Effective H^{∞} interpolation constrained by Hardy and Bergman norms

Rachid Zarouf, Universite Aix-Marseille I

Abstract

Given a finite set σ of the unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and a holomorphic function f in \mathbb{D} which belongs to a class X, we are looking for a function g in another class Y (smaller than X or incomparable with X) which minimizes the norm $\|g\|_{Y}$ among all functions g such that $g_{\mid \sigma}=f_{\mid \sigma}$. For $Y=H^{\infty}, X=H^{p}$ (the Hardy space) or $X=L_{a}^{2}$ (the Bergman space), and for the corresponding interpolation constant $c\left(\sigma, X, H^{\infty}\right)$, we show that $c\left(\sigma, X, H^{\infty}\right) \leq a \varphi_{X}\left(1-\frac{1-r}{n}\right)$ where $n=\# \sigma, r=\max _{\lambda \in \sigma}|\lambda|$ and where $\varphi_{X}(t)$ stands for the norm of the evaluation functional $f \mapsto f(t)$ on the space X. The upper bound is sharp over sets σ with given n and r.

Résumé

Etant donné un ensemble fini σ du disque unité $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ et une fonction f holomorphe dans \mathbb{D} appartenant à une certaine classe X, on cherche g dans une autre classe Y (plus petite que X ou incomparable avec X) qui minimise la norme de g dans Y parmi toutes les fonctions g satisfaisant la condition $g_{\mid \sigma}=f_{\mid \sigma}$. On montre que dans le cas $Y=H^{\infty}$, la constante d'interpolation correspondante $c\left(\sigma, X, H^{\infty}\right)$ admet une majoration $c\left(\sigma, X, H^{\infty}\right) \leq a \varphi_{X}\left(1-\frac{1-r}{n}\right)$ où $n=\# \sigma, r=\max _{\lambda \in \sigma}|\lambda|$ et $\varphi_{X}(t)$ est la norme de la fonctionnelle d'évaluation $f \mapsto f(t), 0 \leq t<1$, sur l'espace X. La majoration est exacte sur l'ensemble des σ avec n et r donné.

Introduction

(1) General framework. Let $\operatorname{Hol}(\mathbb{D})$ be the space of holomorphic functions on the unit disc \mathbb{D}. The problem considered is the following : given two Banach spaces X and Y of holomorphic functions on the unit disc $\mathbb{D}, X, Y \subset \operatorname{Hol}(\mathbb{D})$, and a finite set $\sigma \subset \mathbb{D}$, to find the least norm interpolation by functions of the space Y for the traces $f_{\mid \sigma}$ of functions of the space X, in the worst case of f. The case $X \subset Y$ is of no interests, and so one can suppose that either $Y \subset X$ or X, Y are incomparable.

The classical interpolation problems- those of Nevanlinna-Pick (1916) and Carathéodory-Schur (1908) (see [N2] p. 231 for these two problems), on the one hand and Carleson's free interpolation (1958) (see [N1] p.158) on the other hand- are of this nature. Two first are "individual", in the sens that one looks simply to compute the norms $\|f\|_{H_{\mid \sigma}^{\infty}}$ or $\|f\|_{H^{\infty} / z^{n} H^{\infty}}$ for a given f, whereas the third one is to compare the norms $\|a\|_{L^{\infty}(\sigma)}=\max _{\lambda \in \sigma}\left|a_{\lambda}\right|$ and

$$
\inf \left(\|g\|_{\infty}, g(\lambda)=a_{\lambda}, \lambda \in \sigma\right)
$$

Let us first explain that our problem assemblies the ones of Nevanlinna-Pick and Carathéodory-Schur.
(i) Nevannlinna-Pick interpolation problem

Given $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ in \mathbb{D}^{n} and $W=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}$, to find

$$
C(\Lambda, W)=\inf \left\{\|f\|_{\infty}: f\left(\lambda_{i}\right)=w_{i}, i=1 . . n\right\}
$$

The classical answer of Pick is the following :

$$
C(\Lambda, W)=\inf \left\{c>0:\left(\frac{c^{2}-\overline{w_{i}} w_{j}}{1-\overline{\lambda_{i}} \lambda_{j}}\right)_{1 \leq i, j \leq n} \gg 0\right\}
$$

where for any $n \times n$ matrix $M, M \gg 0$ means that M is positive definite.
(ii) Carathéodory-Schur interpolation problem

Given $\mathcal{A}=\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{C}^{n+1}$, to find

$$
C(\mathcal{A})=\inf \left\{\|f\|_{\infty}: f(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n}+\ldots\right\}
$$

The classical answer of Schur is the following :

$$
C(\mathcal{A})=\left\|\left(T_{\varphi}\right)_{n}\right\|
$$

where T_{φ} is the Toeplitz operator associated with a symbol $\varphi,\left(T_{\varphi}\right)_{n}$ is the compression of T_{φ} on \mathcal{P}_{n}, the space of analytic polynomials of degree less or equal than n, and φ is the polynomial $\sum_{k=0}^{n} a_{k} z^{k}$.

Notice that the Carathéodory-Schur interpolation theorem can be seen as a particular case of the famous commutant lifting theorem of Sarason and Sz-Nagy-Foias (1968) see [N2] p.230, Theorem 3.1.11.

From a modern point of view, those two interpolation problems (i) \&(ii) are unified through the following mixed problem : given

- $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{D}$, the finite Blaschke product $B_{\sigma}=\Pi_{j} b_{\lambda_{j}}$, where $b_{\lambda}=\frac{\lambda-z}{1-\lambda z}, \lambda \in \mathbb{D}$,
- $f \in \operatorname{Hol}(\mathbb{D})$,
to compute or estimate

$$
\|f\|_{H^{\infty} / B H^{\infty}}=\inf \left\{\|g\|_{\infty}: f-g \in B_{\sigma} \operatorname{Hol}(\mathbb{D})\right\} .
$$

The classical Nevanlinna-Pick problem corresponds to the case $X=\operatorname{Hol}(\mathbb{D}), Y=H^{\infty}$, and the one of Carathéodory-Schur to the case where $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n}=0$ and $X=\operatorname{Hol}(\mathbb{D}), Y=H^{\infty}$.

Here and everywhere below, H^{∞} stands for the space (algebra) of bounded holomorphic functions in the unit disc \mathbb{D} endowed with the norm $\|f\|_{\infty}=s u p_{z \in \mathbb{D}}|f(z)|$. Looking at this comparison problem, say, in the form of computing/estimating the interpolation constant

$$
c(\sigma, X, Y)=\sup _{f \in X,\|f\|_{X} \leq 1} \inf \left\{\|g\|_{Y}: g_{\mid \sigma}=f_{\mid \sigma}\right\},
$$

which is nothing but the norm of the embedding operator $\left(X_{\mid \sigma},\|\cdot\|_{X_{\mid \sigma}}\right) \rightarrow\left(Y_{\mid \sigma},\|\cdot\|_{Y_{\mid \sigma}}\right)$, one can think, of course, on passing (after) to the limit- in the case of an infinite sequence $\left\{\lambda_{j}\right\}$ and its finite sections $\left\{\lambda_{j}\right\}_{j=1^{-}}^{n}$ in order to obtain a Carleson type interpolation theorem $X_{\mid \sigma}=Y_{\mid \sigma}$. But not necessarily. In particular, even the classical Nevanlinna-Pick theorem (giving a necessary and sufficient condition on a function a for the existence of $f \in H^{\infty}$ such that $\|f\|_{\infty} \leq 1$ and $\left.f(\lambda)=a_{\lambda}, \lambda \in \sigma\right)$, does not lead immediately to Carleson's criterion for $H_{\mid \sigma}^{\infty}=l^{\infty}(\sigma)$. (Finally, a direct deduction of Carleson's theorem from Pick's result was done by P. Koosis [K] in 1999 only). Similarly, the problem stated for $c(\sigma, X, Y)$ is of interest in its own. It is a kind of "effective interpolation" because we are looking for sharp estimations or a computation of $c(\sigma, X, Y)$ for a variety of norms $\|\cdot\|_{X},\|\cdot\|_{Y}$. For this paper, the following partial case was especially stimulating (which is a part of a more complicated question arising in an applied situation in [BL1] and [BL2]) : given a set $\sigma \subset \mathbb{D}$, how to estimate $c\left(\sigma, H^{2}, H^{\infty}\right)$ in terms of $n=\operatorname{card}(\sigma)$ and $\max _{\lambda \in \sigma}|\lambda|=r$ only? (H^{2} being the standard Hardy space of the disc).

Here, we consider the case of H^{∞} interpolation $\left(Y=H^{\infty}\right)$ and the following scales of Banach spaces X :
(a) $X=H^{p}=H^{p}(\mathbb{D}), 1 \leq p \leq \infty$, the standard Hardy spaces on the disc \mathbb{D} (see [N2] p.31-p.57) of all $f \in \operatorname{Hol}(\mathbb{D})$ satisfying

$$
\sup _{0 \leq r<1}\left(\int_{\mathbb{T}}|f(r z)|^{p} d m(z)\right)^{1 / p}<\infty
$$

m being the Lebesgue normalized measure on \mathbb{T}.
(b) $X=l_{a}^{2}(1 / \sqrt{k+1})$, the Bergman space of all $f(z)=\sum_{k \geq 0} \hat{f}(k) z^{k}$ satisfying

$$
\sum_{k \geq 0}|\hat{f}(k)|^{2} \frac{1}{k+1}<\infty
$$

An equivalent description of this space is : $X=L_{a}^{2}$, the space of holomorphic functions such that

$$
\int_{\mathbb{D}}|f(z)|^{2} d x d y<\infty
$$

For spaces of type (a)\&(b), we show

$$
c_{1} \varphi_{X}\left(1-\frac{1-r}{n}\right) \leq \sup \left\{c\left(\sigma, X, H^{\infty}\right): \# \sigma \leq n,|\lambda| \leq r, \lambda \in \sigma\right\} \leq c_{2} \varphi_{X}\left(1-\frac{1-r}{n}\right)
$$

where $\varphi_{X}(t), 0 \leq t<1$ stands for the norm of the evaluation functional $f \mapsto f(t)$ on the space X.
In order to prove the right-hand side inequality, we first use a linear interpolation:

$$
f \mapsto \sum_{k=1}^{n}\left\langle f, e_{k}\right\rangle e_{k}
$$

where $\langle.,$.$\rangle means the Cauchy sesquilinear form \langle h, g\rangle=\sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}(k)}$, and $\left(e_{k}\right)_{k=1}^{n}$ is the Malmquist basis (effectively constructible) of the space $K_{B}=H^{2} \Theta B \bar{H}^{2}, B=\prod_{i=1}^{n} b_{\lambda_{i}}$ being the corresponding finite Blaschke product, $b_{\lambda}=\frac{\lambda-z}{1-\bar{\lambda} z}$ (see N. Nikolski, [N1] p. 117)). Next, we use the complex interpolation between Banach spaces, (see H. Triebel [Tr] Theorem 1.9.3-(a) p.59). Among the technical tools used in order to find an upper bound for $\left\|\sum_{k=1}^{n}\left\langle f, e_{k}\right\rangle e_{k}\right\|_{\infty}$ (in terms of $\|f\|_{X}$), the most important is a Bernstein-type inequality $\left\|f^{\prime}\right\|_{p} \leq c_{p}\left\|B^{\prime}\right\|_{\infty}\|f\|_{p}$ for a (rational) function f in the star-invariant subspace $K_{B}^{p}:=H^{p} \cap B \overline{z H^{p}}, 1 \leq p \leq \infty$ (for $p=2, K_{B}^{2}=K_{B}$), generated by a (finite) Blaschke product B, (K. Dyakonov [Dya1] $\&[\mathrm{Dya} 2]$). For $p=2$, we give an alternative proof of the Bernstein-type estimate we need and the constant c_{2} we obtain is slightly better, see Section 4.

The lower bound problem is treated by using the "worst" interpolation n-tuple $\sigma=\sigma_{n, \lambda}=$ $\{\lambda, \ldots, \lambda\}$, a one-point set of multiplicity n (the Carathéodory-Schur type interpolation). The "worst" interpolation data comes from the Dirichlet kernels $\sum_{k=0}^{n-1} z^{k}$ transplanted from the origin to λ. We notice that spaces X of (a)\&(b) satisfy the condition $X \circ b_{\lambda} \subset X$ which makes the problem of upper/lower bound easier.
(2) Principal results. Theorems A,C\&D below in this paragraph, were already announced in the note [Z1].

Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{2}, \ldots, \lambda_{t}, \ldots, \lambda_{t}\right\}$ be a finite sequence in the unit disc, where every λ_{s} is repeated according its multiplicity $m_{s}, \sum_{s=1}^{t} m_{s}=n$ and $r=\max _{i=1 . . t}\left|\lambda_{i}\right|$. Let X, Y be Banach spaces of holomorphic functions continuously embedded into the space $\operatorname{Hol}(\mathbb{D})$. In what follows, we systematically use the following conditions for the spaces X and Y,

$$
\begin{equation*}
\operatorname{Hol}((1+\epsilon) \mathbb{D}) \text { is continuously embedded into } Y \text { for every } \epsilon>0 \tag{1}
\end{equation*}
$$

$$
\mathrm{Pol}_{+} \subset X \text { and } \mathrm{Pol}_{+} \text {is dense in } X,
$$

where Pol_{+}stands for the set of all complex polynomials $p, p(z)=\sum_{k=0}^{N} a_{k} z^{k}$,

$$
\begin{gather*}
{[f \in X] \Rightarrow\left[z^{n} f \in X, \forall n \geq 0 \text { and } \overline{\lim }\left\|z^{n} f\right\|^{\frac{1}{n}} \leq 1\right]} \tag{3}\\
\quad[f \in X, \lambda \in \mathbb{D}, \text { and } f(\lambda)=0] \Rightarrow\left[\frac{f}{z-\lambda} \in X\right]
\end{gather*}
$$

We are interested in estimating the quantity

$$
c(\sigma, X, Y)=\sup _{\|f\|_{X} \leq 1} \inf \left\{\|g\|_{Y}: g \in Y, g^{(j)}\left(\lambda_{i}\right)=f^{(j)}\left(\lambda_{i}\right) \forall i, j, 1 \leq i \leq t, 0 \leq j<m_{i}\right\} .
$$

In order to simplify the notation, the condition

$$
g^{(j)}\left(\lambda_{i}\right)=f^{(j)}\left(\lambda_{i}\right) \forall i, j, 1 \leq i \leq t, 0 \leq j<m_{i}
$$

will also be written as

$$
g_{\mid \sigma}=f_{\mid \sigma} .
$$

Supposing X verifies property $\left(P_{4}\right)$ and $Y \subset X$, the quantity $c(\sigma, X, Y)$ can be written as follows,

$$
c(\sigma, X, Y)=\sup _{\|f\|_{X} \leq 1} \inf \left\{\|g\|_{Y}: g \in Y, g-f \in B_{\sigma} X\right\},
$$

where B_{σ} is the Blaschke product

$$
B_{\sigma}=\prod_{i=1}^{n} b_{\lambda_{i}},
$$

corresponding to $\sigma, b_{\lambda}(z)=\frac{\lambda-z}{1-\lambda z}$ being an elementary Blaschke factor for $\lambda \in \mathbb{D}$.
The interesting case occurs when X is larger than Y, and the sens of the issue lies in comparing $\|.\|_{X}$ and $\|.\|_{Y}$ when Y interpolates X on the set σ. For example, we can wonder what happens when $X=H^{p}$, the classical Hardy spaces of the disc or $X=L_{a}^{p}$, the Bergman spaces, etc..., and when $Y=H^{\infty}$, but also $Y=W$ the Wiener algebra (of absolutely converging Fourier series) or $Y=B_{\infty, 1}^{0}$, a Besov algebra (an interesting case for the functional calculus of finite rank operators, in particular, those satisfying the so-called Ritt condition).

It is also important to understand what kind of interpolation we are going to study when bounding the constant $c(\sigma, X, Y)$. Namely, comparing with the Carleson free interpolation, we can say that the latter one deals with the interpolation constant defined as

$$
c\left(\sigma, l^{\infty}(\sigma), H^{\infty}\right)=\sup \left\{\inf \left(\|g\|_{\infty}: g \in H^{\infty}, g_{\mid \sigma}=a\right): a \in l^{\infty}(\sigma),\|a\|_{l^{\infty}} \leq 1\right\}
$$

We also can add some more motivations to our problem :
(a) One of the most interesting cases is $Y=H^{\infty}$. In this case, the quantity $c\left(\sigma, X, H^{\infty}\right)$ has a meaning of an intermediate interpolation between the Carleson one (when $\|f\|_{X_{\mid \sigma}} \asymp s u p_{1 \leq i \leq n}\left|f\left(\lambda_{i}\right)\right|$) and the individual Nevanlinna-Pick interpolation (no conditions on f).
(b) There is a straight link between the constant $c(\sigma, X, Y)$ and numerical analysis. For example, in matrix analysis, it is of interest to bound the norm of an H^{∞}-calculus $\|f(A)\| \leq c\|f\|_{\infty}, f \in H^{\infty}$, for an arbitrary Banach space n-dimensional contraction A with a given spectrum $\sigma(A) \subset \sigma$. The best possible constant is $c=c\left(\sigma, H^{\infty}, W\right)$, so that

$$
c\left(\sigma, H^{\infty}, W\right)=\sup _{\|f\|_{\infty} \leq 1} \sup \left\{\|f(A)\|: A:\left(\mathbb{C}^{n},|.|\right) \rightarrow\left(\mathbb{C}^{n},|.|\right),\|A\| \leq 1, \sigma(A) \subset \sigma\right\}
$$

where $W=\left\{f=\sum_{k \geq 0} \hat{f}(k) z^{k}: \sum_{k \geq 0}|\hat{f}(k)|<\infty\right\}$ stands for the Wiener algebra, and the interior sup is taken over all contractions on n-dimensional Banach spaces. An interesting case occurs for $f \in H^{\infty}$ such that $f_{\mid \sigma}=\left.\frac{1}{z}\right|_{\sigma}$ (estimation of condition numbers and the norm of inverses of $n \times n$ matrices) or $f_{\mid \sigma}=\left.\frac{1}{\lambda-z}\right|_{\sigma}$ (for estimation of the norm of the resolvent of an $n \times n$ matrix).

We start studying general Banach spaces X and Y and give some sufficient condition under which $C_{n, r}(X, Y)<\infty$, where

$$
C_{n, r}(X, Y)=\sup \left\{c(\sigma, X, Y): \# \sigma \leq n, \forall j=1 . . n,\left|\lambda_{j}\right| \leq r\right\}
$$

In particular, we prove the following fact.
Theorem A. Let X, Y be Banach spaces verifying properties $\left(P_{i}\right), i=1 \ldots 4$. Then

$$
C_{n, r}(X, Y)<\infty
$$

for every $n \geq 1$ and $r, 0 \leq r<1$.
Next, we add the condition that X is a Hilbert space, and give in this case a general upper bound for the quantity $C_{n, r}(X, Y)$.
Theorem B. Let Y be a Banach space verifying property $\left(P_{1}\right)$ and $X=\left(H,(.)_{H}\right)$ a Hilbert space satisfying properties $\left(P_{i}\right)$ for $i=2,3$, 4. We moreover suppose that for every $0<r<1$ there exists $\epsilon>0$ such that $k_{\lambda} \in \operatorname{Hol}((1+\epsilon) \mathbb{D})$ for all $|\lambda|<r$, where k_{λ} stands for the reproducing kernel of X at point λ, and $\bar{\lambda} \mapsto k_{\lambda}$ is holomorphic on $|\lambda|<r$ as a $\operatorname{Hol}((1+\epsilon) \mathbb{D})$-valued function. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{2}, \ldots, \lambda_{t}, \ldots, \lambda_{t}\right\}$ be a sequence in \mathbb{D}, where λ_{s} are repeated according their multiplicity $m_{s}, \sum_{s=1}^{t} m_{s}=n$. Then we have,
i)

$$
c(\sigma, H, Y) \leq\left(\sum_{k=1}^{n}\left\|e_{k}\right\|_{Y}^{2}\right)^{\frac{1}{2}}
$$

where $\left(e_{k}\right)_{k=1}^{n}$ stands for the Gram-Schmidt orthogonalization (in the space H) of the sequence

$$
k_{\lambda_{1}, 0}, k_{\lambda_{1}, 1}, k_{\lambda_{1}, 2}, k_{\lambda_{1}, m_{1}-1}, k_{\lambda_{2}, 0}, k_{\lambda_{2}, 1}, k_{\lambda_{2}, 2}, k_{\lambda_{2}, m_{2}-1}, \ldots, k_{\lambda_{t}, 0}, k_{\lambda_{t}, 1}, k_{\lambda_{t}, 2 \ldots}, k_{\lambda_{t}, m_{t}-1}
$$

and $k_{\lambda, i}=\left(\frac{d}{d \bar{\lambda}}\right)^{i} k_{\lambda}, i \in \mathbb{N}$.
ii) For the case $Y=H^{\infty}$, we have

$$
c\left(\sigma, H, H^{\infty}\right) \leq \sup _{z \in \mathbb{D}}\left\|P_{B_{\sigma}}^{H} k_{z}\right\|_{H}
$$

where $P_{B_{\sigma}}^{H}=\sum_{k=1}^{n}\left(., e_{k}\right)_{H} e_{k}$ stands for the orthogonal projection of H onto $K_{B_{\sigma}}(H)$,

$$
K_{B_{\sigma}}(H)=\operatorname{span}\left(k_{\lambda_{j}, i}: 1 \leq i<m_{j}, j=1, \ldots, t\right) .
$$

After that, we specialize the upper bound obtained in Theorem B (ii) to the case $X=H^{2}$, the standard Hardy space of the disc, which can be equivalently defined as

$$
H^{2}(\mathbb{D})=\left\{f=\sum_{k \geq 0} \hat{f}(k) z^{k}: \sum_{k \geq 0}|\hat{f}(k)|^{2}<\infty\right\}
$$

Among other results, we get the following (see Proposition 2.0) : for every sequence $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of \mathbb{D},

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup _{z \in \mathbb{D}}\left(\frac{1-\left|B_{\sigma}(z)\right|^{2}}{1-|z|^{2}}\right)^{\frac{1}{2}} \leq \sqrt{2} \sup _{|\zeta|=1}\left|B^{\prime}(\zeta)\right|^{\frac{1}{2}} \leq 2 \sqrt{\frac{n}{1-r}}
$$

Next, we present a slightly different approach to the interpolation constant $c\left(\sigma, H^{2}, H^{\infty}\right)$ proving an estimate in the following form:

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup _{z \in \mathbb{T}}\left(\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left|z-\lambda_{k}\right|^{2}}\right)^{\frac{1}{2}} \leq\left(\sum_{j=1}^{n} \frac{1+\left|\lambda_{j}\right|}{1-\left|\lambda_{j}\right|}\right)^{\frac{1}{2}} \leq \sqrt{\frac{2 n}{1-r}}
$$

It is shown (in Section 6) that this estimate is sharp (over n and r). This sharpness result is treated by using the "worst" interpolation n-tuple $\sigma=\sigma_{n, \lambda}=\{\lambda, \ldots, \lambda\}$, a one-point set of multiplicity n (the Carathéodory-Schur type interpolation). More precisely, we prove the following Theorem C, which contains the result from Corollary 2.1 and extends it to the H^{p} spaces, as follows.
Theorem C. Let $1 \leq p \leq \infty, n \geq 1, r \in[0,1)$, and $\lambda,|\lambda| \leq r$. We have,

$$
\frac{1}{32^{\frac{1}{p}}}\left(\frac{n}{1-|\lambda|}\right)^{\frac{1}{p}} \leq c\left(\sigma_{n, \lambda}, H^{p}, H^{\infty}\right) \leq C_{n, r}\left(H^{p}, H^{\infty}\right) \leq A_{p}\left(\frac{n}{1-r}\right)^{\frac{1}{p}}
$$

where A_{p} is a constant depending only on p and the left hand side inequality is proved only for $p \in 2 \mathbb{Z}_{+}$. For $p=2$, we have $A_{2}=\sqrt{2}$.
In particular, this gives yet another proof of the fact that $C_{n, r}\left(H^{2}, H^{\infty}\right) \leq a \sqrt{n} / \sqrt{1-r}$.
For the Bergman space $X=L_{a}^{2}$ we have the following Theorem D.
Theorem D. Let $n \geq 1, r \in[0,1)$, and $\lambda,|\lambda| \leq r$. We have,

$$
\frac{1}{32} \frac{n}{1-|\lambda|} \leq c\left(\sigma_{n, \lambda}, L_{a}^{2}, H^{\infty}\right) \leq C_{n, r}\left(L_{a}^{2}, H^{\infty}\right) \leq 6 \sqrt{2} \frac{n}{1-r}
$$

The paper is organized as follows. In Subsection 1.1 we prove Theorem A. Theorem B is proved in Subsection 1.2. Sections $2 \& 3$ are devoted to the proof of the upper estimate of Theorem C, and Section 6 to the proofs of the lower bounds from Theorem C\&D. In Section 5 we compare the method used in Sections 1, 2, 3 and 4 with those resulting from the Carleson free interpolation. Especially, we are interested in the cases of circular and radial sequences σ (see below).

1. Upper bounds for $c(\sigma, X, Y)$, as a kind of the Nevanlinna-Pick problem

1.1. General Banach spaces X and Y satisfying properties $\left(P_{i}\right), i=1 \ldots 4$

In this Subsection, X and Y are Banach spaces which satisfy properties $\left(P_{i}\right)$ for $i=1 \ldots 4$. We prove Theorem A which shows that in this case our interpolation constant $c(\sigma, X, Y)$ is bounded by a quantity which depends only on $n=\# \sigma$ and $r=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|$ (and of course on X and Y). In this generality, we cannot discuss the question of sharpness of the bounds obtained. First, we prove the following lemma.

