Effective H^{∞} interpolation constrained by Hardy and Bergman norms

RACHID ZAROUF, UNIVERSITE AIX-MARSEILLE I

Abstract

Given a finite set σ of the unit disc $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ and a holomorphic function f in \mathbb{D} which belongs to a class X, we are looking for a function g in another class Y (smaller than X or incomparable with X) which minimizes the norm $\|g\|_Y$ among all functions g such that $g_{|\sigma}=f_{|\sigma}$. For $Y=H^\infty, X=H^p$ (the Hardy space) or $X=L^2_a$ (the Bergman space), and for the corresponding interpolation constant $c(\sigma,X,H^\infty)$, we show that $c(\sigma,X,H^\infty)\leq a\varphi_X\left(1-\frac{1-r}{n}\right)$ where $n=\#\sigma,\ r=\max_{\lambda\in\sigma}|\lambda|$ and where $\varphi_X(t)$ stands for the norm of the evaluation functional $f\mapsto f(t)$ on the space X. The upper bound is sharp over sets σ with given n and r.

Résumé

Etant donné un ensemble fini σ du disque unité $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ et une fonction f holomorphe dans \mathbb{D} appartenant à une certaine classe X, on cherche g dans une autre classe Y (plus petite que X ou incomparable avec X) qui minimise la norme de g dans Y parmi toutes les fonctions g satisfaisant la condition $g_{|\sigma}=f_{|\sigma}$. On montre que dans le cas $Y=H^{\infty}$, la constante d'interpolation correspondante $c\left(\sigma,X,H^{\infty}\right)$ admet une majoration $c\left(\sigma,X,H^{\infty}\right)\leq a\varphi_{X}\left(1-\frac{1-r}{n}\right)$ où $n=\#\sigma,\ r=\max_{\lambda\in\sigma}|\lambda|$ et $\varphi_{X}(t)$ est la norme de la fonctionnelle d'évaluation $f\mapsto f(t),\ 0\leq t<1$, sur l'espace X. La majoration est exacte sur l'ensemble des σ avec n et r donné.

Introduction

(1) General framework. Let $Hol(\mathbb{D})$ be the space of holomorphic functions on the unit disc \mathbb{D} . The problem considered is the following: given two Banach spaces X and Y of holomorphic functions on the unit disc \mathbb{D} , $X, Y \subset Hol(\mathbb{D})$, and a finite set $\sigma \subset \mathbb{D}$, to find the least norm interpolation by functions of the space Y for the traces $f_{|\sigma}$ of functions of the space X, in the worst case of f. The case $X \subset Y$ is of no interests, and so one can suppose that either $Y \subset X$ or X, Y are incomparable.

The classical interpolation problems- those of Nevanlinna-Pick (1916) and Carathéodory-Schur (1908) (see [N2] p.231 for these two problems), on the one hand and Carleson's free interpolation (1958) (see [N1] p.158) on the other hand- are of this nature. Two first are "individual", in the sens that one looks simply to compute the norms $||f||_{H^{\infty}_{|\sigma}}$ or $||f||_{H^{\infty}/z^nH^{\infty}}$ for a given f, whereas the third one is to compare the norms $||a||_{l^{\infty}(\sigma)} = \max_{\lambda \in \sigma} |a_{\lambda}|$ and

$$inf(\|g\|_{\infty}, g(\lambda) = a_{\lambda}, \lambda \in \sigma).$$

Let us first explain that our problem assemblies the ones of Nevanlinna-Pick and Carathéodory-Schur.

(i) Nevannlinna-Pick interpolation problem

Given $\Lambda = (\lambda_1, ..., \lambda_n)$ in \mathbb{D}^n and $W = (w_1, ..., w_n) \in \mathbb{C}^n$, to find

$$C(\Lambda, W) = \inf \{ ||f||_{\infty} : f(\lambda_i) = w_i, i = 1..n \}.$$

The classical answer of Pick is the following:

$$C(\Lambda, W) = \inf \left\{ c > 0 : \left(\frac{c^2 - \overline{w_i} w_j}{1 - \overline{\lambda_i} \lambda_j} \right)_{1 \le i, j \le n} >> 0 \right\},\,$$

where for any $n \times n$ matrix M, M >> 0 means that M is positive definite.

(ii) Carathéodory-Schur interpolation problem Given $\mathcal{A} = (a_0, ..., a_n) \in \mathbb{C}^{n+1}$, to find

$$C(A) = \inf \{ ||f||_{\infty} : f(z) = a_0 + a_1 z + ... + a_n z^n + ... \}.$$

The classical answer of Schur is the following:

$$C\left(\mathcal{A}\right) = \left\| \left(T_{\varphi} \right)_{n} \right\|,\,$$

where T_{φ} is the Toeplitz operator associated with a symbol φ , $(T_{\varphi})_n$ is the compression of T_{φ} on \mathcal{P}_n , the space of analytic polynomials of degree less or equal than n, and φ is the polynomial $\sum_{k=0}^{n} a_k z^k$.

Notice that the Carathéodory-Schur interpolation theorem can be seen as a particular case of the famous commutant lifting theorem of Sarason and Sz-Nagy-Foias (1968) see [N2] p.230, Theorem 3.1.11.

From a modern point of view, those two interpolation problems (i)&(ii) are unified through the following mixed problem : given

- $\sigma = \{\lambda_1, ..., \lambda_n\} \subset \mathbb{D}$, the finite Blaschke product $B_{\sigma} = \prod_j b_{\lambda_j}$, where $b_{\lambda} = \frac{\lambda z}{1 \lambda z}$, $\lambda \in \mathbb{D}$,
- $f \in Hol(\mathbb{D})$,

to compute or estimate

$$||f||_{H^{\infty}/BH^{\infty}} = \inf \{||g||_{\infty} : f - g \in B_{\sigma}Hol(\mathbb{D})\}.$$

The classical Nevanlinna-Pick problem corresponds to the case $X = Hol(\mathbb{D}), Y = H^{\infty}$, and the one of Carathéodory-Schur to the case where $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$ and $X = Hol(\mathbb{D}), Y = H^{\infty}$.

Here and everywhere below, H^{∞} stands for the space (algebra) of bounded holomorphic functions in the unit disc \mathbb{D} endowed with the norm $||f||_{\infty} = \sup_{z \in \mathbb{D}} |f(z)|$. Looking at this comparison problem, say, in the form of computing/estimating the interpolation constant

$$c(\sigma, X, Y) = \sup_{f \in X, \|f\|_X \le 1} \inf \{ \|g\|_Y : g_{|\sigma} = f_{|\sigma} \},$$

which is nothing but the norm of the embedding operator $\left(X_{|\sigma}, \|.\|_{X_{|\sigma}}\right) \to \left(Y_{|\sigma}, \|.\|_{Y_{|\sigma}}\right)$, one can think, of course, on passing (after) to the limit- in the case of an infinite sequence $\{\lambda_j\}$ and its finite sections $\{\lambda_j\}_{j=1}^n$ - in order to obtain a Carleson type interpolation theorem $X_{|\sigma} = Y_{|\sigma}$. But not necessarily. In particular, even the classical Nevanlinna-Pick theorem (giving a necessary and sufficient condition on a function a for the existence of $f \in H^\infty$ such that $\|f\|_\infty \leq 1$ and $f(\lambda) = a_\lambda, \ \lambda \in \sigma$), does not lead immediately to Carleson's criterion for $H_{|\sigma}^\infty = l^\infty(\sigma)$. (Finally, a direct deduction of Carleson's theorem from Pick's result was done by P. Koosis [K] in 1999 only). Similarly, the problem stated for $c(\sigma, X, Y)$ is of interest in its own. It is a kind of "effective interpolation" because we are looking for sharp estimations or a computation of $c(\sigma, X, Y)$ for a variety of norms $\|.\|_X$, $\|.\|_Y$. For this paper, the following partial case was especially stimulating (which is a part of a more complicated question arising in an applied situation in [BL1] and [BL2]): given a set $\sigma \subset \mathbb{D}$, how to estimate $c(\sigma, H^2, H^\infty)$ in terms of $n = card(\sigma)$ and $max_{\lambda \in \sigma} |\lambda| = r$ only? (H^2 being the standard Hardy space of the disc).

Here, we consider the case of H^{∞} interpolation $(Y = H^{\infty})$ and the following scales of Banach spaces X:

(a) $X = H^p = H^p(\mathbb{D})$, $1 \le p \le \infty$, the standard Hardy spaces on the disc \mathbb{D} (see [N2] p.31-p.57) of all $f \in Hol(\mathbb{D})$ satisfying

$$sup_{0 \le r < 1} \left(\int_{\mathbb{T}} |f(rz)|^p \, dm(z) \right)^{1/p} < \infty,$$

m being the Lebesgue normalized measure on \mathbb{T} .

(b) $X = l_a^2 \left(1/\sqrt{k+1} \right)$, the Bergman space of all $f(z) = \sum_{k \geq 0} \hat{f}(k) z^k$ satisfying

$$\sum_{k>0} \left| \hat{f}(k) \right|^2 \frac{1}{k+1} < \infty.$$

An equivalent description of this space is : $X = L_a^2$, the space of holomorphic functions such that

$$\int_{\mathbb{D}} |f(z)|^2 \, dx dy < \infty.$$

For spaces of type (a)&(b), we show

$$c_1 \varphi_X \left(1 - \frac{1 - r}{n} \right) \le \sup \left\{ c \left(\sigma, X, H^{\infty} \right) : \# \sigma \le n, |\lambda| \le r, \lambda \in \sigma \right\} \le c_2 \varphi_X \left(1 - \frac{1 - r}{n} \right),$$

where $\varphi_X(t)$, $0 \le t < 1$ stands for the norm of the evaluation functional $f \mapsto f(t)$ on the space X. In order to prove the right-hand side inequality, we first use a linear interpolation:

$$f \mapsto \sum_{k=1}^{n} \langle f, e_k \rangle e_k,$$

where $\langle .,. \rangle$ means the Cauchy sesquilinear form $\langle h,g \rangle = \sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}(k)}$, and $(e_k)_{k=1}^n$ is the Malmquist basis (effectively constructible) of the space $K_B = H^2 \Theta B H^2$, $B = \prod_{i=1}^n b_{\lambda_i}$ being the corresponding finite Blaschke product, $b_\lambda = \frac{\lambda - z}{1 - \overline{\lambda} z}$ (see N. Nikolski, [N1] p. 117)). Next, we use the complex interpolation between Banach spaces, (see H. Triebel [Tr] Theorem 1.9.3-(a) p.59). Among the technical tools used in order to find an upper bound for $\|\sum_{k=1}^n \langle f, e_k \rangle e_k\|_{\infty}$ (in terms of $\|f\|_X$), the most important is a Bernstein-type inequality $\|f'\|_p \leq c_p \|B'\|_{\infty} \|f\|_p$ for a (rational) function f in the star-invariant subspace $K_B^p := H^p \cap B\overline{zH^p}$, $1 \leq p \leq \infty$ (for p = 2, $K_B^2 = K_B$), generated by a (finite) Blaschke product B, (K. Dyakonov [Dya1]&[Dya2]). For p = 2, we give an alternative proof of the Bernstein-type estimate we need and the constant c_2 we obtain is slightly better, see Section 4.

The lower bound problem is treated by using the "worst" interpolation n-tuple $\sigma = \sigma_{n,\lambda} = \{\lambda, ..., \lambda\}$, a one-point set of multiplicity n (the Carathéodory-Schur type interpolation). The "worst" interpolation data comes from the Dirichlet kernels $\sum_{k=0}^{n-1} z^k$ transplanted from the origin to λ . We notice that spaces X of (a)&(b) satisfy the condition $X \circ b_{\lambda} \subset X$ which makes the problem of upper/lower bound easier.

(2) Principal results. Theorems A,C&D below in this paragraph, were already announced in the note [Z1].

