application of interpolation between Banach spaces, as

before (Theorem 1.0&2.0) excepted that this time we apply Lemma 0 with X = l∞a

(
1

(k+1)α−1

)
to

get

‖ T ‖
l∞a

“

1
(k+1)α−1

”

→H∞/BσH∞= c

(
σ, l∞a

(
1

(k + 1)α−1

)
, H∞

)
,

where T and Bσ are defined in Lemma 0.
Applying Lemma 4.1 and using (again) [Tr] Theorem 1.9.3 p.59, we can complete the proof. �

5. An upper bound for c (σ, lpa (wk) , H
∞) , 2 ≤ p ≤ ∞

The aim of this section is to prove the following theorem.

Theorem. 5.0 Let 2 ≤ p ≤ ∞ , α ≥ 1. Then

B

(
1

1 − r

)α− 1
p

≤ Cn, r

(
lpa

(
1

(k + 1)α−1

)
, H∞

)
≤ A

(
n

1 − r

)α+ 1
2
− 2

p

,

for all r ∈ [0, 1[, n ≥ 1, where A = A(α − 1, p) is a constant depending only on α and p and
B = B(p) is a constant depending only on p.

Remark. As before, the upper bound
(

n
1−r

)α+ 1
2
− 2

p is not as sharp as in Section 1. We can

suppose here the constant
(

n
1−r

)α− 1
p should be a sharp upper (and lower) bound for the quantity

Cn, r

(
lpa

(
1

(k+1)α−1

)
, H∞

)
, 2 ≤ p ≤ +∞.
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Proof. We first prove the right hand side inequality. The proof repeates the scheme from previous
theorems and from Theorem 3.0 in particular. We have already seen (in Theorem 3.0) that

‖ T ‖
lpa

“

1
(k+1)α−1

”

→H∞/BσH∞= c

(
σ, lpa

(
1

(k + 1)α−1

)
, H∞

)
,

where T and Bσ are defined in Lemma 0. Now, using both Theorems 1.0&4.0, and [Tr] Theorem
1.9.3 p.59, we complete the proof. The proof of the left hand side inequality is exactly the same
as in Theorem 3.0. �

6. Carathéodory-Schur Interpolation in weighted Bergman
spaces

We suppose that X = Lp
a

((
1 − |z|2

)β
dA
)
, β > −1 and 1 ≤ p ≤ 2. Our aim in this section is

to give an estimate for the constant for a generalized Carathéodory-Schur interpolation, (a partial
case of the Nevanlinna-Pick interpolation),

c(σλ,n, X,H
∞) = sup

{
‖f‖H∞/bn

λ
H∞ : f ∈ X, ‖f‖X ≤ 1

}
,

where ‖f‖H∞/bn
λ
H∞ = inf {‖f + bnλg‖∞ : g ∈ X}, and σλ,n = {λ, λ, ..., λ}, λ ∈ D. The

corresponding interpolation problem is: given f ∈ X, to minimize ‖h‖∞ such that
h(j) (λ) = f (j) (λ) , 0 ≤ j < n.

For this partial case, we have the following generalization of the estimate from Theorem 1.0.

Theorem. 6.0 Let λ ∈ D, β > −1 and 1 ≤ p ≤ 2. Then,

c
(
σλ, n, L

p
a

((
1 − |z|2

)β
dA
)
, H∞

)
≤ A

′

(
n

1 − |λ|

)β+2
p

,

where A
′
= A

′
(β, p) is a constant depending only on β and p.

We first need a simple equivalent to Ik(β) =
∫ 1

0
r2k+1(1 − r2)βdr, β > −1.

Lemma. 6.1 Let k ≥ 0 , β > −1 and Ik(β) =
∫ 1

0
r2k+1(1 − r2)βdr. Then,

Ik(β) ∼ 1

2

Γ(β + 1)

kβ+1
,

for k → ∞, where Γ stands for the usual Gamma function, Γ(z) =
∫ +∞
0

e−ssz−1ds.

