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Given a finite subset σ of the unit disc D and a holomorphic function f in D belonging to a class X, we are looking for a function g in another class Y which satisfies g |σ = f |σ and is of minimal norm in Y . Then, we wish to compare g Y with f X . More precisely, we consider the interpolation constant

When Y = H ∞ , our interpolation problem includes those of Nevanlinna-Pick and Caratheodory-Schur. Moreover, Carleson's free interpolation problem can be interpreted in terms of the constant c (σ, X, H ∞ ). For Y = H ∞ , X = H p (the Hardy space) or X = L 2 a (the Bergman space), we obtain an upper bound for the constant c (σ, X, H ∞ ) in terms of n = card σ and r = max λ∈σ |λ|. Our upper estimates are shown to be sharp with respect to n and r.

1. Introduction 1.1. Statement and historical context of the problem. Let D = {z ∈ C : |z| < 1} be the unit disc of the complex plane and let Hol (D) be the space of holomorphic functions on D. The problem considered is the following: given two Banach spaces X and Y of holomorphic functions on D, X, Y ⊂ Hol (D) , and a finite subset σ ⊂ D, find the least norm interpolation by functions of the space Y for the traces f |σ of functions of the space X, in the worst case of f . The case X ⊂ Y is of no interest, and so one can suppose that either Y ⊂ X or X, Y are incomparable.

More precisely, our problem is to compute or estimate the following interpolation constant

c (σ, X, Y ) = sup f ∈X, f X ≤1 inf g Y : g |σ = f |σ .
If r ∈ [0, 1) and n ≥ 1, we also define C n, r (X, Y ) = sup {c(σ, X, Y ) : card σ ≤ n , |λ| ≤ r, ∀λ ∈ σ} .

Here and later on, H ∞ stands for the space (algebra) of bounded holomorphic functions on D endowed with the norm f ∞ = sup z∈D |f (z)| . The classical interpolation problems -those of Nevanlinna-Pick (1916) and Carathodory-Schur (1908) (see [START_REF] Nikolski | Operators, Function, and Systems: an easy reading[END_REF] p.231 for these two problems) on the one hand, and Carleson's free interpolation (1958) (see [START_REF] Nikolski | Treatise on the shift operator[END_REF] p.158) on the other hand-are of this nature and correspond to the case Y = H ∞ . Two first are "individual", in the sense that one looks simply to compute the norms f H ∞ |σ or f H ∞ /z n H ∞ for a given f . In the case of the third one, we consider infinite sets σ. Let l ∞ (σ) be the space of bounded functions (a λ ) λ∈σ on σ endowed with the norm a l ∞ (σ) = max λ∈σ |a λ |.

Carleson's free interpolation problem is to compare the norms a l ∞ (σ) and inf { g ∞ : g(λ) = a λ , λ ∈ σ} .

In other words, we want to estimate the interpolation constant defined as

c (σ, l ∞ (σ), H ∞ ) = sup a∈l ∞ (σ), a l ∞ ≤1
inf { g ∞ : g(λ) = a λ , λ ∈ σ} .

Let us now explain why our problem includes those of Nevanlinna-Pick and Carathodory-Schur.

(i) Nevannlinna-Pick interpolation problem. Given σ = {λ 1 , ..., λ n } a finite subset of D and W = {w 1 , ..., w n } a finite subset of C, find NP σ, W = inf { f ∞ : f (λ i ) = w i , i = 1, ..., n} .

The classical answer of Pick is the following:

NP σ, W = inf c > 0 : c 2 -w i w j 1 -λ i λ j 1≤i, j≤n ≫ 0 ,
where for any n × n matrix M , M ≫ 0 means that M is positive definite.

(ii) Carathodory-Schur interpolation problem. Given W = {w 0 , w 1 , ..., w n } a finite subset of C, find

CS W = inf { f ∞ : f (z) = w 0 + w 1 z + ... + w n z n + ...} .
The classical answer of Schur is the following:

CS W = (T ϕ ) n ,
where T ϕ is the Toeplitz operator associated with a symbol ϕ , (T ϕ ) n is the compression of T ϕ on P n , the space of analytic polynomials of degree less or equal than n, and ϕ is the polynomial n k=0 w k z k . From a modern point of view, these two interpolation problems (i) and (ii) are included in the following mixed problem: given σ = {λ 1 , ..., λ n } ⊂ D and f ∈ Hol(D), compute or estimate

f H ∞ /BσH ∞ = inf { g ∞ : f -g ∈ B σ Hol(D)} .
From now on, if σ = {λ 1 , ..., λ n } ⊂ D is a finite subset of the unit disc, then

B σ = n j=1 b λj
is the corresponding finite Blaschke product where b λ = λ-z 1-λz , λ ∈ D. The classical Nevanlinna-Pick problem corresponds to the case X = Hol(D), Y = H ∞ , and the one of Carathodory-Schur to the case λ 1 = λ 2 = ... = λ n = 0 and X = Hol(D), Y = H ∞ .

Looking at this problem in the form of computing or estimating the interpolation constant c (σ, X, Y ) which is nothing but the norm of the embedding operator X |σ , • X |σ → Y |σ , • Y |σ , one can think, of course, on passing (after) to the limit -in the case of an infinite sequence {λ j } and its finite sections {λ j } n j=1 -in order to obtain a Carleson type interpolation theorem X |σ = Y |σ , but not necessarily. In particular, even the classical Nevanlinna-Pick theorem (giving a necessary and sufficient condition on a function a for the existence of

f ∈ H ∞ such that f ∞ ≤ 1 and f (λ) = a λ , λ ∈ σ), does not lead immediately to Carleson's criterion for H ∞ |σ = l ∞ (σ).
(Finally, a direct deduction of Carleson's theorem from Pick's result was done by P. Koosis [START_REF] Koosis | Carleson's interpolation theorem deduced from a result of Pick, Complex analysis, operators, and related topics[END_REF] in 1999 only). Similarly, the problem stated for c (σ, X, Y ) is of interest in its own. It is a kind of "effective interpolation" because we are looking for sharp estimates or a computation of c (σ, X, Y ) for a variety of norms • X , • Y . b. The following partial case was especially stimulating (which is a part of a more complicated question arising in an applied situation in [START_REF] Baratchart | Rational and meromorphic approximation in Lp of the circle : systemtheoretic motivations, critical points and error rates[END_REF][START_REF] Baratchart | Rational approximation problem in the real Hardy space H 2 and Stieltjes integrals: a uniqueness theorem[END_REF]): given a set σ ⊂ D, how can one estimate c σ, H 2 , H ∞ in terms of n = card σ and max λ∈σ |λ| = r only? (Here, H 2 is the standard Hardy space of the disc D and is defined below in Subsection 1.3).

c. There is a direct link between the constant c (σ, X, Y ) and numerical analysis. For example, in matrix analysis, it is of interest to bound the norm of an

H ∞ -calculus f (A) ≤ c f ∞ , f ∈ H ∞ ,
for a contraction A on an n-dimensional arbitrary Banach space, with a given spectrum σ(A) ⊂ σ. The best possible con-

stant is c = c (σ, H ∞ , W ), so that c (σ, H ∞ , W ) = = sup f ∞ ≤1 sup { f (A) : A : (C n , | • |) → (C n , | • |) , A ≤ 1, σ(A) ⊂ σ} , where W = f = k≥0 f (k)z k :
k≥0 f (k) < ∞ stands for the Wiener algebra, and the interior sup is taken over all contractions on n-dimensional Banach spaces. An estimate for c (σ, H ∞ , W ) is given in [START_REF] Nikolski | Treatise on the shift operator[END_REF]. An interesting case occurs for f such that f |σ = 1 z | σ (estimates on condition numbers and the norm of inverses of n×n matrices) or f |σ = 1 λ-z |σ (for estimates on the norm of the resolvent of an n × n matrix). Notice that in the same spirit, the case Y = B 0 ∞,1 where B 0 ∞,1 is a Besov algebra presents an interesting case for the functional calculus of finite rank operators, in particular, those satisfying the so-called Ritt condition.