Let $\sigma = \{\lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_t, ..., \lambda_t\}$ be a finite sequence in the unit disc, where every λ_s is repeated according its multiplicity m_s , $\sum_{s=1}^t m_s = n$ and $r = \max_{i=1..t} |\lambda_i|$. Let X, Y be Banach spaces of holomorphic functions continuously embedded into the space $Hol(\mathbb{D})$. In what follows, we systematically use the following conditions for the spaces X and Y,

(P₁)
$$Hol((1+\epsilon)\mathbb{D})$$
 is continuously embedded into Y for every $\epsilon > 0$,

$$(P_2)$$
 $Pol_+ \subset X \text{ and } Pol_+ \text{ is dense in } X,$

where Pol_+ stands for the set of all complex polynomials $p, p(z) = \sum_{k=0}^{N} a_k z^k$,

$$[f \in X] \Rightarrow \left[z^n f \in X, \forall n \ge 0 \text{ and } \overline{\lim} \|z^n f\|^{\frac{1}{n}} \le 1 \right],$$

$$(P_4)$$
 $[f \in X, \lambda \in \mathbb{D}, and f(\lambda) = 0] \Rightarrow \left[\frac{f}{z - \lambda} \in X\right].$

We are interested in estimating the quantity

$$c(\sigma, X, Y) = \sup_{\|f\|_{X} \le 1} \inf \{ \|g\|_{Y} : g \in Y, g^{(j)}(\lambda_{i}) = f^{(j)}(\lambda_{i}) \ \forall i, j, 1 \le i \le t, 0 \le j < m_{i} \}.$$

In order to simplify the notation, the condition

$$g^{(j)}(\lambda_i) = f^{(j)}(\lambda_i) \ \forall i, j, 1 \le i \le t, 0 \le j < m_i$$

will also be written as

$$g_{|\sigma} = f_{|\sigma}$$
.

Supposing X verifies property (P_4) and $Y \subset X$, the quantity $c(\sigma, X, Y)$ can be written as follows,

$$c(\sigma, X, Y) = \sup_{\|f\|_X \le 1} \inf \{ \|g\|_Y : g \in Y, g - f \in B_{\sigma}X \},$$

where B_{σ} is the Blaschke product

$$B_{\sigma} = \prod_{i=1}^{n} b_{\lambda_i},$$

corresponding to σ , $b_{\lambda}(z) = \frac{\lambda - z}{1 - \lambda z}$ being an elementary Blaschke factor for $\lambda \in \mathbb{D}$.

The interesting case occurs when X is larger than Y, and the sens of the issue lies in comparing $\|\cdot\|_X$ and $\|\cdot\|_Y$ when Y interpolates X on the set σ . For example, we can wonder what happens when $X = H^p$, the classical Hardy spaces of the disc or $X = L^p_a$, the Bergman spaces, etc..., and when $Y = H^{\infty}$, but also Y = W the Wiener algebra (of absolutely converging Fourier series) or $Y = B^0_{\infty,1}$, a Besov algebra (an interesting case for the functional calculus of finite rank operators, in particular, those satisfying the so-called Ritt condition).

It is also important to understand what kind of interpolation we are going to study when bounding the constant $c(\sigma, X, Y)$. Namely, comparing with the Carleson free interpolation, we can say that the latter one deals with the interpolation constant defined as

$$c\left(\sigma,\,l^{\infty}(\sigma),\,H^{\infty}\right)=\sup\left\{\inf\left(\parallel g\parallel_{\infty}:\,g\in H^{\infty},\,g_{\mid\sigma}=a\right):\,a\in l^{\infty}(\sigma),\,\|a\|_{l^{\infty}}\leq1\right\}.$$

We also can add some more motivations to our problem:

- (a) One of the most interesting cases is $Y = H^{\infty}$. In this case, the quantity $c(\sigma, X, H^{\infty})$ has a meaning of an intermediate interpolation between the Carleson one (when $||f||_{X_{|\sigma}} \approx \sup_{1 \le i \le n} |f(\lambda_i)|$) and the individual Nevanlinna-Pick interpolation (no conditions on f).
- (b) There is a straight link between the constant $c(\sigma, X, Y)$ and numerical analysis. For example, in matrix analysis, it is of interest to bound the norm of an H^{∞} -calculus $||f(A)|| \leq c ||f||_{\infty}$, $f \in H^{\infty}$, for an arbitrary Banach space n-dimensional contraction A with a given spectrum $\sigma(A) \subset \sigma$. The best possible constant is $c = c(\sigma, H^{\infty}, W)$, so that

$$c(\sigma, H^{\infty}, W) = \sup_{\|f\|_{\infty} \le 1} \sup \{ \|f(A)\| : A : (\mathbb{C}^{n}, |.|) \to (\mathbb{C}^{n}, |.|), \|A\| \le 1, \sigma(A) \subset \sigma \},$$

where $W = \left\{ f = \sum_{k \geq 0} \hat{f}(k) z^k : \sum_{k \geq 0} \left| \hat{f}(k) \right| < \infty \right\}$ stands for the Wiener algebra, and the interior sup is taken over all contractions on n-dimensional Banach spaces. An interesting case occurs for $f \in H^{\infty}$ such that $f_{|\sigma} = \frac{1}{z_{|\sigma}}$ (estimation of condition numbers and the norm of inverses of $n \times n$ matrices) or $f_{|\sigma} = \frac{1}{\lambda - z_{|\sigma}}$ (for estimation of the norm of the resolvent of an $n \times n$ matrix).

We start studying general Banach spaces X and Y and give some sufficient condition under which $C_{n,r}(X,Y)<\infty$, where

$$C_{n,r}(X,Y) = \sup \left\{ c(\sigma, X, Y) : \#\sigma \le n, \forall j = 1..n, |\lambda_j| \le r \right\}.$$

In particular, we prove the following fact.

Theorem A. Let X, Y be Banach spaces verifying properties (P_i) , i = 1...4. Then

$$C_{n,r}(X,Y) < \infty,$$

for every n > 1 and r, 0 < r < 1.

Next, we add the condition that X is a Hilbert space, and give in this case a general upper bound for the quantity $C_{n,r}(X,Y)$.

Theorem B. Let Y be a Banach space verifying property (P_1) and $X = (H, (.)_H)$ a Hilbert space satisfying properties (P_i) for i = 2, 3, 4. We moreover suppose that for every 0 < r < 1 there exists $\epsilon > 0$ such that $k_{\lambda} \in Hol((1 + \epsilon)\mathbb{D})$ for all $|\lambda| < r$, where k_{λ} stands for the reproducing kernel of X at point λ , and $\overline{\lambda} \mapsto k_{\lambda}$ is holomorphic on $|\lambda| < r$ as a $Hol((1 + \epsilon)\mathbb{D})$ -valued function. Let $\sigma = \{\lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_t, ..., \lambda_t\}$ be a sequence in \mathbb{D} , where λ_s are repeated according their multiplicity m_s , $\sum_{s=1}^t m_s = n$. Then we have,

$$c(\sigma, H, Y) \le \left(\sum_{k=1}^{n} \|e_k\|_Y^2\right)^{\frac{1}{2}},$$

where $(e_k)_{k=1}^n$ stands for the Gram-Schmidt orthogonalization (in the space H) of the sequence $k_{\lambda_1,0}, k_{\lambda_1,1}, k_{\lambda_1,2}..., k_{\lambda_1,m_1-1}, k_{\lambda_2,0}, k_{\lambda_2,1}, k_{\lambda_2,2}..., k_{\lambda_2,m_2-1},..., k_{\lambda_t,0}, k_{\lambda_t,1}, k_{\lambda_t,2}..., k_{\lambda_t,m_t-1},$ and $k_{\lambda,i} = \left(\frac{d}{d\overline{\lambda}}\right)^i k_{\lambda}, i \in \mathbb{N}.$

ii) For the case $Y = H^{\infty}$, we have

$$c(\sigma, H, H^{\infty}) \leq \sup_{z \in \mathbb{D}} \|P_{B_{\sigma}}^{H} k_{z}\|_{H},$$

where $P_{B_{\sigma}}^{H} = \sum_{k=1}^{n} (., e_{k})_{H} e_{k}$ stands for the orthogonal projection of H onto $K_{B_{\sigma}}(H)$,

$$K_{B_{\sigma}}(H) = span \left(k_{\lambda_{j},i} : 1 \le i < m_{j}, j = 1, ..., t \right).$$

After that, we specialize the upper bound obtained in Theorem B (ii) to the case $X = H^2$, the standard Hardy space of the disc, which can be equivalently defined as

$$H^{2}(\mathbb{D}) = \left\{ f = \sum_{k \geq 0} \hat{f}(k)z^{k} : \sum_{k \geq 0} \left| \hat{f}(k) \right|^{2} < \infty \right\}.$$

Among other results, we get the following (see Proposition 2.0): for every sequence $\sigma = \{\lambda_1, ..., \lambda_n\}$ of \mathbb{D} ,

$$c\left(\sigma, H^2, H^\infty\right) \le \sup_{z \in \mathbb{D}} \left(\frac{1 - |B_{\sigma}(z)|^2}{1 - |z|^2}\right)^{\frac{1}{2}} \le \sqrt{2} \sup_{|\zeta| = 1} |B'(\zeta)|^{\frac{1}{2}} \le 2\sqrt{\frac{n}{1 - r}}.$$

Next, we present a slightly different approach to the interpolation constant $c(\sigma, H^2, H^{\infty})$ proving an estimate in the following form:

$$c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup_{z \in \mathbb{T}} \left(\sum_{k=1}^{n} \frac{(1-|\lambda_{k}|^{2})}{|z-\lambda_{k}|^{2}} \right)^{\frac{1}{2}} \leq \left(\sum_{j=1}^{n} \frac{1+|\lambda_{j}|}{1-|\lambda_{j}|} \right)^{\frac{1}{2}} \leq \sqrt{\frac{2n}{1-r}}.$$

It is shown (in Section 6) that this estimate is sharp (over n and r). This sharpness result is treated by using the "worst" interpolation n-tuple $\sigma = \sigma_{n,\lambda} = \{\lambda, ..., \lambda\}$, a one-point set of multiplicity n (the Carathéodory-Schur type interpolation). More precisely, we prove the following Theorem C, which contains the result from Corollary 2.1 and extends it to the H^p spaces, as follows.

Theorem C. Let $1 \le p \le \infty$, $n \ge 1$, $r \in [0, 1)$, and λ , $|\lambda| \le r$. We have,

$$\frac{1}{32^{\frac{1}{p}}} \left(\frac{n}{1 - |\lambda|} \right)^{\frac{1}{p}} \le c \left(\sigma_{n,\lambda}, H^p, H^{\infty} \right) \le C_{n,r} \left(H^p, H^{\infty} \right) \le A_p \left(\frac{n}{1 - r} \right)^{\frac{1}{p}},$$

where A_p is a constant depending only on p and the left hand side inequality is proved only for $p \in 2\mathbb{Z}_+$. For p = 2, we have $A_2 = \sqrt{2}$.

In particular, this gives yet another proof of the fact that $C_{n,r}(H^2, H^{\infty}) \leq a\sqrt{n}/\sqrt{1-r}$.

For the Bergman space $X=L_a^2$ we have the following Theorem D.

Theorem D. Let $n \ge 1$, $r \in [0, 1)$, and λ , $|\lambda| \le r$. We have,

$$\frac{1}{32} \frac{n}{1 - |\lambda|} \le c \left(\sigma_{n,\lambda}, L_a^2, H^{\infty} \right) \le C_{n,r} \left(L_a^2, H^{\infty} \right) \le 6\sqrt{2} \frac{n}{1 - r}.$$

The paper is organized as follows. In Subsection 1.1 we prove Theorem A. Theorem B is proved in Subsection 1.2. Sections 2&3 are devoted to the proof of the upper estimate of Theorem C, and Section 6 to the proofs of the lower bounds from Theorem C&D. In Section 5 we compare the method used in Sections 1, 2, 3 and 4 with those resulting from the Carleson free interpolation. Especially, we are interested in the cases of circular and radial sequences σ (see below).

1. Upper bounds for $c(\sigma, X, Y)$, as a kind of the Nevanlinna-Pick problem

1.1. General Banach spaces X and Y satisfying properties (P_i) , i = 1...4

In this Subsection, X and Y are Banach spaces which satisfy properties (P_i) for i=1...4. We prove Theorem A which shows that in this case our interpolation constant $c(\sigma, X, Y)$ is bounded by a quantity which depends only on $n=\#\sigma$ and $r=\max_{1\leq i\leq n}|\lambda_i|$ (and of course on X and Y). In this generality, we cannot discuss the question of sharpness of the bounds obtained. First, we prove the following lemma.

