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Abstract

Given a finite set σ of the unit disc D = {z ∈ C :, |z| < 1} and a holomorphic function f in D which
belongs to a class X, we are looking for a function g in another class Y (smaller than X) which minimizes
the norm ‖g‖Y among all functions g such that g|σ = f|σ. For Y = H∞, X = Hp (the Hardy space) or

X = L2
a (the Bergman space), and for the corresponding interpolation constant c (σ, X, H∞), we show

that c (σ, X, H∞) ≤ aϕX

(
1 − 1−r

n

)
where n = #σ, r = maxλ∈σ |λ| and where ϕX(t) stands for the norm

of the evaluation functional f 7→ f(t) on the space X. The upper bound is sharp over sets σ with given
n and r.

Introduction

(1) General framework. The problem considered is the following: given X and Y two Banach
spaces of holomorphic functions on the unit disc D = {z ∈ C : |z| < 1} , X ⊃ Y , and a finite set
σ ⊂ D, to find the least norm interpolation by functions of the space Y for the traces f|σ of
functions of the space X, in the worst case of f .

The classical interpolation problems- those of Nevanlinna-Pick and Carathéodory-Schur (on the
one hand) and Carleson’s free interpolation (on the other hand)- are of this nature. Two first are
“individual”, in the sens that one looks simply to compute the norms ‖f‖H∞

|σ
or ‖f‖H∞/znH∞ for

a given f , whereas the third one is to compare the norms ‖a‖l∞(σ) = maxλ∈σ |aλ| and

inf (‖ g ‖∞: g(λ) = aλ, λ ∈ σ) .

Here and everywhere below, H∞ stands for the space (algebra) of bounded holomorphic functions
in the unit disc D endowed with the norm ‖f‖∞ = supz∈D |f(z)| . Looking at this comparison
problem, say, in the form of computing/estimating the interpolation constant

c (σ, X, Y ) = supf∈X, ‖f‖X≤1inf
{
‖g‖Y : g|σ = f|σ

}
,

which is nothing but the norm of the embedding operator
(
X|σ, ‖.‖X|σ

)
→
(
Y|σ, ‖.‖Y|σ

)
, one

can think, of course, on passing (after) to the limit- in the case of an infinite sequence {λj} and
its finite sections {λj}n

j=1- in order to obtain a Carleson type interpolation theorem X|σ = Y|σ.

But not necessarily. In particular, even the classical Pick-Nevanlinna theorem (giving a necessary
and sufficient condition on a function a for the existence of f ∈ H∞ such that ‖f‖∞ ≤ 1 and
f(λ) = aλ, λ ∈ σ), does not lead immediately to Carleson’s criterion for H∞

|σ = l∞(σ). (Finally, a

direct deduction of Carleson’s theorem from Pick’s result was done by P. Koosis [K] in 1999 only).
Similarly, the problem stated for c (σ, X, Y ) is of interest in its own. For this paper, the following
question was especially stimulating (which is a part of a more complicated question arising in an
applied situation in [BL1] and [BL2]): given a set σ ⊂ D, how to estimate c (σ, H2, H∞) in terms
of n = card(σ) and maxλ∈σ |λ| = r only? (H2 being the standard Hardy space of the disc).

Here, we consider the case of H∞ interpolation (Y = H∞) and the following scales of Banach
spaces X :
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(a) X = Hp = Hp(D), 1 ≤ p ≤ ∞, the standard Hardy spaces on the disc D,

(b) X = l2a
(
1/
√
k + 1

)
, the Bergman space of all f(z) =

∑
k≥0 f̂(k)zk satisfying

∑

k≥0

∣∣∣f̂(k)
∣∣∣
2 1

(k + 1)
<∞.

An equivalent description of this space is:
X = L2

a, the space of holomorphic functions such that
∫

D

|f(z)|2
(
1 − |z|2

)β
dxdy <∞.

For spaces of type (a)&(b), we show

c1ϕX

(
1 − 1 − r

n

)
≤ sup {c (σ, X, H∞) : #σ ≤ n, |λ| ≤ r, λ ∈ σ} ≤ c2ϕX

(
1 − 1 − r

n

)
,

where ϕX(t), 0 ≤ t < 1 stands for the norm of the evaluation functional f 7→ f(t) on the space X.
In order to prove the right hand side inequality, we first use a linear interpolation:

f 7→
n∑

k=1

〈f, ek〉 ek,

where 〈., .〉 means the Cauchy sesquilinear form 〈h, g〉 =
∑

k≥0 ĥ(k)ĝ(k), and (ek)
n
k=1 is the explic-

itly known Malmquist basis of the space KB = H2ΘBH2, B = Πn
i=1bλi

being the corresponding
Blaschke product, bλ = λ−z

1−λz
(see N. Nikolski, [N1] p. 117)). Next, we use the complex inter-

polation between Banach spaces, (see H. Triebel [Tr] Theorem 1.9.3 p.59). Among the technical
tools used in order to find an upper bound for ‖

∑n
k=1 〈f, ek〉 ek‖∞ (in terms of ‖f‖X), the most

important is a Bernstein-type inequality
∥∥f ′
∥∥

p
≤ cp

∥∥B′
∥∥
∞ ‖f‖p for a (rational) function f in the

star-invariant subspace Hp∩BHp

0 generated by a (finite) Blaschke product B, (K. Dyakonov [Dy]).
For p = 2, we give an alternative proof of the Bernstein-type estimate we need.

