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Abstract. Given a finite subset σ of the unit disc D and a holomorphic function f in D belonging to a
class X , we are looking for a function g in another class Y which satisfies g|σ = f|σ and is of minimal norm
in Y . More precisely, we consider the interpolation constant c (σ, X, Y ) = supf∈X, ‖f‖X≤1infg|σ=f|σ ‖g‖Y .

When Y = H∞, our interpolation problem includes those of Nevanlinna-Pick (1916) and Caratheodory-
Schur (1908). If X is a Hilbert space belonging to the families of weighted Hardy and Bergman spaces, we
obtain a sharp upper bound for the constant c (σ, X, H∞) in terms of n = cardσ and r = maxλ∈σ |λ| < 1.
If X is a general Hardy-Sobolev space or a general weighted Bergman space (not necessarily of Hilbert
type), we also establish upper and lower bounds for c (σ, X, H∞) but with some gaps between these
bounds. This problem of constrained interpolation is partially motivated by applications in matrix analysis
and in operator theory.

1. Introduction

a. Statement and historical context of the problem. Let D = {z ∈ C : |z| < 1} be the unit
disc of the complex plane and let Hol (D) be the space of holomorphic functions on D. We consider here
the following problem: given two Banach spaces X and Y of holomorphic functions on the unit disc D,
X, Y ⊂ Hol (D) , and a finite subset σ of D, what is the best possible interpolation by functions of the
space Y for the traces f|σ of functions of the space X , in the worst case? The case X ⊂ Y is of no
interest, and so one can suppose that either Y ⊂ X or X and Y are incomparable. Here and later on,
H∞ stands for the space (algebra) of bounded holomorphic functions in the unit disc D endowed with
the norm ‖f‖∞ = supz∈D |f(z)| .

More precisely, our problem is to compute or estimate the following interpolation constant

c (σ, X, Y ) = sup
f∈X, ‖f‖X≤1

inf
{
‖g‖Y : g|σ = f|σ

}
.

For r ∈ [0, 1) and n ≥ 1, we also define

Cn, r(X, Y ) = sup {c(σ, X, Y ) : card σ ≤ n , |λ| ≤ r, ∀λ ∈ σ} .

It is explained in [15] why the classical interpolation problems, those of Nevanlinna-Pick and Carathéodory-
Schur (see [12] p.231), on the one hand and Carleson’s free interpolation (1958) (see [13] p.158) on the
other hand, are of this nature.

From now on, if σ = {λ1, ..., λn} ⊂ D is a finite subset of the unit disc, then

Bσ =
n∏

j=1

bλj

is the corresponding finite Blaschke product where bλ = λ−z
1−λz

, λ ∈ D. With this notation and supposing

that X satisfies the division property

[f ∈ X, λ ∈ D and f(λ) = 0] ⇒
[

f

z − λ
∈ X

]

,

1
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we have

c (σ, X, Y ) = sup
‖f‖X≤1

inf {‖g‖Y : g ∈ Y, g − f ∈ BσX} .

b. Motivations in matrix analysis and in operator theory. A direct relation between the study
of the constants c (σ, H∞, W ) and some numerical analysis problems is mentioned in [15] (page 5, (b)).
Here, W is the Wiener algebra of absolutely convergent Fourier series. In the same spirit, for general
Banach spaces X containing H∞, our constants c (σ, X, H∞) are directly linked with the well known
Von-Neumann’s inequality for contractions on Hilbert spaces, which asserts that if A is a contraction
on a Hilbert space and f ∈ H∞, then the operator f(A) satisfies

‖f(A)‖ ≤ ‖f‖∞ .

Using this inequality we get the following interpretation of our interpolation constant c (σ, X, H∞): it
is the best possible constant c such that ‖f(A)‖ ≤ c ‖f‖X , ∀ f ∈ X . That is to say:

c (σ, X, H∞) = sup
‖f‖X≤1

sup {‖f(A)‖ : A : (Cn, | · |2) → (Cn, | · |2) , ‖A‖ ≤ 1, σ(A) ⊂ σ} ,

where the interior sup is taken over all contractions A on n−dimensional Hilbert spaces (Cn, |.|2), with
a given spectrum σ(A) ⊂ σ.

An interesting case occurs for f such that f|σ = (1/z)|σ (estimates on condition numbers and the
norm of inverses of n× n matrices) or f|σ = [1/(λ− z)]|σ (estimates on the norm of the resolvent of an
n× n matrix), see for instance [18].

c. Known results. Let Hp (1 ≤ p ≤ ∞) be the standard Hardy spaces and let L2
a be the Bergman

space on D. We obtained in [16] some estimates on c (σ, X, H∞) for the cases X ∈ {Hp, L2
a}.