Lemma. 1.1.0. Under (P_2) , (P_3) and (P_4) , $B_{\sigma}X$ is a closed subspace of X and moreover,

$$B_{\sigma}X = \{ f \in X : f(\lambda) = 0, \forall \lambda \in \sigma (including multiplicities) \}.$$

Proof. Since $X \subset Hol(\mathbb{D})$ continuously, and evaluation functionals $f \mapsto f(\lambda)$ and $f \mapsto f^{(k)}(\lambda)$, $k \in \mathbb{N}^*$, are continuous on $Hol(\mathbb{D})$, the subspace

$$M = \{ f \in X : f(\lambda) = 0, \forall \lambda \in \sigma (including multiplicities) \},$$

is closed in X.

On the other hand, $B_{\sigma}X \subset X$, and hence $B_{\sigma}X \subset M$. Indeed, properties (P_2) and (P_3) imply that $h.X \subset X$, for all $h \in Hol((1+\epsilon)\mathbb{D})$ with $\epsilon > 0$; we can write $h(z) = \sum_{k \geq 0} \widehat{h}(k)z^k$ with $\left|\widehat{h}(k)\right| \leq Cq^n$, C > 0 and q < 1. Then $\sum_{n \geq 0} \left\|\widehat{h}(k)z^kf\right\|_X < \infty$ for every $f \in X$. Since X is a Banach space we get $hf = \sum_{n \geq 0} \widehat{h}(k)z^k f \in X$.

In order to see that $M \subset B_{\sigma}X$, it suffices to justify that

$$[f \in X \text{ and } f(\lambda) = 0] \Longrightarrow [f/b_{\lambda} = (1 - \overline{\lambda}z)f/(\lambda - z) \in X].$$

But this is obvious from (P_4) and the previous arguments. \square

In Definitions 1.1.1, 1.1.2, 1.1.3 and in Remark 1.1.4 below, $\sigma = \{\lambda_1, ..., \lambda_n\}$ is a sequence in the unit disc \mathbb{D} , $B_{\sigma} = \prod_{i=1}^{n} b_{\lambda_i}$ is the finite Blaschke product corresponding to σ , where $b_{\lambda} = \frac{\lambda - z}{1 - \overline{\lambda}z}$ is an elementary Blaschke factor for $\lambda \in \mathbb{D}$.

Definition 1.1.1. Malmquist family. For $k \in [1, n]$, we set $f_k(z) = \frac{1}{1 - \overline{\lambda_k} z}$, and define the family $(e_k)_{k=1}^n$, (which is known as Malmquist basis, see [N1] p.117), by

(1.1.1)
$$e_1 = \frac{f_1}{\|f_1\|_2} \text{ and } e_k = \left(\prod_{j=1}^{k-1} b_{\lambda_j}\right) \frac{f_k}{\|f_k\|_2},$$

for $k \in [2, n]$, where $||f_k||_2 = (1 - |\lambda_k|^2)^{-1/2}$.

Definition 1.1.2. The model space $K_{B_{\sigma}}$. We define $K_{B_{\sigma}}$ to be the *n*-dimensional space :

$$(1.1.2) K_{B_{\sigma}} = \left(B_{\sigma}H^2\right)^{\perp} = H^2\Theta B_{\sigma}H^2.$$

Definition 1.1.3. The orthogonal projection $P_{B_{\sigma}}$ on $K_{B_{\sigma}}$. We define $P_{B_{\sigma}}$ to be the orthogonal projection of H^2 on its n-dimensional subspace $K_{B_{\sigma}}$.

Remark 1.1.4. The Malmquist family $(e_k)_{k=1}^n$ corresponding to σ is an orthonormal basis of $K_{B_{\sigma}}$. In particular,

(1.1.4)
$$P_{B_{\sigma}} = \sum_{k=1}^{n} (., e_k)_{H^2} e_k,$$

where $(., .)_{H^2}$ means the scalar product on H^2 .

Lemma 1.1.5. Let $\sigma = \{\lambda_1, ..., \lambda_n\}$ be a sequence in the unit disc \mathbb{D} and $(e_k)_{k=1}^n$ the Malmquist family (see 1.1.1) corresponding to σ . The map $\Phi : Hol(\mathbb{D}) \to Y \subset Hol(\mathbb{D})$ defined by

$$\Phi: f \mapsto \sum_{k=1}^n \left(\sum_{j>0} \hat{f}(j) \overline{\hat{e}_k(j)} \right) e_k,$$

is well defined and has the following properties.

- (a) $\Phi_{|H^2} = P_{B_{\sigma}}$,
- (b) Φ is continuous on $Hol(\mathbb{D})$ for the uniform convergence on compact sets of \mathbb{D} ,
- (c) Let $\Psi = Id_{|X} \Phi_{|X}$, then $Im(\Psi) \subset B_{\sigma}X$.

Proof. Indeed, the point (a) is obvious since $(e_k)_{k=1}^n$ is an orthonormal basis of $K_{B_{\sigma}}$ and

$$\sum_{j>0} \widehat{f}(j)\overline{\widehat{e}_k(j)} = \langle f, e_k \rangle,$$

where $\langle .,. \rangle$ means the Cauchy sesquilinear form $\langle h,g \rangle = \sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}(k)}$. In order to check point (b), let $(f_l)_{l \in \mathbb{N}}$ be a sequence of $Hol(\mathbb{D})$ converging to 0 uniformly on compact sets of \mathbb{D} . We need to see that $(\Phi(f_l))_{l \in \mathbb{N}}$ converges to 0, for which it is sufficient to show that $\lim_{l \to \infty} \left| \sum_{j \geq 0} \widehat{f}_l(j) \overline{\widehat{e_k}(j)} \right| = 0$, for every k = 1, 2, ..., n. Let $\rho \in]0, 1[$, then $\widehat{f}_l(j) = (2\pi)^{-1} \int_{\rho \mathbb{T}} f_l(w) w^{-j-1} dw$, for all $j, l \geq 0$. As a result,

$$\left| \sum_{j \geq 0} \widehat{f}_l(j) \overline{\widehat{e}_k(j)} \right| \leq \sum_{j \geq 0} \left| \widehat{f}_l(j) \overline{\widehat{e}_k(j)} \right| \leq (2\pi\rho)^{-1} \left\| f_l \right\|_{\rho \mathbb{T}} \sum_{j \geq 0} \left| \widehat{e}_k(j) \right| \rho^{-j}.$$

Now if ρ is close enough to 1, it satisfies the inequality $1 \leq \rho^{-1} < r^{-1}$, which entails $\sum_{j\geq 0} |\widehat{e_k}(j)| \rho^{-j} < +\infty$ for each k=1..n. The result follows.

We now prove point (c). Using point (a), since $Pol_+ \subset H^2$ (Pol_+ standing for the set of all complex polynomials $p, p(z) = \sum_{k=0}^{N} a_k z^k$), we get that $Im(\Psi_{|Pol_+}) \subset B_{\sigma}H^2$. Now, since $Pol_+ \subset Y$ and $Im(\Phi) \subset Y$, we deduce that

$$Im\left(\Psi_{|Pol_{+}}\right) \subset B_{\sigma}H^{2} \cap Y \subset B_{\sigma}H^{2} \cap X,$$

since $Y \subset X$. Now $\Psi(p) \in X$ and satisfies $(\Psi(p))_{|\sigma} = 0$ (that is to say $(\Psi(p))(\lambda) = 0$, $\forall \lambda \in \sigma$ (including multiplicities)) for all $p \in Pol_+$. Using Lemma 1.1.0, we get that $Im(\Psi_{|Pol_+}) \subset B_{\sigma}X$. Now, Pol_+ being dense in X (property (P_2)), and Ψ being continuous on X (point (b)), we can conclude that $Im(\Psi) \subset B_{\sigma}X$. \square

Proof of Theorem A. Let $\sigma = \{\lambda_1, ..., \lambda_n\}$ be a sequence in the unit disc \mathbb{D} and $(e_k)_{k=1}^n$ the Malmquist family (1.1.1) associated to σ . Taking $f \in X$, we set

$$g = \sum_{k=1}^{n} \left(\sum_{j>0} \hat{f}(j) \overline{\widehat{e}_k(j)} \right) e_k,$$

where the series $\sum_{j>0} \hat{f}(j) \overline{\hat{e}_k(j)}$ are absolutely convergent. Indeed,

$$\widehat{e_k}(j) = (2\pi i)^{-1} \int_{R\mathbb{T}} e_k(w) w^{-j-1} dw,$$

for all $j \ge 0$ and for all R, $1 < R < \frac{1}{r}$. For a subset A of \mathbb{C} and for a bounded function h on A, we define $||h||_A := \sup_{z \in A} |h(z)|$. As a result,

$$|\widehat{e_k}(j)| \le (2\pi R^{j+1})^{-1} \|e_k\|_{R\mathbb{T}} \text{ and } \sum_{j>0} \left| \widehat{f}(j) \overline{\widehat{e_k}(j)} \right| \le (2\pi R)^{-1} \|e_k\|_{R\mathbb{T}} \sum_{j>0} \left| \widehat{f}(j) \right| R^{-j} < \infty,$$

since R > 1 and f is holomorphic in \mathbb{D} .

We now suppose that $||f||_X \leq 1$ and $g = \Phi(f)$, where Φ is defined in Lemma 1.1.5. Since $\operatorname{Hol}(r^{-1}\mathbb{D}) \subset Y$, we have $g \in Y$ and using Lemma 1.1.5 point (c) we get

$$f - g = \Psi(f) \in B_{\sigma}X,$$

where Ψ is defined in Lemma 1.1.5, as Φ . Moreover,

$$||g||_{Y} \le \sum_{k=1, n} |\langle f, e_{k} \rangle| ||e_{k}||_{Y}.$$

In order to bound the right hand side, recall that for all $j \ge 0$ and for $R = 2/(r+1) \in]1, 1/r[$,

$$\sum_{j\geq 0} \left| \widehat{f}(j) \overline{\widehat{e_k}(j)} \right| \leq (2\pi)^{-1} \|e_k\|_{2(r+1)^{-1}\mathbb{T}} \sum_{j\geq 0} \left| \widehat{f}(j) \right| \left(2^{-1} (r+1) \right)^j.$$

Since the norm $f \mapsto \sum_{j \geq 0} \left| \widehat{f}(j) \right| \left(2^{-1} (r+1) \right)^j$ is continuous on $Hol(\mathbb{D})$, and the inclusion $X \subset Hol(\mathbb{D})$ is also continuous, there exists $C_r > 0$ such that

$$\sum_{j>0} \left| \widehat{f}(j) \right| \left(2^{-1} (r+1) \right)^j \le C_r \parallel f \parallel_X,$$

for every $f \in X$. On the other hand, $Hol(2(r+1)^{-1}\mathbb{D}) \subset Y$ (continuous inclusion again), and hence there exists $K_r > 0$ such that

$$||e_k||_Y \le K_r \sup_{|z| < 2(r+1)^{-1}} |e_k(z)| = K_r ||e_k||_{2(r+1)^{-1}\mathbb{T}}.$$

It is more or less clear that the right hand side of the last inequality can be bounded in terms of r and n only. Let us give a proof to this fact. It is clear that it suffices to estimate

$$\sup_{1<|z|<2(r+1)^{-1}} |e_k(z)|$$
.