1.3. The spaces X and Y considered here. We systematically use the following conditions for the spaces X and Y , (P 1 )

Hol((1 + ǫ)D) is continuously embedded into Y for every ǫ > 0, (P 2 ) P ol + ⊂ X and P ol + is dense in X,

where P ol + stands for the set of all complex polynomials p, p = N k=0 a k z k ,

(P 3 ) [f ∈ X] ⇒ z n f ∈ X , ∀n ≥ 0 and lim z n f 1 n ≤ 1 , (P 4 ) [f ∈ X, λ ∈ D and f (λ) = 0] ⇒ f z -λ ∈ X .
Assuming X satisfies property (P 4 ) and Y ⊂ X, then the quantity c (σ, X, Y ) can be written as follows

c (σ, X, Y ) = sup f X ≤1 inf { g Y : g ∈ Y, g -f ∈ B σ X} .
General spaces X and Y satisfying (P i ) 1≤i≤4 are studied in Section 3. Then, we study special cases of such spaces: from Section 4 to the end of this paper, Y = H ∞ , but X may change from one section to another. In particular, in Sections 4 and 5, X = H p = H p (D), 1 ≤ p ≤ ∞ which are the standard Hardy spaces on the disc D (see [START_REF] Nikolski | Operators, Function, and Systems: an easy reading[END_REF] Chapter 2) of all f ∈ Hol(D) satisfying

sup 0≤r<1 T |f (rz)| p dm(z) 1/p < ∞,
m being the Lebesgue normalized measure on T. From now on, if f ∈ Hol(D) and k ∈ N, f (k) stands for the k th Taylor coefficient of f.

For p = 2, an equivalent description of H 2 is

H 2 =    f = k≥0 f (k)z k : k≥0 f (k) 2 < ∞    .
We also study (see Section 6) the case

X = l 2 a 1/ √ k + 1 , which is the Bergman space of all f = k≥0 f (k)z k satisfying k≥0 f (k) 2 1 k + 1 < ∞.
This space is also given by: X = L 2 a , the space of holomorphic functions f on D such that

D |f (z)| 2 dA < ∞,
where dA stands for the area measure.

Results

We start studying general Banach spaces X and Y and give some sufficient conditions under which C n, r (X, Y ) < ∞. In particular, we prove the following fact.

Theorem 2.1. Let X, Y be Banach spaces satisfying properties (P i ), i = 1, ..., 4.

Then C n, r (X, Y ) < ∞,
for every n ≥ 1 and r ∈ [0, 1).

Next, we add the condition that X is a Hilbert space, and give in this case a general upper bound for the quantity C n, r (X, Y ). Theorem 2.2. Let Y be a Banach space satisfying property (P 1 ) and X = (H, (•, •) H ) a Hilbert space satisfying properties (P i ) for i = 2, 3, 4. We moreover suppose that for every 0 < r < 1 there exists ǫ > 0 such that k λ ∈ Hol ((1 + ǫ)D) for all |λ| < r, where k λ stands for the reproducing kernel of X at point λ, and λ → k λ is holomorphic on |λ| < r as a Hol((1 + ǫ)D)-valued function. Let σ = {λ 1 , ..., λ 1 , λ 2 , ..., λ 2 , ..., λ t , ..., λ t } be a sequence in D, where λ s are repeated according to their multiplicity m s , t s=1 m s = n. Then we have, i)

c (σ, H, Y ) ≤ n k=1 E k 2 Y 1 2
, where (E k ) 1≤k≤n stands for the Gram-Schmidt orthogonalization (in the space H) of the sequence

k λ1,0 , k λ1,1 , ..., k λ1,m1-1 , k λ2,0 , k λ2,1 , ..., k λ2,m2-1 , ..., k λt,0 , k λt,1 , ..., k λt,mt-1 , and k λ, i = d dλ i k λ , i ∈ N. ii) For the case Y = H ∞ , we have c(σ, H, H ∞ ) ≤ sup ζ∈D P H Bσ k ζ H ,
where

P H Bσ = n k=1 (•, E k ) H E k stands for the orthogonal projection of H onto K Bσ (H), K Bσ (H) = span k λj , i : 1 ≤ i < m j , j = 1, ..., t .
After that, we deal with H ∞ interpolation (Y = H ∞ ). For general Banach spaces (of analytic functions in D) of moderate growth X, we formulate the following conjecture:

c 1 ϕ X 1 - 1 -r n ≤ C n,r (X, H ∞ ) ≤ c 2 ϕ X 1 - 1 -r n ,
where ϕ X (t), 0 ≤ t < 1 stands for the norm of the evaluation functional f → f (t) on the space X. We prove this conjecture for X = H p , L 

1 p n 1 -|λ| 1 p ≤ c (σ n, λ , H p , H ∞ ) ≤ C n,r (H p , H ∞ ) ≤ A p n 1 -r 1 p
, where A p is a constant depending only on p and the left-hand side inequality is proved only for p ∈ 2Z + . For p = 2, we have ), and |λ| ≤ r. We have,

A 2 = √ 2. Theorem 2.4. Let 1 ≤ p ≤ ∞, n ≥ 1, r ∈ [0, 1
1 32 1 p n 1 -|λ| 1 p ≤ c (σ n, λ , H p , H ∞ ) ≤ C n,r (H p , H ∞ ) ≤ A p n 1 -r 1 p
, where A p is a constant depending only on p and the left-hand side inequality is proved only for p ∈ 2Z + . For p = 2, we have

A 2 = √ 2.
The above Theorems 2.1 , 2.3 and 2.4 were already announced in the note [START_REF] Zarouf | Interpolation avec contraintes sur des ensembles finis du disque[END_REF].

In order to prove (Theorem 2.1 , Theorem 2.2 and) the right-hand side inequality of Theorem 2.3 and Theorem 2.4, given f ∈ X and σ a finite subset of D, we first use a linear interpolation:

f → n k=1 f, e k e k ,
where •, • means the Cauchy sesquilinear form h, g = k≥0 ĥ(k)ĝ(k), and (e k ) 1≤k≤n is the Malmquist basis (effectively constructible) of the space K B = H 2 ⊖ BH 2 , whith B = B σ (see N. Nikolski, [START_REF] Nikolski | Treatise on the shift operator[END_REF] p. 117)). Next, we use the complex interpolation between Banach spaces, (see H. Triebel [START_REF] Triebel | Interpolation theory, functions spaces, differential operators[END_REF] Theorem 1.9.3-(a) p.59). Among the technical tools used in order to find an upper bound for

n k=1 f, e k e k ∞ (in terms of f X ), the most important one is a Bernstein- type inequality f ′ p ≤ c p B ′ ∞ f p for a (rational) function f in the star- invariant subspace K p B := H p ∩ BzH p , 1 ≤ p ≤ ∞ (for p = 2, K 2 B = K B )
, generated by a (finite) Blaschke product B, (K. Dyakonov [START_REF] Dyakonov | Differentiation in Star-Invariant Subspaces I. Boundedness and Compactness[END_REF][START_REF] Dyakonov | Entire functions of exponential type and model subspaces in H p[END_REF]). For p = 2, we give an alternative proof of the Bernstein-type estimate we need and the constant c 2 we obtain is slightly better, see Section 6.

The lower bound problem of Theorems 2.3 and 2.4 is treated in Section 7 by using the "worst" interpolation n-tuple σ = σ n, λ , (the Carathodory-Schur type interpolation). The "worst" interpolation data comes from the Dirichlet kernels n-1 k=0 z k transplanted from the origin to λ. We notice that spaces X = H p , L 2 a , p ∈ [1, ∞) satisfy the condition X • b λ ⊂ X which makes the problem of upper and lower bound easier.