Theorem A. Let n ≥ 1, r ∈ [0, 1), p ∈ [1, +∞] and |λ| ≤ r. Then

(1)
1

32
1
p

(
n

1− |λ|

) 1
p

≤ c (σn, λ, H
p, H∞) ≤ Cn,r (H

p, H∞) ≤ Ap

(
n

1− r

) 1
p

,

(2)
1

32

n

1− |λ| ≤ c
(
σn, λ, L

2
a, H

∞) ≤ Cn, r

(
L2
a, H

∞) ≤
√
210

1
4

n

1− r
,

where

σn, λ = {λ, ..., λ}, (n times),
is the one-point set of multiplicity n corresponding to λ, Ap is a constant depending only on p and the

left-hand side inequality in (1) is valid only for p ∈ 2Z+. For p = 2, we have A2 =
√
2.

Note that this theorem was partially motivated by a question posed in an applied situation in [5, 6].

Trying to generalize inequalities (1) and (2) for general Banach spaces X (of analytic functions of
moderate growth in D), we formulate the following conjecture: Cn, r (X, H

∞) ≤ aϕX

(
1− 1−r

n

)
, where

a is a constant depending on X only and where ϕX(t) stands for the norm of the evaluation functional
f 7→ f(t) on the space X . The aim of this paper is to establish this conjecture for some families of
weighted Hardy and Bergman spaces.
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2. Main results

Here, we extend Theorem A to the case where X is a weighted space

lpa(α) =

{

f =
∑

k≥0

f̂(k)zk : ‖f‖p =
∑

k≥0

|f̂(k)|p(k + 1)pα <∞
}

, α ≤ 0.

First, we study the special case p = 2, α ≤ 0. Then lpa(α) are the spaces of the functions f =
∑

k≥0 f̂(k)z
k

satisfying
∑

k≥0

|f̂(k)|2(k + 1)2α <∞.

Notice that H2 = l2a(1). Let β = −2α− 1 > −1. The scale of weighted Bergman spaces of holomorphic
functions

X = L2
a (β) = L2

a

((
1− |z|2

)β
dA
)

=

{

f ∈ Hol(D) :

∫

D

|f(z)|2
(
1− |z|2

)β
dA <∞

}

,

gives the same spaces, with equivalence of the norms:

l2a (α) = L2
a (β) .

In the case β = 0 we have L2
a (0) = L2

a.
We start with the following result.

Theorem B. Let n ≥ 1, r ∈ [0, 1), α ∈ (−∞, 0] and |λ| ≤ r. Then

B

(
n

1− |λ|

) 1−2α
2

≤ c
(
σn, λ, l

2
a (α) , H

∞) ≤ Cn, r

(
l2a (α) , H

∞) ≤ A

(
n

1− r

) 1−2α
2

.

Equivalently, if β ∈ (−1, +∞) then

B′
(

n

1− |λ|

)β+2
2

≤ c
(
σn, λ, L

2
a (β) , H

∞) ≤ Cn, r

(
L2
a (β) , H

∞) ≤ A′
(

n

1− r

) β+2
2

,

where A and B depend only on α, A′ and B′ depend only on β, and both of the two left-hand side
inequalities are valid only for α and β satisfying 1− 2α ∈ N and β+1

2
∈ N.

The right-hand side inequalities given in Theorem B are proved in Section 4 whereas the left-hand
side ones are proved in Section 5 .

Remark. If N = [1− 2α] is the integer part of 1− 2α, then Theorem B is valid with B and A such that
B ≍ 1

23N (2N)!
and A ≍ N !(4N)N . In the same way, if N ′ = [2 + β] is the integer part of 2 + β, then

Theorem B is valid with B′ and A′ such that B′ ≍ 1
23N′ (2N ′)!

and A′ ≍ N ′!(4N ′)N
′

. (The notation x ≍ y

means that there exist numerical constants c1, c2 > 0 such that c1y ≤ x ≤ c2y).

Next, we give an estimate for Cn, r (X, H
∞) in the scale of the spaces X = lpa (α), α ≤ 0, 1 ≤ p ≤ +∞.

We start with a result for 1 ≤ p ≤ 2.

Theorem C. Let r ∈ [0, 1), n ≥ 1, p ∈ [1, 2], and let α ≤ 0. We have

Bn1−α− 1
p ≤ Cn, r (l

p
a (α) , H

∞) ≤ A

(
n

1− r

) 1−2α
2

,

where A = A(α, p) and B = B(α, p) are constants depending only on α and p.
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It is very likely that the bounds stated in Theorem C are not sharp. The sharp one should be probably
(

n
1−r

)1−α− 1
p . In the same way, for 2 ≤ p ≤ ∞, we give the following theorem, in which we feel again

that the upper bound
(

n
1−r

) 3
2
−α− 2

p is not sharp. As before, the sharp one is probably
(

n
1−r

)1−α− 1
p .