In order to bound this quantity, notice that

$$(1.1.6) |b_{\lambda}(z)|^{2} \le \left| \frac{\lambda - z}{1 - \bar{\lambda}z} \right|^{2} = 1 + \frac{(|z|^{2} - 1)(1 - |\lambda|^{2})}{|1 - \bar{\lambda}z|^{2}},$$

for all $\lambda \in \mathbb{D}$ and all $z \in |\lambda|^{-1}\mathbb{D}$. Using the identity (1.1.6) for $\lambda = \lambda_j$, $1 \le j \le n$, and $z = \rho e^{it}$, $\rho = 2(1+r)^{-1}$, we get

$$\left| e_k(\rho e^{it}) \right|^2 \le \left(\prod_{j=1}^{k-1} \left| b_{\lambda_j}(\rho e^{it}) \right|^2 \right) \left| \frac{1}{1 - \bar{\lambda_k} \rho e^{it}} \right|^2 \le \left(\prod_{j=1}^{k-1} \left(1 + \frac{(\rho^2 - 1)(1 - |\lambda_j|^2)}{1 - |\lambda_j|^2 \rho^2} \right) \right) \left(\frac{1}{1 - |\lambda_k| \rho} \right)^2,$$

for all k = 2..n. Expressing ρ in terms of r, we obtain

$$||e_k||_{2(r+1)^{-1}\mathbb{T}} \le \frac{1}{1 - \frac{2r}{r+1}} \sqrt{2\left(\prod_{j=1..n-1} \left(1 + \frac{2(\frac{1}{r^2} - 1)}{1 - r^2 \frac{4}{(r+1)^2}}\right)\right)} =: C_1(r, n),$$

and

$$\sum_{j>0} \left| \hat{f}(j) \overline{\hat{e}_k(j)} \right| \le (2\pi)^{-1} C_r \|e_k\|_{2(r+1)^{-1}\mathbb{T}} \| f \|_X \le (2\pi)^{-1} C_r C_1(r,n) \| f \|_X.$$

On the other hand, since

$$||e_k||_Y \le K_r ||e_k||_{2(r+1)^{-1}\mathbb{T}} \le K_r C_1(r,n),$$

we get

$$\|g\|_{Y} \le \sum_{k=1}^{n} (2\pi)^{-1} C_{r} C_{1}(r,n) \|f\|_{X} K_{r} C_{1}(r,n) = (2\pi)^{-1} n C_{r} K_{r} (C_{1}(r,n))^{2} \|f\|_{X},$$

which proves that

$$c(\sigma, X, Y) < (2\pi)^{-1} n C_r K_r (C_1(r, n))^2$$

and completes the proof of Theorem A. \square

1.2. The case where X is a Hilbert space

We suppose in this Subsection that X is a Hilbert space and both X, Y satisfy properties (P_i) for i = 1...4. We prove Theorem B and obtain a better estimate for $c(\sigma, X, Y)$ than in Theorem A (see point (i) of Theorem B). For the case $Y = H^{\infty}$, (point (ii) of Theorem B), we can considerably improve this estimate. We omit an easy proof of the following lemma.

Lemma. 1.2.0. Let $\sigma = \{\lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_t, ..., \lambda_t\}$ be a finite sequence of \mathbb{D} where every λ_s is repeated according to its multiplicity m_s , $\sum_{s=1}^t m_s = n$. Let $(H, (.)_H)$ be a Hilbert space continuously embedded into $Hol(\mathbb{D})$ and satisfying properties (P_i) for i = 2, 3, 4. Then

$$K_{B_{\sigma}}(H) =: H\Theta B_{\sigma}H = span\left(k_{\lambda_{j},i}: 1 \leq j \leq t, 0 \leq i \leq m_{j} - 1\right),$$

where $k_{\lambda,i} = \left(\frac{d}{d\lambda}\right)^i k_{\lambda}$ and k_{λ} is the reproducing kernel of H at point λ for every $\lambda \in \mathbb{D}$, i.e. $k_{\lambda} \in H$ and $f(\lambda) = (f, k_{\lambda})_H$, $\forall f \in H$.

Proof of Theorem B. i). Let $f \in X$, $||f||_X \le 1$. Lemma 1.2.0 shows that

$$g = P_{B_{\sigma}}^{H} f = \sum_{k=1}^{n} (f, e_k)_{H} e_k$$

is the orthogonal projection of f onto subspace $K_{B_{\sigma}}$. Function g belongs to Y because all $k_{\lambda_j,i}$ are in $Hol((1+\epsilon)\mathbb{D})$ for a convenient $\epsilon > 0$, and Y satisfies (P_1) .

On the other hand, $g - f \in B_{\sigma}H$ (again by Lemma 1.2.0). Moreover, using Cauchy-Schwarz inequality,

$$||g||_{Y} \leq \sum_{k=1}^{n} |(f, e_{k})_{H}| ||e_{k}||_{Y} \leq \left(\sum_{k=1}^{n} |(f, e_{k})_{H}|^{2}\right)^{1/2} \left(\sum_{k=1}^{n} ||e_{k}||_{Y}^{2}\right)^{1/2} \leq ||f||_{H} \left(\sum_{k=1}^{n} ||e_{k}||_{Y}^{2}\right)^{1/2},$$

which proves i).

ii). If $Y = H^{\infty}$, then

$$|g(z)| = |(P_{B_{\sigma}}^{H}f, k_{z})_{H}| = |(f, P_{B_{\sigma}}^{H}k_{z})_{H}| \le ||f||_{H} ||P_{B_{\sigma}}^{H}k_{z}||_{H},$$

for all $z \in \mathbb{D}$, which proves ii).

2. Upper bounds for $C_{n,r}\left(H^2, H^{\infty}\right)$

In this Section, we specialize the upper estimate obtained in point (ii) of Theorem B for the case $X = H^2$, the Hardy space of the disc. Later on, we will see that this estimate is sharp at least for some special sequences σ (see Section 6). We also develop a slightly different approach to the interpolation constant $c(\sigma, H^2, H^{\infty})$ giving more estimates for individual sequences $\sigma = \{\lambda_1, ..., \lambda_n\}$ of \mathbb{D} . We finally prove the right-hand side inequality of Theorem C for the particular case p = 2.

Proposition. 2.0. For every sequence $\sigma = \{\lambda_1, ..., \lambda_n\}$ of \mathbb{D} we have

(I₁)
$$c\left(\sigma, H^2, H^{\infty}\right) \le \sup_{z \in \mathbb{D}} \left(\frac{1 - |B_{\sigma}(z)|^2}{1 - |z|^2}\right)^{1/2},$$

$$(I_2) c\left(\sigma, H^2, H^\infty\right) \leq \sqrt{2} \sup_{|\zeta|=1} |B'(\zeta)|^{\frac{1}{2}} = \sqrt{2} \sup_{|\zeta|=1} \left| \sum_{i=1}^n \frac{1-|\lambda_i|^2}{\left(1-\bar{\lambda_i}\zeta\right)^2} \frac{B_{\sigma}(\zeta)}{b_{\lambda_i}(\zeta)} \right|^{1/2}.$$

Proof. We prove (I_1) . Applying point (ii) of Theorem B for $X = H^2$ and $Y = H^{\infty}$, and using

$$k_z(\zeta) = \frac{1}{1 - \overline{z}\zeta}$$
 and $(P_{B_{\sigma}}k_z)(\zeta) = \frac{1 - \overline{B_{\sigma}(z)}B_{\sigma}(\zeta)}{1 - \overline{z}\zeta}$,

(see [N1] p.199), we obtain

$$\|P_{B_{\sigma}}k_z\|_{H^2} = \left(\frac{1 - |B_{\sigma}(z)|^2}{1 - |z|^2}\right)^{1/2},$$

which gives the result.

We now prove (I_2) , using (I_1) . The map $\zeta \mapsto \|P_B(k_\zeta)\| = \sup\{|f(\zeta)| : f \in K_B, \|f\| \le 1\}$, and hence the map

$$\zeta \mapsto \left(\frac{1 - |B(\zeta)|^2}{1 - |\zeta|^2}\right)^{1/2},$$

is a subharmonic function so

$$sup_{|\zeta|<1} \left(\frac{1 - |B(\zeta)|^2}{1 - |\zeta|^2} \right)^{1/2} \le sup_{|w|=1} lim_{r\to 1} \left(\frac{1 - |B(rw)|^2}{1 - |rw|^2} \right)^{1/2}.$$

Now apply Taylor's Formula of order 1 for points $w \in \mathbb{T}$ and u = rw, 0 < r < 1. (It is applicable because B is holomorphic at every point of \mathbb{T}). We get

$$(B(u) - B(w)) (u - w)^{-1} = B'(w) + o(1),$$

and since |u - w| = 1 - |u|,

$$\left| (B(u) - B(w)) (u - w)^{-1} \right| = \left| B(u) - B(w) \right| (1 - |u|)^{-1} = \left| B'(w) + o(1) \right|.$$

Now,

$$|B(u) - B(w)| \ge |B(w)| - |B(u)| = 1 - |B(u)|,$$

$$(1 - |B(u)|)(1 - |u|)^{-1} \le (1 - |u|)^{-1}|B(u) - B(w)| = |B'(w) + o(1)|,$$

and

$$\lim_{r\to 1} \left((1-|B(rw)|) (1-|rw|)^{-1} \right)^{\frac{1}{2}} \le \sqrt{|B'(w)|}.$$

Moreover,

$$B'(w) = -\sum_{i=1}^{n} (1 - |\lambda_i|^2) (1 - \overline{\lambda_i} w)^{-2} \prod_{j=1, j \neq i}^{n} b_{\lambda_j}(w),$$

for all $w \in \mathbb{T}$. This completes the proof since

$$\frac{1 - |B(rw)|^2}{1 - |rw|^2} = \frac{(1 - |B(rw)|)(1 + |B(rw)|)}{(1 - |rw|)(1 + |rw|)} \le 2\frac{1 - |B(rw)|}{1 - |rw|}. \square$$

Corollary. 2.1. Let $n \ge 1$ and $r \in [0, 1[$. Then,

$$C_{n,r}(H^2, H^\infty) \le 2 \left(n(1-r)^{-1} \right)^{\frac{1}{2}}.$$

Indeed, applying Proposition 2.0 we obtain

$$|B'(w)| \le \left| \sum_{i=1..n} \frac{1 - |\lambda_i|^2}{(1 - |\lambda_i|)^2} \right| \le n \frac{1+r}{1-r} \le \frac{2n}{1-r}.$$

Now, we develop a slightly different approach to the interpolation constant $c(\sigma, H^2, H^{\infty})$.

Theorem. 2.2. For every sequence $\sigma = \{\lambda_1, ..., \lambda_n\}$ of \mathbb{D} ,

$$c\left(\sigma, H^2, H^\infty\right) \le \sup_{z \in \mathbb{T}} \left(\sum_{k=1}^n \frac{(1-|\lambda_k|^2)}{|z-\lambda_k|^2}\right)^{1/2}$$

Proof. In order to simplify the notation, we set $B = B_{\sigma}$. We consider K_B (see Definition 1.1.2) and the Malmquist family $(e_k)_{k=1}^n$ corresponding to σ (see Definition 1.1.1). Now, let $f \in H^2$ and

$$g = P_B f = \sum_{k=1}^{n} (f, e_k)_{H^2} e_k,$$

(see Definition 1.1.3 and Remark 1.1.4). Function g belongs to H^{∞} (it is a finite sum of H^{∞} functions) and satisfies $g - f \in BH^2$. Applying Cauchy-Schwarz inequality we get

$$|g(\zeta)| \le \sum_{k=1}^{n} |(f, e_k)_{H^2}| |e_k(\zeta)| \le \left(\sum_{k=1}^{n} |(f, e_k)_{H^2}|^2\right)^{1/2} \left(\sum_{k=1}^{n} \frac{(1 - |\lambda_k|^2)}{|1 - \lambda_k \zeta|^2}\right)^{1/2},$$

for all $\zeta \in \mathbb{D}$. As a result, since f is an arbitrary H^2 function, we obtain

$$c(\sigma, H^2, H^\infty) \le \sup_{\zeta \in \mathbb{T}} \left(\sum_{k=1}^n \frac{(1-|\lambda_k|^2)}{|\zeta - \lambda_k|^2} \right)^{1/2},$$

which completes the proof.