Lemma. 1.1.0. Under $\left(P_{2}\right),\left(P_{3}\right)$ and $\left(P_{4}\right), B_{\sigma} X$ is a closed subspace of X and moreover,

$$
B_{\sigma} X=\{f \in X: f(\lambda)=0, \forall \lambda \in \sigma(\text { including multiplicities })\} .
$$

Proof. Since $X \subset \operatorname{Hol}(\mathbb{D})$ continuously, and evaluation functionals $f \mapsto f(\lambda)$ and $f \mapsto f^{(k)}(\lambda), k \in$ \mathbb{N}^{\star}, are continous on $\operatorname{Hol}(\mathbb{D})$, the subspace

$$
M=\{f \in X: f(\lambda)=0, \forall \lambda \in \sigma(\text { including multiplicities })\}
$$

is closed in X.
On the other hand, $B_{\sigma} X \subset X$, and hence $B_{\sigma} X \subset M$. Indeed, properties $\left(P_{2}\right)$ and $\left(P_{3}\right)$ imply that $h . X \subset X$, for all $h \in \operatorname{Hol}((1+\epsilon) \mathbb{D})$ with $\epsilon>0$; we can write $h(z)=\sum_{k \geq 0} \widehat{h}(k) z^{k}$ with $|\widehat{h}(k)| \leq C q^{n}$, $C>0$ and $q<1$. Then $\sum_{n \geq 0}\left\|\widehat{h}(k) z^{k} f\right\|_{X}<\infty$ for every $f \in X$. Since X is a Banach space we get $h f=\sum_{n \geq 0} \widehat{h}(k) z^{k} f \in X$.

In order to see that $M \subset B_{\sigma} X$, it suffices to justify that

$$
[f \in X \text { and } f(\lambda)=0] \Longrightarrow\left[f / b_{\lambda}=(1-\bar{\lambda} z) f /(\lambda-z) \in X\right]
$$

But this is obvious from $\left(P_{4}\right)$ and the previous arguments.
In Definitions 1.1.1, 1.1.2, 1.1.3 and in Remark 1.1.4 below, $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a sequence in the unit disc $\mathbb{D}, B_{\sigma}=\prod_{i=1}^{n} b_{\lambda_{i}}$ is the finite Blaschke product corresponding to σ, where $b_{\lambda}=\frac{\lambda-z}{1-\bar{\lambda} z}$ is an elementary Blaschke factor for $\lambda \in \mathbb{D}$.
Definition 1.1.1. Malmquist family. For $k \in[1, n]$, we set $f_{k}(z)=\frac{1}{1-\overline{\lambda_{k} z}}$, and define the family $\left(e_{k}\right)_{k=1}^{n}$, (which is known as Malmquist basis, see [N1] p.117), by

$$
\begin{equation*}
e_{1}=\frac{f_{1}}{\left\|f_{1}\right\|_{2}} \text { and } e_{k}=\left(\Pi_{j=1}^{k-1} b_{\lambda_{j}}\right) \frac{f_{k}}{\left\|f_{k}\right\|_{2}} \tag{1.1.1}
\end{equation*}
$$

for $k \in[2, n]$, where $\left\|f_{k}\right\|_{2}=\left(1-\left|\lambda_{k}\right|^{2}\right)^{-1 / 2}$.
Definition 1.1.2. The model space $K_{B_{\sigma}}$. We define $K_{B_{\sigma}}$ to be the n-dimensional space :

$$
\begin{equation*}
K_{B_{\sigma}}=\left(B_{\sigma} H^{2}\right)^{\perp}=H^{2} \Theta B_{\sigma} H^{2} \tag{1.1.2}
\end{equation*}
$$

Definition 1.1.3. The orthogonal projection $P_{B_{\sigma}}$ on $K_{B_{\sigma}}$. We define $P_{B_{\sigma}}$ to be the orthogonal projection of H^{2} on its n-dimensional subspace $K_{B_{\sigma}}$.
Remark 1.1.4. The Malmquist family $\left(e_{k}\right)_{k=1}^{n}$ corresponding to σ is an orthonormal basis of $K_{B_{\sigma}}$. In particular,

$$
\begin{equation*}
P_{B_{\sigma}}=\sum_{k=1}^{n}\left(., e_{k}\right)_{H^{2}} e_{k} \tag{1.1.4}
\end{equation*}
$$

where (., . $)_{H^{2}}$ means the scalar product on H^{2}.
Lemma 1.1.5. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a sequence in the unit disc \mathbb{D} and $\left(e_{k}\right)_{k=1}^{n}$ the Malmquist family (see 1.1.1) corresponding to σ. The map $\Phi: \operatorname{Hol}(\mathbb{D}) \rightarrow Y \subset \operatorname{Hol}(\mathbb{D})$ defined by

$$
\Phi: f \mapsto \sum_{k=1}^{n}\left(\sum_{j \geq 0} \hat{f}(j) \overline{\hat{e}_{k}(j)}\right) e_{k}
$$

is well defined and has the following properties.
(a) $\Phi_{\mid H^{2}}=P_{B_{\sigma}}$,
(b) Φ is continuous on $\operatorname{Hol}(\mathbb{D})$ for the uniform convergence on compact sets of \mathbb{D},
(c) Let $\Psi=I d_{\mid X}-\Phi_{\mid X}$, then $\operatorname{Im}(\Psi) \subset B_{\sigma} X$.

Proof. Indeed, the point (a) is obvious since $\left(e_{k}\right)_{k=1}^{n}$ is an orthonormal basis of $K_{B_{\sigma}}$ and

$$
\sum_{j \geq 0} \widehat{f}(j) \overline{\widehat{e_{k}}(j)}=\left\langle f, e_{k}\right\rangle
$$

where $\langle.,$.$\rangle means the Cauchy sesquilinear form \langle h, g\rangle=\sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}(k)}$. In order to check point (b), let $\left(f_{l}\right)_{l \in \mathbb{N}}$ be a sequence of $\operatorname{Hol}(\mathbb{D})$ converging to 0 uniformly on compact sets of \mathbb{D}. We need to see that $\left(\Phi\left(f_{l}\right)\right)_{l \in \mathbb{N}}$ converges to 0 , for which it is sufficient to show that $\lim _{l}\left|\sum_{j \geq 0} \widehat{f}_{l}(j) \overline{\hat{e}_{k}(j)}\right|=0$, for every $k=1,2, \ldots, n$. Let $\rho \in] 0,1\left[\right.$, then $\widehat{f}_{l}(j)=(2 \pi)^{-1} \int_{\rho \mathbb{T}} f_{l}(w) w^{-j-1} d w$, for all $j, l \geq 0$. As a result,

$$
\left|\sum_{j \geq 0} \widehat{f_{l}}(j) \overline{\hat{e}_{k}(j)}\right| \leq \sum_{j \geq 0}\left|\widehat{f_{l}}(j) \overline{\hat{e}_{k}(j)}\right| \leq(2 \pi \rho)^{-1}\left\|f_{l}\right\|_{\rho \mathbb{T}} \sum_{j \geq 0}\left|\widehat{e_{k}}(j)\right| \rho^{-j}
$$

Now if ρ is close enough to 1 , it satisfies the inequality $1 \leq \rho^{-1}<r^{-1}$, which entails $\sum_{j \geq 0}\left|\widehat{e_{k}}(j)\right| \rho^{-j}<$ $+\infty$ for each $k=1 . . n$. The result follows.

We now prove point (c). Using point (a), since $\mathrm{Pol}_{+} \subset H^{2}$ (Pol_{+}standing for the set of all complex polynomials $\left.p, p(z)=\sum_{k=0}^{N} a_{k} z^{k}\right)$, we get that $\operatorname{Im}\left(\Psi_{\mid P o l_{+}}\right) \subset B_{\sigma} H^{2}$. Now, since $\mathrm{Pol}_{+} \subset Y$ and $\operatorname{Im}(\Phi) \subset Y$, we deduce that

$$
\operatorname{Im}\left(\Psi_{\mid P o l_{+}}\right) \subset B_{\sigma} H^{2} \cap Y \subset B_{\sigma} H^{2} \cap X
$$

since $Y \subset X$. Now $\Psi(p) \in X$ and satisfies $(\Psi(p))_{\left.\right|_{\sigma}}=0$ (that is to say $(\Psi(p))(\lambda)=0, \forall \lambda \in \sigma$ (including multiplicities)) for all $p \in$ Pol $_{+}$. Using Lemma 1.1.0, we get that $\operatorname{Im}\left(\Psi_{\mid \text {Pol }_{+}}\right) \subset B_{\sigma} X$. Now, $P o l_{+}$being dense in X (property $\left(P_{2}\right)$), and Ψ being continuous on X (point (b)), we can conclude that $\operatorname{Im}(\Psi) \subset B_{\sigma} X$.

Proof of Theorem A. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a sequence in the unit disc \mathbb{D} and $\left(e_{k}\right)_{k=1}^{n}$ the Malmquist family (1.1.1) associated to σ. Taking $f \in X$, we set

$$
g=\sum_{k=1}^{n}\left(\sum_{j \geq 0} \hat{f}(j) \overline{\widehat{e_{k}}(j)}\right) e_{k}
$$

where the series $\sum_{j \geq 0} \hat{f}(j) \widehat{\widehat{e_{k}}(j)}$ are absolutely convergent. Indeed,

$$
\widehat{e}_{k}(j)=(2 \pi i)^{-1} \int_{R \mathbb{T}} e_{k}(w) w^{-j-1} d w,
$$

for all $j \geq 0$ and for all $R, 1<R<\frac{1}{r}$. For a subset A of \mathbb{C} and for a bounded function h on A, we define $\|h\|_{A}:=\sup _{z \in A}|h(z)|$. As a result,

$$
\left|\widehat{e_{k}}(j)\right| \leq\left(2 \pi R^{j+1}\right)^{-1}\left\|e_{k}\right\|_{R \mathbb{T}} \text { and } \sum_{j \geq 0}\left|\hat{f}(j) \overline{\widehat{e_{k}}(j)}\right| \leq(2 \pi R)^{-1}\left\|e_{k}\right\|_{R \mathbb{T}} \sum_{j \geq 0}|\hat{f}(j)| R^{-j}<\infty
$$

since $R>1$ and f is holomorphic in \mathbb{D}.
We now suppose that $\|f\|_{X} \leq 1$ and $g=\Phi(f)$, where Φ is defined in Lemma 1.1.5. Since $\operatorname{Hol}\left(r^{-1} \mathbb{D}\right) \subset Y$, we have $g \in Y$ and using Lemma 1.1.5 point (c) we get

$$
f-g=\Psi(f) \in B_{\sigma} X
$$

where Ψ is defined in Lemma 1.1.5, as Φ. Moreover,

$$
\|g\|_{Y} \leq \sum_{k=1 . . n}\left|\left\langle f, e_{k}\right\rangle\right|\left\|e_{k}\right\|_{Y}
$$

In order to bound the right hand side, recall that for all $j \geq 0$ and for $R=2 /(r+1) \in] 1,1 / r[$,

$$
\sum_{j \geq 0}\left|\widehat{f}(j) \overline{\widehat{e_{k}}(j)}\right| \leq(2 \pi)^{-1}\left\|e_{k}\right\|_{2(r+1)^{-1} \mathbb{T}} \sum_{j \geq 0}|\widehat{f}(j)|\left(2^{-1}(r+1)\right)^{j}
$$

Since the norm $f \mapsto \sum_{j \geq 0}|\widehat{f}(j)|\left(2^{-1}(r+1)\right)^{j}$ is continuous on $\operatorname{Hol}(\mathbb{D})$, and the inclusion $X \subset \operatorname{Hol}(\mathbb{D})$ is also continuous, there exists $C_{r}>0$ such that

$$
\sum_{j \geq 0}|\widehat{f}(j)|\left(2^{-1}(r+1)\right)^{j} \leq C_{r}\|f\|_{X}
$$

for every $f \in X$. On the other hand, $\operatorname{Hol}\left(2(r+1)^{-1} \mathbb{D}\right) \subset Y$ (continuous inclusion again), and hence there exists $K_{r}>0$ such that

$$
\left\|e_{k}\right\|_{Y} \leq K_{r} s u p_{|z|<2(r+1)^{-1}}\left|e_{k}(z)\right|=K_{r}\left\|e_{k}\right\|_{2(r+1)^{-1} \mathbb{T}}
$$