The lower bound problem is treated by using the “worst” interpolation n−tuple σ = σλ, n =
{λ, ..., λ}, a one-point set of multiplicity n (the Carathéodory-Schur type interpolation). The
“worst” interpolation data comes from the Dirichlet kernels

∑n−1
k=0 z

k transplanted from the origin
to λ. We notice that spaces X of (a)&(b) satisfy the condition X ◦ bλ ⊂ X which makes the
problem of upper/lower bound easier.

(2) Principal results. Let σ = {λ1, ..., λ1, λ2, ..., λ2, ..., λt, ..., λt} be a finite sequence in the unit
disc, where every λs is repeated according its multiplicity ms ,

∑t
s=1ms = n and r = maxi=1..t|λi|.

Let X, Y be Banach spaces of holomorphic functions continuously embedded into the space Hol(D)
of holomorphic functions in the unit disc D. In what follows, we systematically use the following
conditions for the spaces X and Y ,

(P1) Hol((1 + ǫ)D) is continuously embedded into Y for every ǫ > 0,

(P2) Pol+ ⊂ X and Pol+ is dense in X,

where Pol+ stands for the set of all complex polynomials p, p(z) =
∑N

k=0 akz
k,
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(P3) [f ∈ X] ⇒
[
znf ∈ X , ∀n ≥ 0 and lim ‖znf‖

1
n ≤ 1

]
,

(P4) [f ∈ X, λ ∈ D, and f(λ) = 0] ⇒
[

f

z − λ
∈ X

]
.

We are interested in estimating the quantity

c (σ, X, Y ) = sup‖f‖X≤1inf
{
‖g‖Y : g ∈ Y, g(j) (λi) = f (j) (λi) ∀i, j, 1 ≤ i ≤ t, 0 ≤ j < mi

}
.

In order to simplify the notation, the condition

g(j) (λi) = f (j) (λi) ∀i, j, 1 ≤ i ≤ t, 0 ≤ j < mi

will also be written as
g|σ = f|σ.

Supposing X verifies property (P4) and Y ⊂ X, the quantity c (σ, X, Y ) can be written as
follows,

c (σ, X, Y ) = sup‖f‖X≤1inf {‖g‖Y : g ∈ Y, g − f ∈ BσX} ,

where Bσ is the Blaschke product

Bσ = Πi=1..nbλi
,

corresponding to σ, bλ(z) = λ−z
1−λ̄z

being an elementary Blaschke factor for λ ∈ D.
The interesting case is obviously when X is larger than Y , and the sens of the issue lies in

comparing ‖ . ‖X and ‖ . ‖Y when Y interpolates X on the set σ. For example, we can wonder
what happens when X = Hp , the classical Hardy spaces of the disc or X = Lp

a, the Bergman
spaces, etc..., and when Y = H∞, but also Y = W the Wiener algebra (of absolutely converging
Fourier series) or Y = B0

∞,1, a Besov algebra (an interesting case for the functional calculus of
finite rank operators, in particular, those satisfying the so-called Ritt condition). Here, Hp stands
for the classical Hardy space of the disc (see below).

It is also important to understand what kind of interpolation we are going to study when
bounding the constant c(σ, X, Y ). Namely, comparing with the Carleson free interpolation, we
can say that the latter one deals with the interpolation constant defined as

c (σ, l∞(σ), H∞) = sup
{
inf

(
‖ g ‖∞: g ∈ H∞, g|σ = a

)
: a ∈ l∞(σ), ‖ a ‖l∞≤ 1

}
.

We also can add some more motivations to our problem:

(a) One of the most interesting cases is Y = H∞. In this case, the quantity c (σ, X, H∞)
has a meaning of an intermediate interpolation between the Carleson one ( when ‖f‖X|σ

≍
sup1≤i≤n |f (λi)|) and the individual Nevanlinna-Pick interpolation (no conditions on f).

(b) There is a straight link between the constant c (σ, X, Y ) and numerical analysis. For exam-

ple, in matrix analysis, it is of interest to bound the norm of an H∞-calculus ‖f(A)‖ ≤ c ‖f‖∞,
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f ∈ H∞, for an arbitrary Banach space n-dimensional contraction A with a given spectrum

σ(A) ⊂ σ. The best possible constant is c = c (σ, H∞, W ), so that

c (σ, H∞, W ) = sup‖f‖∞≤1sup {‖f(A)‖ : A : (Cn, |.|) → (Cn, |.|) , ‖A‖ ≤ 1, σ(A) ⊂ σ} ,

where W =
{
f =

∑
k≥0 f̂(k)zk :

∑
k≥0

∣∣∣f̂(k)
∣∣∣ <∞

}
stands for the Wiener algebra, and the

interior sup is taken over all contractions on n−dimensional Banach spaces. An interesting case
occurs for f ∈ H∞ such that f|σ = 1

z |σ (estimation of condition numbers and the norms inverses

of n× n matrices) or f|σ = 1
λ−z |σ (for estimation of the norm of the resolvent of an n× n matrix).