Corollary. 2.3. For any sequence $\sigma = \{\lambda_1, ..., \lambda_n\}$ in \mathbb{D} ,

$$c(\sigma, H^2, H^{\infty}) \le \left(\sum_{j=1}^{n} \frac{1 + |\lambda_j|}{1 - |\lambda_j|}\right)^{1/2}.$$

Indeed,

$$\sum_{k=1}^{n} \frac{(1-|\lambda_k|^2)}{|\zeta-\lambda_k|^2} \le \left(\sum_{k=1}^{n} \frac{(1-|\lambda_k|^2)}{(1-|\lambda_k|)^2}\right)^{1/2}$$

and the result follows from Theorem 2.2. \square

Proof of Theorem C (p = 2, the right-hand side inequality only). Since $1 + |\lambda_j| \le 2$ and $1 - |\lambda_j| \ge 1 - r$ for all $j \in [1, n]$, applying Corollary 2.3 we get

$$C_{n,r}(H^2, H^{\infty}) < \sqrt{2}n^{1/2}(1-r)^{-1/2}.$$

Remark 2.4. As a result, we get once more the same estimate for $C_{n,r}(H^2, H^{\infty})$ as in Corollary 2.1, with the constant $\sqrt{2}$ instead of 2

It is natural to wonder if it is possible to improve the bound $\sqrt{2}n^{1/2}(1-r)^{-1/2}$. We return to this question in Section 5 below.

3. Upper bounds for $C_{n,r}(H^p, H^{\infty}), p \geq 1$

In this Section we extend Corollary 2.1 to all Hardy spaces H^p : we prove the right-hand side inequality of Theorem C, $p \neq 2$. We first prove the following lemma.

Lemma. 3.0. Let $n \ge 1$ and $0 \le r < 1$. Then,

$$C_{n,r}(H^1, H^\infty) \le 2n(1-r)^{-1}.$$

Proof. Let $f \in H^1$ such that $||f||_{H^1} \leq 1$ and let

$$g = \Phi(f) = \sum_{k=1, n} \langle f, e_k \rangle e_k,$$

where, as always, $(e_k)_{k=1}^n$ is the Malmquist basis corresponding to σ (see 1.1.1), Φ is defined in Lemma 1.1.5, and where $\langle ., . \rangle$ means the Cauchy sesquilinear form $\langle f, g \rangle = \sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}(k)}$. That is to say that,

$$g(\zeta) = \sum_{k=1..n} \langle f, e_k \rangle e_k(\zeta) = \left\langle f, \sum_{k=1..n} e_k \overline{e_k(\zeta)} \right\rangle,$$

for all $\zeta \in \mathbb{D}$, which gives,

$$|g(\zeta)| \le ||f||_{H^1} \left\| \sum_{k=1..n} e_k \overline{e_k(\zeta)} \right\|_{H^{\infty}} \le \left\| \sum_{k=1..n} e_k \overline{e_k(\zeta)} \right\|_{H^{\infty}}.$$

Since Blaschke factors have modulus 1 on the unit circle,

$$||e_k||_{H^{\infty}} \le (1+|\lambda_k|)^{1/2} (1-|\lambda_k|)^{-1/2}$$
.

As a consequence,

$$|g(\zeta)| \le \sum_{k=1}^{n} \|e_k\|_{H^{\infty}} \left| \overline{e_k(\zeta)} \right| \le \sum_{k=1}^{n} \|e_k\|_{H^{\infty}}^2 \le \sum_{k=1}^{n} (1 + |\lambda_k|) (1 - |\lambda_k|)^{-1} \le 2n(1 - r)^{-1},$$

for all $\zeta \in \mathbb{D}$, which completes the proof.

Proof of Theorem C ($p \neq 2$, the right-hand side inequality only). Let $\sigma = \{\lambda_1, ..., \lambda_n\}$ be a sequence in the unit disc \mathbb{D} , $B_{\sigma} = \prod_{i=1}^{n} b_{\lambda_i}$, and $T : H^p \longrightarrow H^{\infty}/B_{\sigma}H^{\infty}$ be the restriction map defined by

$$Tf = \{ g \in H^{\infty} : f - g \in B_{\sigma}H^p \},$$

for every f. Then,

$$||T||_{H^p \to H^\infty/B_\sigma H^\infty} = c\left(\sigma, H^p, H^\infty\right).$$

There exists $0 \le \theta \le 1$ such that $1/p = 1 - \theta$, and since (we use the notation of the interpolation theory between Banach spaces see [Tr] or [Be]) $[H^1, H^{\infty}]_{\theta} = H^p$ (a topological identity: the spaces are the same and the norms are equivalent (up to constants depending on p only), see [J]),

$$\parallel T \parallel_{[H^{1},H^{\infty}]_{\theta} \to H^{\infty}/B_{\sigma}H^{\infty}} \leq \left(A_{1}c\left(\sigma, H^{1}, H^{\infty}\right)\right)^{1-\theta} \left(A_{\infty}c\left(\sigma, H^{\infty}, H^{\infty}\right)\right)^{\theta},$$

where A_1 , A_{∞} are numerical constants, and using, Lemma 3.0, the fact that $c(\sigma, H^{\infty}, H^{\infty}) \leq 1$, and a known interpolation Theorem (see [Tr], Theorem 1.9.3-(a) p.59), we find

$$\|T\|_{[H^1,H^{\infty}]_{\theta}\to H^{\infty}/B_{\sigma}H^{\infty}} \le \left(2A_1n(1-r)^{-1}\right)^{1-\theta}A_{\infty}^{\theta} = (2A_1)^{1-\theta}A_{\infty}^{\theta}\left(n(1-r)^{-1}\right)^{\frac{1}{p}},$$
 which completes the proof.

4. Upper bounds for $C_{n,r}\left(L_a^2, H^{\infty}\right)$

In this Section, we generalize Corollary 2.1 to the case of spaces X which contain H^2 : $X = l_a^2((k+1)^{\alpha}), \ \alpha \leq 0$, the Hardy weighted spaces of all $f(z) = \sum_{k \geq 0} \hat{f}(k)z^k$ satisfying

$$||f||_X^2 := \sum_{k>0} |\hat{f}(k)|^2 (k+1)^{2\alpha} < \infty.$$

Notice that $H^2 = l_a^2(1)$ and $L_a^2(\mathbb{D}) = l_a^2\left((k+1)^{-\frac{1}{2}}\right)$. We prove the right-hand side inequality of Theorem D and the main technical tool used in its proof is a Bernstein-type inequality for rational functions.

4.1. Bernstein-type inequalities for rational functions

Bernstein-type inequalities for rational functions were the subject of a number of papers and monographs (see, for instance, [L], [BoEr], [DeLo], [B]). Perhaps, the stronger and closer to ours (Proposition 4.1) of all known results are due to K.Dyakonov [Dya1]&[Dya2]. First, we prove Proposition 4.1 below, which tells that if $\sigma = \{\lambda_1, ..., \lambda_n\} \subset \mathbb{D}$, $r = \max_j |\lambda_j|$, and $f \in K_{B_{\sigma}}$, then

$$\left\| f' \right\|_{H^2} \le \alpha_{n,r} \left\| f \right\|_{H^2},$$

where $\alpha_{n,r}$ is a constant (explicitly given in Proposition 4.1) depending on n and r only such that $0 < \alpha_{n,r} \le \frac{5}{2} \frac{n}{1-r}$. Proposition 4.1 is in fact a partial case (p=2) of the following K. Dyakonov's result [Dya1] (which is, in turn, a generalization of M. Levin's inequality [L] corresponding to the case $p=\infty$): it is proved in [Dya1] that the norm $\|D\|_{K_B^p \to H^p}$ of the differentiation operator Df = f' on the star-invariant subspace of the Hardy space H^p , $K_B^p := H^p \cap B\overline{zH^p}$, (where the bar denotes complex conjugation) satisfies the following inequalities

$$c_p' \left\| B' \right\|_{\infty} \le \left\| D \right\|_{K_B^p \to H^p} \le c_p \left\| B' \right\|_{\infty},$$

for every $p, 1 \leq p \leq \infty$ where c_p and c_p' are positives constants depending on p only, B is a finite Blaschke product and $\|.\|_{\infty}$ means the norm in $L^{\infty}(\mathbb{T})$. For the partial case considered in Proposition 4.1 below, our proof is different and the constant is slightly better. More precisely, it is proved in [Dya1] that $c_2' = \frac{1}{36c}$, $c_2 = \frac{36+c}{2\pi}$ and $c = 2\sqrt{3\pi}$ (as one can check easily (c is not precised in [Dya1])). It implies an inequality of type (\star) (with a constant about $\frac{13}{2}$ instead of $\frac{5}{2}$).

In [Z2], we discuss the "asymptotic sharpness" of our constant $\alpha_{n,r}$: we find an inequality for $\sup \|D\|_{K_B \to H^2} = C_{n,r}$ (sup is over all B with given $n = \deg B$ and $r = \max_{\lambda \in \sigma} |\lambda|$), which is asymptotically sharp as $n \to \infty$. Our result in [Z2] is that there exists a limit $\lim_{n \to \infty} \frac{C_{n,r}}{n} = \frac{1+r}{1-r}$ for every $r, 0 \le r < 1$. Our method is different from [Dya1]&[Dya2] and is based on an elementary Hilbert space construction for an orthonormal basis in K_B .

Proposition. 4.1. Let $B = \prod_{j=1}^n b_{\lambda_j}$, be a finite Blaschke product (of order n), $r = \max_j |\lambda_j|$, and $f \in K_B = H^2 \Theta B H^2$. Then for every $n \ge 2$ and $r \in [0, 1)$,

$$\left\| f' \right\|_{H^2} \le \alpha_{n,r} \left\| f \right\|_{H^2},$$

where $\alpha_{n,r} = [1 + (1+r)(n-1) + \sqrt{n-2}] (1-r)^{-1}$ and in particular,

$$||f'||_{H^2} \le \frac{5}{2} \frac{n}{1-r} ||f||_{H^2},$$

for all $n \ge 1$ and $r \in [0, 1)$.

Proof. Using Remark 1.1.4, $f = P_B f = \sum_{k=1}^n (f, e_k)_{H^2} e_k$, $\forall f \in K_B$. Noticing that,

$$e_{k}^{'} = \sum_{i=1}^{k-1} \frac{b_{\lambda_{i}}^{'}}{b_{\lambda_{i}}} e_{k} + \overline{\lambda_{k}} \frac{1}{\left(1 - \overline{\lambda_{k}}z\right)} e_{k},$$

for $k \in [2, n]$, we get

$$f' = (f, e_1)_{H^2} e'_1 + \sum_{k=2}^n (f, e_k)_{H^2} e'_k =$$

$$= (f, e_1)_{H^2} \frac{\bar{\lambda}_1}{(1 - \overline{\lambda_1}z)} e_1 + \sum_{k=2}^n (f, e_k)_{H^2} \sum_{i=1}^{k-1} \frac{b'_{\lambda_i}}{b_{\lambda_i}} e_k + \sum_{k=2}^n (f, e_k)_{H^2} \overline{\lambda_k} \frac{1}{(1 - \overline{\lambda_k}z)} e_k,$$

which gives

$$f' = (f, e_1)_{H^2} \frac{\bar{\lambda}_1}{(1 - \bar{\lambda}_1 z)} e_1 + \sum_{k=2}^n \sum_{i=1}^{n-1} (f, e_k)_{H^2} \frac{b'_{\lambda_i}}{b_{\lambda_i}} e_k \chi_{[1, k-1]}(i) + \sum_{k=2}^n (f, e_k)_{H^2} \overline{\lambda_k} \frac{1}{(1 - \bar{\lambda_k} z)} e_k = (f, e_1)_{H^2} \frac{\bar{\lambda}_1}{(1 - \bar{\lambda}_1 z)} e_1 + \sum_{i=1}^n \frac{b'_{\lambda_i}}{b_{\lambda_i}} \sum_{k=i+1}^{n-1} (f, e_k)_{H^2} e_k + \sum_{k=2}^n (f, e_k)_{H^2} \overline{\lambda_k} \frac{1}{(1 - \bar{\lambda_k} z)} e_k,$$

where $\chi_{[1, k-1]}$ is the characteristic function of [1, k-1]. Now,

$$\left\| (f, e_1)_{H^2} \frac{\bar{\lambda}_1}{(1 - \overline{\lambda_1}z)} e_1 \right\|_{H^2} \le \left| (f, e_1)_{H^2} \right| \left\| \frac{\bar{\lambda}_1}{(1 - \overline{\lambda_1}z)} \right\|_{\infty} \|e_1\|_{H^2} \le \left\| f \right\|_{H^2} \|e_1\|_{H^2} \frac{1}{1 - r} \|e_1\|_{H^2} \le \|f\|_{H^2} \frac{1}{1 - r},$$

using Cauchy-Schwarz inequality and the fact that e_1 is a vector of norm 1 in H^2 . By the same reason, we have

$$\left\| \sum_{k=2}^{n} \overline{\lambda_{k}} (f, e_{k})_{H^{2}} \frac{1}{(1 - \overline{\lambda_{k}}z)} e_{k} \right\|_{H^{2}} \leq \sum_{k=2}^{n} |(f, e_{k})_{H^{2}}| \left\| \overline{\lambda_{k}} \frac{1}{(1 - \overline{\lambda_{k}}z)} \right\|_{\infty} \|e_{k}\|_{H^{2}} \leq \frac{1}{1 - r} \sum_{k=2}^{n} |(f, e_{k})_{H^{2}}| \leq \frac{1}{1 - r} \left(\sum_{k=2}^{n} |(f, e_{k})_{H^{2}}|^{2} \right)^{\frac{1}{2}} \sqrt{n - 2} \leq \frac{1}{1 - r} \|f\|_{H^{2}} \sqrt{n - 2}.$$