Theorem D. Let r ∈ [0, 1), n ≥ 1, p ∈ [2, +∞], and let α ≤ 0. We have

B
′

n1−α− 1
p ≤ Cn, r (l

p
a (α) , H

∞) ≤ A
′

(
n

1− r

) 3
2
−α− 2

p

,

where A
′

and B
′

depend only on α and p.

Theorems B, C and D were already announced in the note [17]. Let σ be a finite set of D, and
let f ∈ X. The technical tools used in the proofs of the upper bounds for the interpolation constants
c (σ, X, H∞) are: a linear interpolation

f 7→
n∑

k=1

〈f, ek〉 ek,

where 〈., .〉 means the Cauchy sesquilinear form 〈h, g〉 =
∑

k≥0 ĥ(k)ĝ(k), and (ek)1≤k≤n is the explic-

itly known Malmquist basis (see [13] p. 117) or Definition 1.1 below) of the space KB = H2ΘBH2

where B = Bσ (Subsection 3.1), a Bernstein-type inequality of Dyakonov (used by induction): ‖f ′‖p ≤
cp ‖B′‖∞ ‖f‖p , for a (rational) function f in the star-invariant subspaceHp∩BzHp generated by a (finite)

Blaschke product B, (Dyakonov [9, 10]); it is used in order to find an upper bound for ‖
∑n

k=1 〈f, ek〉 ek‖∞
(in terms of ‖f‖X) (Subsection 3.2), and finally (Subsection 3.3) the complex interpolation between Ba-
nach spaces, (see [4] or [14] Theorem 1.9.3-(a), p.59).

The lower bound problem (for Cn, r (X, H
∞)) is treated by using the “worst” interpolation n−tuple

σ = σn, λ = {λ, ..., λ}, a one-point set of multiplicity n (the Carathéodory-Schur type interpolation).

The “worst” interpolation data comes from the Dirichlet kernels
∑n−1

k=0 z
k transplanted from the origin

to λ. We note that the spaces X = lpa(α) satisfy the condition X ◦ bλ ⊂ X when p = 2, whereas this
is not the case for p 6= 2. That is why our problem of estimating the interpolation constants is more
difficult for p 6= 2.

The paper is organized as follows. In Section 3, we introduce the three technical tools mentioned
above. Section 4 is devoted to the proof of the upper bounds of Theorems B, C and D. Finally, in
Section 5, we prove the lower bounds of these theorems.

3. Preliminaries

In this section, we develop the technical tools mentioned in Section 2, which are used later on to
establish an upper bound for c (σ, X, H∞).

3.1. Malmquist basis and orthogonal projection. In Definitions 3.1.1, 3.1.2, 3.1.3 and in Remark
3.1.4 below, σ = {λ1, ..., λn} is a sequence in the unit disc D and Bσ is the corresponding Blaschke
product.

Definition 3.1.1. Malmquist family. For k ∈ [1, n], we set fk =
1

1−λkz
, and define the family

(ek)1≤k≤n, (which is known as Malmquist basis, see [13, p.117]), by
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(3.1.1) e1 =
f1

‖f1‖2
and ek =

(
k−1∏

j=1

bλj

)

fk
‖fk‖2

,

for k ∈ [2, n]; we have ‖fk‖2 = (1− |λk|2)−1/2
.

Definition 3.1.2. The model space KBσ . We define KBσ to be the n-dimensional space:

(3.1.2) KBσ =
(
BσH

2
)⊥

= H2ΘBσH
2.

Definition 3.1.3. The orthogonal projection PBσon KBσ . We define PBσ to be the orthogonal
projection of H2 on its n-dimensional subspace KBσ .

Remark 3.1.4. The Malmquist family (ek)1≤k≤n corresponding to σ is an orthonormal basis of KBσ .
In particular,

(3.1.4) PBσ =
n∑

k=1

(·, ek)H2 ek ,

where (., .)H2 means the scalar product on H2.

We now recall the following lemma already (partially) established in [15, Lemma 3.1.5] which is useful
in the proof of the upper bound in Theorem C.

Lemma 3.1.5. Let σ = {λ1, ..., λn} be a sequence in the unit disc D and let (ek)1≤k≤n be the
Malmquist family corresponding to σ. Let also 〈·, ·〉 be the Cauchy sesquilinear form

〈h, g〉 =∑k≥0 ĥ(k)ĝ(k), (if h ∈ Hol(D) and k ∈ N, ĥ(k) stands for the kth Taylor coefficient of h).
The map Φ : Hol(D) → Hol(D) given by

Φ : f 7→
n∑

k=1

〈f, ek〉 ek,

is well defined and has the following properties:
(a) Φ|H2 = PBσ ,
(b) Φ is continuous on Hol(D) with the topology of the uniform convergence on compact sets of D,

(c) if X = lpa(α) with p ∈ [1, +∞], α ∈ (−∞, 0] and Ψ = Id|X − Φ|X , then Im (Ψ) ⊂ BσX,

(d) if f ∈ Hol(D), then

|Φ(f)(ζ)| = |〈f, PBσkζ〉| ,

for all ζ ∈ D, where PBσ is defined in 3.1.3 and kζ =
(
1− ζz

)−1
.