This paper is devoted to upper/lower bounds for generalized Nevanlinna-Pick interpolation.
We starts studying general Banach spaces X and Y and gives some sufficients conditions under

which Cn, r(X, Y ) <∞ , where

Cn, r(X, Y ) = sup {c(σ,X, Y ) : #σ ≤ n , ∀j = 1..n, |λj | ≤ r} .
In particular, we prove the following basic fact.

Theorem 1.1.1 Let X, Y be Banach spaces verifying properties (Pi), i = 1...4 , then

Cn,r(X, Y ) <∞,

for every n ≥ 1 and r, 0 ≤ r < 1.
Next, we add the condition that X is a Hilbert space, and give in this case a general upper

bound for the quantity Cn, r(X, Y ).

Theorem 1.2.1 Let Y be a Banach space verifying property (P1) and X = (H, (.)H) a Hilbert
space satisfying properties (Pi) for i = 2, 3, 4. We moreover suppose that for every 0 < r < 1
there exists ǫ > 0 such that kλ ∈ Hol ((1 + ǫ)D) for all |λ| < r, where kλ stands for the
reproducing kernel of X at point λ, and λ 7→ kλ is holomorphic on |λ| < r as a
Hol((1 + ǫ)D)-valued function. Let σ = {λ1, ..., λ1, λ2, ..., λ2, ..., λt, ..., λt} be a sequence in D,
where λs are repeated according their multiplicity ms,

∑t
s=1ms = n. Then we have,

i)

c (σ, X, Y ) ≤
(

n∑

k=1

‖ek‖2
Y

) 1
2

,

where (ek)
n
k=1 stands for the Gram-Schmidt orthogonalization (in the space H) of the sequence

kλ1,0, kλ1,1, kλ1,2..., kλ1,m1−1, kλ2,0, kλ2,1, kλ2,2..., kλ2,m2−1, ..., kλt,0, kλt,1, kλt,2..., kλt,mt−1,

kλ, i =
(

d
dλ

)i

kλ and kλ is the reproducing kernel of X at point λ for every λ ∈ D.

ii) For the case Y = H∞, we have

c(σ, H, H∞) ≤ supz∈D ‖PBσkz‖H ,
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where PBσ =
∑n

k=1 (., ek)H ek stands for the orthogonal projection of H onto KBσ ,

KBσ = span
(
kλj , i : 1 ≤ i < mj , j = 1, ..., t

)
.

After that, we specialize the upper bound obtained in Theorem 1.2 (ii) to the case X = H2

and prove the following (see Corollary 2.0 and Proposition 2.1). We get among other results
that for every sequence σ = {λ1, ..., λn} of D,

c
(
σ, H2, H∞) ≤ supz∈D

(
1 − |Bσ(z)|2

1 − |z|2
) 1

2

≤
√

2sup|ζ|=1 |B′(ζ)|
1
2 ≤ 2

√
n

1 − r
.

Next we present a slightly different approach to the interpolation constant c (σ, H2, H∞) proving
an estimate in the following form:

c
(
σ, H2, H∞) ≤ supz∈T

(
n∑

k=1

(1 − |λk|2)
|z − λk|2

)1
2

≤
(

n∑

j=1

1 + |λj|
1 − |λj|

)1
2

≤
√

2n

1 − r
.

In particular, we get once more the same estimate for c(σ, H2, H∞), and hence for Cn,r(H
2, H∞).

Later on (see Section 6), we show that this estimate is sharp (over n and r). This lower bound
problem is treated by using the “worst” interpolation n−tuple σ = σλ, n = {λ, ..., λ}, a one-point
set of multiplicity n (the Carathéodory-Schur type interpolation). More precisely, we prove the
following Theorem A, which gathers the results from Corollary 2.2 (for the upper bound) and
from Theorem 6.1.0 (for the lower bound, with N = 1) .

Theorem A. We have

1

4
√

2

√
n√

1 − r
≤ c

(
σr,n, H

2, H∞) ≤ Cn, r

(
H2, H∞) ≤

√
2

√
n√

1 − r
,

for all n ≥ 1, 0 ≤ r < 1.

Then, we extend these results to the Hp spaces through Theorem B wich sums up Theorem
3.0 (for the upper bound) and Theorem 6.2.0 (for the lower bound).

Theorem B. Let 1 ≤ p ≤ ∞. Then

1

32
1
p

(
n

1 − |λ|

) 1
p

≤ c (σr,n, H
p, H∞) ≤ Cn,r (Hp, H∞) ≤ Ap

(
n

1 − r

) 1
p

,

for all n ≥ 1, 0 ≤ r < 1, where Ap is a constant depending only on p and the left hand side
inequality is proved only for p ∈ 2Z+.