It is more or less clear that the right hand side of the last inequality can be bounded in terms of r and n only. Let us give a proof to this fact. It is clear that it suffices to estimate

$$
\sup _{1<|z|<2(r+1)^{-1}}\left|e_{k}(z)\right| .
$$

In order to bound this quantity, notice that

$$
\begin{equation*}
\left|b_{\lambda}(z)\right|^{2} \leq\left|\frac{\lambda-z}{1-\bar{\lambda} z}\right|^{2}=1+\frac{\left(|z|^{2}-1\right)\left(1-|\lambda|^{2}\right)}{|1-\bar{\lambda} z|^{2}} \tag{1.1.6}
\end{equation*}
$$

for all $\lambda \in \mathbb{D}$ and all $z \in|\lambda|^{-1} \mathbb{D}$. Using the identity (1.1.6) for $\lambda=\lambda_{j}, 1 \leq j \leq n$, and $z=\rho e^{i t}$, $\rho=2(1+r)^{-1}$, we get

$$
\left|e_{k}\left(\rho e^{i t}\right)\right|^{2} \leq\left(\Pi_{j=1}^{k-1}\left|b_{\lambda_{j}}\left(\rho e^{i t}\right)\right|^{2}\right)\left|\frac{1}{1-\bar{\lambda}_{k} \rho e^{i t}}\right|^{2} \leq\left(\Pi_{j=1}^{k-1}\left(1+\frac{\left(\rho^{2}-1\right)\left(1-\left|\lambda_{j}\right|^{2}\right)}{1-\left|\lambda_{j}\right|^{2} \rho^{2}}\right)\right)\left(\frac{1}{1-\left|\lambda_{k}\right| \rho}\right)^{2},
$$

for all $k=2$..n. Expressing ρ in terms of r, we obtain

$$
\left\|e_{k}\right\|_{2(r+1)^{-1} \mathbb{T}} \leq \frac{1}{1-\frac{2 r}{r+1}} \sqrt{2\left(\Pi_{j=1 . . n-1}\left(1+\frac{2\left(\frac{1}{r^{2}}-1\right)}{1-r^{2} \frac{4}{(r+1)^{2}}}\right)\right)}=: C_{1}(r, n)
$$

and

$$
\sum_{j \geq 0}\left|\hat{f}(j) \overline{\hat{e}_{k}(j)}\right| \leq(2 \pi)^{-1} C_{r}\left\|e_{k}\right\|_{2(r+1)^{-1} \mathbb{T}}\|f\|_{X} \leq(2 \pi)^{-1} C_{r} C_{1}(r, n)\|f\|_{X}
$$

On the other hand, since

$$
\left\|e_{k}\right\|_{Y} \leq K_{r}\left\|e_{k}\right\|_{2(r+1)^{-1} \mathbb{T}} \leq K_{r} C_{1}(r, n)
$$

we get

$$
\|g\|_{Y} \leq \sum_{k=1}^{n}(2 \pi)^{-1} C_{r} C_{1}(r, n)\|f\|_{X} K_{r} C_{1}(r, n)=(2 \pi)^{-1} n C_{r} K_{r}\left(C_{1}(r, n)\right)^{2}\|f\|_{X}
$$

which proves that

$$
c(\sigma, X, Y) \leq(2 \pi)^{-1} n C_{r} K_{r}\left(C_{1}(r, n)\right)^{2}
$$

and completes the proof of Theorem A.

1.2. The case where X is a Hilbert space

We suppose in this Subsection that X is a Hilbert space and both X, Y satisfy properties $\left(P_{i}\right)$ for $i=1 \ldots 4$. We prove Theorem B and obtain a better estimate for $c(\sigma, X, Y)$ than in Theorem A (see point (i) of Theorem B). For the case $Y=H^{\infty}$, (point (ii) of Theorem B), we can considerably improve this estimate. We omit an easy proof of the following lemma.

Lemma. 1.2.0. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{2}, \ldots, \lambda_{t}, \ldots, \lambda_{t}\right\}$ be a finite sequence of \mathbb{D} where every λ_{s} is repeated according to its multiplicity $m_{s}, \sum_{s=1}^{t} m_{s}=n$. Let $\left(H,(.)_{H}\right)$ be a Hilbert space continuously emebedded into $\operatorname{Hol}(\mathbb{D})$ and satisfying properties $\left(P_{i}\right)$ for $i=2,3,4$. Then

$$
K_{B_{\sigma}}(H)=: H \Theta B_{\sigma} H=\operatorname{span}\left(k_{\lambda_{j}, i}: 1 \leq j \leq t, 0 \leq i \leq m_{j}-1\right),
$$

where $k_{\lambda, i}=\left(\frac{d}{d \bar{\lambda}}\right)^{i} k_{\lambda}$ and k_{λ} is the reproducing kernel of H at point λ for every $\lambda \in \mathbb{D}$, i.e. $k_{\lambda} \in H$ and $f(\lambda)=\left(f, k_{\lambda}\right)_{H}, \forall f \in H$.

Proof of Theorem B. i). Let $f \in X,\|f\|_{X} \leq 1$. Lemma 1.2.0 shows that

$$
g=P_{B_{\sigma}}^{H} f=\sum_{k=1}^{n}\left(f, e_{k}\right)_{H} e_{k}
$$

is the orthogonal projection of f onto subspace $K_{B_{\sigma}}$. Function g belongs to Y because all $k_{\lambda_{j}, i}$ are in $\operatorname{Hol}((1+\epsilon) \mathbb{D})$ for a convenient $\epsilon>0$, and Y satisfies $\left(P_{1}\right)$.

On the other hand, $g-f \in B_{\sigma} H$ (again by Lemma 1.2.0). Moreover, using Cauchy-Schwarz inequality,

$$
\|g\|_{Y} \leq \sum_{k=1}^{n}\left|\left(f, e_{k}\right)_{H}\right|\left\|e_{k}\right\|_{Y} \leq\left(\sum_{k=1}^{n}\left|\left(f, e_{k}\right)_{H}\right|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n}\left\|e_{k}\right\|_{Y}^{2}\right)^{1 / 2} \leq\|f\|_{H}\left(\sum_{k=1}^{n}\left\|e_{k}\right\|_{Y}^{2}\right)^{1 / 2},
$$

which proves i).
ii). If $Y=H^{\infty}$, then

$$
|g(z)|=\left|\left(P_{B_{\sigma}}^{H} f, k_{z}\right)_{H}\right|=\left|\left(f, P_{B_{\sigma}}^{H} k_{z}\right)_{H}\right| \leq\|f\|_{H}\left\|P_{B_{\sigma}}^{H} k_{z}\right\|_{H},
$$

for all $z \in \mathbb{D}$, which proves ii).

2. Upper bounds for $C_{n, r}\left(H^{2}, H^{\infty}\right)$

In this Section, we specialize the upper estimate obtained in point (ii) of Theorem B for the case $X=H^{2}$, the Hardy space of the disc. Later on, we will see that this estimate is sharp at least for some special sequences σ (see Section 6). We also develop a slightly different approach to the interpolation constant $c\left(\sigma, H^{2}, H^{\infty}\right)$ giving more estimates for individual sequences $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of \mathbb{D}. We finally prove the right-hand side inequality of Theorem C for the particular case $p=2$.
Proposition. 2.0. For every sequence $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of \mathbb{D} we have

$$
\begin{equation*}
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup _{z \in \mathbb{D}}\left(\frac{1-\left|B_{\sigma}(z)\right|^{2}}{1-|z|^{2}}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sqrt{2} \sup _{|\zeta|=1}\left|B^{\prime}(\zeta)\right|^{\frac{1}{2}}=\sqrt{2} \sup _{|\zeta|=1}\left|\sum_{i=1}^{n} \frac{1-\left|\lambda_{i}\right|^{2}}{\left(1-\bar{\lambda}_{i} \zeta\right)^{2}} \frac{B_{\sigma}(\zeta)}{b_{\lambda_{i}}(\zeta)}\right|^{1 / 2} \tag{2}
\end{equation*}
$$

Proof. We prove (I_{1}). Applying point (ii) of Theorem B for $X=H^{2}$ and $Y=H^{\infty}$, and using

$$
k_{z}(\zeta)=\frac{1}{1-\bar{z} \zeta} \text { and } \quad\left(P_{B_{\sigma}} k_{z}\right)(\zeta)=\frac{1-\overline{B_{\sigma}(z)} B_{\sigma}(\zeta)}{1-\bar{z} \zeta}
$$

(see [N1] p.199), we obtain

$$
\left\|P_{B_{\sigma}} k_{z}\right\|_{H^{2}}=\left(\frac{1-\left|B_{\sigma}(z)\right|^{2}}{1-|z|^{2}}\right)^{1 / 2}
$$

which gives the result.
We now prove $\left(I_{2}\right)$, using $\left(I_{1}\right)$. The map $\zeta \mapsto\left\|P_{B}\left(k_{\zeta}\right)\right\|=\sup \left\{|f(\zeta)|: f \in K_{B},\|f\| \leq 1\right\}$, and hence the map

$$
\zeta \mapsto\left(\frac{1-|B(\zeta)|^{2}}{1-|\zeta|^{2}}\right)^{1 / 2}
$$

is a subharmonic function so

$$
\sup _{|\zeta|<1}\left(\frac{1-|B(\zeta)|^{2}}{1-|\zeta|^{2}}\right)^{1 / 2} \leq \sup _{|w|=1} \lim _{r \rightarrow 1}\left(\frac{1-|B(r w)|^{2}}{1-|r w|^{2}}\right)^{1 / 2}
$$

Now apply Taylor's Formula of order 1 for points $w \in \mathbb{T}$ and $u=r w, 0<r<1$. (It is applicable because B is holomorphic at every point of \mathbb{T}). We get

$$
(B(u)-B(w))(u-w)^{-1}=B^{\prime}(w)+o(1)
$$

and since $|u-w|=1-|u|$,

$$
\left|(B(u)-B(w))(u-w)^{-1}\right|=|B(u)-B(w)|(1-|u|)^{-1}=\left|B^{\prime}(w)+o(1)\right|
$$

Now,

$$
\begin{gathered}
|B(u)-B(w)| \geq|B(w)|-|B(u)|=1-|B(u)| \\
(1-|B(u)|)(1-|u|)^{-1} \leq(1-|u|)^{-1}|B(u)-B(w)|=\left|B^{\prime}(w)+o(1)\right|
\end{gathered}
$$

and

$$
\lim _{r \rightarrow 1}\left((1-|B(r w)|)(1-|r w|)^{-1}\right)^{\frac{1}{2}} \leq \sqrt{\left|B^{\prime}(w)\right|}
$$

Moreover,

$$
B^{\prime}(w)=-\sum_{i=1}^{n}\left(1-\left|\lambda_{i}\right|^{2}\right)\left(1-\overline{\lambda_{i}} w\right)^{-2} \Pi_{j=1, j \neq i}^{n} b_{\lambda_{j}}(w),
$$

for all $w \in \mathbb{T}$. This completes the proof since

$$
\frac{1-|B(r w)|^{2}}{1-|r w|^{2}}=\frac{(1-|B(r w)|)(1+|B(r w)|)}{(1-|r w|)(1+|r w|)} \leq 2 \frac{1-|B(r w)|}{1-|r w|}
$$

Corollary. 2.1. Let $n \geq 1$ and $r \in[0,1[$. Then,

$$
C_{n, r}\left(H^{2}, H^{\infty}\right) \leq 2\left(n(1-r)^{-1}\right)^{\frac{1}{2}}
$$

Indeed, applying Proposition 2.0 we obtain

$$
\left|B^{\prime}(w)\right| \leq\left|\sum_{i=1 . . n} \frac{1-\left|\lambda_{i}\right|^{2}}{\left(1-\left|\lambda_{i}\right|\right)^{2}}\right| \leq n \frac{1+r}{1-r} \leq \frac{2 n}{1-r}
$$

Now, we develop a slightly different approach to the interpolation constant $c\left(\sigma, H^{2}, H^{\infty}\right)$.
Theorem. 2.2. For every sequence $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of \mathbb{D},

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup _{z \in \mathbb{T}}\left(\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left|z-\lambda_{k}\right|^{2}}\right)^{1 / 2}
$$

Proof. In order to simplify the notation, we set $B=B_{\sigma}$. We consider K_{B} (see Definition 1.1.2) and the Malmquist family $\left(e_{k}\right)_{k=1}^{n}$ corresponding to σ (see Definition 1.1.1). Now, let $f \in H^{2}$ and

$$
g=P_{B} f=\sum_{k=1}^{n}\left(f, e_{k}\right)_{H^{2}} e_{k},
$$

(see Definition 1.1.3 and Remark 1.1.4). Function g belongs to H^{∞} (it is a finite sum of H^{∞} functions) and satisfies $g-f \in B H^{2}$. Applying Cauchy-Schwarz inequality we get

$$
|g(\zeta)| \leq \sum_{k=1}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right|\left|e_{k}(\zeta)\right| \leq\left(\sum_{k=1}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left|1-\lambda_{k} \zeta\right|^{2}}\right)^{1 / 2}
$$

for all $\zeta \in \mathbb{D}$. As a result, since f is an arbitrary H^{2} function, we obtain

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup _{\zeta \in \mathbb{T}}\left(\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left|\zeta-\lambda_{k}\right|^{2}}\right)^{1 / 2}
$$

which completes the proof.
Corollary. 2.3. For any sequence $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ in \mathbb{D},

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq\left(\sum_{j=1}^{n} \frac{1+\left|\lambda_{j}\right|}{1-\left|\lambda_{j}\right|}\right)^{1 / 2}
$$

Indeed,

$$
\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left|\zeta-\lambda_{k}\right|^{2}} \leq\left(\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left(1-\left|\lambda_{k}\right|\right)^{2}}\right)^{1 / 2}
$$

and the result follows from Theorem 2.2.