Proof. Let a = 1√
k+1

, b = max(1, aβ). Since 1 − e−u ∼ u as u −→ 0, we have

Ik(β) =

∫ 1

0

r2k+1(1 − r2)βdr =

∫ ∞

0

e−(2k+1)t(1 − e−2t)βe−tdt =

=

∫ a

0

e−2(k+1)t(1 − e−2t)βdt+

∫ ∞

a

e−2(k+1)t(1 − e−2t)βdt =
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=

∫ a

0

e−2(k+1)t(1 − e−2t)βdt+O

(
b

k + 1
e−2a(k+1)

)
=

= (1 + o(1))

∫ a

0

e−2(k+1)t(2t)βdt+O

(
b

k + 1
e−2a(k+1)

)
=

= (1 + o(1))

∫ 2(k+1)a

0

e−s

(
s

k + 1

)β
ds

2(k + 1)
+O

(
b

k + 1
e−2a(k+1)

)
=

=
1

2

1

(k + 1)β+1
(1 + o(1))

∫ 2(k+1)a

0

e−ssβds+O

(
b

k + 1
e−2a(k+1)

)
=

=
1

2

Γ(β + 1)

(k + 1)β+1
(1 + o(1)) +O

(
b

k + 1
e−2a(k+1)

)
=

=
1

2

Γ(β + 1)

(k + 1)β+1
(1 + o(1)) ∼ 1

2

Γ(β + 1)

kβ+1
,

which completes the proof. �

Proof of Theorem 6.0. Step 1. We start to prove the Theorem for p = 1.

Let f ∈ X = L1
a

((
1 − |z|2

)β
dA
)

such that ‖f‖X ≤ 1. Since X ◦ bλ = X, we have

f ◦ bλ =
∑

k≥0 akz
k ∈ X. Let pn =

∑n−1
k=0 akz

k and g = pn ◦ bλ. Then, f ◦ bλ − pn ∈ znX and

f − pn ◦ bλ ∈ (znX) ◦ bλ = bnλX. Now, pn ◦ bλ =
∑n−1

k=0 akb
k
λ and

‖pn ◦ bλ‖∞ = ‖pn‖∞ ≤ An ‖f ◦ bλ‖X ,

where An =
∥∥∑

k≥0 akz
k 7→

∑n−1
k=0 akz

k
∥∥

X→H∞
. Now,

‖f ◦ bλ‖X ≤
∫

D

|f (bλ(z))|
(
1 − |z|2

)β
dA =

∫

D

|f (w)|
(
1 − |bλ(w)|2

)β ∣∣∣b
′

λ(w)
∣∣∣
2

dA =

≤ 2β

∫

D

|f (w)|
((

1 − |λ|2
) (

1 − |w|2
)

∣∣1 − λw
∣∣2

)β ((
1 − |λ|2

)
∣∣1 − λw

∣∣2

)2

dA =

=

∫

D

|f (w)|
(
1 − |w|2

)β
((

1 − |λ|2
)

∣∣1 − λw
∣∣2

)2+β

dA ≤

≤ supw∈D

((
1 − |λ|2

)
∣∣1 − λw

∣∣2

)2+β ∫

D

|f (w)|
(
1 − |w|2

)β
dA ≤

((
1 − |λ|2

)

(1 − |λ|)2

)2+β

‖f‖X ,

which gives,

‖f ◦ bλ‖X ≤
(

1 + |λ|
1 − |λ|

)2+β

‖f‖X .
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We now give an estimation for An. Let g(z) =
∑

k≥0 ĝ(k)z
k ∈ X, then

∥∥∥∥∥

n−1∑

k=0

ĝ(k)zk

∥∥∥∥∥
∞

≤
n−1∑

k=0

|ĝ(k)| .

Now, noticing that
∫

D

g (w)wk
(
1 − |w|2

)β
dA =

∫ 1

0

∫ 2π

0

f(reit)rke−ikt
(
1 − r2

)β
rdtdr =

=

∫ 1

0

(
1 − r2

)β
rk+1

∫ 2π

0

f(reit)e−iktdtdr =

∫ 1

0

ĝr(k)r
k+1(1 − r2)βdr,

where gr(z) = g(rz), ĝr(k) = rkĝ(k). Setting Ik(β) =
∫ 1

0
r2k+1(1 − r2)βdr, we get

ĝ(k) =
1

Ik(β)

∫

D

g (w)wk
(
1 − |w|2

)β
dA.

Then,

|ĝ(k)| =
1

Ik(β)

∣∣∣∣
∫

D

g (w)wk
(
1 − |w|2

)β
dA

∣∣∣∣ ≤
1

Ik(β)
‖g‖X ,

which gives ∥∥∥∥∥

n−1∑

k=0

ĝ(k)zk

∥∥∥∥∥
∞

≤
(

n−1∑

k=0

1

Ik(β)

)
‖g‖X .