Proof. Points (a), (b) and (c) were already proved in [15]. In order to prove (d), we simply need to
write that

Φ(f)(ζ) =
n∑

k=1

〈f, ek〉 ek(ζ) =
〈

f,
n∑

k=1

ek(ζ)ek

〉

,

∀f ∈ Hol(D), ∀ζ ∈ D and to notice that
∑n

k=1 ek(ζ)ek =
∑n

k=1 (kζ, ek)H2 ek = PBσkζ.

�
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3.2. Bernstein-type inequalities for rational functions. Bernstein-type inequalities for rational
functions are the subject of a number of papers and monographs (see, for instance, [2, 3, 7, 8, 11]). We
use here a result going back to Dyakonov [9, 10].

Lemma 3.2.1. Let B =
∏n

j=1 bλj
, be a finite Blaschke product (of order n), r = maxj |λj| , and let

f ∈ KB. Then

‖f ′‖H2 ≤ 3
n

1− r
‖f‖H2 .

Lemma 3.2.1 is a partial case (p = 2) of the following K. Dyakonov’s result [8] (which is, in turn, a
generalization of Levin’s inequality [11] corresponding to the case p = ∞): the norm ‖D‖Kp

B→Hp of the

differentiation operator Df = f
′

on the star-invariant subspace of the Hardy space Hp,
Kp

B := Hp ∩BzHp, (where the bar denotes complex conjugation) satisfies the following estimate:

‖D‖Kp
B→Hp ≤ cp ‖B′‖∞ ,

for every p, 1 ≤ p ≤ ∞, where cp is a positive constant depending only on p, B is a finite Blaschke

product and ‖·‖∞ means the norm in L∞(T). In the case p = 2, Dyakonov’s result gives cp =
36+2

√
3π

2π
,

which entails an estimate similar to that of Lemma 3.2.1, but with a larger constant
(
13
2
instead of 3

)
.

Our lemma is proved in [16], Proposition 6.1.1.

The sharpness of the inequality stated in Lemma 3.2.1 is discussed in [15]. Here we use it by induction
in order to get the following corollary.

Corollary 3.2.2. Let B =
∏n

j=1 bλj
, be a finite Blaschke product (of order n), r = maxj |λj| , and

f ∈ KB. Then,
∥
∥f (k)

∥
∥
H2 ≤ k!4k

(
n

1− r

)k

‖f‖H2 ,

for every k = 0, 1, ...

Proof. Indeed, since zk−1f (k−1) ∈ KBk , we obtain applying Lemma 3.2.1 with Bk instead of B,
∥
∥zk−1f (k) + (k − 1)zk−2f (k−1)

∥
∥
H2 ≤ 3

kn

1− r

∥
∥zk−1f (k−1)

∥
∥
H2 = 3

kn

1− r

∥
∥f (k−1)

∥
∥
H2 .

In particular,
∣
∣
∥
∥zk−1f (k)

∥
∥
H2 −

∥
∥(k − 1)zk−2f (k−1)

∥
∥
H2

∣
∣ ≤ 3

kn

1− r

∥
∥f (k−1)

∥
∥
H2 ,

which gives
∥
∥f (k)

∥
∥
H2 ≤ 3

kn

1− r

∥
∥f (k−1)

∥
∥
H2 + (k − 1)

∥
∥f (k−1)

∥
∥
H2 ≤ 4

kn

1− r

∥
∥f (k−1)

∥
∥
H2 .

By induction,
∥
∥f (k)

∥
∥
H2 ≤ k!

(
4n

1− r

)k

‖f‖H2 .

�

3.3. Interpolation between Banach spaces (the complex method). In Section 4 we use the
following lemma.

Lemma 3.3. Let X1 and X2 be two Banach spaces of holomorphic functions in the unit disc D. Let
also θ ∈ [0, 1] and (X1, X2)[θ] be the corresponding intermediate Banach space resulting from the

classical complex interpolation method applied between X1 and X2, (we use the notation of [4, Chapter
4]). Then,

Cn, r

(

(X1, X2)[θ] , H
∞
)

≤ Cn, r (X1, H
∞)1−θ Cn, r (X2, H

∞)θ ,
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for all n ≥ 1, r ∈ [0, 1).

Proof. Let X be a Banach space of holomorphic functions in the unit disc D and let
σ = {λ1, λ2, ..., λn} ⊂ D be a finite subset of the disc. Let T : X −→ H∞/BσH

∞ be the restriction
map defined by

Tf = {g ∈ H∞ : f − g ∈ BσX} ,
for every f ∈ X . Then,

‖T‖X→H∞/BσH∞ = c (σ, X, H∞) .