Proof of Theorem C ($p=2$, the right-hand side inequality only). Since $1+\left|\lambda_{j}\right| \leq 2$ and $1-\left|\lambda_{j}\right| \geq 1-r$ for all $j \in[1, n]$, applying Corollary 2.3 we get

$$
C_{n, r}\left(H^{2}, H^{\infty}\right) \leq \sqrt{2} n^{1 / 2}(1-r)^{-1 / 2}
$$

Remark 2.4. As a result, we get once more the same estimate for $C_{n, r}\left(H^{2}, H^{\infty}\right)$ as in Corollary 2.1, with the constant $\sqrt{2}$ instead of 2

It is natural to wonder if it is possible to improve the bound $\sqrt{2} n^{1 / 2}(1-r)^{-1 / 2}$. We return to this question in Section 5 below.

3. Upper bounds for $C_{n, r}\left(H^{p}, H^{\infty}\right), p \geq 1$

In this Section we extend Corollary 2.1 to all Hardy spaces H^{p} : we prove the right-hand side inequality of Theorem C, $p \neq 2$. We first prove the following lemma.

Lemma. 3.0. Let $n \geq 1$ and $0 \leq r<1$. Then,

$$
C_{n, r}\left(H^{1}, H^{\infty}\right) \leq 2 n(1-r)^{-1}
$$

Proof. Let $f \in H^{1}$ such that $\|f\|_{H^{1}} \leq 1$ and let

$$
g=\Phi(f)=\sum_{k=1 . . n}\left\langle f, e_{k}\right\rangle e_{k}
$$

where, as always, $\left(e_{k}\right)_{k=1}^{n}$ is the Malmquist basis corresponding to σ (see 1.1.1), Φ is defined in Lemma 1.1.5, and where $\langle.,$.$\rangle means the Cauchy sesquilinear form \langle f, g\rangle=\sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}}(k)$. That is to say that,

$$
g(\zeta)=\sum_{k=1 . . n}\left\langle f, e_{k}\right\rangle e_{k}(\zeta)=\left\langle f, \sum_{k=1 . . n} e_{k} \overline{e_{k}(\zeta)}\right\rangle
$$

for all $\zeta \in \mathbb{D}$, which gives,

$$
|g(\zeta)| \leq\|f\|_{H^{1}}\left\|\sum_{k=1 . . n} e_{k} \overline{e_{k}(\zeta)}\right\|_{H^{\infty}} \leq\left\|\sum_{k=1 . . n} e_{k} \overline{e_{k}(\zeta)}\right\|_{H^{\infty}}
$$

Since Blaschke factors have modulus 1 on the unit circle,

$$
\left\|e_{k}\right\|_{H^{\infty}} \leq\left(1+\left|\lambda_{k}\right|\right)^{1 / 2}\left(1-\left|\lambda_{k}\right|\right)^{-1 / 2}
$$

As a consequence,

$$
|g(\zeta)| \leq \sum_{k=1}^{n}\left\|e_{k}\right\|_{H^{\infty}}\left|\overline{e_{k}(\zeta)}\right| \leq \sum_{k=1}^{n}\left\|e_{k}\right\|_{H^{\infty}}^{2} \leq \sum_{k=1}^{n}\left(1+\left|\lambda_{k}\right|\right)\left(1-\left|\lambda_{k}\right|\right)^{-1} \leq 2 n(1-r)^{-1}
$$

for all $\zeta \in \mathbb{D}$, which completes the proof.
Proof of Theorem $C\left(p \neq 2\right.$, the right-hand side inequality only). Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a sequence in the unit disc $\mathbb{D}, B_{\sigma}=\Pi_{i=1}^{n} b_{\lambda_{i}}$, and $T: H^{p} \longrightarrow H^{\infty} / B_{\sigma} H^{\infty}$ be the restriction map defined by

$$
T f=\left\{g \in H^{\infty}: f-g \in B_{\sigma} H^{p}\right\}
$$

for every f. Then,

$$
\|T\|_{H^{p} \rightarrow H^{\infty} / B_{\sigma} H^{\infty}}=c\left(\sigma, H^{p}, H^{\infty}\right)
$$

There exists $0 \leq \theta \leq 1$ such that $1 / p=1-\theta$, and since (we use the notation of the interpolation theory between Banach spaces see $[\mathrm{Tr}]$ or $[\mathrm{Be}])\left[H^{1}, H^{\infty}\right]_{\theta}=H^{p}$ (a topological identity : the spaces are the same and the norms are equivalent (up to constants depending on p only), see [J]),

$$
\|T\|_{\left[H^{1}, H^{\infty}\right]_{\theta} \rightarrow H^{\infty} / B_{\sigma} H^{\infty}} \leq\left(A_{1} c\left(\sigma, H^{1}, H^{\infty}\right)\right)^{1-\theta}\left(A_{\infty} c\left(\sigma, H^{\infty}, H^{\infty}\right)\right)^{\theta}
$$

where A_{1}, A_{∞} are numerical constants, and using, Lemma 3.0, the fact that $c\left(\sigma, H^{\infty}, H^{\infty}\right) \leq 1$, and a known interpolation Theorem (see [Tr], Theorem 1.9.3-(a) p.59), we find

$$
\|T\|_{\left[H^{1}, H^{\infty}\right]_{\theta} \rightarrow H^{\infty} / B_{\sigma} H^{\infty}} \leq\left(2 A_{1} n(1-r)^{-1}\right)^{1-\theta} A_{\infty}^{\theta}=\left(2 A_{1}\right)^{1-\theta} A_{\infty}^{\theta}\left(n(1-r)^{-1}\right)^{\frac{1}{p}},
$$

which completes the proof.

4. Upper bounds for $C_{n, r}\left(L_{a}^{2}, H^{\infty}\right)$

In this Section, we generalize Corollary 2.1 to the case of spaces X which contain $H^{2}: X=$ $l_{a}^{2}\left((k+1)^{\alpha}\right), \alpha \leq 0$, the Hardy weighted spaces of all $f(z)=\sum_{k \geq 0} \hat{f}(k) z^{k}$ satisfying

$$
\|f\|_{X}^{2}:=\sum_{k \geq 0}|\hat{f}(k)|^{2}(k+1)^{2 \alpha}<\infty
$$

Notice that $H^{2}=l_{a}^{2}(1)$ and $L_{a}^{2}(\mathbb{D})=l_{a}^{2}\left((k+1)^{-\frac{1}{2}}\right)$. We prove the right-hand side inequality of Theorem D and the main technical tool used in its proof is a Bernstein-type inequality for rational functions.

4.1. Bernstein-type inequalities for rational functions

Bernstein-type inequalities for rational functions were the subject of a number of papers and monographs (see, for instance, [L], [BoEr], [DeLo], [B]). Perhaps, the stronger and closer to ours (Proposition 4.1) of all known results are due to K.Dyakonov [Dya1]\&[Dya2]. First, we prove Proposition 4.1 below, which tells that if $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{D}, r=\max _{j}\left|\lambda_{j}\right|$, and $f \in K_{B_{\sigma}}$, then

$$
\left\|f^{\prime}\right\|_{H^{2}} \leq \alpha_{n, r}\|f\|_{H^{2}},
$$

where $\alpha_{n, r}$ is a constant (explicitly given in Proposition 4.1) depending on n and r only such that $0<\alpha_{n, r} \leq \frac{5}{2} \frac{n}{1-r}$. Proposition 4.1 is in fact a partial case ($p=2$) of the following K. Dyakonov's result [Dya1] (which is, in turn, a generalization of M. Levin's inequality [L] corresponding to the case $p=\infty)$: it is proved in [Dya1] that the norm $\|D\|_{K_{B}^{p} \rightarrow H^{p}}$ of the differentiation operator $D f=f^{\prime}$ on the star-invariant subspace of the Hardy space $H^{p}, K_{B}^{p}:=H^{p} \cap B \overline{z H^{p}}$, (where the bar denotes complex conjugation) satisfies the following inequalities

$$
c_{p}^{\prime}\left\|B^{\prime}\right\|_{\infty} \leq\|D\|_{K_{B}^{p} \rightarrow H^{p}} \leq c_{p}\left\|B^{\prime}\right\|_{\infty},
$$

for every $p, 1 \leq p \leq \infty$ where c_{p} and c_{p}^{\prime} are positives constants depending on p only, B is a finite Blaschke product and $\|\cdot\|_{\infty}$ means the norm in $L^{\infty}(\mathbb{T})$. For the partial case considered in Proposition 4.1 below, our proof is different and the constant is slightly better. More precisely, it is proved in [Dya1] that $c_{2}^{\prime}=\frac{1}{36 c}, c_{2}=\frac{36+c}{2 \pi}$ and $c=2 \sqrt{3 \pi}$ (as one can check easily (c is not precised in [Dya1])). It implies an inequality of type (\star) (with a constant about $\frac{13}{2}$ instead of $\frac{5}{2}$).

In [Z2], we discuss the "asymptotic sharpness" of our constant $\alpha_{n, r}$: we find an inequality for sup $\|D\|_{K_{B} \rightarrow H^{2}}=C_{n, r}$ (sup is over all B with given $n=\operatorname{deg} B$ and $\left.r=\max _{\lambda \in \sigma}|\lambda|\right)$, which is asymptotically sharp as $n \rightarrow \infty$. Our result in [Z2] is that there exists a limit $\lim _{n \rightarrow \infty} \frac{C_{n, r}}{n}=\frac{1+r}{1-r}$ for every $r, 0 \leq r<1$. Our method is different from [Dya1] \& [Dya2] and is based on an elementary Hilbert space construction for an orthonormal basis in K_{B}.

Proposition. 4.1. Let $B=\prod_{j=1}^{n} b_{\lambda_{j}}$, be a finite Blaschke product (of order n), $r=\max _{j}\left|\lambda_{j}\right|$, and $f \in K_{B}=H^{2} \Theta B H^{2}$. Then for every $n \geq 2$ and $r \in[0,1)$,

$$
\left\|f^{\prime}\right\|_{H^{2}} \leq \alpha_{n, r}\|f\|_{H^{2}},
$$

where $\alpha_{n, r}=[1+(1+r)(n-1)+\sqrt{n-2}](1-r)^{-1}$ and in particular,

$$
\left\|f^{\prime}\right\|_{H^{2}} \leq \frac{5}{2} \frac{n}{1-r}\|f\|_{H^{2}}
$$

for all $n \geq 1$ and $r \in[0,1)$.
Proof. Using Remark 1.1.4, $f=P_{B} f=\sum_{k=1}^{n}\left(f, e_{k}\right)_{H^{2}} e_{k}, \forall f \in K_{B}$. Noticing that,

$$
e_{k}^{\prime}=\sum_{i=1}^{k-1} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} e_{k}+\overline{\lambda_{k}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)} e_{k},
$$

for $k \in[2, n]$, we get

$$
\begin{gathered}
f^{\prime}=\left(f, e_{1}\right)_{H^{2}} e_{1}^{\prime}+\sum_{k=2}^{n}\left(f, e_{k}\right)_{H^{2}} e_{k}^{\prime}= \\
=\left(f, e_{1}\right)_{H^{2}} \frac{\bar{\lambda}_{1}}{\left(1-\overline{\lambda_{1}} z\right)} e_{1}+\sum_{k=2}^{n}\left(f, e_{k}\right)_{H^{2}} \sum_{i=1}^{k-1} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} e_{k}+\sum_{k=2}^{n}\left(f, e_{k}\right)_{H^{2}} \overline{\lambda_{k}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)} e_{k},
\end{gathered}
$$

which gives

$$
\begin{gathered}
f^{\prime}=\left(f, e_{1}\right)_{H^{2}} \frac{\bar{\lambda}_{1}}{\left(1-\overline{\lambda_{1}} z\right)} e_{1}+\sum_{k=2}^{n} \sum_{i=1}^{n-1}\left(f, e_{k}\right)_{H^{2}} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} e_{k} \chi_{[1, k-1]}(i)+\sum_{k=2}^{n}\left(f, e_{k}\right)_{H^{2}} \overline{\lambda_{k}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)} e_{k}= \\
=\left(f, e_{1}\right)_{H^{2}} \frac{\bar{\lambda}_{1}}{\left(1-\overline{\lambda_{1}} z\right)} e_{1}+\sum_{i=1}^{n} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} \sum_{k=i+1}^{n-1}\left(f, e_{k}\right)_{H^{2}} e_{k}+\sum_{k=2}^{n}\left(f, e_{k}\right)_{H^{2}} \overline{\lambda_{k}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)} e_{k}
\end{gathered}
$$

where $\chi_{[1, k-1]}$ is the characteristic function of $[1, k-1]$. Now,

$$
\begin{gathered}
\left\|\left(f, e_{1}\right)_{H^{2}} \frac{\bar{\lambda}_{1}}{\left(1-\overline{\lambda_{1}} z\right)} e_{1}\right\|_{H^{2}} \leq\left|\left(f, e_{1}\right)_{H^{2}}\right|\left\|\frac{\bar{\lambda}_{1}}{\left(1-\overline{\lambda_{1}} z\right)}\right\|_{\infty}\left\|e_{1}\right\|_{H^{2}} \leq \\
\leq\|f\|_{H^{2}}\left\|e_{1}\right\|_{H^{2}} \frac{1}{1-r}\left\|e_{1}\right\|_{H^{2}} \leq\|f\|_{H^{2}} \frac{1}{1-r}
\end{gathered}
$$

using Cauchy-Schwarz inequality and the fact that e_{1} is a vector of norm 1 in H^{2}. By the same reason, we have

$$
\begin{aligned}
& \left\|\sum_{k=2}^{n} \overline{\lambda_{k}}\left(f, e_{k}\right)_{H^{2}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)} e_{k}\right\|_{H^{2}} \leq \sum_{k=2}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right|\left\|\overline{\lambda_{k}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)}\right\|_{\infty}\left\|e_{k}\right\|_{H^{2}} \leq \\
\leq & \frac{1}{1-r} \sum_{k=2}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right| \leq \frac{1}{1-r}\left(\sum_{k=2}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right|^{2}\right)^{\frac{1}{2}} \sqrt{n-2} \leq \frac{1}{1-r}\|f\|_{H^{2}} \sqrt{n-2} .
\end{aligned}
$$