Further,

$$\left\| \sum_{i=1}^{n-1} \frac{b'_{\lambda_i}}{b_{\lambda_i}} \sum_{k=i+1}^{n} e_k (f, e_k)_{H^2} \right\|_{H^2} \leq \sum_{i=1}^{n-1} \left\| \frac{b'_{\lambda_i}}{b_{\lambda_i}} \right\|_{\infty} \left\| \sum_{k=i+1}^{n} (f, e_k)_{H^2} e_k \right\|_{H^2} =$$

$$= \left(\max_{1 \leq i \leq n-1} \left\| \frac{b'_{\lambda_i}}{b_{\lambda_i}} \right\|_{\infty} \right) \sum_{i=1}^{n-1} \left(\sum_{k=i+1}^{n} \left| (f, e_k)_{H^2} \right|^2 \right)^{\frac{1}{2}} \leq \max_{i} \left\| \frac{b'_{\lambda_i}}{b_{\lambda_i}} \right\|_{\infty} \sum_{i=1}^{n-1} \|f\|_{H^2}.$$

Now, using

$$\left\| \frac{b'_{\lambda_i}}{b_{\lambda_i}} \right\|_{\infty} = \left\| \frac{|\lambda_i|^2 - 1}{\left(1 - \overline{\lambda_i}z\right)(\lambda_i - z)} \right\|_{\infty} \le \frac{1 + |\lambda_i|}{1 - |\lambda_i|} \le \frac{1 + r}{1 - r},$$

we get

$$\left\| \sum_{i=1}^{n-1} \frac{b'_{\lambda_i}}{b_{\lambda_i}} \sum_{k=i+1}^n (f, e_k)_{H^2} e_k \right\|_{H^2} \le (1+r) \frac{n-1}{1-r} \|f\|_{H^2}.$$

Finally,

$$\left\| f' \right\|_{H^2} \le \left[1 + (1+r)(n-1) + \sqrt{n-2} \right] (1-r)^{-1} \left\| f \right\|_{H^2}.$$

In particular,

$$||f||_{H^2} \le (2n - 1 + \sqrt{n - 2}) (1 - r)^{-1} ||f||_{H^2} \le 5 \cdot 2^{-1} n (1 - r)^{-1} ||f||_{H^2},$$

for all $n \geq 2$ and for every $f \in K_B$. (The case n = 1 is obvious because $||f'||_{H^2} \leq (1 - r)^{-1} ||f||_{H^2}$ for every f of the form $f = (1 - \overline{\lambda}z)^{-1}$, $\lambda \in \mathbb{D}$).

4.2. An upper bound for $c\left(\sigma, L_a^2, H^{\infty}\right)$

Corollary. 4.2. Let σ be a sequence in \mathbb{D} . Then,

$$c\left(\sigma, l_a^2\left((k+1)^{-1}\right), H^{\infty}\right) \leq 6\sqrt{2}\left(n(1-r)^{-1}\right)^{3/2}.$$

Indeed, let $H = l_a^2 \left((k+1)^{-N} \right)$ and $B = B_\sigma$ the finite Blaschke product corresponding to σ . Let $\widetilde{P_B}$ be the orthogonal projection of H onto $K_B = K_B(H^2)$. Then $\widetilde{P_B}_{|H^2} = P_B$, where P_B is defined in 1.1.4. We notice that $\widetilde{P_B} : H \to H$ is a bounded operator and the adjoint $\widetilde{P_B}^* : H^* \to H^*$ of $\widetilde{P_B}$ relatively to the Cauchy pairing $\langle ., . \rangle$ satisfies $\widetilde{P_B}^* \varphi = \widetilde{P_B} \varphi = P_B \varphi$, $\forall \varphi \in H^* \subset H^2$, where $H^* = l_a^2 \left((k+1)^N \right)$ is the dual of H with respect to this pairing. If $f \in H$, then $\left| \widetilde{P_B} f(\zeta) \right| = \left| \left\langle \widetilde{P_B} f, k_\zeta \right\rangle \right| = \left| \left\langle f, \widetilde{P_B}^* k_\zeta \right\rangle \right|$, where $k_\zeta = \left(1 - \overline{\zeta}z\right)^{-1} \in H^2$ and

$$\left|\widetilde{P_B}f(\zeta)\right| \le \|f\|_H \|P_B k_\zeta\|_{H^*} \le \|f\|_H K \left(\|P_B k_\zeta\|_{H^2} + \|(P_B k_\zeta)'\|_{H^2}\right),$$

where

$$K = max \left\{ 1, \, sup_{k>1}(k+1)k^{-1} \right\} = 2$$

Since $P_B k_{\zeta} \in K_B$, Proposition 4.1 implies

$$\left|\widetilde{P_B}f(\zeta)\right| \leq \|f\|_H K \left(\|P_B k_{\zeta}\|_{H^2} + 5.2^{-1} \left(n(1-r)^{-1}\right) \|P_B k_{\zeta}\|_{H^2}\right) \leq A \left(n(1-r)^{-1}\right)^{3/2} \|f\|_H,$$

where $A = \sqrt{2}K(1/2 + 5/2) = 6\sqrt{2}$, since $||P_B k_{\zeta}||_2 \le \sqrt{2} (n(1-r)^{-1})^{1/2}$, and since we can suppose $n \ge 2$, (the case n = 1 being obvious).

Proof of Theorem E (the right-hand side inequality only). The case $\alpha = 0$ corresponds to $X = H^2$ and has already been studied in Section 1 (we can choose $A(0) = \sqrt{2}$). We now suppose $\alpha < 0$. Let $B_{\sigma} = \prod_{i=1}^{n} b_{\lambda_i}$ and $T : l_a^2((k+1)^{\alpha}) \longrightarrow H^{\infty}/B_{\sigma}H^{\infty}$ be the restriction map defined by

$$Tf = \{g \in H^{\infty} : f - g \in B_{\sigma}l_a^2((k+1)^{\alpha})\},$$

for every f. Then,

$$\parallel T \parallel_{l_a^2((k+1)^{\alpha}) \to H^{\infty}/B_{\sigma}H^{\infty}} = c\left(\sigma, l_a^2\left((k+1)^{\alpha}\right), H^{\infty}\right).$$

Setting $\theta = -\alpha$ with $0 < \theta \le 1$, we have (as in Theorem D, we use the notation of the interpolation theory between Banach spaces see [Tr] or [Be])

$$\left[l_a^2\left((k+1)^0\right),l_a^2\left((k+1)^{-1}\right)\right]_{\theta,2}=l_a^2\left(\left((k+1)^0\right)^{2\frac{1-\theta}{2}}\left((k+1)^{-1}\right)^{2\frac{\theta}{2}}\right)=l_a\left((k+1)^\alpha\right),$$

which entails, using Corollary 4.2 and (again) [Tr] Theorem 1.9.3-(a) p.59,

$$\parallel T \parallel_{l_a^2((k+1)^{\alpha}) \to H^{\infty}/B_{\sigma}H^{\infty}} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^0 \right), H^{\infty} \right) \right)^{1-\theta} \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left(\sigma, l_a^2 \left((k+1)^{-1} \right), H^{\infty} \right) \right)^{\theta} \leq \left(c \left((k+1)^{-1} \right), H^{\infty} \right)^{\theta} \leq \left(c \left((k+1)^{-1} \right),$$

$$\leq \left(A(0)\left(n(1-r)^{-1}\right)^{\frac{1}{2}}\right)^{1-\theta} \left(A(1)\left(n(1-r)^{-1}\right)^{\frac{3}{2}}\right)^{\theta} = A(0)^{1-\theta}A(1)^{\theta} \left(n(1-r)^{-1}\right)^{\frac{1-\theta}{2} + \frac{3\theta}{2}}.$$

It remains to use $\theta = -\alpha$ and set $A(\alpha) = A(0)^{1-\theta}A(1)^{\theta}$. In particular, for $\alpha = -1/2$ we get $(1-\theta)/2 + 3\theta/2 = 1$ and

$$A(-1/2) = A(0)^{(1-1/2)}A(1)^{1/2} = \sqrt{2}^{1/2}(6\sqrt{2})^{1/2} = 2\sqrt{3}.$$

5. About the links with Carleson interpolation

Recall that given a (finite) set $\sigma = \{\lambda_1, ..., \lambda_n\} \subset \mathbb{D}$, the Carleson interpolation constant $C_I(\sigma)$ is defined by

$$C_I(\sigma) = \sup_{\|a\|_{l^{\infty}} \le 1} \inf (\|g\|_{\infty} : g \in H^{\infty}, g_{|\sigma} = a).$$

We introduce the evaluation functionals φ_{λ} for $\lambda \in \mathbb{D}$, as well as the evaluation of the derivatives $\varphi_{\lambda,s}$ $(s=0,1,\ldots)$

$$\varphi_{\lambda}(f) = f(\lambda), \ f \in X, \ \text{and} \ \varphi_{\lambda,s}(f) = f^{(s)}(\lambda), \ f \in X.$$

Theorem 5.1. Let X be a Banach space, $X \subset Hol(\mathbb{D})$, and $\sigma = \{\lambda_1, ..., \lambda_n\}$ be a sequence of distinct points in the unit disc \mathbb{D} . We have,

$$\max_{1 \le i \le n} \|\varphi_{\lambda_i}\| \le c(\sigma, X, H^{\infty}) \le C_I(\sigma) \cdot \max_{1 \le i \le n} \|\varphi_{\lambda_i}\|,$$

where $C_I(\sigma)$ stands for the Carleson interpolation constant.

Theorem 5.1 tells us that, for σ with a "reasonable" interpolation constant $C_I(\sigma)$, the quantity $c(\sigma, X, H^{\infty})$ behaves as $\max_i \|\varphi_{\lambda_i}\|$. However, for "tight" sequences σ , the constant $C_I(\sigma)$ is so large that the estimate in question contains almost no information. On the other hand, an advantage of the estimate of Theorem 5.1 is that it does not contain $\#\sigma = n$ explicitly. Therefore, for well-separated sequences σ , Theorem 5.1 should give a better estimate than those of Theorem C and Theorem D.

Now, how does the interpolation constant $C_I(\sigma)$ behave in terms of the caracteristics r and n of σ ? We answer this question for some particular sequences σ , see Exemples 5.2, 5.3 and 5.4.