In particular, this gives yet another proof of the fact that Cn, r(H
2, H∞) ≤ a

√
n/

√
1 − r.

The same study applied to the Bergman space X = L2
a leads us to the following Theorem C

which again gathers Theorem 4.0 (for the upper bound, with α = 3/2) and Theorem 6.1.0
(for the lower bound, with N = 2).

Theorem C. We have

1

32

n

1 − r
≤ c

(
σr,n, L

2
a, H

∞) ≤ Cn, r

(
L2

a, H
∞) ≤ 6

√
2

n

1 − r
,

for all n ≥ 1, 0 ≤ r < 1.

Section 5 is devoted to compare the method used in Sections 1, 2, 3 and 4 with those
resulting from the Carleson-free interpolation. Especially, we are interested in the cases of circular
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and radial sequences σ (see below). Recall that given a (finite) set σ = {λ1, ..., λn} ⊂ D, the
Carleson interpolation constant CI(σ) is defined by

CI(σ) = sup‖a‖l∞≤1inf
(
‖ g ‖∞: g ∈ H∞, g|σ = a

)
.

We introduce the evaluation functionals ϕλ for λ ∈ D,

ϕλ(f) = f(λ), f ∈ X,

as well as the evaluation of the derivatives ϕλ,s (s = 0, 1, ...),

ϕλ,s(f) = f (s)(λ), f ∈ X.

Theorem. 5.0 Let X be a Banach space, X ⊂ Hol(D). Then, for all sequences σ = {λ1, ..., λn}
of distinct points in the unit disc D,

max1≤i≤n ‖ϕλi
‖ ≤ c(σ, X, H∞) ≤ CI(σ).max1≤i≤n ‖ϕλi

‖ ,
where CI(σ) stands for the Carleson interpolation constant.

Theorem 5.0 tells us that, for σ with a “reasonable” interpolation constant CI(σ), the quantity
c(σ, X, H∞) behaves as maxi ‖ϕλi

‖. However, for “tight” sequences σ, the constant CI(σ) is
so large that the estimate in question contains almost no information. On the other hand, an
advantage of the estimate of Theorem 5.0 is that it does not contain #σ = n explicitly. Therefore,
for well-separated sequences σ,Theorem 5.0 should give a better estimate than those of Theorem
A, and of Theorem C.

Now, how does the interpolation constant CI(σ) behave in terms of the caracteristics r and n
of σ? We answer this question for some particular sequences σ.

Example 5.2. Two points sets. Let σ = {λ1, λ2}, λi ∈ D, λ1 6= λ2. Then,

1

|bλ1 (λ2)|
≤ CI(σ) ≤ 2

|bλ1 (λ2)|
,

and Theorem 5.0 implies

c(σ, X, H∞) ≤ 2

|bλ1 (λ2)|
maxi=1, 2 ‖ϕλi

‖ ,

whereas a straightforward estimate gives (see Section 5 )

c(σ, X, H∞) ≤ ‖ϕλ1‖ +max|λ|≤r ‖ϕλ, 1‖ (1 + |λ1|),
where r = max (|λ1| , |λ2|). The difference is that the first upper bound blows up when λ1 → λ2,
whereas the second one is still well-bounded.

Example 5.3. Circular sequences. Let 0 < r < 1 and σ = {λ1, λ2, ..., λn}, λi 6= λj , |λi| = r for

every i, and let α =
mini6=j |λi−λj |

1−r
. Then, 1

α
≤ CI(σ) ≤ 8eK

′
(1+ K

α3 ), where K, K
′
> 0 are absolute

constants. Therefore,

c(σ, X, H∞) ≤ 8eK
′
(1+ K

α3 )max|λ|=r ‖ϕλ‖
for every r − circular set σ (an estimate does not depending on n explicitly). In particular, there
exists an increasing function ϕ : R+ → R+ such that, for any n uniformly distributed points
λ1, ..., λn, |λi| = r, |λi − λi+1| = 2rsin

(
π
2n

)
, we have

(1) c(σ, H2, H∞) ≤ ϕ
(

n(1−r)
r

)
1

(1−r)
1
2

, for every n and r, 0 < r < 1 and in particular, for

n ≤ [r(1 − r)−1] we obtain

c(σ, H2, H∞) ≤ c
1

(1 − r)
1
2

,
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whereas our specific upper bound in Theorem A, (which is sharp over all n elements sequences σ),
gives

c(σ, H2, H∞) ≤ c
1

(1 − r)

only.

(2) c(σ, L2
a, H

∞) ≤ ϕ
(

n(1−r)
r

)
1

(1−r)
, for every n and r, 0 < r < 1 and in particular, for

n ≤ [r(1 − r)−1] we obtain

c(σ, L2
a, H

∞) ≤ c
1

(1 − r)
,

whereas our specific upper bound in Theorem C, (which, again, is sharp over all n elements se-
quences σ), gives

c(σ, L2
a, H

∞) ≤ c
1

(1 − r)2

only.
We finally deal with a special case of radial sequences, in which we study sparse sequences,

condensed sequences, and long sequences, and prove the following claim.