Now, since (X1, X2)[θ] is an exact interpolation space of exponent θ (see [4] or [14] Theorem 1.9.3-(a),

p.59), we can complete the proof.

�

4. upper bounds for Cn, r (X, H
∞)

The aim of this section is to prove the upper bounds stated in Theorems B, C, and D.

4.1. The case X = l2a (α) , α ≤ 0. We start with the following result.

Corollary 4.1.1. Let N ≥ 0 be an integer. Then,

Cn, r

(
l2a (−N) , H∞) ≤ A

(
n

1− r

) 2N+1
2

,

for all r ∈ [0, 1[, n ≥ 1, where A depends only on N (of order N !(4N)N , see the proof below).

Proof. Indeed, let X = l2a (−N), σ a finite subset of D and B = Bσ. If f ∈ X, then using part (c) of
Lemma 3.1.5, we get that Φ(f)|σ = f|σ. Now, denoting X

⋆ the dual of X with respect to the Cauchy
pairing 〈·, ·〉 (defined in Lemma 3.1.5). Applying point (d) of the same lemma, we obtain X⋆ = l2a (N)
and

|Φ(f)(ζ)| ≤ ‖f‖X ‖PBkζ‖X⋆ ≤ ‖f‖X KN

(

‖PBkζ‖2H2 +
∥
∥
∥(PBkζ)

(N)
∥
∥
∥

2

H2

) 1
2

,

for all ζ ∈ D, where

KN = max

{

NN , sup
k≥N

(k + 1)N

k(k − 1)...(k −N + 1)

}

=

= max

{

NN ,
(N + 1)N

N !

}

=

{
NN , if N ≥ 3

(N+1)N

N !
, if N = 1, 2

.

(Indeed, the sequence
(

(k+1)N

k(k−1)...(k−N+1)

)

k≥N
is decreasing and

[

NN > (N+1)N

N !

]

⇐⇒ N ≥ 3). Since

PBkζ ∈ KB, Corollary 3.2.2 implies

|Φ(f)(ζ)| ≤ ‖f‖X KN ‖PBkζ‖H2

(

1 + (N !)2
(

4
n

1− r

)2N
) 1

2

≤ A(N)

(
n

1− r

)N+ 1
2

‖f‖X ,

where A(N) =
√
2KN

(
1 + (N !)242N

) 1
2 , since

(4.1.2) ‖PBkζ‖H2 =

∥
∥
∥
∥
∥

n∑

k=1

(kζ , ek)H2 ek

∥
∥
∥
∥
∥
H2

=

√
√
√
√

n∑

k=1

|ek(ζ)|2 ≤
√

2n

1− r
.

�
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Proof of Theorem B (the right-hand side inequality). There exists an integer N such that
N − 1 ≤ −α ≤ N. In particular, there exists 0 ≤ θ ≤ 1 such that α = (1− θ)(1−N) + θ.(−N). Since

(
l2a (1−N) , l2a (−N)

)

[θ]
= l2a (α) ,

(see [4, 14]), this gives, using Lemma 3.3 with X1 = l2a (1−N) and X2 = l2a (−N) , and Corollary 4.1.1,
that

Cn, r

(
l2a (α) , H

∞) ≤ A(N − 1)1−θA(N)θ
(

n

1− r

) (2N−1)(1−θ)
2

+ (2N+1)θ
2

.

It remains to use that θ = 1− α−N and set A(α) = A(N − 1)1−θA(N)θ.

�

4.2. An upper bound for c (σ, lpa (α) , H
∞) , 1 ≤ p ≤ 2. The purpose of this subsection is to prove

the right-hand side inequality of Theorem C. We start with a partial case.

Lemma 4.2.1. Let N ≥ 0 be an integer. Then

Cn, r

(
l1a ((−N) , H∞) ≤ A1

(
n

1− r

)N+ 1
2

,

for all r ∈ [0, 1), n ≥ 1, where A1 depends only on N (it is of order N !(4N)N , see the proof below).

Proof. In fact, the proof is exactly the same as in Corollary 4.1.1: if σ is a sequence in D with
card σ ≤ n, and f ∈ l1a (−N) = X, then X⋆ = l∞a (N) (the dual of X with respect to the Cauchy
pairing). Using Lemma 3.1.5 we still have Φ(f)|σ = f|σ, and for every ζ ∈ D,

|Φ(f)(ζ)| ≤ ‖f‖X ‖PBkζ‖X⋆ ≤

≤ ‖f‖X KNmax

{

sup
0≤k≤N−1

∣
∣
∣P̂Bkζ(k)

∣
∣
∣ , sup

k≥N

∣
∣
∣
∣

̂
(PBkζ)

(N) (k −N)

∣
∣
∣
∣

}

≤

≤ ‖f‖X KN max
{

‖PBkζ‖H2 ,
∥
∥
∥(PBkζ)

(N)
∥
∥
∥
H2

}

,

where KN is defined in the the proof of Corollary 4.1.1. Since PBkζ ∈ KB, Corollary 3.2.2 implies that

|Φ(f)(ζ)| ≤ ‖f‖X KN ‖PBkζ‖H2

(

1 +N !4N
(

n

1− r

)N
)

,

for all ζ ∈ D, which completes the proof using (4.1.2) and setting A1(N) = 2
√
2N !4NKN .