The paper is organized as follows. In Section 3 we prove Theorems 2.1 and 2.2. Sections 4 and 5 (resp. Section 6) are (resp. is) devoted to the proof of the upper estimate of Theorem 2.3 (resp. Theorem 2.4). In Section 7, we prove the lower bounds stated in Theorems 2.3 and 2.4. At the end of the paper, we shortly compare the method used in Sections 3, 4, 5 and 6 with those resulting from the Carleson free interpolation, see Section 8.

3.

Upper bounds for c(σ, X, Y ) 3.1. Banach spaces X, Y satisfying properties (P i ) 1≤i≤4 . In this subsection, X and Y are Banach spaces which satisfy properties (P i ) 1≤i≤4 . We prove Theorem 2.1 which shows that in this case our interpolation constant c(σ, X, Y ) is bounded by a quantity which depends only on n = card σ and r = max i |λ i | (and of course on X and Y ). In this generality, we cannot discuss the question of the sharpness of the bounds obtained. First, we prove the following lemma. Lemma 3.1. Under (P 2 ), (P 3 ) and (P 4 ), B σ X is a closed subspace of X and moreover if σ is a finite subset of D,

B σ X = {f ∈ X : f (λ) = 0, ∀λ ∈ σ (including multiplicities)} .
Proof. Since X ⊂ Hol(D) continuously, and evaluation functionals

f → f (λ) and f → f (k) (λ), k ∈ N ⋆ , are continuous on Hol(D), the subspace M = {f ∈ X : f (λ) = 0, ∀λ ∈ σ (including multiplicities)} , is closed in X.
On the other hand, B σ X ⊂ X, and hence B σ X ⊂ M. Indeed, properties (P 2 ) and (P 3 ) imply that h.X ⊂ X, for all h ∈ Hol((1 + ǫ)D) with ǫ > 0. We can write h = k≥0 h(k)z k with h(k) ≤ Cq n , C > 0 and q < 1. Then

n≥0 h(k)z k f X < ∞ for every f ∈ X. Since X is a Banach space we get hf = n≥0 h(k)z k f ∈ X.
In order to see that M ⊂ B σ X, it suffices to justify that

[f ∈ X and f (λ) = 0] =⇒ f /b λ = (1 -λz)f /(λ -z) ∈ X ,
but this is obvious from (P 4 ) and the previous arguments.

In Definition 1 below, σ = {λ 1 , ..., λ n } is a sequence in the unit disc D and B σ is the corresponding Blaschke product.

Definition 1. The model space K Bσ . We define K Bσ to be the n-dimensional space:

(3.1.1)

K Bσ = B σ H 2 ⊥ = H 2 ⊖ B σ H 2 . Malmquist basis. For k ∈ [1, n], we set f k (z) = 1 1-λ k z
, and define the family (e k ) 1≤k≤n , (which is known as Malmquist basis, see [START_REF] Nikolski | Treatise on the shift operator[END_REF] p.117), by

(3.1.2) e 1 = f 1 f 1 2 and e k =   k-1 j=1 b λj   f k f k 2 , for k ∈ [2, n], where f k 2 = 1 -|λ k | 2 -1/2 . The Malmquist family (e k ) 1≤k≤n
corresponding to σ is an orthonormal basis of K Bσ .

The orthogonal projection P Bσ on K Bσ . We define P Bσ to be the orthogonal projection of H 2 on its n-dimensional subspace K Bσ . In particular, (3.1.3)

P Bσ = n k=1 (•, e k ) H 2 e k ,
where (•, •) H 2 means the scalar product on H 2 .

Lemma 3.2. Let σ = {λ 1 , ..., λ n } be a sequence in the unit disc D , (e k ) 1≤k≤n be the Malmquist family corresponding to σ and •, • be the Cauchy sesquilinear form h, g = j≥0 ĥ(j)ĝ(j) for h, g ∈ Hol(D). For all f ∈ Hol(D) and 1 ≤ k ≤ n, the series f, e k are absolutely converging. Moreover, if Y is a Banach space satisfying (P 1 ) , the map Φ : Hol(D) → Y ⊂ Hol(D) given by

Φ : f → n k=1 f, e k e k ,
is well defined and has the following properties: (a) Φ |H 2 = P Bσ , (b) Φ is continuous on Hol(D) with the topology of the uniform convergence on compact sets of D, (c) if X satisfies (P 2 ), (P 3 ), (P 4 ) and Y ⊂ X, and if

Ψ = Id |X -Φ |X , then Im (Ψ) ⊂ B σ X, (d) if f ∈ Hol(D), then |Φ(f )(ζ)| = | f, P Bσ k ζ | = f, n k=1 e k (ζ)e k , for all ζ ∈ D, where P Bσ is defined in (3.1.2) and k ζ = 1 -ζz -1 .
Proof. First of all we set r = max λ∈σ |λ| . If f ∈ Hol(D) and ρ ∈]0, 1[, then

f (j) = (2π) -1 ρT f (w)w -j-1 dw,
for all j ≥ 0. For a subset A of C and for a bounded function h on A, we define

h A := sup z∈A |h(z)| . As a result, (3.1.4) | f, e k | ≤ j≥0 f (j) e k (j) ≤ (2πρ) -1 f ρT j≥0 | e k (j)| ρ -j .
Now if ρ is close enough to 1, it satisfies the inequality 1 ≤ ρ -1 < r -1 , which entails j≥0 | e k (j)| ρ -j < +∞ for each k = 1, ..., n, and the series f, e k are absolutely converging. Now, the the point (a) is a direct consequence of (3.1.3). In order to check point (b), let (f l ) l∈N be a sequence of Hol(D) converging to 0 uniformly on compact sets of D. We need to see that (Φ (f l )) l∈N converges to 0, for which it is sufficient to show that lim l | f l , e k | = 0, for every k = 1, 2, ..., n, which is clear applying (3.1.4) to f = f l .

We now prove point (c). Using point (a), since P ol

+ ⊂ H 2 , we get that Im Ψ |P ol+ ⊂ B σ H 2 . Now, since P ol + ⊂ Y and Im(Φ) ⊂ Y , we deduce that Im Ψ |P ol+ ⊂ B σ H 2 ∩ Y ⊂ B σ H 2 ∩ X,
since Y ⊂ X. Now Ψ (p) ∈ X and satisfies (Ψ (p)) |σ = 0 (that is to say (Ψ (p)) (λ) = 0, ∀λ ∈ σ (including multiplicities) for all p ∈ P ol + . Using Lemma 3.1, we get that Im Ψ |P ol+ ⊂ B σ X. Now, P ol + being dense in X (property (P 2 )), and Ψ being continuous on X (point (b)), we can conclude that Im (Ψ) ⊂ B σ X.

In order to prove (d), we simply need to write that

Φ(f )(ζ) = n k=1 f, e k e k (ζ) = f, n k=1 e k (ζ)e k , ∀f ∈ Hol(D), ∀ζ ∈ D and to notice that n k=1 e k (ζ)e k = n k=1 (k ζ , e k ) H 2 e k = P Bσ k ζ .
Proof of Theorem 2.1 . Let σ = {λ 1 , ..., λ n } be a sequence in the unit disc D and (e k ) 1≤k≤n the Malmquist family (3.1.2) associated to σ. Taking f ∈ X , we set g = Φ(f ) = n k=1 f, e k e k , where Φ is defined in Lemma 3.2. In the same spirit of that of (3.1.4), we notice that e k (j) = (2πi) -1 RT e k (w)w -j-1 dw, for all j ≥ 0 and for all R, 1 < R < 1 r . As a result,

| e k (j)| ≤ 2πR j+1 -1 e k RT and j≥0 f (j) e k (j) ≤ (2πR) -1 e k RT j≥0 f (j) R -j < ∞,
since R > 1 and f is holomorphic in D, (where • A is defined above in the proof of Lemma 3.2). We now suppose that f X ≤ 1. Since Hol r -1 D ⊂ Y , we have g ∈ Y and using Lemma 3.2 point (c) we get

f -g = Ψ(f ) ∈ B σ X,
where Ψ is defined in Lemma 3.2, as Φ. Moreover,

g Y ≤ n k=1 | f, e k | e k Y .
In order to bound the right-hand side, recall that for all j ≥ 0 and for