Now using Lemma 6.1,
n−1∑

k=0

1

Ik(β)
∼n→∞

2

Γ(β + 1)

n−1∑

k=0

kβ+1 ∼ 2cβ
Γ(β + 1)

nβ+2,

where cβ is a constant depending on β only. This gives
∥∥∥∥∥

n−1∑

k=0

ĝ(k)zk

∥∥∥∥∥
∞

≤ Cβn
α+2 ‖g‖X ,

where Cβ is also a constant depending on β only. Finally, we conclude that An ≤ Cβn
β+2, and as

a result,

‖pn ◦ bλ‖∞ ≤ Cβn
β+2

(
1 + |λ|
1 − |λ|

)2+β

‖f‖X ,

which proves the Theorem for p = 1.

Step 2. This step of the proof repetes the scheme from Theorems 3.0&5.0. Let T : Lp
a

((
1 − |z|2

)β
dA
)
−→

H∞/bnλH
∞ be the restriction map defined by

Tf =
{
g ∈ H∞ : f − g ∈ bnλL

p
a

((
1 − |z|2

)β
dA
)}

,

for every f . Then,

‖ T ‖
Lp

a

“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
= c

(
σ, Lp

a

((
1 − |z|2

)β
dA
)
, H∞

)
.
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Now, let γ > β and Pγ : Lp
((

1 − |z|2
)β
dA
)
−→ Lp

a

((
1 − |z|2

)β
dA
)

be the Bergman projec-

tion, (see [H], p.6), defined by

Pγf = (γ + 1)

∫

D

(
1 − |w|2

)γ

(1 − zw)2+γ f(w)dA(w),

for every f . Pγ is a bounded projection from Lp
((

1 − |z|2
)β
dA
)

onto Lp
a

((
1 − |z|2

)β
dA
)

(see [H],

Theorem 1.10 p.12), (since 1 ≤ p ≤ 2). Moreover, since Lp
a

((
1 − |z|2

)β
dA
)
⊂ Lp

a

((
1 − |z|2

)γ
dA
)
,

we have Pγf = f for all f ∈ Lp
a

((
1 − |z|2

)β
dA
)
, (see [H], Corollary 1.5 p.6). As a result,

‖ T ‖
Lp

a

“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
≤‖ TPγ ‖

Lp
“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
,

for all 1 ≤ p ≤ 2. We set

ci(β) = ‖Pγ‖Li
“

(1−|z|2)
β
dA

”

→Li
a

“

(1−|z|2)
β
dA

” ,

for i = 1, 2. Then,
‖TPγ‖L1

“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
≤

≤ ‖T‖
L1

a

“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
‖Pγ‖L1

“

(1−|z|2)
β
dA

”

→L1
a

“

(1−|z|2)
β
dA

” =

= c
(
σ, L1

a

((
1 − |z|2

)β
dA
)
, H∞

)
c1(β) ≤

≤ A
′

(β, 1)

(
n

1 − |λ|

)β+2

c1(β),

using Step 1. In the same way,

‖TPγ‖L2
“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
≤ ‖T‖

L2
a

“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
c2(β).

Now, we recall that

L2
a

((
1 − |z|2

)β
dA
)

= l2a

(
1

(k + 1)
β+1
2

)
, β > −1.

As a consequence,

‖T‖
L2

a

“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
= c

(

σ, l2a

(
1

(k + 1)
β+1

2

)

, H∞

)

,

and, applying Theorem 1.0,
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‖TPγ‖L2
“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
≤ c2(β)A

′

(
β + 1

2
, 2

)(
n

1 − |λ|

) 2
β+1

2 +1

2

=

= c2(β)A
′

(
β + 1

2
, 2

)(
n

1 − |λ|

)β+2
2

.