Proof of Theorem 5.1. Let $f \in X$. By definition of $C_I(\sigma)$, there exists $g \in H^{\infty}$ such that

$$f(\lambda_i) = g(\lambda_i) \ \forall i = 1..n \ \text{with} \ \|g\|_{\infty} \leq C_I(\sigma) \max_i |f(\lambda_i)| \leq C_I(\sigma) \max_i \|\varphi_{\lambda_i}\| \|f\|_X.$$

Now, taking the supremum over all $f \in X$ such that $||f||_X \leq 1$, we get the right-hand side inequality. The left-hand side one is clear since if $g \in H^{\infty}$ satisfies $f(\lambda_i) = g(\lambda_i) \ \forall i = 1..n$, then $||g||_{\infty} \geq |g(\lambda_i)| = |f(\lambda_i)| = |\varphi_{\lambda_i}(f)|$, $\forall i = 1..n$. \square

Now, how does the interpolation constant $C_I(\sigma)$ behave in terms of the caracteristics r and n of σ ? In what follows, we compare these quantities for three geometrically simple configurations: two-points sets σ , circular and radial sequences σ . The proofs of the following statements (5.2, 5.3 and 5.4) are given in [Z3].

Example. 5.2. Two points sets. Let $\sigma = \{\lambda_1, \lambda_2\}, \lambda_i \in \mathbb{D}, \lambda_1 \neq \lambda_2$. Then,

$$|b_{\lambda_1}(\lambda_2)|^{-1} \le C_I(\sigma) \le 2 |b_{\lambda_1}(\lambda_2)|^{-1},$$

and Theorem 5.1 implies

$$c(\sigma, X, H^{\infty}) \le 2 |b_{\lambda_1}(\lambda_2)|^{-1} \max_{i=1,2} \|\varphi_{\lambda_i}\|,$$

whereas a straightforward estimate gives

$$c(\sigma, X, H^{\infty}) \le \|\varphi_{\lambda_1}\| + \max_{|\lambda| \le r} \|\varphi_{\lambda,1}\| (1 + |\lambda_1|),$$

where $r = max(|\lambda_1|, |\lambda_2|)$ and the functional $\varphi_{\lambda, 1}$ is defined in the beginning of Section 5. The difference is that the first upper bound blows up when $\lambda_1 \to \lambda_2$, whereas the second one is still well-bounded.

Example. 5.3. Circular sequences. Let 0 < r < 1 and $\sigma = \{\lambda_1, \lambda_2, ..., \lambda_n\}$, $\lambda_i \neq \lambda_j$, $|\lambda_i| = r$ for every i, and let $\alpha = \min_{i \neq j} |\lambda_i - \lambda_j|/(1-r)$. Then, $\alpha^{-1} \leq C_I(\sigma) \leq 8e^{K'(1+K\alpha^{-3})}$, where K, K' > 0 are absolute constants. Therefore,

$$c(\sigma, X, H^{\infty}) \leq 8e^{K'\left(1+K\alpha^{-3}\right)} \max_{|\lambda|=r} \|\varphi_{\lambda}\|$$

for every r – circular set σ (an estimate does not depending on n explicitly). In particular, there exists an increasing function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that, for any n uniformly distributed points $\lambda_1, ..., \lambda_n$, $|\lambda_i| = r$, $|\lambda_i - \lambda_{i+1}| = 2r\sin\left(\frac{\pi}{2n}\right)$, we have

(1) $c(\sigma, H^2, H^\infty) \le \varphi(n(1-r)r^{-1})(1-r)^{-\frac{1}{2}}$, for every n and r, 0 < r < 1 and in particular, for $n \le [r(1-r)^{-1}]$ we obtain

$$c(\sigma, H^2, H^\infty) \le c(1-r)^{-\frac{1}{2}},$$

whereas our specific upper bound in Theorem C, (which is sharp over all n elements sequences σ), gives

$$c(\sigma, H^2, H^{\infty}) \le c(1-r)^{-1}$$

only.

(2) $c(\sigma, L_a^2, H^\infty) \le \varphi\left(n(1-r)r^{-1}\right)(1-r)^{-1}$, for every n and r, 0 < r < 1 and in particular, for $n \le [r(1-r)^{-1}]$ we obtain

$$c(\sigma, L_a^2, H^{\infty}) \le c(1-r)^{-1},$$

whereas our specific upper bound in Theorem D, (which, again, is sharp over all n elements sequences σ), gives

$$c(\sigma, L_a^2, H^{\infty}) \le c(1-r)^{-2}$$

only.

Example. 5.4. Radial sequences. Now we consider geometric sequences on the radius of the unit disc \mathbb{D} , say on the radius [0, 1). Let $0 < \rho < 1$, $p \in (0, \infty)$ and

$$\lambda_j = 1 - \rho^{j+p}, \ j = 0, ..., n,$$

so that the distances $1 - \lambda_j = \rho^j \rho^p$ form a geometric progression; the starting point is $\lambda_0 = 1 - \rho^p$. Let

$$r = \max_{0 \le j \le n} \lambda_j = \lambda_k = 1 - \rho^{n+p},$$

and $\delta = \delta(B) = \min_{0 \le k \le n} |B_k(\lambda_k)|$, where $B_k = b_{\lambda_k}^{-1} B$. It is known that $\delta^{-1} \le C_I(\sigma) \le 8\delta^{-2}$, see ([N1], p 189). So, we need to know the asymptotic behaviour of $\delta = \delta(B)$ when $n \to \infty$, or $\rho \to 1$, or $\rho \to 0$, or $p \to \infty$, or $p \to 0$.

Claim. Let $\sigma_{n,\rho,p} = \{1 - \rho^{p+k}\}_{k=1}^n$, $0 < \rho < 1$, p > 0. The estimate of $c(\sigma, H^2, H^\infty)$ via the Carleson constant $C_I(\sigma)$ (using Theorem 5.1) is comparable with or better than the estimates from Theorem C (for $X = H^2$) and Theorem D (for $X = L_a^2$) for sufficently small values of ρ (as $\rho \to 0$) and/or for a fixed ρ and $n \to \infty$. In all other cases, as for $p \to \infty$ (which means $\lambda_1 \to 1$), or $\rho \to 1$, or $n \to \infty$ and $\rho \to 1$, it is worse.

Remark 5.5. More specific radial sequences are studied in [Z3]: sparse sequences σ ($\rho \to 0$, or at least $0 < \rho \le \epsilon < 1$), condensed sequences σ ($\rho \to 1$) and long sequences ($n \to \infty$).

6. Lower bounds for $C_{n,r}(X, H^{\infty})$

6.1. The cases
$$X = H^2$$
 and $X = L_a^2$

Here, we consider the standard Hardy and Begman spaces on the disc \mathbb{D} : $X = H^2 = l_a^2(1)$ and $X = L_a^2 = l_a^2((k+1)^{-1/2})$, and the problem of lower estimates for the one point special case $\sigma_{n,\lambda} = \{\lambda,\lambda,...,\lambda\}$, $(n \text{ times}) \lambda \in \mathbb{D}$. Recall the definition of our constrained interpolation constant for this case

$$c(\sigma_{n,\lambda}, H, H^{\infty}) = \sup \{ \|f\|_{H^{\infty}/b_{\lambda}^{n}H^{\infty}} : f \in H, \|f\|_{H} \le 1 \},$$

where $||f||_{H^{\infty}/b_{\lambda}^{n}H^{\infty}} = \inf\{||f + b_{\lambda}^{n}g||_{\infty} : g \in H\}$. Our goal in this Subsection is to prove the sharpness of the upper estimate from Theorem C (p=2) and Theorem D for the quantities $C_{n,r}(H^{2}, H^{\infty})$ and $C_{n,r}(L_{a}^{2}, H^{\infty})$, that is to say, to get the lower bounds from Theorem C (p=2) and Theorem D.

Recall that the spaces $l_a^2((k+1)^{\alpha})$ are defined in Section 4.

In the proof, we use properties of reproducing kernel Hilbert space on the disc \mathbb{D} , see for example [N2]. Let us recall some of them adapting the general setting to special cases $X = l_a^2((k+1)^{\alpha})$. As it is mentionned in Section 4,

$$l_a^2((k+1)^\alpha) = \left\{ f = \sum_{k>0} \hat{f}(k)z^k : \|f\|^2 = \sum_{k>0} |\hat{f}(k)|^2(k+1)^{2\alpha} < \infty \right\}.$$

The reproducing kernel of $l_a^2((k+1)^{\alpha})$, by definition, is a $l_a^2((k+1)^{\alpha})$ -valued function $\lambda \longmapsto k_{\lambda}^{\alpha}$, $\lambda \in \mathbb{D}$, such that $(f, k_{\lambda}^w) = f(\lambda)$ for every $f \in l_a^2((k+1)^{-\alpha})$, where (.,.) means the scalar product $(h, g) = \sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}(k)} (k+1)^{-2\alpha}$. Since one has $f(\lambda) = \sum_{k \geq 0} \hat{f}(k) \lambda^k (k+1)^{2\alpha} (k+1)^{-2\alpha} (\lambda \in \mathbb{D})$, it follows that

$$k_{\lambda}^{\alpha}(z) = \sum_{k>0} (k+1)^{2\alpha} \overline{\lambda}^k z^k, \ z \in \mathbb{D}.$$

In particular, for the Hardy space $H^2 = l_a^2(1)$ ($\alpha = 0$), we get the Szegö kernel

$$k_{\lambda}(z) = (1 - \overline{\lambda}z)^{-1},$$

for the Bergman space $L_a^2 = l_a^2 \left((k+1)^{-1/2} \right)$ $(\alpha = -1/2)$ - the Bergman kernel $k_\lambda^{-1/2}(z) = (1 - \overline{\lambda}z)^{-2}$.

We will use the previous observations for the following composed reproducing kernels (Aronszajn-deBranges, see [N2] p.320): given the reproducing kernel k of H^2 and $\varphi \in \{z^N : N = 1, 2\}$, the function $\varphi \circ k$ is also positive definit and the corresponding Hilbert space is

$$H_{\varphi} = \varphi(H^2) = l_a^2 \left((k+1)^{\frac{1-N}{2}} \right).$$

It satisfies the following property : for every $f \in H^2$, $\varphi \circ f \in \varphi(H^2)$ and $\|\varphi \circ f\|_{\varphi(H^2)}^2 \leq \varphi(\|f\|_{H^2}^2)$ (see [N2] p.320).

We notice in particular that

(6.1.0)
$$H_z = H^2 \text{ and } H_{z^2} = L_a^2$$

The above relation between the weighted spaces $l_a^2((k+1)^{\alpha})$ and the spaces $\varphi(H^2) = H_{\varphi}$ leads to establish the prove of the left-hand side inequalities from Theorem C (for p=2 only) and Theorem D.

Proof of Theorem C(p=2) and Theorem D, (left-hand side inequalities only).

1) We set

$$Q_n = \sum_{k=0}^{n-1} (1 - |\lambda|^2)^{1/2} b_{\lambda}^k \left(1 - \overline{\lambda} z \right)^{-1}, \ H_n = \varphi \circ Q_n \quad \text{and} \ \Psi = b H_n, \ b > 0.$$

Then $||Q_n||_2^2 = n$, and hence by the above Aronszajn-deBranges inequality,

$$\|\Psi\|_{H_{\varphi}}^2 \le b^2 \varphi \left(\|Q_n\|_2^2 \right) = b^2 \varphi(n).$$

Let b > 0 such that $b^2 \varphi(n) = 1$.

- 2) Since the spaces H_{φ} and H^{∞} are rotation invariant, we have $c\left(\sigma_{n,\lambda}, H_{\varphi}, H^{\infty}\right) = c\left(\sigma_{\mu,n}, H_{\varphi}, H^{\infty}\right)$ for every λ, μ with $|\lambda| = |\mu| = r$. Let $\lambda = -r$. To get a lower estimate for $\|\Psi\|_{H_{\varphi}/b_{\lambda}^{n}H_{\varphi}}$ consider G such that $\Psi G \in b_{\lambda}^{n}Hol(\mathbb{D})$, i.e. such that $bH_{n} \circ b_{\lambda} G \circ b_{\lambda} \in z^{n}Hol(\mathbb{D})$.
 - 3) First, we show that

$$\psi =: \Psi \circ b_{\lambda} = bH_n \circ b_{\lambda}$$

is a polynomial (of degree n if $\varphi = z$ and 2n if $\varphi = z^2$) with positive coefficients. Note that

$$Q_n \circ b_{\lambda} = \sum_{k=0}^{n-1} z^k \frac{(1-|\lambda|^2)^{1/2}}{1-\overline{\lambda}b_{\lambda}(z)} = \left(1-|\lambda|^2\right)^{-\frac{1}{2}} \left(1+(1-\overline{\lambda})\sum_{k=1}^{n-1} z^k - \overline{\lambda}z^n\right) =$$

$$= (1-r^2)^{-1/2} \left(1+(1+r)\sum_{k=1}^{n-1} z^k + rz^n\right) =: (1-r^2)^{-1/2} \psi_1.$$

Hence, $\psi = \Psi \circ b_{\lambda} = bH_n \circ b_{\lambda} = b\varphi \circ \left((1 - r^2)^{-\frac{1}{2}} \psi_1 \right)$ and

$$\varphi \circ \psi_1 = \psi_1^N(z), \ N = 1, 2.$$

4) Next, we show that

$$\sum_{j=0}^{m} (\psi) =: \sum_{j=0}^{m} \hat{\psi}(j) \ge \begin{cases} (2\sqrt{2})^{-1} \sqrt{n(1-r)^{-1}} & \text{if } N = 1\\ 16^{-1} n(1-r)^{-1} & \text{if } N = 2 \end{cases},$$

where m = n/2 if n is even and m = (n+1)/2 if n is odd.