R = 2/(r + 1) ∈]1, 1/r[, j≥0 f (j) e k (j) ≤ (2π) -1 e k 2(r+1) -1 T j≥0 f(j) 2 -1 (r + 1) j .
Since the norm f → j≥0 f (j) 2 -1 (r + 1) j is continuous on Hol(D), and the inclusion X ⊂ Hol(D) is also continuous, there exists C r > 0 such that

j≥0 f (j) 2 -1 (r + 1) j ≤ C r f X ,
for every f ∈ X. On the other hand, Hol 2(r + 1) -1 D ⊂ Y (continuous inclusion again), and hence there exists K r > 0 such that

e k Y ≤ K r sup |z|<2(r+1) -1 |e k (z)| = K r e k 2(r+1) -1 T .
It is more or less clear that the right-hand side of the last inequality can be bounded in terms of r and n only. Let us give a proof to this fact. It is clear that it suffices to estimate sup

1<|z|<2(r+1) -1 |e k (z)| .
In order to bound this quantity, notice that

(3.1.5) |b λ (z)| 2 ≤ λ -z 1 -λz 2 = 1 + (|z| 2 -1)(1 -|λ| 2 ) |1 -λz| 2 ,
for all λ ∈ D and all z ∈ |λ| -1 D. Using the identity (3.1.5) for λ = λ j , 1 ≤ j ≤ n, and z = ρe it , ρ = 2(1 + r) -1 , we get

e k (ρe it ) 2 ≤   k-1 j=1 b λj (ρe it ) 2   1 1 -λ k ρe it 2 ≤ ≤   k-1 j=1 1 + (ρ 2 -1)(1 -|λ j | 2 ) 1 -|λ j | 2 ρ 2   1 1 -|λ k |ρ 2 ,
for all k = 2, ..., n. Expressing ρ in terms of r, we obtain

e k 2(r+1) -1 T ≤ 1 1 -2r r+1 2   n-1 j=1 1 + 2( 1 r 2 -1) 1 -r 2 4 (r+1) 2   =: C 1 (r, n),
and j≥0 f (j) êk (j) ≤ (2π) -1 C r e k 2(r+1) -1 T f X ≤ (2π) -1 C r C 1 (r, n) f X .
On the other hand, since

e k Y ≤ K r e k 2(r+1) -1 T ≤ K r C 1 (r, n), we get g Y ≤ n k=1 (2π) -1 C r C 1 (r, n) f X K r C 1 (r, n) = (2π) -1 nC r K r (C 1 (r, n)) 2 f X , which proves that c(σ, X, Y ) ≤ (2π) -1 nC r K r (C 1 (r, n)) 2 ,
and completes the proof of Theorem 2.1.

3.2.

The case where X is a Hilbert space. We suppose in this subsection that X is a Hilbert space and that X, Y satisfy properties (P i ) 1≤i≤4 . We prove Theorem 2.2 and obtain a better estimate for c (σ, X, Y ) than in Theorem 2.1 (see point (i) of Theorem 2.2 ). For the case Y = H ∞ , (point (ii) of Theorem 2.2 ), we can considerably improve this estimate. We omit an easy proof of the following lemma.

Lemma 3.3. Let σ = {λ 1 , ..., λ 1 , λ 2 , ..., λ 2 , ..., λ t , ..., λ t } be a finite sequence of D where every λ s is repeated according to its multiplicity m s , t s=1 m s = n. Let (H, (•, •) H ) be a Hilbert space continuously embedded into Hol(D) and satisfying properties (P i ) for i = 2, 3, 4. Then

K Bσ (H) =: H ⊖ B σ H = span k λj , i : 1 ≤ j ≤ t, 0 ≤ i ≤ m j -1 ,
where k λ, i = d dλ i k λ and k λ is the reproducing kernel of H at point λ for every

λ ∈ D, i.e. k λ ∈ H and f (λ) = (f, k λ ) H , ∀f ∈ H. Proof of Theorem 2.2 . i). Let f ∈ X, f X ≤ 1 . Lemma 3.3 shows that g = P H Bσ f = n k=1 (f, E k ) H E k
is the orthogonal projection of f onto subspace K Bσ . Function g belongs to Y because all k λj ,i are in Hol((1 + ǫ)D) for a convenient ǫ > 0, and Y satisfies (P 1 ).

On the other hand, g -f ∈ B σ H (again by Lemma 3.3). Moreover, using Cauchy-Schwarz inequality,

g Y ≤ n k=1 |(f, E k ) H | E k Y ≤ n k=1 |(f, E k ) H | 2 1/2 n k=1 E k 2 Y 1/2 ≤ ≤ f H n k=1 E k 2 Y 1/2 , which proves i). ii). If Y = H ∞ , then |g(ζ)| = P H Bσ f, k ζ H = f, P H Bσ k ζ H ≤ f H P H Bσ k ζ H ,
for all ζ ∈ D, which proves ii).

Upper bounds for

C n, r H 2 , H ∞
Here, we specialize the upper estimate obtained in point (ii) of Theorem 2.2 for the case X = H 2 , the Hardy space of the disc. Later on, we will see that this estimate is sharp at least for some special sequences σ (see Section 7). We also develop a slightly different approach to the interpolation constant c σ, H 2 , H ∞ giving more estimates for individual sequences σ = {λ 1 , ..., λ n } of D. We finally prove the right-hand side inequality of Theorem 2.3 for the particular case p = 2. Proposition 4.1. For every sequence σ = {λ 1 , ..., λ n } of D we have

(4.1.1) c σ, H 2 , H ∞ ≤ sup ζ∈D 1 -|B σ (ζ)| 2 1 -|ζ| 2 1/2
, and therefore

(4.1.2) c σ, H 2 , H ∞ ≤ √ 2 sup |ζ|=1 |B ′ (ζ)| 1 2 = √ 2 sup |ζ|=1 n i=1 1 -|λ i | 2 1 -λi ζ 2 B σ (ζ) b λi (ζ) 1/2 .
Proof. We prove (4.1.1). In order to simplify the notation, we set B = B σ . Applying point (ii) of Theorem 2.2 for X = H 2 and Y = H ∞ , and using

k ζ (z) = 1 1 -ζz and (P Bσ k ζ ) (z) = 1 -B σ (ζ)B σ (z) 1 -ζz ,
(see [START_REF] Nikolski | Treatise on the shift operator[END_REF] p.199), we obtain

P Bσ k ζ H 2 = 1 -|B σ (ζ)| 2 1 -|ζ| 2 1/2
, which gives the result. We now prove (4.1.2) using (4.1.1). The map

ζ → P B (k ζ ) = sup {|f (ζ)| : f ∈ K B , f ≤ 1} ,
and hence the map

ζ → 1 -|B(ζ)| 2 1 -|ζ| 2 1/2
, is a subharmonic function so

sup |ζ|<1 1 -|B(ζ)| 2 1 -|ζ| 2 1/2 ≤ sup |w|=1 lim r→1 1 -|B(rw)| 2 1 -|rw| 2 1/2
. Now applying Taylor's Formula of order 1 at points w ∈ T and u = rw, 0 < r < 1 (it is applicable because B is holomorphic at every point of T), we get

(B(u) -B(w)) (u -w) -1 = B ′ (w) + o(1),
and since |u -w| = 1 -|u|,

(B(u) -B(w)) (u -w) -1 = |B(u) -B(w)| (1 -|u|) -1 = |B ′ (w) + o(1)|.
Then we have

|B(u) -B(w)| ≥ |B(w)| -|B(u)| = 1 -|B(u)|, (1 -|B(u)|) (1 -|u|) -1 ≤ (1 -|u|) -1 |B(u) -B(w)| = |B ′ (w) + o(1)|,
and lim

r→1 (1 -|B(rw)|) (1 -|rw|) -1 1 2 ≤ |B ′ (w)|.
Moreover,

B ′ (w) = - n i=1 1 -|λ i | 2 (1 -λ i w) -2 n j=1, j =i b λj (w),
for all w ∈ T . This completes the proof since

1 -|B(rw)| 2 1 -|rw| 2 = (1 -|B(rw)|)(1 + |B(rw)|) (1 -|rw|)(1 + |rw|) ≤ 2 1 -|B(rw)| 1 -|rw| . Corollary 4.2. Let n ≥ 1 and r ∈ [0, 1[. Then, C n, r (H 2 , H ∞ ) ≤ 2 n(1 -r) -1 1 2 .
Proof. Indeed, applying Proposition 4.1 we obtain

|B ′ (w)| ≤ n i=1 1 -|λ i | 2 (1 -|λ i |) 2 ≤ n 1 + r 1 -r ≤ 2n 1 -r .
Now, we develop a slightly different approach to the interpolation constant c σ, H 2 , H ∞ .