Example 5.4. Radial sequences.

Claim. Let σ =
{
1 − ρp+k

}n

k=1
, 0 < ρ < 1, p > 0. The estimate of c(σ, H2, H∞) via the Carleson

constant CI(σ) (using Theorem 5.0) is comparable with or better than the estimates from Theorem
A (for X = H2) and Theorem C (for X = L2

a) for sufficently small values of ρ (as ρ→ 0) and/or
for a fixed ρ and n → ∞. In all other cases, as for p → ∞ (which means λ1 → 1), or ρ → 1, or
n→ ∞ and ρ→ 1, it is worse.

1. Upper bounds for c(σ, X, Y ), as a kind of the
Nevanlinna-Pick problem

1.1. General Banach spaces X and Y satisfying properties (Pi) , i = 1...4
The following theorem shows that if X and Y satisfy properties (Pi) for i = 1...4, then our

interpolation constant c(σ,X, Y ) is bounded by a quantity Mn,r which depends only on n = #σ
and r = max1≤i≤n|λi| (and of course on X and Y ). In this generality, we cannot discuss the
question of sharpness of the bounds obtained. First, we prove the following lemma.

Lemma. 1.1.0. Under (P2), (P3) and (P4), BσX is a closed subspace of X and moreover,

BσX = {f ∈ X : f (λ) = 0, ∀λ ∈ σ (including multiplicities)} .
Proof. Since X ⊂ Hol(D) continuously, and evaluation functionals f 7→ f(λ) and

f 7→ f (k)(λ), k = 1, 2, ...,

are continous on Hol(D), the subspace

M = {f ∈ X : f (λ) = 0, ∀λ ∈ σ (including multiplicities)} ,
is closed in X.

On the other hand, BσX ⊂ X, and hence BσX ⊂ M. Indeed, properties (P2) and (P3) imply

that h.X ⊂ X, for all h ∈ Hol((1 + ǫ)D) with ǫ > 0; we can write h(z) =
∑

k≥0 ĥ(k)z
k with∣∣∣ĥ(k)

∣∣∣ ≤ Cqn, C > 0 and q < 1. Then
∑

n≥0

∥∥∥ĥ(k)zkf
∥∥∥

X
< ∞ for every f ∈ X. Since X is a

Banach space we can conclude that hf =
∑

n≥0 ĥ(k)z
kf ∈ X.
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In order to see that M ⊂ BσX, it suffices to justify that

[f ∈ X and f(λ) = 0] =⇒
[
f

bλ
= (1 − λz).

f

λ− z
∈ X

]
.

But this is obvious from (P4) and the previous arguments. �

Theorem. 1.1.1 Let X, Y be Banach spaces verifying properties (Pi), i = 1...4 , then

Cn,r(X, Y ) <∞,

for every n ≥ 1 and r, 0 ≤ r < 1.

Proof. For k = 1..n, we set

fk(z) =
1

1 − λkz
,

and define the family (ek)
n
k=1, (which is known as Malmquist basis, see [N1] p.117), by

e1 =
(
1 − |λ1|2

) 1
2 f1,

and

ek =
(
1 − |λk|2

) 1
2
(
Πj=1..k−1bλj

)
fk =

fk

‖ fk ‖2

Πk−1
j=1bλj

for k = 2...n. Now, taking f ∈ X , we set

g =

n∑

k=1

(
∑

j≥0

f̂(j)êk(j)

)

ek,

where the series

∑

j≥0

f̂(j)êk(j)

are absolutely convergent. Indeed,

êk(j) =
1

2πi

∫

RT

ek(w)

wj+1
dw,

for all j ≥ 0 and for all 1 < R < 1
r
. For a subset A of C and for a bounded function h on A, we

define

‖h‖A := supz∈A |h(z)| .
As a result,

|êk(j)| ≤
1

2π

1

Rj+1
‖ ek ‖RT .

So

∑

j≥0

∣∣∣f̂(j)êk(j)
∣∣∣ ≤ ‖ek‖RT

2πR

∑

j≥0

∣∣∣f̂(j)
∣∣∣
(

1

R

)j

<∞,
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since R > 1 and f is holomorphic in D.

Next, we observe that the map

Φ : Hol(D) → Y ⊂ Hol(D)

Φ : f 7→
n∑

k=1

(
∑

j≥0

f̂(j)êk(j)

)

ek,

is well defined and has the following properties.
(a) Φ|H2 = PBσ where PBσ is the orthogonal projection on the n-dimensional subspace of H2, KBσ

defined by

KBσ = (BσH
2)⊥ = H2ΘBσH

2,

the last equality being a consequence of Lemma 1.2.0 of Section 1.2. Here, H2 stands for the
classical Hardy space H2(D) of the disc,

H2(D) =

{
f =

∑

k≥0

f̂(k)zk :
∑

k≥0

∣∣∣f̂(k)
∣∣∣
2

<∞
}
,

or equivalently,

H2(D) =

{
f ∈ Hol(D) : sup0≤r<1

∫

T

|f(rz)|2 dm(z) <∞
}
,

m being the normalized Lebesgue measure on T. See [N2] p.31-p.57 for more details on the Hardy
spaces Hp, 1 ≤ p ≤ ∞.