Indeed, setting $S_n = \sum_{j=0}^n z^j$, we have both for N=1 and N=2

$$\sum_{m=1}^{m} (\psi_{1}^{N}) = \sum_{m=1}^{m} \left(\left(1 + (1+r) \sum_{t=1}^{n-1} z^{t} + rz^{n} \right)^{N} \right) \ge \sum_{m=1}^{m} (S_{n-1}^{N}).$$

Next, we obtain

$$\sum_{n=1}^{m} \left(S_{n-1}^{N} \right) = \sum_{n=1}^{m} \left(\left(\frac{1-z^{n}}{1-z} \right)^{N} \right) = \sum_{n=1}^{m} \left((1-z)^{-N} \right) = \sum_{n=1}^{m} \left(\sum_{j \geq 0} C_{N+j-1}^{j} z^{j} \right) = \sum_{j=0}^{m} C_{N+j-1}^{j} = \sum_{j=0}^{$$

Finally, since $\sum^{m}(\psi) = b \sum^{m}(\varphi \circ \psi_1) = b (1 - r^2)^{-N/2} \sum^{m}(\psi_1^N)$ we get

$$\sum_{m=0}^{m} (\psi) \ge \begin{cases} (2(1-r))^{-1/2} nb/2 & \text{if } N=1\\ (2(1-r))^{-1} n^2 b/8 & \text{if } N=2 \end{cases},$$

with $b = \varphi(n) = \left\{ \begin{array}{l} n^{-1/2} \ if \ N=1 \\ n^{-1} \ if \ N=2 \end{array} \right.$. This gives the result claimed.

5) Now, using point 4) and denoting $F_n = \Phi_m + z^m \Phi_m$, where Φ_k stands for the k-th Fejer kernel, we get

$$\|\Psi\|_{H^{\infty}/b_{\lambda}^{n}H^{\infty}} = \|\psi\|_{H^{\infty}/z^{n}H^{\infty}} \ge 2^{-1} \|\psi * F_{n}\|_{\infty} \ge 2^{-1} \sum_{j=0}^{m} \hat{\psi}(j) \ge$$
$$\ge \begin{cases} (4\sqrt{2})^{-1} \sqrt{n(1-r)^{-1}} & \text{if } N=1\\ 32^{-1}n(1-r)^{-1} & \text{if } N=2 \end{cases}.$$

6) In order to conclude, it remains to use (6.1.0)

6.2. The case $X = H^p$

Here we prove the sharpness (for even p) of the upper estimate found in Theorem C. We first prove the following lemma.

Lemma. 6.2.0 Let p,q such that $\frac{p}{q} \in \mathbb{Z}_+$, then $c(\sigma, H^p, H^\infty) \geq c(\sigma, H^q, H^\infty)^{\frac{q}{p}}$ for every sequence σ of \mathbb{D} .

Proof. Step 1. Recalling that

$$c(\sigma, H^p, H^{\infty}) = \sup_{\|f\|_p < 1} \inf \{ \|g\|_{\infty} : g \in Y, g_{|\sigma} = f_{|\sigma} \},$$

we first prove that

$$c\left(\sigma, H^{p}, H^{\infty}\right) = \sup_{\|f\|_{p} \leq 1, f \text{ outer } inf\left\{\|g\|_{\infty} : g \in Y, g_{|\sigma} = f_{|\sigma}\right\}.$$

Indeed, we clearly have the inequality

$$\sup_{\|f\|_{p} \leq 1, f \text{ outer } inf \left\{ \|g\|_{\infty} : g \in Y, g_{|\sigma} = f_{|\sigma} \right\} \leq c\left(\sigma, H^{p}, H^{\infty}\right),$$

and if the inequality were strict, that is to say

$$\sup_{\|f\|_{p} < 1, f \text{ outer } inf} \{\|g\|_{\infty} : g \in Y, g|_{\sigma} = f|_{\sigma} \} < \sup_{\|f\|_{p} < 1} \inf \{\|g\|_{\infty} : g \in Y, g|_{\sigma} = f|_{\sigma} \},$$

then we could write that there exists $\epsilon > 0$ such that for every $f = f_i.f_o \in H^p$ (where f_i stands for the inner function corresponding to f and f_o to the outer one) with $||f||_p \leq 1$ (which also implies that $||f_o||_p \leq 1$, since $||f_o||_p = ||f||_p$), there exists a function $g \in H^{\infty}$ verifying both $||g||_{\infty} \leq (1 - \epsilon)c(\sigma, H^p, H^{\infty})$ and $g_{|\sigma} = f_{o|\sigma}$. This entails that $f_{|\sigma} = (f_ig)_{|\sigma}$ and since $||f_ig||_{\infty} = ||g||_{\infty} \leq (1 - \epsilon)c(\sigma, H^p, H^{\infty})$, we get that $c(\sigma, H^p, H^{\infty}) \leq (1 - \epsilon)c(\sigma, H^p, H^{\infty})$, which is a contradiction and proves the equality of Step 1.

Step 2. Using the result of Step 1, we get that $\forall \epsilon > 0$ there exists an outer function $f_o \in H^q$ with $\|f_o\|_q \leq 1$ and such that

$$\inf \{ \|g\|_{\infty} : g \in Y, g_{|\sigma} = f_{o|\sigma} \} \ge c(\sigma, H^q, H^{\infty}) - \epsilon.$$

Now let $F = f_o^{\frac{q}{p}} \in H^p$, then $||F||_p^p = ||f_o||_q^q \le 1$. We suppose that there exists $g \in H^{\infty}$ such that $g_{|\sigma} = F_{|\sigma}$ with

$$\|g\|_{\infty} < (c(\sigma, H^q, H^{\infty}) - \epsilon)^{\frac{q}{p}}.$$

Then, since $g(\lambda_i) = F(\lambda_i) = f_o(\lambda_i)^{\frac{q}{p}}$ for all i = 1..n, we have $g(\lambda_i)^{\frac{p}{q}} = f_o(\lambda_i)$ and $g^{\frac{p}{q}} \in H^{\infty}$ since $\frac{p}{q} \in \mathbb{Z}_+$. We also have

$$\left\|g^{\frac{p}{q}}\right\|_{\infty} = \left\|g\right\|_{\infty}^{\frac{p}{q}} < \left(c\left(\sigma, H^{q}, H^{\infty}\right) - \epsilon\right)^{\frac{q}{p}},$$

which is a contradiction. As a result, we have

$$||g||_{\infty} \ge (c(\sigma, H^q, H^{\infty}) - \epsilon)^{\frac{q}{p}},$$

for all $g \in H^{\infty}$ such that $g_{|\sigma} = F_{|\sigma}$, which gives

$$c(\sigma, H^p, H^{\infty}) \ge (c(\sigma, H^q, H^{\infty}) - \epsilon)^{\frac{q}{p}},$$

and since that inequality is true for every $\epsilon > 0$, we get the result.

Proof of Theorem C (the left-hand side inequality for $p \in 2\mathbb{N}$, p > 2 only). We first prove the lower estimate for $c(\sigma_{n,\lambda}, H^p, H^{\infty})$. Writing p = 2(p/2), we apply Lemma 6.2.0 with q = 2 and this gives

$$c(\sigma_{n,\lambda}, H^p, H^{\infty}) \ge c(\sigma_{n,\lambda}, H^2, H^{\infty})^{\frac{2}{p}} \ge 32^{-\frac{1}{p}} (n(1-|\lambda|)^{-1})^{\frac{2}{p}}$$

for all integer $n \geq 1$. The last inequality is a consequence of Theorem C (left-hand side inequality) for the particular case p = 2 which has been proved in Subsection 6.1. \square

Acknowledgement.

I would like to thank Professor Nikolai Nikolski for all of his work, his wisdom and the pleasure that our discussions gave to me.

REFERENCES

- [A] N. Aronszajn, Theory of reproducing kernels, Transactions of AMS, 68:337-404, 1950.
- [B1] A. Baranov, *Inégalités de Bernstein dans les espaces modèles et applications*, Thèse Université de Bordeaux 1, 2005.
- [B2] A. Baranov, Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings. J. Functi. Analysis 223 (1): 116-146, 2005.
- [B3] A. Baranov, Compact embeddings of model subspaces of the Hardy space, posted in Arxiv, 05.12.2007.
- [BL1] L. Baratchart, Rational and meromorphic approximation in Lp of the circle: system-theoretic motivations, critical points and error rates. In N. Papamichael, S. Ruscheweyh, and E. Saff, editors, Computational Methods and Function Theory, pages 45–78. World Scientific Publish. Co, 1999.
- [BL2] L. Baratchart, F. Wielonsky, Rational approximation problem in the real Hardy space H_2 and Stieltjes integrals: a uniqueness theorem, Constr. Approx. 9, 1-21, 1993.
- [Be] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, 1976.
- [BoEr] P. Borwein and T. Erdélyi, *Polynomials and Polynomial Inequalities*, Springer, New York, 1995.
- [DeLo] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
- [Dya1] K. M. Dyakonov, Differentiation in Star-Invariant Subspaces I. Boundedness and Compactness, J.Funct.Analysis, 192, 364-386, 2002.
- [Dya2] K. M. Dyakonov, Entire functions of exponential type and model subspaces in H^p, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 190 (1991), 81-100 (Russian); translation in J. Math. Sci. 71, 2222-2233, 1994.
- [H] H. Hedenmalm, B. Korenblum, and K. Zhu, *Theory of Bergman spaces*, Springer-Verlag, New-York, 2000.
- [J] P. W. Jones, L^{∞} estimates for the $\overline{\partial}$ problem in the half plane, Acta Math. 150, 137-152, 1983.

- [K] P. Koosis, Carleson's interpolation theorem deduced from a result of Pick, Complex analysis, operators, and related topics. In V. Havin, and N. Nikolski, editors, 151–162, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000.
- [L] M. B. Levin, Estimation of the derivative of a meromorphic function on the boundary of the domain (Russian), Teor. Funkcii Funkcional. Anal. i Priložen. Vyp. 24, 68-85, 1975.
- [N1] N.Nikolski, Treatise on the shift operator, Springer-Verlag, Berlin etc., 1986
- [N2] N.Nikolski, Operators, Function, and Systems: an easy reading, Vol.1, Amer. Math. Soc. Monographs and Surveys, 2002.
- [N3] N.Nikolski, Condition Numbers of Large Matrices and Analytic Capacities, St. Petersburg Math. J., 17, 641-682, 2006.
- [S] E.Stein and G.Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton, 1971.
- [T] H. Triebel, Interpolation theory, functions spaces, differential operators, North-Holland Publishing Comp., 1978.
- [Z1] R. Zarouf, Interpolation avec contraintes sur des ensembles finis du disque, C. R. Acad. Sci. Paris, Ser. I 347, 2009.
- [Z2] R. Zarouf, Asymptotic sharpness of a Bernstein-type inequality for rational functions in H^2 , to appear in St Petersburg Math. J.
- [Z3] R. Zarouf, Interpolation avec contraintes sur des ensembles finis du disque, Thèse Université de Bordeaux 1, 2008.