Corollary 4.3. For every sequence

σ = {λ 1 , ..., λ n } of D, c σ, H 2 , H ∞ ≤ sup z∈T n k=1 1 -|λ k | 2 |z -λ k | 2 1/2 .
Proof. In order to simplify the notation, we set B = B σ . We consider K B (see Definition 1) and the Malmquist family (e k ) 1≤k≤n corresponding to σ (see Definition 1). Now, let f ∈ H 2 and

g = P B f = n k=1 (f, e k ) H 2 e k ,
(see (3.1.3)). The function g belongs to H ∞ (it is a finite sum of H ∞ functions) and satisfies g -f ∈ BH 2 . Applying Cauchy-Schwarz inequality we get

|g(ζ)| ≤ n k=1 |(f, e k ) H 2 | |e k (ζ)| ≤ n k=1 |(f, e k ) H 2 | 2 1/2 n k=1 1 -|λ k | 2 |1 -λ k ζ| 2 1/2
, for all ζ ∈ D. As a result, since f is an arbitrary H 2 function, we obtain

c(σ, H 2 , H ∞ ) ≤ sup ζ∈T n k=1 1 -|λ k | 2 |ζ -λ k | 2 1/2
, which completes the proof.

Corollary 4.4. For any sequence

σ = {λ 1 , ..., λ n } in D , c(σ, H 2 , H ∞ ) ≤   n j=1 1 + |λ j | 1 -|λ j |   1/2 . Proof. Indeed, n k=1 1 -|λ k | 2 |ζ -λ k | 2 ≤ n k=1 1 -|λ k | 2 (1 -|λ k |) 2 1/2
and the result follows using Theorem 4.3. Now we prove the right-hand side inequality of Theorem 2.3 for the special case p = 2.

Proof of Theorem 2.3 (p = 2, the right-hand side inequality only ). Since 1 + |λ j | ≤ 2 and 1 -|λ j | ≥ 1 -r for all j ∈ [1, n], applying Corollary 4.4 we get

C n,r (H 2 , H ∞ ) ≤ √ 2n 1/2 (1 -r) -1/2 .
Remark. As a result, we get once more the same estimate for C n,r (H 2 , H ∞ ) as in Corollary 4.2 , with the constant √ 2 instead of 2.

It is natural to wonder if it is possible to improve the bound √ 2n 1/2 (1 -r) -1/2 . We return to this question in Section 7 below.

Upper bounds for

C n, r (H p , H ∞ ) , p ≥ 1
In this section we extend Corollary 4.2 to all Hardy spaces H p : we prove the right-hand side inequality of Theorem 2.3 , p = 2. We first prove the following lemma.

Lemma 5.1. Let n ≥ 1 and 0 ≤ r < 1. Then,

C n,r (H 1 , H ∞ ) ≤ 2n(1 -r) -1 .
Proof. Let σ be a finite subset of D, (e k ) 1≤k≤n be the Malmquist basis corresponding to σ (see Definition 1), and f ∈ H 1 such that f H 1 ≤ 1. Let also g = Φ(f ) where Φ is defined in Lemma 3.2. Applying point (d) of Lemma 3.2, we get

|g(ζ)| ≤ f H 1 n k=1 e k e k (ζ) H ∞ ≤ n k=1 e k e k (ζ) H ∞ .
Since Blaschke factors have modulus 1 on the unit circle,

e k H ∞ ≤ (1 + |λ k |) 1/2 (1 -|λ k |) -1/2 .
As a consequence,

|g(ζ)| ≤ n k=1 e k H ∞ e k (ζ) ≤ n k=1 e k 2 H ∞ ≤ n k=1 (1 + |λ k |) (1 -|λ k |) -1 ≤ 2n(1 -r) -1 ,
for all ζ ∈ D, which completes the proof.

Before proving the upper bound in Theorem 2.3 , we give the following general observation which is a direct consequence of the classical complex interpolation between Banach spaces, see [START_REF] Bergh | Interpolation Spaces. An Introduction[END_REF][START_REF] Triebel | Interpolation theory, functions spaces, differential operators[END_REF]. In particular, we use the notation of [START_REF] Bergh | Interpolation Spaces. An Introduction[END_REF], Chapter 4.

Lemma 5.2. Let X 1 and X 2 be two Banach spaces of holomorphic functions in the unit disc D. Let also θ ∈ [0, 1] and (X 1 , X 2 ) [θ] be the corresponding intermediate Banach space resulting from the classical complex interpolation method applied between X 1 and X 2 . Then,

C n, r (X 1 , X 2 ) [θ] , H ∞ ≤ C n, r (X 1 , H ∞ ) 1-θ C n, r (X 2 , H ∞ ) θ , for all n ≥ 1, r ∈ [0, 1).
Proof. Let X be a Banach space of holomorphic functions in the unit disc D and let σ = {λ 1 , λ 2 , ..., λ n } ⊂ D be a finite subset of the disc. Let T : X -→ H ∞ /B σ H ∞ be the restriction map defined by

T f = {g ∈ H ∞ : f -g ∈ B σ X} ,
for every f ∈ X. Then,

T X→H ∞ /BσH ∞ = c (σ, X, H ∞ ) . Now, since (X 1 , X 2 ) [θ]
is an exact interpolation space of exponent θ (see [START_REF] Bergh | Interpolation Spaces. An Introduction[END_REF] or [START_REF] Triebel | Interpolation theory, functions spaces, differential operators[END_REF] Theorem 1.9.3-(a), p.59), we can complete the proof.

Now we prove the right-hand side inequality of Theorem 2.3 for the remaining case p = 2.

Proof of Theorem 2.3 (p = 2, the right-hand side inequality only ).

In the case X = H p , there exists 0 ≤ θ ≤ 1 such that 1/p = 1 -θ, and H 1 , H ∞ θ = H p (a topological identity: the spaces are the same and the norms are equivalent (up to constants depending on p only), see [START_REF] Jones | L ∞ estimates for the ∂ problem in the half plane[END_REF]). As a consequence, applying Lemma 5.2 with X 1 = H 1 and X 2 = H ∞ , we get

C n, r (H p , H ∞ ) ≤ γ p C n, r H 1 , H ∞ 1-θ (C n, r (H ∞ , H ∞ )) θ ≤ ≤ γ p 2n(1 -r) -1 1-θ (1) θ ,
where θ = 1 -1/p, and γ p is a constant depending only on p. Using Lemma 5.1 and the fact that

C n, r (H ∞ , H ∞ ) ≤ 1, we get C n, r (H p , H ∞ ) ≤ γ p 2n(1 -r) -1 1/p ,
which completes the proof.

6.

Upper bounds for C n, r L 2 a , H ∞ Our aim here is to generalize Corollary 4.2 to the case X = l 2 a ((k + 1) α ), α ∈ [-1, 0], the Hardy weighted spaces of all f = k≥0 f (k)z k satisfying

f 2 X := k≥0 f (k) 2 (k + 1) 2α < ∞.
Note that H 2 = l 2 a (1) and L 2 a = l 2 a (k + 1)

-1 2
. We prove the upper bound of Theorem 2.4. The main technical tool used here is a Bernstein-type inequality for rational functions.