(b) Φ is continuous on Hol(D) for the uniform convergence on compact sets of D.
Indeed, the point (a) is obvious since (ek)

n
k=1 is an orthonormal basis of KBσ and

∑

j≥0

f̂(j)êk(j) = 〈f, ek〉 ,

where 〈., .〉 means the Cauchy sesquilinear form 〈h, g〉 =
∑

k≥0 ĥ(k)ĝ(k). In order to check point
(b), let (fl)l∈N

be a sequence of Hol(D) converging to 0 uniformly on compact sets of D. We need to

see that (Φ (fl))l∈N
converges to 0, for which it is sufficient to show that liml

∣∣∣
∑

j≥0 f̂l(j)êk(j)
∣∣∣ = 0,

for every k = 1, 2, ..., n. Let ρ ∈]0, 1[, then

f̂l(j) =
1

2π

∫

ρT

fl(w)

wj+1
dw,

for all j, l ≥ 0 . As a result,

∣∣∣f̂l(j)
∣∣∣ ≤ 1

2π

1

ρj+1
‖fl‖ρT

.

So

∣∣∣∣∣
∑

j≥0

f̂l(j)êk(j)

∣∣∣∣∣ ≤
∑

j≥0

∣∣∣f̂l(j)êk(j)
∣∣∣ ≤

‖fl‖ρT

2πρ

∑

j≥0

|êk(j)|
1

ρj
.

Now if ρ is close enough to 1, it satisfies the inequality 1 ≤ 1
ρ
< 1

r
, which entails
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∑

j≥0

|êk(j)|
1

ρj
< +∞

for each k = 1..n. The result follows.

Let

Ψ = Id|X − Φ|X .

Using point (a), since Pol+ ⊂ H2 (Pol+ standing for the set of all complex polynomials p, p(z) =
∑N

k=0 akz
k), we get that Im

(
Ψ|Pol+

)
⊂ BσH

2. Now, since Pol+ ⊂ Y and Im(Φ) ⊂ Y , we deduce

that

Im
(
Ψ|Pol+

)
⊂ BσH

2 ∩ Y ⊂ BσH
2 ∩X,

since Y ⊂ X. Now Ψ (p) ∈ X and satisfies (Ψ (p))|σ = 0 (that is to say (Ψ (p)) (λ) = 0, ∀λ ∈ σ

(including multiplicities)) for all p ∈ Pol+. Using Lemma 1.1.0, we get that Im
(
Ψ|Pol+

)
⊂ BσX.

Now, Pol+ being dense in X (property (P2)), and Ψ being continuous on X, we can conclude that

Im (Ψ) ⊂ BσX.

Now, we return to the proof of Theorem 1.1.1. Let f ∈ X such that ‖ f ‖X≤ 1 and g = Φ(f).
Since Hol

(
1
r
D
)
⊂ Y , we have

g = Φ(f) ∈ Y

and

f − g = Ψ(f) ∈ BσX.

Moreover,

‖g‖Y ≤
∑

k=1..n

|〈f, ek〉| ‖ek‖Y .

In order to bound the right hand side, recall that for all j ≥ 0 and for R = 2
r+1

∈]1, 1
r
[,

∑

j≥0

∣∣∣f̂(j)êk(j)
∣∣∣ ≤

‖ek‖ 2
r+1

T

2π

∑

j≥0

∣∣∣f̂(j)
∣∣∣
(
r + 1

2

)j

.

Since the norm f 7→
∑

j≥0

∣∣∣f̂(j)
∣∣∣
(

r+1
2

)j
is continuous on Hol(D), and the inclusion X ⊂ Hol(D)

is also continuous, there exists Cr > 0 such that

∑

j≥0

∣∣∣f̂(j)
∣∣∣
(
r + 1

2

)j

≤ Cr ‖ f ‖X ,

for every f ∈ X. On the other hand,

Hol

(
2

r + 1
D

)
⊂ Y,

(continuous inclusion again), and hence there exists Kr > 0 such that

‖ek‖Y ≤ Krsup|z|< 2
r+1

|ek(z)| = Kr ‖ek‖ 2
r+1

T
.
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It is more or less clear that the right hand side of the last inequality can be bounded in terms
of r and n only. Let us give a proof to this fact. It is clear that it suffices to estimate

sup1<|z|< 2
r+1

|ek(z)| .
In order to bound this quantity, notice that

(1.1.0) |bλ(z)|2 ≤
∣∣∣∣
λ− z

1 − λ̄z

∣∣∣∣
2

= 1 +
(|z|2 − 1)(1 − |λ|2)

|1 − λ̄z|2 ,

for all λ ∈ D and all z ∈ 1
|λ|D. Using the identity (1.1.0) for λ = λj , 1 ≤ j ≤ n, and z = ρeit,