�

Proof of Theorem C (the right-hand inequality).

Step 1. We start by proving the result for p = 1 and for all α ≤ 0. We use the same reasoning as in
Theorem B except that we replace l2a(α) by l

1
a(α).

Step 2. We now prove the result for p ∈ [1, 2] and for all α ≤ 0 : the scheme of this step is completely
the same as in Step 1, but we use this time the complex interpolation between l1a(α) and l

2
a(α) (the

classical Riesz-Thorin Theorem [4, 14]). Applying Lemma 3.3 with X1 = l1a (α) and X2 = l2a (α), it
suffices to use Theorem B and Theorem C for the special case p = 1 (already proved in Step 1), to
complete the proof of the right-hand side inequality.

�
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4.3. An upper bound for c (σ, lpa (α) , H
∞) , 2 ≤ p ≤ +∞. Here, we prove the upper bound stated

in Theorem D. As before, the upper bound
(

n
1−r

) 3
2
−α− 2

p is not as sharp as in Subsection 4.1. As in

Subsection 4.2, we can suppose the constant
(

n
1−r

)1−α− 1
p should be again a sharp upper (and lower)

bound for the quantity Cn, r (l
p
a (α) , H

∞) , 2 ≤ p ≤ +∞ .
First we prove the following partial case of Theorem D.

Corollary 4.3.1. Let N ≥ 0 be an integer. Then,

Cn, r (l
∞
a (−N) , H∞) ≤ A∞

(
n

1− r

)N+ 3
2

,

for all r ∈ [0, 1[, n ≥ 1, where A∞ depends only on N (it is of order N !(4N)N , see the proof below).

Proof. We use literally the same method as in Corollary 4.1.1 and Lemma 4.2.1. Indeed, if σ =
{λ1, ..., λn} is a sequence in the unit disc D and f ∈ l∞a (−N) = X, then X⋆ = l1a (N) and apply-
ing again Lemma 3.1.5 we get Φ(f)|σ = f|σ. For every ζ ∈ D, we have

|Φ(f)(ζ)| ≤ ‖f‖X ‖PBkζ‖X⋆ ≤ ‖f‖X KN

(

‖PBkζ‖W +
∥
∥
∥(PBkζ)

(N)
∥
∥
∥
W

)

,

where W =
{

f =
∑

k≥0 f̂(k)z
k : ‖f‖W :=

∑

k≥0

∣
∣
∣f̂(k)

∣
∣
∣ <∞

}

stands for the Wiener algebra, and KN is

defined in the proof of Corollary 4.1.1. Now, applying Hardy’s inequality (see [13], p.370]), we obtain

|Φ(f)(ζ)| ≤

≤ ‖f‖X KN

(

π
∥
∥
∥(PBkζ)

′

∥
∥
∥
H1

+ |(PBkζ) (0)|+ π
∥
∥
∥(PBkζ)

(N+1)
∥
∥
∥
H1

+
∣
∣
∣(PBkζ)

(N) (0)
∣
∣
∣

)

≤

≤ ‖f‖X KNπ
(∥
∥
∥(PBkζ)

′

∥
∥
∥
H2

+ ‖(PBkζ)‖H2 +
∥
∥
∥(PBkζ)

(N+1)
∥
∥
∥
H2

+
∥
∥
∥(PBkζ)

(N)
∥
∥
∥
H2

)

,

for all ζ ∈ D. Using Lemma 3.2.1 and Corollary 3.2.2, we get

|Φ(f)(ζ)| ≤ ‖f‖X KNπ ‖PBkζ‖H2

(

3n

1− r
+ 1 + (N + 1)!

(
4n

1− r

)N+1

+N !

)

,

for all ζ ∈ D, which completes the proof using (4.1.2). �

Proof of Theorem D (the right-hand side inequality). The proof repeates the scheme from Theorem C
(the two steps) excepted that this time, we replace (in both steps) the space X = l1a(α) by X = l∞a (α).

�

5. Lower bounds for Cn, r (X, H
∞)

Here we prove the left-hand side inequalities stated in Theorems B, C and D.