We finish the reasoning applying Riesz-Thorin Theorem, (see [Tr] for example), to the operator
TPγ. If p ∈ [1, 2], there exists 0 ≤ θ ≤ 1 such that

1

p
= (1 − θ)

1

1
+ θ

1

2
= 1 − θ

2
,

and then, [
L1

a

((
1 − |z|2

)β
dA
)
, L2

a

((
1 − |z|2

)β
dA
)]

θ
= Lp

a

((
1 − |z|2

)β
dA
)
,

and

‖TPγ‖Lp
“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
≤

≤
(
‖TPγ‖L1

“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞

)1−θ (
‖TPγ‖L2

“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞

)θ

≤

≤
(
c1(β)A

′

(β, 1)

(
n

1 − |λ|

)β+2
)1−θ(

c2(β)A
′

(
β + 1

2
, 2

)(
n

1 − |λ|

) β+2
2

)θ

=

=
(
c1(β)A

′

(β, 1)
)1−θ

(
c2(β)A

′

(
β + 1

2
, 2

))θ (
n

1 − |λ|

)(β+2)(1−θ)+θ β+2
2

.

Now, since θ = 2(1 − 1
p
), (β + 2)(1 − θ) + θ β+2

2
= β − (1 − 1

p
)β + 2 − 2 + 2

p
= β+2

p
, and

‖T‖
Lp

a

“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
≤ ‖TPγ‖Lp

“

(1−|z|2)
β
dA

”

→H∞/bn
λ

H∞
,

we complete the proof. �

7. A lower bound for Cn, r
(
l2a(wk), H

∞)
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Here, we consider the weighted spaces l2a(wk) of polynomial growth and the problem of lower
estimates for the one point special case σλ,n = {λ, λ, ..., λ}, (n times) λ ∈ D. Recall the definition
of the semi-free interpolation constant

c(σλ,n, H,H
∞) = sup

{
‖f‖H∞/bn

λ
H∞ : f ∈ H, ‖f‖H ≤ 1

}
,

where ‖f‖H∞/bn
λ
H∞ = inf {‖f + bnλg‖∞ : g ∈ H}. In particular, our aim is to prove the sharpness

of the upper estimate for the quantity

Cn, r

(
l2a

(
1

(k + 1)
N−1

2

)
, H∞

)
,

(where N ≥ 1 is an integer), in Theorem 1.0.

Theorem. 7.0 Let N ≥ 1 be an integer. Then,

c

(
σλ,n, l

2
A

(
1

(k + 1)
N−1

2

)
, H∞

)
≥ aN

(
n

1 − |λ|

)N
2

for a positive constant aN depending on N only. In particular,

aN

(
n

1 − r

)N
2

≤ Cn, r

(
l2a

(
1

(k + 1)
N−1

2

)
, H∞

)
≤ A

(
n

1 − r

)N
2

,

for all n ≥ 1, 0 ≤ r < 1, where A = A
(

N−1
2

)
is a constant defined in Theorem 1.0.

(1) We first recall some properties of spaces X = lpa(wk). As it is mentionned in the Introduction,

lpa(wk) =

{
f =

∑

k≥0

f̂(k)zk : ‖f‖p =
∑

k≥0

|f̂(k)|pwp
k <∞

}
,

with a weight w satisfying wk > 0 for every k ≥ 0 and limk(1/w
1/k
k ) = 1. The latter condition

implies that lpa(wk) is continuously embedded into the space of holomorphic functions Hol(D) on
the unit disc D = {z ∈ C : |z| < 1} (and not on a larger disc, i.e. lpa(wk) does not contained in
Hol(rD) for every r > 1). In this section, we study the case p = 2, so that l2a(wk) is a reproducing
kernel Hilbert space on the disc D. The reproducing kernel of l2a(wk), by definition, is a
l2a(wk)-valued function λ 7−→ kw

λ , λ ∈ D, such that (f, kw
λ ) = f(λ) for every f ∈ l2a(wk), where
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(., .) means the scalar product (f, g) =
∑

k≥0 ĥ(k)ĝ(k)w
2
k. Since one has

f(λ) =
∑

k≥0 f̂(k)λk 1
w2

k

w2
k (λ ∈ D), it follows that

kw
λ (z) =

∑

k≥0

λ
k
zk

w2
k

, z ∈ D.

In particular, for the Hardy space H2 = l2a(1), we get the Szegö kernel

kλ(z) = (1 − λz)−1,

for the Bergman space L2
a(D) = l2a

(
1

(k+1)
1
2

)
- the Bergman kernel kλ(z) = (1 − λz)−2.

(2) Conversely, following the Aronszajn theory of RKHS (see, for example [A] or [N2] p.317),
given a positive definit function (λ, z) 7−→ k(λ, z) on D × D (i.e. such that

∑
i,j aiajk(λi, λj) > 0

for all finite subsets (λi) ⊂ D and all non-zero families of complex numbers (ai)) one can define
the corresponding Hilbert spaces H(k) as the completion of finite linear combinations

∑
i aik(λi, ·)

endowed with the norm

‖
∑

i

aik(λi, ·)‖2 =
∑

i,j

aiajk(λi, λj).