Further,

$$
\begin{gathered}
\left\|\sum_{i=1}^{n-1} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} \sum_{k=i+1}^{n} e_{k}\left(f, e_{k}\right)_{H^{2}}\right\|_{H^{2}} \leq \sum_{i=1}^{n-1}\left\|\frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}}\right\|_{\infty}\left\|\sum_{k=i+1}^{n}\left(f, e_{k}\right)_{H^{2}} e_{k}\right\|_{H^{2}}= \\
=\left(\max _{1 \leq i \leq n-1}\left\|\frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}}\right\|_{\infty}\right) \sum_{i=1}^{n-1}\left(\sum_{k=i+1}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right|^{2}\right)^{\frac{1}{2}} \leq \max _{i}\left\|\frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}}\right\|_{\infty} \sum_{i=1}^{n-1}\|f\|_{H^{2}} .
\end{gathered}
$$

Now, using

$$
\left\|\frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}}\right\|_{\infty}=\left\|\frac{\left|\lambda_{i}\right|^{2}-1}{\left(1-\overline{\lambda_{i}} z\right)\left(\lambda_{i}-z\right)}\right\|_{\infty} \leq \frac{1+\left|\lambda_{i}\right|}{1-\left|\lambda_{i}\right|} \leq \frac{1+r}{1-r},
$$

we get

$$
\left\|\sum_{i=1}^{n-1} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} \sum_{k=i+1}^{n}\left(f, e_{k}\right)_{H^{2}} e_{k}\right\|_{H^{2}} \leq(1+r) \frac{n-1}{1-r}\|f\|_{H^{2}}
$$

Finally,

$$
\left\|f^{\prime}\right\|_{H^{2}} \leq[1+(1+r)(n-1)+\sqrt{n-2}](1-r)^{-1}\|f\|_{H^{2}}
$$

In particular,

$$
\|f\|_{H^{2}} \leq(2 n-1+\sqrt{n-2})(1-r)^{-1}\|f\|_{H^{2}} \leq 5.2^{-1} n(1-r)^{-1}\|f\|_{H^{2}},
$$

for all $n \geq 2$ and for every $f \in K_{B}$. (The case $n=1$ is obvious because $\left\|f^{\prime}\right\|_{H^{2}} \leq(1-r)^{-1}\|f\|_{H^{2}}$ for every f of the form $\left.f=(1-\bar{\lambda} z)^{-1}, \lambda \in \mathbb{D}\right)$.

4.2. An upper bound for $c\left(\sigma, L_{a}^{2}, H^{\infty}\right)$

Corollary. 4.2. Let σ be a sequence in \mathbb{D}. Then,

$$
c\left(\sigma, l_{a}^{2}\left((k+1)^{-1}\right), H^{\infty}\right) \leq 6 \sqrt{2}\left(n(1-r)^{-1}\right)^{3 / 2}
$$

Indeed, let $H=l_{a}^{2}\left((k+1)^{-N}\right)$ and $B=B_{\sigma}$ the finite Blaschke product corresponding to σ. Let $\widetilde{P_{B}}$ be the orthogonal projection of H onto $K_{B}=K_{B}\left(H^{2}\right)$. Then $\widetilde{P_{B \mid H^{2}}}=P_{B}$, where P_{B} is defined in 1.1.4. We notice that $\widetilde{P_{B}}: H \rightarrow H$ is a bounded operator and the adjoint ${\widetilde{P_{B}}}^{\star}: H^{\star} \rightarrow H^{\star}$ of $\widetilde{P_{B}}$ relatively to the Cauchy pairing $\langle.,$.$\rangle satisfies {\widetilde{P_{B}}}^{\star} \varphi=\widetilde{P_{B}} \varphi=P_{B} \varphi, \forall \varphi \in H^{\star} \subset H^{2}$, where $H^{\star}=l_{a}^{2}\left((k+1)^{N}\right)$ is the dual of H with respect to this pairing. If $f \in H$, then $\left|\widetilde{P_{B}} f(\zeta)\right|=\left|\left\langle\widetilde{P_{B}} f, k_{\zeta}\right\rangle\right|=\left|\left\langle f, \widetilde{P_{B}}{ }^{\star} k_{\zeta}\right\rangle\right|$, where $k_{\zeta}=(1-\bar{\zeta} z)^{-1} \in H^{2}$ and

$$
\left|\widetilde{P_{B}} f(\zeta)\right| \leq\|f\|_{H}\left\|P_{B} k_{\zeta}\right\|_{H^{\star}} \leq\|f\|_{H} K\left(\left\|P_{B} k_{\zeta}\right\|_{H^{2}}+\left\|\left(P_{B} k_{\zeta}\right)^{\prime}\right\|_{H^{2}}\right)
$$

where

$$
K=\max \left\{1, \sup _{k \geq 1}(k+1) k^{-1}\right\}=2
$$

Since $P_{B} k_{\zeta} \in K_{B}$, Proposition 4.1 implies

$$
\left|\widetilde{P_{B}} f(\zeta)\right| \leq\|f\|_{H} K\left(\left\|P_{B} k_{\zeta}\right\|_{H^{2}}+5.2^{-1}\left(n(1-r)^{-1}\right)\left\|P_{B} k_{\zeta}\right\|_{H^{2}}\right) \leq A\left(n(1-r)^{-1}\right)^{3 / 2}\|f\|_{H},
$$

where $A=\sqrt{2} K(1 / 2+5 / 2)=6 \sqrt{2}$, since $\left\|P_{B} k_{\zeta}\right\|_{2} \leq \sqrt{2}\left(n(1-r)^{-1}\right)^{1 / 2}$, and since we can suppose $n \geq 2$, (the case $n=1$ being obvious).

Proof of Theorem E (the right-hand side inequality only). The case $\alpha=0$ corresponds to $X=H^{2}$ and has already been studied in Section 1 (we can choose $A(0)=\sqrt{2}$). We now suppose $\alpha<0$. Let $B_{\sigma}=\Pi_{i=1}^{n} b_{\lambda_{i}}$ and $T: l_{a}^{2}\left((k+1)^{\alpha}\right) \longrightarrow H^{\infty} / B_{\sigma} H^{\infty}$ be the restriction map defined by

$$
T f=\left\{g \in H^{\infty}: f-g \in B_{\sigma} l_{a}^{2}\left((k+1)^{\alpha}\right)\right\}
$$

for every f. Then,

$$
\|T\|_{l_{a}^{2}\left((k+1)^{\alpha}\right) \rightarrow H^{\infty} / B_{\sigma} H^{\infty}}=c\left(\sigma, l_{a}^{2}\left((k+1)^{\alpha}\right), H^{\infty}\right) .
$$

Setting $\theta=-\alpha$ with $0<\theta \leq 1$, we have (as in Theorem D, we use the notation of the interpolation theory between Banach spaces see $[\mathrm{Tr}]$ or $[\mathrm{Be}]$)

$$
\left[l_{a}^{2}\left((k+1)^{0}\right), l_{a}^{2}\left((k+1)^{-1}\right)\right]_{\theta, 2}=l_{a}^{2}\left(\left((k+1)^{0}\right)^{2 \frac{1-\theta}{2}}\left((k+1)^{-1}\right)^{2 \frac{\theta}{2}}\right)=l_{a}\left((k+1)^{\alpha}\right)
$$

which entails, using Corollary 4.2 and (again) [Tr] Theorem 1.9.3-(a) p.59,

$$
\begin{aligned}
& \|T\|_{l_{a}^{2}\left((k+1)^{\alpha}\right) \rightarrow H^{\infty} / B_{\sigma} H^{\infty}} \leq\left(c\left(\sigma, l_{a}^{2}\left((k+1)^{0}\right), H^{\infty}\right)\right)^{1-\theta}\left(c\left(\sigma, l_{a}^{2}\left((k+1)^{-1}\right), H^{\infty}\right)\right)^{\theta} \leq \\
& \leq\left(A(0)\left(n(1-r)^{-1}\right)^{\frac{1}{2}}\right)^{1-\theta}\left(A(1)\left(n(1-r)^{-1}\right)^{\frac{3}{2}}\right)^{\theta}=A(0)^{1-\theta} A(1)^{\theta}\left(n(1-r)^{-1}\right)^{\frac{1-\theta}{2}+\frac{3 \theta}{2}}
\end{aligned}
$$

It remains to use $\theta=-\alpha$ and set $A(\alpha)=A(0)^{1-\theta} A(1)^{\theta}$. In particular, for $\alpha=-1 / 2$ we get $(1-\theta) / 2+3 \theta / 2=1$ and

$$
A(-1 / 2)=A(0)^{(1-1 / 2)} A(1)^{1 / 2}=\sqrt{2}^{1 / 2}(6 \sqrt{2})^{1 / 2}=2 \sqrt{3}
$$

5. About the links with Carleson interpolation

Recall that given a (finite) set $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{D}$, the Carleson interpolation constant $C_{I}(\sigma)$ is defined by

$$
C_{I}(\sigma)=\sup _{\|a\|_{l \infty} \leq 1} \inf \left(\|g\|_{\infty}: g \in H^{\infty}, g_{\mid \sigma}=a\right) .
$$

We introduce the evaluation functionals φ_{λ} for $\lambda \in \mathbb{D}$, as well as the evaluation of the derivatives $\varphi_{\lambda, s}$ $(s=0,1, \ldots)$

$$
\varphi_{\lambda}(f)=f(\lambda), \quad f \in X, \quad \text { and } \varphi_{\lambda, s}(f)=f^{(s)}(\lambda), \quad f \in X
$$

Theorem 5.1. Let X be a Banach space, $X \subset \operatorname{Hol}(\mathbb{D})$, and $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a sequence of distinct points in the unit disc \mathbb{D}. We have,

$$
\max _{1 \leq i \leq n}\left\|\varphi_{\lambda_{i}}\right\| \leq c\left(\sigma, X, H^{\infty}\right) \leq C_{I}(\sigma) \cdot \max _{1 \leq i \leq n}\left\|\varphi_{\lambda_{i}}\right\|
$$

where $C_{I}(\sigma)$ stands for the Carleson interpolation constant.
Theorem 5.1 tells us that, for σ with a "reasonable" interpolation constant $C_{I}(\sigma)$, the quantity $c\left(\sigma, X, H^{\infty}\right)$ behaves as $\max _{i}\left\|\varphi_{\lambda_{i}}\right\|$. However, for "tight" sequences σ, the constant $C_{I}(\sigma)$ is so large that the estimate in question contains almost no information. On the other hand, an advantage of the estimate of Theorem 5.1 is that it does not contain $\# \sigma=n$ explicitly. Therefore, for well-separated sequences σ, Theorem 5.1 should give a better estimate than those of Theorem C and Theorem D.

Now, how does the interpolation constant $C_{I}(\sigma)$ behave in terms of the caracteristics r and n of σ ? We answer this question for some particular sequences σ, see Exemples 5.2, 5.3 and 5.4.

Proof of Theorem 5.1. Let $f \in X$. By definition of $C_{I}(\sigma)$, there exists $g \in H^{\infty}$ such that

$$
f\left(\lambda_{i}\right)=g\left(\lambda_{i}\right) \forall i=1 . . n \quad \text { with } \quad\|g\|_{\infty} \leq C_{I}(\sigma) \max _{i}\left|f\left(\lambda_{i}\right)\right| \leq C_{I}(\sigma) \max _{i}\left\|\varphi_{\lambda_{i}}\right\|\|f\|_{X}
$$

Now, taking the supremum over all $f \in X$ such that $\|f\|_{X} \leq 1$, we get the right-hand side inequality. The left-hand side one is clear since if $g \in H^{\infty}$ satisfies $f\left(\lambda_{i}\right)=g\left(\lambda_{i}\right) \forall i=1 . . n$, then $\|g\|_{\infty} \geq\left|g\left(\lambda_{i}\right)\right|=\left|f\left(\lambda_{i}\right)\right|=\left|\varphi_{\lambda_{i}}(f)\right|, \forall i=1 . . n$.