ρ = 2
r+1

, we get

∣∣ek(ρe
it)
∣∣2 = (1 − |λk|2)

(
Πk−1

j=1

∣∣bλj
(ρeit)

∣∣2
) ∣∣∣∣

1

1 − λ̄kρeit

∣∣∣∣
2

,

∣∣ek(ρe
it)
∣∣2 ≤

(
Πk−1

j=1

∣∣bλj
(ρeit)

∣∣2
)( 1

1 − |λk|ρ

)2

,

for all k = 2..n,

∣∣ek

(
ρeit
)∣∣2 ≤ 2

(
Πk−1

j=1

(
1 +

(ρ2 − 1)(1 − |λj |2)
1 − |λj|2ρ2

))(
1

1 − |λk|ρ

)2

.

Hence,

∣∣ek

(
ρeit
)∣∣2 ≤ 2

(
Πk−1

j=1

(
1 +

2( 1
r2 − 1)

1 − r2 4
(r+1)2

))(
1

1 − 2r
r+1

)2

.

Finally,

‖ek‖ 2
r+1

T
≤

≤ 1

1 − 2r
r+1

√√√√2

(
Πj=1..n−1

(
1 +

2( 1
r2 − 1)

1 − r2 4
(r+1)2

))
=: C1(r, n).

and

∑

j≥0

∣∣∣f̂(j)êk(j)
∣∣∣ ≤

Cr ‖ek‖ 2
r+1

T

2π
‖ f ‖X≤

≤ CrC1(r, n)

2π
‖ f ‖X .

On the other hand,

‖ek‖Y ≤ Kr ‖ek‖ 2
r+1

T
≤ KrC1(r, n).

So

‖g‖Y ≤
n∑

k=1

|〈f, ek〉| ‖ek‖Y ≤
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≤
n∑

k=1

CrC1(r, n)

2π
‖f‖X KrC1(r, n) =

nCrKr

2π
(C1(r, n))2 ‖f‖X ,

which proves that

c(σ,X, Y ) ≤ nCrKr

2π
(C1(r, n))2

and completes the proof of Theorem 1.1.1. �

1.2. The case where X is a Hilbert space
In the following theorem, we suppose that X is a Hilbert space and both X, Y satisfy properties

(Pi) for i = 1...4. In this case, we obtain a better estimate for c (σ, X, Y ) than in Theorem 1.1.1
(see point (i) of Theorem 1.2.1). For the case Y = H∞, (point (ii) of Theorem 1.2.1), we can
considerably improve this estimate.

Lemma. 1.2.0. Let σ = {λ1, ..., λ1, λ2, ..., λ2, ..., λt, ..., λt} be a finite sequence of D where every
λs is repeated according to its multiplicity ms,

∑t
s=1ms = n. Let (H, (.)H) be a Hilbert space

continuously emebedded into Hol(D) and satisfying properties (Pi) for i = 2, 3, 4. Then

KBσ =: HΘBσH = span
(
kλj , i : 1 ≤ j ≤ t, 0 ≤ i ≤ mj − 1

)
,

where kλ, i =
(

d
dλ

)i

kλ and kλ is the reproducing kernel of X at point λ for every λ ∈ D.

Proof. First, we explain the notation. Namely, since H ⊂ Hol(D) (with continuous inclusion), the
function λ 7→ f(λ) is holomorphic and since f(λ) = (f, kλ)H for every f , the function λ 7→ kλ

is (weakly, and hence strongly) holomorphic. We have f
′
(λ) =

(
f, d

dλ
kλ

)

H
, and by induction,

f (i)(λ) =

(
f,
(

d
dλ

)i

kλ

)

H

for every i, i = 0, 1, .... Denote

(
d

dλ

)i

kλ = kλ, i,

we know, (see Lemma 1.1.0), that

BσH = {f ∈ H : f (i) (λj) = 0, ∀i, j, 1 ≤ i < mj , j = 1, ..., t} =

= {f ∈ H :
(
f, kλj , i

)
H

= 0, ∀i, j, 1 ≤ i < mj, j = 1, ..., t}.
This means that

HΘBσH = span
(
kλj , i : 1 ≤ i < mj , j = 1, ..., t

)
.