When k is holomorphic with respect to the second variable and antiholomorphic with respect to
the first one, we obtain a RKHS of holomorphic functions H(k) embedded into Hol(D).

For functions k of the form k(λ, z) = K(λz), where K ∈ Hol(D), the positive definitness is

equivalent to K̂(j) > 0 for every j ≥ 0, where K̂(j) stands for Taylor coefficients, and in this

case we have H(k) = l2a(wj), where wj = 1/

√
K̂(j), j ≥ 0. In particular, for K(w) = (1 − w)−β,

kλ(z) = (1 − λz)−β, β > 0, we have K̂(j) = (β+j−1
β−1 ) (binomial coefficients), and hence wj =

(
j!

β(β+1)...(β+j−1)

) 1
2

. Indeed, deriving 1
1−z

, we get by induction

(1 − z)−β =
1

(β − 1)!

∑

j≥0

(j + β − 1)...(j + 1)zk =
∑

j≥0

(β+j−1
β−1 )zj .

Clearly, wj ≃ 1/j
β−1

2 , where aj ≃ bj means that there exist constants c1 > 0, c2 > 0 such that

c1aj ≤ bj ≤ c2aj for every j. Therefore, H(k) = l2a

(
1

(k+1)
β−1

2

)
(a topological identity: the spaces

are the same and the norms are equivalent).
(3) Reproducing kernel Hilbert spaces containing H2. We will use the previous observations

for the following composed reproducing kernels (Aronszajn-deBranges, see [N2] p.320): given a
reproducing kernel k and an entire function ϕ =

∑
j≥0 ϕ̂(j)zj with ϕ̂(j) ≥ 0 for every j ≥ 0, the

function ϕ ◦ k is also positive definit and the corresponding RKHS

H(ϕ ◦ k) =: ϕ(H(k))

satisfies the following. For every f ∈ H(k) we have ϕ◦f ∈ ϕ(H(k)) and ‖ϕ◦f‖2
ϕ(H(k)) ≤ ϕ(‖f‖2

H(k))

(see [N2] p.320). In particular, if ϕ is a polynomial of degree N and k is the Szegö kernel then
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ϕ ◦ kλ(z) =
∑

j≥0 cjλ
j
zj with ck ≃ (k + 1)N−1, and hence

ϕ(H2) = l2a

(
1

(k + 1)
N−1

2

)

(a topological identity: the spaces are the same and the norms are equivalent). The link between

spaces of type l2a

(
1

(k+1)
N−1

2

)
(already mentionned in Section 1) and of type ϕ(H2) = Hϕ being

established, we give the following result.

Lemma 7.1 Let ϕ(z) =
∑N

k=0 akz
k, ak ≥ 0 (aN > 0), and Hϕ = ϕ(H2) be the reproducing

kernel Hilbert space corresponding to the kernel ϕ
(

1
1−λz

)
. Then, there exists a constant a(ϕ) > 0

such that

c(σλ,n, Hϕ, H
∞) ≥ a(ϕ)

(
n

1 − |λ|

)N
2

.

Proof. 1) We set

Qn =
n−1∑

k=0

bkλ
(1 − |λ|2)1/2

1 − λz
, Hn = ϕ ◦Qn,

Ψ = bHn.

Then ‖Qn‖2
2 = n, and hence by the Aronszajn-deBranges inequality, see [N2] p.320, point (k) of

Exercise 6.5.2, with ϕ(z) = zN and K(λ, z) = kλ(z) = 1
1−λ̄z

, and noticing that H(ϕ ◦K) = Hϕ,

‖Ψ‖2
Hϕ

≤ b2ϕ
(
‖Qn‖2

2

)
= b2ϕ(n).

Let b > 0 such that b2ϕ(n) = 1.

2) Since the spacesHϕ andH∞ are rotation invariant, we have c (σλ,n, Hϕ, H
∞) = c (σµ,n, Hϕ, H

∞)
for every λ, µ with |λ| = |µ| = r. Let λ = −r. To get a lower estimate for ‖Ψ‖Hϕ/bn

λ
Hϕ

consider G
such that Ψ −G ∈ bnλHol(D), i.e. such that bHn ◦ bλ −G ◦ bλ ∈ znHol(D).