Now, how does the interpolation constant $C_{I}(\sigma)$ behave in terms of the caracteristics r and n of σ ? In what follows, we compare these quantities for three geometrically simple configurations : two-points sets σ, circular and radial sequences σ. The proofs of the following statements (5.2, 5.3 and 5.4) are given in [Z3].

Example. 5.2. Two points sets. Let $\sigma=\left\{\lambda_{1}, \lambda_{2}\right\}, \lambda_{i} \in \mathbb{D}, \lambda_{1} \neq \lambda_{2}$. Then,

$$
\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|^{-1} \leq C_{I}(\sigma) \leq 2\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|^{-1}
$$

and Theorem 5.1 implies

$$
c\left(\sigma, X, H^{\infty}\right) \leq 2\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|^{-1} \max _{i=1,2}\left\|\varphi_{\lambda_{i}}\right\|
$$

whereas a straightforward estimate gives

$$
c\left(\sigma, X, H^{\infty}\right) \leq\left\|\varphi_{\lambda_{1}}\right\|+\max _{|\lambda| \leq r}\left\|\varphi_{\lambda, 1}\right\|\left(1+\left|\lambda_{1}\right|\right)
$$

where $r=\max \left(\left|\lambda_{1}\right|,\left|\lambda_{2}\right|\right)$ and the functional $\varphi_{\lambda, 1}$ is defined in the beginning of Section 5. The difference is that the first upper bound blows up when $\lambda_{1} \rightarrow \lambda_{2}$, whereas the second one is still wellbounded.

Example. 5.3. Circular sequences. Let $0<r<1$ and $\sigma=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}, \lambda_{i} \neq \lambda_{j},\left|\lambda_{i}\right|=r$ for every i, and let $\alpha=\min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right| /(1-r)$. Then, $\alpha^{-1} \leq C_{I}(\sigma) \leq 8 e^{K^{\prime}\left(1+K \alpha^{-3}\right)}$, where $K, K^{\prime}>0$ are absolute constants. Therefore,

$$
c\left(\sigma, X, H^{\infty}\right) \leq 8 e^{K^{\prime}\left(1+K \alpha^{-3}\right)} \max _{|\lambda|=r}\left\|\varphi_{\lambda}\right\|
$$

for every r - circular set σ (an estimate does not depending on n explicitly). In particular, there exists an increasing function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that, for any n uniformly distributed points $\lambda_{1}, \ldots, \lambda_{n}$, $\left|\lambda_{i}\right|=r,\left|\lambda_{i}-\lambda_{i+1}\right|=2 r \sin \left(\frac{\pi}{2 n}\right)$, we have
(1) $c\left(\sigma, H^{2}, H^{\infty}\right) \leq \varphi\left(n(1-r) r^{-1}\right)(1-r)^{-\frac{1}{2}}$, for every n and $r, 0<r<1$ and in particular, for $n \leq\left[r(1-r)^{-1}\right]$ we obtain

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq c(1-r)^{-\frac{1}{2}}
$$

whereas our specific upper bound in Theorem C, (which is sharp over all n elements sequences σ), gives

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq c(1-r)^{-1}
$$

only.
(2) $c\left(\sigma, L_{a}^{2}, H^{\infty}\right) \leq \varphi\left(n(1-r) r^{-1}\right)(1-r)^{-1}$, for every n and $r, 0<r<1$ and in particular, for $n \leq\left[r(1-r)^{-1}\right]$ we obtain

$$
c\left(\sigma, L_{a}^{2}, H^{\infty}\right) \leq c(1-r)^{-1}
$$

whereas our specific upper bound in Theorem D, (which, again, is sharp over all n elements sequences σ), gives

$$
c\left(\sigma, L_{a}^{2}, H^{\infty}\right) \leq c(1-r)^{-2}
$$

only.
Example. 5.4. Radial sequences. Now we consider geometric sequences on the radius of the unit disc \mathbb{D}, say on the radius $[0,1)$. Let $0<\rho<1, p \in(0, \infty)$ and

$$
\lambda_{j}=1-\rho^{j+p}, j=0, \ldots, n
$$

so that the distances $1-\lambda_{j}=\rho^{j} \rho^{p}$ form a geometric progression; the starting point is $\lambda_{0}=1-\rho^{p}$. Let

$$
r=\max _{0 \leq j \leq n} \lambda_{j}=\lambda_{k}=1-\rho^{n+p}
$$

and $\delta=\delta(B)=\min _{0 \leq k \leq n}\left|B_{k}\left(\lambda_{k}\right)\right|$, where $B_{k}=b_{\lambda_{k}}^{-1} B$. It is known that $\delta^{-1} \leq C_{I}(\sigma) \leq 8 \delta^{-2}$, see ([N1], p 189). So, we need to know the asymptotic behaviour of $\delta=\delta(B)$ when $n \rightarrow \infty$, or $\rho \rightarrow 1$, or $\rho \rightarrow 0$, or $p \rightarrow \infty$, or $p \rightarrow 0$.
Claim. Let $\sigma_{n, \rho, p}=\left\{1-\rho^{p+k}\right\}_{k=1}^{n}, 0<\rho<1, p>0$. The estimate of $c\left(\sigma, H^{2}, H^{\infty}\right)$ via the Carleson constant $C_{I}(\sigma)$ (using Theorem 5.1) is comparable with or better than the estimates from Theorem C (for $X=H^{2}$) and Theorem $D\left(\right.$ for $\left.X=L_{a}^{2}\right)$ for sufficently small values of $\rho($ as $\rho \rightarrow 0)$ and/or for a fixed ρ and $n \rightarrow \infty$. In all other cases, as for $p \rightarrow \infty$ (which means $\lambda_{1} \rightarrow 1$), or $\rho \rightarrow 1$, or $n \rightarrow \infty$ and $\rho \rightarrow 1$, it is worse.

Remark 5.5. More specific radial sequences are studied in [Z3] : sparse sequences σ ($\rho \rightarrow 0$, or at least $0<\rho \leq \epsilon<1)$, condensed sequences $\sigma(\rho \rightarrow 1)$ and long sequences $(n \rightarrow \infty)$.

6. Lower bounds for $C_{n, r}\left(X, H^{\infty}\right)$

6.1. The cases $X=H^{2}$ and $X=L_{a}^{2}$

Here, we consider the standard Hardy and Begman spaces on the disc $\mathbb{D}: X=H^{2}=l_{a}^{2}(1)$ and $X=L_{a}^{2}=l_{a}^{2}\left((k+1)^{-1 / 2}\right)$, and the problem of lower estimates for the one point special case $\sigma_{n, \lambda}=$ $\{\lambda, \lambda, \ldots, \lambda\},(n$ times $) \lambda \in \mathbb{D}$. Recall the definition of our constrained interpolation constant for this case

$$
c\left(\sigma_{n, \lambda}, H, H^{\infty}\right)=\sup \left\{\|f\|_{H^{\infty} / b_{\lambda}^{n} H^{\infty}}: f \in H,\|f\|_{H} \leq 1\right\}
$$

where $\|f\|_{H^{\infty} / b_{\lambda}^{n} H^{\infty}}=\inf \left\{\left\|f+b_{\lambda}^{n} g\right\|_{\infty}: g \in H\right\}$. Our goal in this Subsection is to prove the sharpness of the upper estimate from Theorem C $(p=2)$ and Theorem D for the quantities $C_{n, r}\left(H^{2}, H^{\infty}\right)$ and $C_{n, r}\left(L_{a}^{2}, H^{\infty}\right)$, that is to say, to get the lower bounds from Theorem C $(p=2)$ and Theorem D.

Recall that the spaces $l_{a}^{2}\left((k+1)^{\alpha}\right)$ are defined in Section 4.
In the proof, we use properties of reproducing kernel Hilbert space on the disc \mathbb{D}, see for example [N2]. Let us recall some of them adapting the general setting to special cases $X=l_{a}^{2}\left((k+1)^{\alpha}\right)$. As it is mentionned in Section 4,

$$
l_{a}^{2}\left((k+1)^{\alpha}\right)=\left\{f=\sum_{k \geq 0} \hat{f}(k) z^{k}:\|f\|^{2}=\sum_{k \geq 0}|\hat{f}(k)|^{2}(k+1)^{2 \alpha}<\infty\right\} .
$$

The reproducing kernel of $l_{a}^{2}\left((k+1)^{\alpha}\right)$, by definition, is a $l_{a}^{2}\left((k+1)^{\alpha}\right)$-valued function $\lambda \longmapsto k_{\lambda}^{\alpha}$, $\lambda \in \mathbb{D}$, such that $\left(f, k_{\lambda}^{w}\right)=f(\lambda)$ for every $f \in l_{a}^{2}\left((k+1)^{-\alpha}\right)$, where $(.,$.$) means the scalar product$ $(h, g)=\sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}}(k)(k+1)^{-2 \alpha}$. Since one has $f(\lambda)=\sum_{k \geq 0} \hat{f}(k) \lambda^{k}(k+1)^{2 \alpha}(k+1)^{-2 \alpha}(\lambda \in \mathbb{D})$, it follows that

$$
k_{\lambda}^{\alpha}(z)=\sum_{k \geq 0}(k+1)^{2 \alpha} \bar{\lambda}^{k} z^{k}, z \in \mathbb{D}
$$

In particular, for the Hardy space $H^{2}=l_{a}^{2}(1)(\alpha=0)$, we get the Szegö kernel

$$
k_{\lambda}(z)=(1-\bar{\lambda} z)^{-1},
$$

for the Bergman space $L_{a}^{2}=l_{a}^{2}\left((k+1)^{-1 / 2}\right)(\alpha=-1 / 2)$ - the Bergman kernel $k_{\lambda}^{-1 / 2}(z)=(1-\bar{\lambda} z)^{-2}$.
We will use the previous observations for the following composed reproducing kernels (AronszajndeBranges, see [N2] p.320): given the reproducing kernel k of H^{2} and $\varphi \in\left\{z^{N}: N=1,2\right\}$, the function $\varphi \circ k$ is also positive definit and the corresponding Hilbert space is

$$
H_{\varphi}=\varphi\left(H^{2}\right)=l_{a}^{2}\left((k+1)^{\frac{1-N}{2}}\right)
$$

It satisfies the following property : for every $f \in H^{2}, \varphi \circ f \in \varphi\left(H^{2}\right)$ and $\|\varphi \circ f\|_{\varphi\left(H^{2}\right)}^{2} \leq \varphi\left(\|f\|_{H^{2}}^{2}\right)$ (see [N2] p.320).

We notice in particular that

$$
\begin{equation*}
H_{z}=H^{2} \text { and } H_{z^{2}}=L_{a}^{2} \tag{6.1.0}
\end{equation*}
$$

The above relation between the weighted spaces $l_{a}^{2}\left((k+1)^{\alpha}\right)$ and the spaces $\varphi\left(H^{2}\right)=H_{\varphi}$ leads to establish the prove of the left-hand side inequalities from Theorem C (for $p=2$ only) and Theorem D.

Proof of Theorem $C(p=2)$ and Theorem D, (left-hand side inequalities only).