5.1. The case X = l2a(α), α ≤ 0. We start with verifying the sharpness of the upper estimate for the
quantity

Cn, r

(

l2a

(
1−N

2

)

, H∞
)

,

(where N ≥ 1 is an integer), in Theorem B. This lower bound problem is treated by estimating our
interpolation constant c(σ, X, H∞) for the one-point interpolation set σn, λ = {λ, λ, ..., λ}

︸ ︷︷ ︸

n

, λ ∈ D:

c(σn, λ, X, H
∞) = sup

{

‖f‖H∞/bnλH
∞ : f ∈ X, ‖f‖X ≤ 1

}

,
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where ‖f‖H∞/bnλH
∞ = inf {‖f + bnλg‖∞ : g ∈ X}. In the proof, we notice that l2a(α) is a reproducing

kernel Hilbert space on the disc D (RKHS) and we use the fact that this space has some special
properties for particular values of α

(
α = 1−N

2
, N = 1, 2, ...

)
. Before giving this proof (see Paragraph

5.1.2 below), we show in Subsection 5.1.1 that l2a(α) is a RKHS and we focus on the special case
α = 1−N

2
, N = 1, 2, ....

5.1.1. The spaces l2a(α) are RKHS. The reproducing kernel of l2a(α), by definition, is a l2a(α)-valued
function λ 7−→ kαλ , λ ∈ D, such that (f, kαλ ) = f(λ) for every f ∈ l2a(α), where (., .) means the scalar

product (f, g) =
∑

k≥0 ĥ(k)ĝ(k)(k+ 1)2α. Since one has f(λ) =
∑

k≥0 f̂(k)λ
k 1
(k+1)2α

(k+1)2α (λ ∈ D), it

follows that

kαλ(z) =
∑

k≥0

λ
k
zk

(k + 1)2α
, z ∈ D.

In particular, for the Hardy space H2 = l2a(1), we get the Szegö kernel

kλ(z) = (1− λz)−1,

and for the Bergman space L2
a = l2a

(
−1

2

)
, the Bergman kernel k

−1/2
λ (z) = (1− λz)−2.

Now let us explain that more generally if α = 1−N
2
, N ∈ N \ {0}, the space l2a(α) coincides (topo-

logically) with the RKHS whose reproducing kernel is (kλ(z))
N = (1− λz)−N . Following the Aronszajn

theory of RKHS (see, for example [1, 12]), given a positive definite function (λ, z) 7−→ k(λ, z) on D×D

(i.e. such that
∑

i,j aiajk(λi, λj) > 0 for all finite subsets (λi) ⊂ D and all non-zero families of complex

numbers (ai)) one can define the corresponding Hilbert spaces H(k) as the completion of finite linear
combinations

∑

i aik(λi, ·) endowed with the norm

∥
∥
∥
∥
∥

∑

i

aik(λi, ·)
∥
∥
∥
∥
∥

2

=
∑

i,j

aiajk(λi, λj).

When k is holomorphic with respect to the second variable and antiholomorphic with respect to the first
one, we obtain a RKHS of holomorphic functions H(k) embedded into Hol(D). Now, choosing for k the
reproducing kernel of H2, k : (λ, z) 7→ kλ(z) = (1 − λz)−1, and ϕ = zN , N = 1, 2, ..., the function
ϕ ◦ k is also positive definite and the corresponding Hilbert space is

(5.1.1) H(ϕ ◦ k) = l2a

(
1−N

2

)

.

(Another notation for the space H(ϕ◦k) is ϕ(H2) since k is the reproducing kernel of H2). The equality
(5.1.1) is a topological identity: the spaces coincide as sets of functions, and the norms are equivalent.
Moreover, the space H(ϕ ◦ k) satisfies the following property: for every f ∈ H2, ϕ ◦ f ∈ ϕ(H2), and

(5.1.2) ‖ϕ ◦ f‖2H(ϕ◦k) ≤ ϕ(‖f‖2H2),

(the Aronszajn-deBranges inequality, see [13] p.320]). The link between spaces of type l2a
(
1−N
2

)
and of

type H(zN ◦ k) being established, we give the proof of the left-hand side inequality in Theorem B.
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5.1.2. The proof of Theorem B (the lower bound). 0) We set N = 1− 2α, N = 1, 2, ... and ϕ(z) = zN .
1) Let b > 0, b2nN = 1. We set

Qn =
n−1∑

k=0

bkλ
(1− |λ|2)1/2

1− λz
, Hn = ϕ ◦Qn, Ψ = bHn.

Then ‖Qn‖22 = n, and hence by (5.1.2),

‖Ψ‖2Hϕ
≤ b2ϕ

(
‖Qn‖22

)
= b2ϕ(n) = 1.

Let b > 0 such that b2ϕ(n) = 1.

2) Since the spaces Hϕ and H∞ are rotation invariant, we have c (σn, λ, Hϕ, H
∞) = c (σn, µ, Hϕ, H

∞)
for every λ, µ with |λ| = |µ| = r. Let λ = −r. To get a lower estimate for ‖Ψ‖Hϕ/bnλHϕ consider G ∈ H∞

such that Ψ−G ∈ bnλHol(D), i.e. such that bHn ◦ bλ −G ◦ bλ ∈ znHol(D).