6.1. Bernstein-type inequalities for rational functions. Bernstein-type inequalities for rational functions were the subject of a number of papers and monographs (see, for instance, [2-3, 7-8, 13]). Perhaps, the stronger and closer to ours (Proposition 6.1 ) of all known results are due to K.Dyakonov [START_REF] Dyakonov | Differentiation in Star-Invariant Subspaces I. Boundedness and Compactness[END_REF][START_REF] Dyakonov | Entire functions of exponential type and model subspaces in H p[END_REF]. First, we prove Proposition 6.1 below, which tells that if σ = {λ 1 , ..., λ n } ⊂ D, r = max

j |λ j | , B = B σ and f ∈ K B , then (⋆) f ′ H 2 ≤ α n, r f H 2 ,
where α n, r is a constant (explicitly given in Proposition 6.1 ) depending on n and r only such that 0 < α n, r ≤ 3 n 1-r . Proposition 6.1 is in fact a special case (p = 2) of a K. Dyakonov's result [START_REF] Dyakonov | Differentiation in Star-Invariant Subspaces I. Boundedness and Compactness[END_REF] for p = 2. It is important to recall that this result is in its turn, a generalization of M. Levin's inequality [START_REF] Levin | Estimation of the derivative of a meromorphic function on the boundary of the domain (Russian)[END_REF] corresponding to the case p = ∞. More precisely, it is proved in [START_REF] Dyakonov | Differentiation in Star-Invariant Subspaces I. Boundedness and Compactness[END_REF] that the norm D K p B →H p of the differentiation operator Df = f ′ on the star-invariant subspace of the Hardy space H p , K p B := H p ∩ BzH p , (where the bar denotes complex conjugation) satisfies the following inequalities

c ′ p B ′ ∞ ≤ D K p B →H p ≤ c p B ′ ∞ ,
for every p, 1 ≤ p ≤ ∞ where c p and c ′ p are positives constants depending on p only, B is a finite Blaschke product and • ∞ means the norm in L ∞ (T). For the partial case considered in Proposition 6.1 below, our proof is different from [START_REF] Dyakonov | Differentiation in Star-Invariant Subspaces I. Boundedness and Compactness[END_REF][START_REF] Dyakonov | Entire functions of exponential type and model subspaces in H p[END_REF]. It is based on an elementary Hilbert space construction for an orthonormal basis in K B and the constant c 2 obtained is slightly better. More precisely, it is proved in [START_REF] Dyakonov | Differentiation in Star-Invariant Subspaces I. Boundedness and Compactness[END_REF] that c ′ 2 = 1 36c , c 2 = 36+c 2π and c = 2 √ 3π (as one can check easily (c is not evaluated in [START_REF] Dyakonov | Differentiation in Star-Invariant Subspaces I. Boundedness and Compactness[END_REF])). It implies an inequality of type (⋆) (with a constant about 6.5 instead of 3).

In [START_REF] Zarouf | Asymptotic sharpness of a Bernstein-type inequality for rational functions in H 2[END_REF], we discuss the "asymptotic sharpness" of our constant α n, r . We find an inequality for

C n, r = sup D KB →H 2 ,
(sup is over all B with given n = deg B and r = max λ∈σ |λ|), which is asymptotically sharp as n → ∞. Our result in [START_REF] Zarouf | Asymptotic sharpness of a Bernstein-type inequality for rational functions in H 2[END_REF] is that lim n→∞ Cn, r n = 1+r 1-r for every r, 0 ≤ r < 1. Proposition 6.1. Let B = n j=1 b λj , be a finite Blaschke product (of order n), r = max j |λ j | , and f ∈ K B = H 2 ⊖ BH 2 . Then for every n ≥ 2 and r ∈ [0, 1),

f ′ H 2 ≤ α n, r f H 2 , where α n, r = 1 + (1 + r)(n -1) + √ n -2 (1 -r) -1
, and in particular

f ′ H 2 ≤ 3 n 1 -r f H 2 ,
for all n ≥ 1 and r ∈ [0, 1).

Proof. Using (3.1.3), f = P B f = n k=1 (f, e k ) H 2 e k , for all f ∈ K B . Noticing that, e ′ k e ′ k = k-1 i=1 b ′ λi b λi e k + λ k 1 1 -λ k z e k , for k ∈ [2, n], we get f ′ = n k=2 (f, e k ) H 2 k-1 i=1 b ′ λi b λi e k + n k=1 (f, e k ) H 2 λ k 1 1 -λ k z e k , = n i=1 b ′ λi b λi n-1 k=i+1 (f, e k ) H 2 e k + n k=1 (f, e k ) H 2 λ k 1 1 -λ k z e k .
Now using Cauchy-Schwarz inequality and the fact that e k is a vector of norm 1 in H 2 for k = 1, ..., n, we get

n k=2 λ k (f, e k ) H 2 1 1 -λ k z e k H 2 ≤ n k=1 |(f, e k ) H 2 | λ k 1 1 -λ k z ∞ e k H 2 ≤ ≤ 1 1 -r n k=1 |(f, e k ) H 2 | ≤ 1 1 -r n k=1 |(f, e k ) H 2 | 2 1 2 √ n ≤ 1 1 -r f H 2 √ n. Further, n-1 i=1 b ′ λi b λi n k=i+1 e k (f, e k ) H 2 H 2 ≤ n-1 i=1 b ′ λi b λi ∞ n k=i+1 (f, e k ) H 2 e k H 2 = = max 1≤i≤n-1 b ′ λi b λi ∞ n-1 i=1 n k=i+1 |(f, e k ) H 2 | 2 1 2 ≤ max i b ′ λi b λi ∞ n-1 i=1 f H 2 . Now, using b ′ λi b λi ∞ = |λ i | 2 -1 1 -λ i z (λ i -z) ∞ ≤ 1 + |λ i | 1 -|λ i | ≤ 1 + r 1 -r , we get n-1 i=1 b ′ λi b λi n k=i+1 (f, e k ) H 2 e k H 2 ≤ (1 + r) n -1 1 -r f H 2 .
Finally,

f ′ H 2 ≤ 1 + (1 + r)(n -1) + √ n -2 (1 -r) -1 f H 2 .
In particular,

f ′ H 2 ≤ 2n -2 + √ n (1 -r) -1 f H 2 ≤ 3n(1 -r) -1 f H 2 ,
for all n ≥ 1 and for every f ∈ K B .

6.2. An upper bound for c σ, L 2 a , H ∞ . Here, we apply Proposition 6.1 to prove the right-hand side inequality of Theorem 2.4. We first prove the following corollary. Corollary 6.2. Let σ be a sequence in D. Then,

c σ, l 2 a (k + 1) -1 , H ∞ ≤ 2 √ 10 n(1 -r) -1 3/2 .
Proof. Indeed, let X = l 2 a (-1), σ a finite subset of D and B = B σ . If f ∈ X, then using part (c) of Lemma 3.2, f |σ we get that Φ(f ) |σ = f |σ . Now, denoting X ⋆ the dual of X with respect to the Cauchy pairing •, • (defined in Lemma 3.2) and applying point (d) of the same lemma, we obtain X ⋆ = l 2 a (1) and

|Φ(f )(ζ)| ≤ f X P B k ζ X ⋆ ≤ f X K P B k ζ 2 H 2 + (P B k ζ ) ′ 2 H 2 1 2
, where

K = max 1, sup k≥1 (k + 1)k -1 = 2. Since P B k ζ ∈ K B , Proposition 6.1 implies |Φ(f )(ζ)| ≤ f X K P B k ζ 2 H 2 + 9 n(1 -r) -1 2 P B k ζ 2 H 2 1 2 ≤ ≤ A n(1 -r) -1 3/2 f X ,
where A = K (2/2 + 9)

1 2 = 2 √ 10, since P B k ζ 2 ≤ √ 2 n(1 -r) -1 1/2
, and since we can suppose n ≥ 2, (the case n = 1 being obvious). Now let us give the proof of the right-hand side inequality of Theorem 2.4.