3) First, we show that

ψ =: Ψ ◦ bλ = bHn ◦ bλ
is a polynomial (of degree nN) with positive coefficients. Note that
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Qn ◦ bλ =
n−1∑

k=0

zk (1 − |λ|2)1/2

1 − λbλ(z)
=

=
(
1 − |λ|2

)− 1
2

(
1 + (1 − λ)

n−1∑

k=1

zk − λzn

)
=

= (1 − r2)−1/2

(
1 + (1 + r)

n−1∑

k=1

zk + rzn

)
=: (1 − r2)−1/2ψ1.

Hence, ψ = Ψ ◦ bλ = bHn ◦ bλ = bϕ ◦
(
(1 − r2)

− 1
2 ψ1

)
and

ϕ ◦ ψ1 =
N∑

k=0

akψ
k
1 (z).

(In fact, we can simply assume that ϕ ◦ ψ1 = ψN
1 (z) since Hϕ = l2a

(
1

(k+1)
N−1

2

)
= HzN ). Now, it

is clear that ψ is a polynomial of degree Nn such that

ψ(1) =

Nn∑

j=0

ψ̂(j) = bϕ
(
(1 − r2)−1/2(1 + r)n

)
= bϕ

(√
1 + r

1 − r
n

)

> 0.

4) Next, we show that there exists a constant c = c(ϕ) > 0 (for example, c = α/22N(N − 1)!, α
is a numerical constant) such that

m∑
(ψ) =:

m∑

j=0

ψ̂(j) ≥ c

Nn∑

j=0

ψ̂(j) = cψ(1),

where m ≥ 1 is such that 2m = n if n is even and 2m− 1 = n if n is odd.

Indeed, setting

Sn =

n∑

j=0

zj ,

we have
m∑(

ψk
1

)
=

m∑



(

1 + (1 + r)
n−1∑

k=1

zk + rzn

)k


 ≥
m∑(

Sk
n−1

)
.

Next, we obtain
m∑(

Sk
n−1

)
=

m∑
((

1 − zn

1 − z

)k
)

=
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=
m∑
(

k∑

j=0

Cj
k

1

(1 − z)j
·
( −zn

1 − z

)k−j
)

=
m∑(

1

(1 − z)k

)
=

=
m∑
(
∑

j≥0

Cj
k+j−1z

j

)
=

m∑

j=0

Cj
k+j−1 ≥

m∑

j=0

(j + 1)k−1

(k − 1)!
≥

≥ α
mk

(k − 1)!
,

where α > 0 is a numerical constant. Finally,
m∑(

ψk
1

)
≥ α

mk

(k − 1)!
≥ α

(n/2)k

(k − 1)!
=

=
α

2k(k − 1)!
· ((1 + r)n)k

(1 + r)k
=

α

2k(1 + r)k(k − 1)!
· (ψ1(1))k ≥

≥ α

2N(1 + r)N(N − 1)!
· (ψ1(1))k.

Summing up these inequalities in
∑m(ψ) = b

∑m(ϕ ◦ ψ1) = b
∑N

k=0 ak (1 − r2)−k/2
∑m(ψk

1) (or
simply taking k = N , if we already supposed ϕ = zN ), we obtain the result claimed.

5) Now, using point 4) and the preceding Fejer kernel argument and denoting Fn = Φm +zmΦm,
where Φk stands for the k-th Fejer kernel, we get

‖Ψ‖H∞/bn
λ
H∞ = ‖ψ‖H∞/znH∞ ≥ 1

2
‖ψ ∗ Fn‖∞ ≥ 1

2

m∑

j=0

ψ̂(j) ≥

≥ c

2
ψ(1) =

c

2
bϕ

(√
1 + r

1 − r
n

)

=
c

2
·
ϕ

(√
1 + r

1 − r
n

)

(ϕ(n))1/2
≥

(assuming that ϕ = zN )

≥ a(ϕ)

(
n

1 − r

)N
2

.

�

Proof of Theorem 7.0. In order to prove the left hand side inequality, it suffices to apply Lemma

7.1 with ϕ(z) = zN . Indeed, in this case Hϕ =l2a

(
1

(k+1)
N−1

2

)
= HzN . The right hand side

inequality is a straightforward consequence of Theorem 1.0.

�
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