1) We set

$$
Q_{n}=\sum_{k=0}^{n-1}\left(1-|\lambda|^{2}\right)^{1 / 2} b_{\lambda}^{k}(1-\bar{\lambda} z)^{-1}, H_{n}=\varphi \circ Q_{n} \quad \text { and } \Psi=b H_{n}, b>0
$$

Then $\left\|Q_{n}\right\|_{2}^{2}=n$, and hence by the above Aronszajn-deBranges inequality,

$$
\|\Psi\|_{H_{\varphi}}^{2} \leq b^{2} \varphi\left(\left\|Q_{n}\right\|_{2}^{2}\right)=b^{2} \varphi(n)
$$

Let $b>0$ such that $b^{2} \varphi(n)=1$.
2) Since the spaces H_{φ} and H^{∞} are rotation invariant, we have $c\left(\sigma_{n, \lambda}, H_{\varphi}, H^{\infty}\right)=c\left(\sigma_{\mu, n}, H_{\varphi}, H^{\infty}\right)$ for every λ, μ with $|\lambda|=|\mu|=r$. Let $\lambda=-r$. To get a lower estimate for $\|\Psi\|_{H_{\varphi} / b_{\lambda}^{n} H_{\varphi}}$ consider G such that $\Psi-G \in b_{\lambda}^{n} \operatorname{Hol}(\mathbb{D})$, i.e. such that $b H_{n} \circ b_{\lambda}-G \circ b_{\lambda} \in z^{n} \operatorname{Hol}(\mathbb{D})$.
3) First, we show that

$$
\psi=: \Psi \circ b_{\lambda}=b H_{n} \circ b_{\lambda}
$$

is a polynomial (of degree n if $\varphi=z$ and $2 n$ if $\varphi=z^{2}$) with positive coefficients. Note that

$$
\begin{aligned}
Q_{n} \circ b_{\lambda} & =\sum_{k=0}^{n-1} z^{k} \frac{\left(1-|\lambda|^{2}\right)^{1 / 2}}{1-\bar{\lambda} b_{\lambda}(z)}=\left(1-|\lambda|^{2}\right)^{-\frac{1}{2}}\left(1+(1-\bar{\lambda}) \sum_{k=1}^{n-1} z^{k}-\bar{\lambda} z^{n}\right)= \\
& =\left(1-r^{2}\right)^{-1 / 2}\left(1+(1+r) \sum_{k=1}^{n-1} z^{k}+r z^{n}\right)=:\left(1-r^{2}\right)^{-1 / 2} \psi_{1}
\end{aligned}
$$

Hence, $\psi=\Psi \circ b_{\lambda}=b H_{n} \circ b_{\lambda}=b \varphi \circ\left(\left(1-r^{2}\right)^{-\frac{1}{2}} \psi_{1}\right)$ and

$$
\varphi \circ \psi_{1}=\psi_{1}^{N}(z), N=1,2
$$

4) Next, we show that

$$
\sum^{m}(\psi)=: \sum_{j=0}^{m} \hat{\psi}(j) \geq\left\{\begin{array}{c}
(2 \sqrt{2})^{-1} \sqrt{n(1-r)^{-1}} \text { if } N=1 \\
16^{-1} n(1-r)^{-1} \text { if } N=2
\end{array}\right.
$$

where $m=n / 2$ if n is even and $m=(n+1) / 2$ if n is odd.
Indeed, setting $S_{n}=\sum_{j=0}^{n} z^{j}$, we have both for $N=1$ and $N=2$

$$
\sum^{m}\left(\psi_{1}^{N}\right)=\sum^{m}\left(\left(1+(1+r) \sum_{t=1}^{n-1} z^{t}+r z^{n}\right)^{N}\right) \geq \sum^{m}\left(S_{n-1}^{N}\right)
$$

Next, we obtain

$$
\begin{gathered}
\sum^{m}\left(S_{n-1}^{N}\right)=\sum^{m}\left(\left(\frac{1-z^{n}}{1-z}\right)^{N}\right)= \\
=\sum^{m}\left((1-z)^{-N}\right)=\sum^{m}\left(\sum_{j \geq 0} C_{N+j-1}^{j} z^{j}\right)=\sum_{j=0}^{m} C_{N+j-1}^{j}= \\
=\left\{\begin{array}{c}
m+1 \text { if } N=1 \\
(m+1)(m+2) / 2 \text { if } N=2
\end{array} \geq\left\{\begin{array}{c}
n / 2 \text { if } N=1 \\
(n+2)(n+4) / 8 \text { if } N=2
\end{array} \geq\left\{\begin{array}{c}
n / 2 \text { if } N=1 \\
n^{2} / 8 \text { if } N=2
\end{array} .\right.\right.\right.
\end{gathered}
$$

Finally, since $\sum^{m}(\psi)=b \sum^{m}\left(\varphi \circ \psi_{1}\right)=b\left(1-r^{2}\right)^{-N / 2} \sum^{m}\left(\psi_{1}^{N}\right)$ we get

$$
\sum^{m}(\psi) \geq\left\{\begin{array}{c}
(2(1-r))^{-1 / 2} n b / 2 \text { if } N=1 \\
(2(1-r))^{-1} n^{2} b / 8 \text { if } N=2
\end{array}\right.
$$

with $b=\varphi(n)=\left\{\begin{array}{c}n^{-1 / 2} \text { if } N=1 \\ n^{-1} \text { if } N=2\end{array}\right.$. This gives the result claimed.
5) Now, using point 4) and denoting $F_{n}=\Phi_{m}+z^{m} \Phi_{m}$, where Φ_{k} stands for the k-th Fejer kernel, we get

$$
\begin{aligned}
\|\Psi\|_{H^{\infty} / b_{\lambda}^{n} H^{\infty}} & =\|\psi\|_{H^{\infty} / z^{n} H^{\infty}} \geq 2^{-1}\left\|\psi * F_{n}\right\|_{\infty} \geq 2^{-1} \sum_{j=0}^{m} \hat{\psi}(j) \geq \\
& \geq\left\{\begin{array}{c}
(4 \sqrt{2})^{-1} \sqrt{n(1-r)^{-1}} \text { if } N=1 \\
32^{-1} n(1-r)^{-1} \text { if } N=2
\end{array}\right.
\end{aligned}
$$

6) In order to conclude, it remains to use (6.1.0).

6.2. The case $X=H^{p}$

Here we prove the sharpness (for even p) of the upper estimate found in Theorem C. We first prove the following lemma.

Lemma. 6.2.0 Let p, q such that $\frac{p}{q} \in \mathbb{Z}_{+}$, then $c\left(\sigma, H^{p}, H^{\infty}\right) \geq c\left(\sigma, H^{q}, H^{\infty}\right)^{\frac{q}{p}}$ for every sequence σ of \mathbb{D}.

Proof. Step 1. Recalling that

$$
c\left(\sigma, H^{p}, H^{\infty}\right)=\sup _{\|f\|_{p} \leq 1} \inf \left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{\mid \sigma}\right\}
$$

we first prove that

$$
c\left(\sigma, H^{p}, H^{\infty}\right)=\sup _{\|f\|_{p} \leq 1, \text { fouter }} \text { inf }\left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{\mid \sigma}\right\} .
$$

Indeed, we clearly have the inequality

$$
\sup _{\|f\|_{p} \leq 1, f \text { outer }} \inf \left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{\mid \sigma}\right\} \leq c\left(\sigma, H^{p}, H^{\infty}\right)
$$

and if the inequality were strict, that is to say

$$
\sup _{\|f\|_{p} \leq 1, f \text { outer }} \inf \left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{\mid \sigma}\right\}<\sup _{\|f\|_{p} \leq 1} \inf \left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{\mid \sigma}\right\},
$$

then we could write that there exists $\epsilon>0$ such that for every $f=f_{i} . f_{o} \in H^{p}$ (where f_{i} stands for the inner function corresponding to f and f_{o} to the outer one) with $\|f\|_{p} \leq 1$ (which also implies that $\left\|f_{o}\right\|_{p} \leq 1$, since $\left\|f_{o}\right\|_{p}=\|f\|_{p}$), there exists a function $g \in H^{\infty}$ verifying both $\|g\|_{\infty} \leq(1-$ $\epsilon) c\left(\sigma, H^{p}, H^{\infty}\right)$ and $g_{\mid \sigma}=f_{o \mid \sigma}$. This entails that $f_{\mid \sigma}=\left(f_{i} g\right)_{\mid \sigma}$ and since $\left\|f_{i} g\right\|_{\infty}=\|g\|_{\infty} \leq(1-$ $\epsilon) c\left(\sigma, H^{p}, H^{\infty}\right)$, we get that $c\left(\sigma, H^{p}, H^{\infty}\right) \leq(1-\epsilon) c\left(\sigma, H^{p}, H^{\infty}\right)$, which is a contradiction and proves the equality of Step 1.

Step 2. Using the result of Step 1, we get that $\forall \epsilon>0$ there exists an outer function $f_{o} \in H^{q}$ with $\left\|f_{o}\right\|_{q} \leq 1$ and such that

$$
\inf \left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{o \mid \sigma}\right\} \geq c\left(\sigma, H^{q}, H^{\infty}\right)-\epsilon
$$

Now let $F=f_{o}^{\frac{q}{p}} \in H^{p}$, then $\|F\|_{p}^{p}=\left\|f_{o}\right\|_{q}^{q} \leq 1$. We suppose that there exists $g \in H^{\infty}$ such that $g_{\mid \sigma}=F_{\mid \sigma}$ with

$$
\|g\|_{\infty}<\left(c\left(\sigma, H^{q}, H^{\infty}\right)-\epsilon\right)^{\frac{q}{p}}
$$

Then, since $g\left(\lambda_{i}\right)=F\left(\lambda_{i}\right)=f_{o}\left(\lambda_{i}\right)^{\frac{q}{p}}$ for all $i=1$..n, we have $g\left(\lambda_{i}\right)^{\frac{p}{q}}=f_{o}\left(\lambda_{i}\right)$ and $g^{\frac{p}{q}} \in H^{\infty}$ since ${ }_{q}^{p} \in \mathbb{Z}_{+}$. We also have

$$
\left\|g^{\frac{p}{q}}\right\|_{\infty}=\|g\|_{\infty}^{\frac{p}{q}}<\left(c\left(\sigma, H^{q}, H^{\infty}\right)-\epsilon\right)^{\frac{q}{p}}
$$

which is a contradiction. As a result, we have

$$
\|g\|_{\infty} \geq\left(c\left(\sigma, H^{q}, H^{\infty}\right)-\epsilon\right)^{\frac{q}{p}}
$$

for all $g \in H^{\infty}$ such that $g_{\mid \sigma}=F_{\mid \sigma}$, which gives

$$
c\left(\sigma, H^{p}, H^{\infty}\right) \geq\left(c\left(\sigma, H^{q}, H^{\infty}\right)-\epsilon\right)^{\frac{q}{p}}
$$

and since that inequality is true for every $\epsilon>0$, we get the result.
Proof of Theorem C (the left-hand side inequality for $p \in 2 \mathbb{N}, p>2$ only). We first prove the lower estimate for $c\left(\sigma_{n, \lambda}, H^{p}, H^{\infty}\right)$. Writing $p=2(p / 2)$, we apply Lemma 6.2 .0 with $q=2$ and this gives

$$
c\left(\sigma_{n, \lambda}, H^{p}, H^{\infty}\right) \geq c\left(\sigma_{n, \lambda}, H^{2}, H^{\infty}\right)^{\frac{2}{p}} \geq 32^{-\frac{1}{p}}\left(n(1-|\lambda|)^{-1}\right)^{\frac{2}{p}}
$$

for all integer $n \geq 1$. The last inequality is a consequence of Theorem C (left-hand side inequality) for the particular case $p=2$ which has been proved in Subsection 6.1.

Acknowledgement.

I would like to thank Professor Nikolai Nikolski for all of his work, his wisdom and the pleasure that our discussions gave to me.

References

[A] N. Aronszajn, Theory of reproducing kernels, Transactions of AMS, 68:337-404, 1950.
[B1] A. Baranov, Inégalités de Bernstein dans les espaces modèles et applications, Thèse Université de Bordeaux 1, 2005.
[B2] A. Baranov, Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings. J. Functi. Analysis 223 (1): 116-146, 2005.
[B3] A. Baranov, Compact embeddings of model subspaces of the Hardy space, posted in Arxiv, 05.12.2007.
[BL1] L. Baratchart, Rational and meromorphic approximation in Lp of the circle : system-theoretic motivations, critical points and error rates. In N. Papamichael, S. Ruscheweyh, and E. Saff, editors, Computational Methods and Function Theory, pages 45-78. World Scientific Publish. Co, 1999.
[BL2] L. Baratchart, F. Wielonsky, Rational approximation problem in the real Hardy space H_{2} and Stieltjes integrals: a uniqueness theorem, Constr. Approx. 9, 1-21, 1993.
[Be] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, 1976.
[BoEr] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
[DeLo] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
[Dya1] K. M. Dyakonov, Differentiation in Star-Invariant Subspaces I. Boundedness and Compactness, J.Funct.Analysis, 192, 364-386, 2002.
[Dya2] K. M. Dyakonov, Entire functions of exponential type and model subspaces in H^{p}, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 190 (1991), 81-100 (Russian); translation in J. Math. Sci. 71, 2222-2233, 1994.
[H] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Springer-Verlag, NewYork, 2000.
[J] P. W. Jones, L^{∞} estimates for the $\bar{\partial}$ problem in the half plane, Acta Math. 150, 137-152, 1983.
[K] P. Koosis, Carleson's interpolation theorem deduced from a result of Pick, Complex analysis, operators, and related topics. In V. Havin, and N. Nikolski, editors, 151-162, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000.
[L] M. B. Levin, Estimation of the derivative of a meromorphic function on the boundary of the domain (Russian), Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 24, 68-85, 1975.
[N1] N.Nikolski, Treatise on the shift operator, Springer-Verlag, Berlin etc., 1986
[N2] N.Nikolski, Operators, Function, and Systems: an easy reading, Vol.1, Amer. Math. Soc. Monographs and Surveys, 2002.
[N3] N.Nikolski, Condition Numbers of Large Matrices and Analytic Capacities, St. Petersburg Math. J., 17, 641-682, 2006.
[S] E.Stein and G.Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton, 1971.
[T] H. Triebel, Interpolation theory, functions spaces, differential operators, North-Holland Publishing Comp., 1978.
[Z1] R. Zarouf, Interpolation avec contraintes sur des ensembles finis du disque, C. R. Acad. Sci. Paris, Ser. I 347, 2009.
[Z2] R. Zarouf, Asymptotic sharpness of a Bernstein-type inequality for rational functions in H^{2}, to appear in St Petersburg Math. J.
[Z3] R. Zarouf, Interpolation avec contraintes sur des ensembles finis du disque, Thèse Université de Bordeaux 1, 2008.