Proof of Theorem 2.4 (the right-hand side inequality only). The case α = 0 corresponds to X = H 2 and has already been studied in Section 3 (we can choose A(0) = √ 2). We now suppose α ∈ [-1, 0) and we set θ = -α,

0 ≤ θ ≤ 1, so that α = (1 -θ)(1 -N ) + θ.(-N ). Since l 2 a (0) , l 2 a (-1) [θ] = l 2 a (α) ,
(see [START_REF] Bergh | Interpolation Spaces. An Introduction[END_REF][START_REF] Triebel | Interpolation theory, functions spaces, differential operators[END_REF]), this gives, using Lemma 5.2 with X 1 = l 2 a (0) = H 2 and X 2 = l 2 a (-1) , Corollary 6.2 , that

C n, r l 2 a (α) , H ∞ ≤ √ 2 n(1 -r) -1 1 2 1-θ 2 √ 10 n(1 -r) -1 3 2 θ = = A(0) 1-θ A(1) θ n(1 -r) -1 1-θ 2 + 3θ 2 .
It remains to use θ = -α, set A(α) = A(0) 1-θ A(1) θ and apply (5.1.2) with X = l 2 a ((k + 1) α ). In particular, for α = -1/2 we get (1 -θ)/2 + 3θ/2 = 1 and 

A (-1/2) = A(0) (1-1/2) A(1) 1/2 = √ 2 1/2 (2 √ 10) 1/2 = √ 2.10
c(σ n, λ , H, H ∞ ) = sup f H ∞ /b n λ H ∞ : f ∈ H, f H ≤ 1 , where f H ∞ /b n λ H ∞ = inf { f + b n λ g ∞ : g ∈ H}.
Our goal in this subsection is to prove the sharpness of the upper estimate stated in Theorem 2.3 (p = 2) and in Theorem 2.4 for the quantities C n, r H 2 , H ∞ and C n, r L 2 a , H ∞ , that is to say, to get the lower bounds of Theorem 2.3 (p = 2) and Theorem 2.4.

In the proof, we use properties of reproducing kernel Hilbert space on the disc D, see for example [START_REF] Nikolski | Operators, Function, and Systems: an easy reading[END_REF]. Let us recall some of them adapting the general setting to special cases X = l 2 a ((k + 1) α ). The reproducing kernel of l 2 a ((k + 1) α ), by definition, is a l 2 a ((k + 1) α )-valued function λ -→ k α λ , λ ∈ D, such that (f, k w λ ) = f (λ) for every f ∈ l 2 a ((k + 1) -α ), where (•, •) means the scalar product (h, g) = k≥0 ĥ(k)ĝ(k)(k + 1) -2α . Since one has f (λ) = k≥0 f (k)λ k (k + 1) 2α (k + 1) -2α (λ ∈ D), it follows that

k α λ (z) = k≥0 (k + 1) 2α λ k z k , z ∈ D.
In particular, for the Hardy space H 2 = l 2 a (1) (α = 0), we get the Szeg kernel k λ (z) = (1-λz) -1 and for the Bergman space L 2 a = l 2 a (k + 1)

-1/2 (α = -1/2), the Bergman kernel k -1/2 λ (z) = (1 -λz) -2 .
We will use the previous observations for the following composed reproducing kernels (Aronszajn-deBranges, see [START_REF] Aronszajn | Theory of reproducing kernels[END_REF][START_REF] Nikolski | Operators, Function, and Systems: an easy reading[END_REF]): given the reproducing kernel k of H 2 and ϕ ∈ {z N : N = 1, 2}, the function ϕ • k is also positive definite and the corresponding Hilbert space is

H ϕ = ϕ(H 2 ) = l 2 a (k + 1) 1-N 2
.

It satisfies the following property: for every [START_REF] Nikolski | Operators, Function, and Systems: an easy reading[END_REF], page 320). We notice in particular that (7.1.1)

f ∈ H 2 , ϕ • f ∈ ϕ(H 2 ) and ϕ • f 2 ϕ(H 2 ) ≤ ϕ( f 2 H 2 ) (see
H z = H 2 and H z 2 = L 2 a .
The above relation between the spaces H 2 , L 2 a and the spaces ϕ(H 2 ) = H ϕ leads to establish the proof of the left-hand side inequalities stated in Theorem 2.3 (for p = 2 only) and in Theorem 2.4 .

Proof of Theorem 2.3 (p = 2) and Theorem 2.4. (left-hand side inequalities only) 0) For N = 1, 2 we set ϕ N (z) = z N .

1) We set

Q n = n-1 k=0 (1 -|λ| 2 ) 1/2 b k λ 1 -λz -1 , H n, N = ϕ N • Q n and Ψ = bH n, N , b > 0. Then Q n 2 2
= n, and hence by the above Aronszajn-deBranges inequality,

Ψ 2 Hϕ ≤ b 2 ϕ N Q n 2 2 = b 2 ϕ N (n). Let b > 0 such that b 2 ϕ N (n) = 1.
2) Since the spaces H ϕN and H ∞ are rotation invariant, we have

c (σ n, λ , H ϕN , H ∞ ) = c (σ µ,n , H ϕN , H ∞ )
for every λ, µ with |λ| = |µ| = r. Let λ = -r. To get a lower estimate for Ψ Hϕ

N /b n λ Hϕ N consider G such that Ψ -G ∈ b n λ Hol(D), i.e. such that bH n, N • b λ -G • b λ ∈ z n Hol(D).
3) First, we show that

ψ =: Ψ • b λ = bH n, N • b λ is a polynomial (of degree n if ϕ = z and 2n if ϕ = z 2 ) with positive coefficients. Note that Q n • b λ = n-1 k=0 z k (1 -|λ| 2 ) 1/2 1 -λb λ (z) = 1 -|λ| 2 -1 2 1 + (1 -λ) n-1 k=1 z k -λz n = = (1 -r 2 ) -1/2 1 + (1 + r) n-1 k=1 z k + rz n =: (1 -r 2 ) -1/2 ψ 1 . Hence, ψ = Ψ • b λ = bH n, N • b λ = bϕ N • 1 -r 2 -1 2 ψ 1 and ϕ N • ψ 1 = ψ N 1 (z), N = 1, 2. 4) Next, we show that m (ψ) =: m j=0 ψ(j) ≥ (2 √ 2) -1 n(1 -r) -1 if N = 1 16 -1 n(1 -r) -1 if N = 2 ,
where m = n/2 if n is even and m = (n + 1)/2 if n is odd.

Indeed, setting S n = n j=0 z j , we have both for N = 1 and N = 2

m ψ N 1 = m   1 + (1 + r) n-1 t=1 z t + rz n N   ≥ m S N n-1 . Next, we obtain m S N n-1 = m 1 -z n 1 -z N = = m (1 -z) -N = 1 (N -1)! m d N -1 dz N -1 1 1 -z = m j=0 C j N +j-1 . Now if N = 1, then m j=0 C j N +j-1 = m + 1 ≥ n 2 , whereas if N = 2 then m j=0 C j N +j-1 = (m + 1)(m + 2) 2 ≥ (n + 2)(n + 4) 8 ≥ n 2 8 . Finally, since m (ψ) = b m (ϕ N • ψ 1 ) = b 1 -r 2 -N/2 m (ψ N 1 ) we get m (ψ) ≥ (2(1 -r)) -1/2 nb/2 if N = 1 (2(1 -r)) -1 n 2 b/8 if N = 2 , with b = ϕ N (n) = n -1/2 if N = 1 n -1 if N = 2
. This gives the result claimed. 5)

Let F n = Φ m + z m Φ m , where Φ k stands for the k-th Fejer kernel. We have g ∞ F n L 1 ≥ g * F n ∞ for every g ∈ L ∞ (T) , and taking the infimum over all g ∈ H ∞ satisfying ĝ(k) = ψ(k), ∀k ∈ [0, n -1], we obtain

ψ H ∞ /z n H ∞ ≥ 1 2 ψ * F n ∞ ,
where * stands for the usual convolution product. Now using part 4),

Ψ H ∞ /b n λ H ∞ = ψ H ∞ /z n H ∞ ≥ 1 2 ψ * F n ∞ ≥ ≥ 1 2 |(ψ * F n ) (1)| ≥ 1 2 m j=0 ψ(j)≥ ≥ (4 √ 2) -1 n(1 -r) -1 if N = 1 32 -1 n(1 -r) -1 if N = 2 . 
6) In order to conclude, it remains to use (7.1.1).