3) First, we show that

ψ =: Ψ ◦ bλ = bHn ◦ bλ
is a polynomial (of degree nN) with positive coefficients. Note that

Qn ◦ bλ =

n−1∑

k=0

zk
(1− |λ|2)1/2
1− λbλ(z)

=

=
(
1− |λ|2

)− 1
2

(

1 + (1− λ)

n−1∑

k=1

zk − λzn

)

=

= (1− r2)−1/2

(

1 + (1 + r)

n−1∑

k=1

zk + rzn

)

=: (1− r2)−1/2ψ1.

Then, ψ = Ψ ◦ bλ = bHn ◦ bλ = bϕ ◦
(

(1− r2)
− 1

2 ψ1

)

. Furthermore,

ϕ ◦ ψ1 = ψN
1 (z).

Now, it is clear that ψ is a polynomial of degree Nn such that

ψ(1) =

Nn∑

j=0

ψ̂(j) = bϕ
(
(1− r2)−1/2(1 + r)n

)
= b

(√

1 + r

1− r
n

)N

> 0.

4) Next, we show that there exists c = c(N) > 0 (for example, c = K/
[
22N(N − 1)!

]
, K being a

numerical constant) such that

m∑

(ψ) :=

m∑

j=0

ψ̂(j) ≥ c

Nn∑

j=0

ψ̂(j) = cψ(1),

where m ≥ 1 is such that 2m = n if n is even and 2m− 1 = n if n is odd.
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Indeed, setting

Sn =
n∑

j=0

zj ,

we have
m∑(

ψN
1

)
=

m∑





(

1 + (1 + r)
n−1∑

k=1

zk + rzn

)N


 ≥
m∑(

SN
n−1

)
.

Next, we obtain
m∑(

SN
n−1

)
=

m∑
((

1− zn

1− z

)N
)

=

=

m∑
(

1

(1− z)N

)

=
1

(N − 1)!

m∑
(
dN−1

dzN−1

1

1− z

)

=

=

m∑

j=0

Cj
N+j−1 ≥

m∑

j=0

(j + 1)N−1

(N − 1)!
≥

≥ K
mN

(N − 1)!
,

where K > 0 is a numerical constant. Finally,
m∑(

ψN
1

)
≥ K

mN

(N − 1)!
≥ K

(n/2)N

(N − 1)!
=

=
K

2N(N − 1)!
· ((1 + r)n)N

(1 + r)N
=

K

2N(1 + r)N(N − 1)!
· (ψ1(1))

N ,

which gives our estimate.

5) Let Fn = Φm+zmΦm, where Φk stands for the k-th Fejer kernel. We have ‖g‖∞‖Fn‖L1 ≥ ‖g ⋆Fn‖∞
for every g ∈ L∞ (T) , and taking the infimum over all g ∈ H∞ satisfying ĝ(k) = ψ̂(k), ∀k ∈ [0, n− 1],
we obtain

‖ψ‖H∞/znH∞ ≥ 1

2
‖ψ ⋆ Fn‖∞,

where ⋆ stands for the usual convolution product. Now using part 4),

‖Ψ‖H∞/bnλH
∞ = ‖ψ‖H∞/znH∞ ≥ 1

2
‖ψ ⋆ Fn‖∞ ≥

≥ 1

2
|(ψ ⋆ Fn) (1)| ≥

1

2

m∑

j=0

ψ̂(j) ≥ c

2
ψ(1) =

c

2
b

(√

1 + r

1− r
n

)N

≥

≥ B

(
n

1− r

)N
2

.

6) In order to conclude, it remains to use (5.1.1).

�

5.2. The case X = lpa(α), 1 ≤ p ≤ ∞.
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.

Proof of Theorems C and D (the lower bound) We first notice that r 7→ Cn, r (X, H
∞) increases. As a

consequence, if X = lpa(α), 1 ≤ p ≤ ∞, then

Cn, r (l
p
a (α) , H

∞) ≥ Cn, 0 (l
p
a (α) , H

∞) = c (σn, 0, l
p
a (α) , H

∞) ,

where σn, 0 = {0, 0, ..., 0}
︸ ︷︷ ︸

n

. Now let f = 1
n1/p

∑n−1
k=0(k + 1)−αzk. Then ‖f‖X = 1, and

c (σn, 0, l
p
a (α) , H

∞) ≥ ‖f‖H∞/znH∞ ≥

≥ 1

2
‖f ⋆ Fn‖∞ ≥ 1

2
|(f ⋆ Fn) (1)| ≥

1

2

m∑

j=0

f̂(j),

where ⋆ and Fn are defined in part 5) of the proof of Theorem B (lower bound) in Subsection 5.1 and
where m ≥ 1 is such that 2m = n if n is even and 2m− 1 = n if n is odd as in part 4) of the proof of
the same Theorem. Now, since

m∑

j=0

f̂(j) =
1

n1/p

m∑

k=0

(k + 1)−α,

we get the result.

�
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