7.2. The case X = H p , 1 ≤ p ≤ +∞. Here we prove the sharpness (for even p) of the upper estimate found in Theorem 2.3. We first prove the following lemma.

Lemma 7.1. Let p, q such that p

q ∈ Z + , then c (σ, H p , H ∞ ) ≥ c (σ, H q , H ∞ ) q p
for every sequence σ of D.

Proof.

Step 1. Recalling that

c (σ, H p , H ∞ ) = sup f p ≤1 inf g ∞ : g ∈ Y, g |σ = f |σ , we first prove that c (σ, H p , H ∞ ) = sup f p ≤1, f outer inf g ∞ : g ∈ Y, g |σ = f |σ .
Indeed, we clearly have the inequality sup

f p≤1, f outer inf g ∞ : g ∈ Y, g |σ = f |σ ≤ c (σ, H p , H ∞ ) ,
and if the inequality were strict, that is to say sup

f p ≤1, f outer inf g ∞ : g ∈ Y, g |σ = f |σ < sup f p ≤1 inf g ∞ : g ∈ Y, g |σ = f |σ ,
then we could write that there exists ǫ > 0 such that for every f = f i .f o ∈ H p (where f i stands for the inner function corresponding to f and f o to the outer one) with f p ≤ 1 (which also implies that

f o p ≤ 1, since f o p = f p ),
there exists a function g ∈ H ∞ verifying both g ∞ ≤ (1 -ǫ)c (σ, H p , H ∞ ) and g |σ = f o|σ . This entails that f |σ = (f i g) |σ and since f i g ∞ = g ∞ ≤ (1 -ǫ)c (σ, H p , H ∞ ) , we get that c (σ, H p , H ∞ ) ≤ (1 -ǫ)c (σ, H p , H ∞ ), which is a contradiction and proves the equality of Step 1.

Step 2. Using the result of Step 1, we get that ∀ǫ > 0 there exists an outer function f o ∈ H q with f o q ≤ 1 and such that inf g ∞ : g ∈ Y, g |σ = f o|σ ≥ c (σ, H q , H ∞ ) -ǫ. Now let F = f q p o ∈ H p , then F p p = f o q q ≤ 1. We suppose that there exists g ∈ H ∞ such that g |σ = F |σ with g ∞ < (c (σ, H q , H ∞ ) -ǫ) p .

Then, since g (λ i ) = F (λ i ) = f o (λ i ) q p for all i = 1, . . . , n, we have g (λ i ) p q = f o (λ i ) and g p q ∈ H ∞ since p q ∈ Z + . We also have

g p q ∞ = g p q ∞ < (c (σ, H q , H ∞ ) -ǫ) q p ,
which is a contradiction. As a result, we have

g ∞ ≥ (c (σ, H q , H ∞ ) -ǫ) q p ,
for all g ∈ H ∞ such that g |σ = F |σ , which gives

c (σ, H p , H ∞ ) ≥ (c (σ, H q , H ∞ ) -ǫ) q p ,
and since that inequality is true for every ǫ > 0, we get the result.

Proof of Theorem 2.3 (the left-hand side inequality for p ∈ 2N, p > 2 only).

We first prove the lower estimate for c (σ n, λ , H p , H ∞ ) . Writing p = 2(p/2), we apply Lemma 7.1 with q = 2 and this gives c (σ n, λ , H p , H ∞ ) ≥ c σ n, λ , H 2 , H ∞ 2 p ≥ 32 -1 p n(1 -|λ|) -1 2 p for all integer n ≥ 1. The last inequality is a consequence of Theorem 2.3 (lefthand side inequality) for the particular case p = 2 which has been proved in Subsection 7.1.

Comparing our results with Carleson interpolation

Recall that given a (finite) set σ = {λ 1 , ..., λ n } ⊂ D, the Carleson interpolation constant C I (σ) is defined by

C I (σ) = sup a l ∞ ≤1 inf g ∞ : g ∈ H ∞ , g |σ = a .
We introduce the evaluation functionals ϕ λ for λ ∈ D, as well as the evaluation of the derivatives ϕ λ,s (s = 0, 1, ...) ϕ λ (f ) = f (λ), f ∈ X, and ϕ λ,s (f ) = f (s) (λ), f ∈ X. Theorem 8.1. Let X be a Banach space, X ⊂ Hol(D), and σ = {λ 1 , ..., λ n } be a sequence of distinct points in the unit disc D. We have, Theorem 8.1 (see [START_REF] Zarouf | Interpolation avec contraintes sur des ensembles finis du disque[END_REF] for its proof) tells us that, for σ with a "reasonable" interpolation constant C I (σ), the quantity c(σ, X, H ∞ ) behaves as max i ϕ λi . However, for "tight" sequences σ, the constant C I (σ) is so large that the estimate in question contains almost no information. On the other hand, an advantage of the estimate of Theorem 8.1 is that it does not contain card σ = n explicitly. Therefore, for well-separated sequences σ, Theorem 8.1 should give a better estimate than those of Theorem 2.3 and Theorem 2.4 . Now, how does the interpolation constant C I (σ) behave in terms of the characteristics r and n of σ? We answer this question in [START_REF] Zarouf | Interpolation avec contraintes sur des ensembles finis du disque[END_REF] for some particular sequences σ. More precisely, we compare these quantities for the cases X = H 2 , X = L 2 a and for three geometrically simple configurations: two-points sets σ, circular and radial sequences σ.

Let us recall that our specific upper bounds in Theorems C and D are sharp over all n elements sequences σ. However, we give in [START_REF] Zarouf | Interpolation avec contraintes sur des ensembles finis du disque[END_REF] some very special radial and circular sequences σ such that the estimate of c(σ, H 2 , H ∞ ) via the Carleson constant C I (σ) (using Theorem 8.1 ) is comparable with or better than the estimates of Theorem 2.3 (for X = H 2 ) and Theorem 2.4 (for X = L 2 a ) . We also give some examples of radial and circular sequences but also of two-points sets, such that it is worse (i.e. for which our estimate is better). More specific radial sequences are studied in [START_REF] Zarouf | Interpolation avec contraintes sur des ensembles finis du disque[END_REF]: sparse sequences, condensed sequences and long sequences.

1. 2 .

 2 Motivations. a. As it is mentioned in Subsection 1.1, one of the most interesting cases is Y = H ∞ . In this case, the quantity c (σ, X, H ∞ ) has a meaning of an intermediate interpolation between the Carleson one (when f X |σ ≍ sup 1≤i≤n |f (λ i )|) and the individual Nevanlinna-Pick interpolation (no conditions on f ).
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 14771 Lower bounds for C n, r (X, H ∞ ) The cases X = H 2 and X = L 2 a . Here, we consider the standard Hardy and Begman spaces,X = H 2 = l 2 a (1) and X = L 2 a = l 2 a ((k + 1) -1/2), where the spaces l 2 a ((k + 1) α ) are defined in Section 6, and the problem of lower estimates for the one-point special case σ n, λ = {λ, λ, ..., λ} n , λ ∈ D. Recall the definition of our constrained interpolation constant for this case

ϕ

  λi ≤ c(σ, X, H ∞ ) ≤ C I (σ) max 1≤i≤n ϕ λi ,where C I (σ) stands for the Carleson interpolation constant.