�

Theorem. 1.2.1. Let Y be a Banach space verifying property (P1) and X = (H, (.)H) a Hilbert
space satisfying properties (Pi) for i = 2, 3, 4. We moreover suppose that for every 0 < r < 1
there exists ǫ > 0 such that kλ ∈ Hol ((1 + ǫ)D) for all |λ| < r, where kλ stands for the reproducing
kernel of X at point λ, and λ 7→ kλ is holomorphic on |λ| < r as a Hol((1 + ǫ)D)-valued function.
Let σ = {λ1, ..., λ1, λ2, ..., λ2, ..., λt, ..., λt} be a sequence in D, where λs are repeated according their
multiplicity ms,

∑t
s=1ms = n. Then we have,

i)



13

c (σ, X, Y ) ≤
(

n∑

k=1

‖ek‖2
Y

) 1
2

,

where (ek)
n
k=1 stands for the Gram-Schmidt orthogonalization (in the space H) of the sequence

kλ1,0, kλ1,1, kλ1,2..., kλ1,m1−1, kλ2,0, kλ2,1, kλ2,2..., kλ2,m2−1, ..., kλt,0, kλt,1, kλt,2..., kλt,mt−1,

notation kλ,i is introduced in Lemma 1.2.0.
ii) For the case Y = H∞, we have

c(σ, H, H∞) ≤ supz∈D ‖PBσkz‖H ,

where PBσ =
∑n

k=1 (., ek)H ek stands for the orthogonal projection of H onto KBσ ,

KBσ = span
(
kλj , i : 1 ≤ i < mj , j = 1, ..., t

)
.

Proof. i). Let f ∈ X, ‖f‖X ≤ 1 . Lemma 1.2.0 shows that

g = PBσf =

n∑

k=1

(f, ek)H ek

is the orthogonal projection of f onto subspace KBσ . Function g belongs to Y because all kλj ,i are
in Hol((1 + ǫ)D) for a convenient ǫ > 0, and Y satisfies (P1).
On the other hand,

g − f ∈ BσH,

again by Lemma 1.2.0.

Moreover,

‖g‖Y ≤
n∑

k=1

|(f, ek)H | ‖ek‖Y ,

and by Cauchy-Schwarz inequality,

‖g‖Y ≤
(

n∑

k=1

|(f, ek)H |2
) 1

2
(

n∑

k=1

‖ek‖2
Y

) 1
2

≤

≤ ‖f‖H

(
n∑

k=1

‖ek‖2
Y

) 1
2

,

which proves i).
ii). If Y = H∞, then

|g(z)| = |(PBσf, kz)H | = |(f, PBσkz)H | ≤ ‖f‖H ‖PBσkz‖H ,

for all z ∈ D, which proves ii). �

2. Upper bounds for Cn, r
(
H2, H∞)
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In this section, we specialize the estimate obtained in point (ii) of Theorem 1.2.1 for the
case X = H2, the Hardy space of the disc. Later on, we will see that this estimate is sharp at
least for some special sequences σ (see Section 6 ). We also develop a slightly different approach
to the interpolation constant c (σ, H2, H∞) giving more estimates for individual sequences σ =
{λ1, ..., λn} of D.

Corollary. 2.0. Let σ = {λ1, ..., λn} be a sequence in D. Then,

c
(
σ, H2, H∞) ≤ supz∈D

(
1 − |Bσ(z)|2

1 − |z|2
) 1

2

.

Indeed, applying point (ii) of Theorem 1.2.1 for X = H2 and Y = H∞, and using

kz(ζ) =
1

1 − z̄ζ

and

(PBσkz) (ζ) =
1 − Bσ(z)Bσ(ζ)

1 − zζ
,

(see [N1] p.199), we obtain

‖PBσkz‖H2 =

(
1 − |Bσ(z)|2

1 − |z|2
) 1

2

,

which gives the result.

�

Proposition. 2.1. For every sequence σ = {λ1, ..., λn} of D we have

c
(
σ, H2, H∞) ≤

√
2sup|ζ|=1 |B′(ζ)|

1
2 =

√
2sup|ζ|=1

∣∣∣∣∣

n∑

i=1

1 − |λi|2(
1 − λ̄iζ

)2
Bσ(ζ)

bλi
(ζ)

∣∣∣∣∣

1
2

.

Proof. We use Corollary 2.0. The map ζ 7→ ‖PB (kζ)‖ = sup {|f(ζ)| : f ∈ KB, ‖f‖ ≤ 1} , and
hence the map

ζ 7→
(

1 − |B(ζ)|2
1 − |ζ |2

) 1
2

,

is a subharmonic function so

sup|ζ|<1

(
1 − |B(ζ)|2

1 − |ζ |2
) 1

2

≤ sup|w|=1limr→1

(
1 − |B(rw)|2

1 − |rw|2
) 1

2

.

Now apply Taylor’s Formula of order 1 for points w ∈ T and u = rw, 0 < r < 1. (It is applicable

because B is holomorphic at every point of T). We get

B(u) − B(w)

u− w
= B′(w) + o(1),

and since

|u− w| = 1 − |u|,
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∣∣∣∣
B(u) −B(w)

u− w

∣∣∣∣ =
|B(u) − B(w)|

1 − |u| = |B′(w) + o(1)|.

Now,

|B(u) −B(w)| ≥ |B(w)| − |B(u)| = 1 − |B(u)|,

1 − |B(u)|
1 − |u| ≤ |B(u) − B(w)|

1 − |u| = |B′(w) + o(1)|,

and

limr→1

(
1 − |B(rw)|

1 − |rw|

) 1
2

≤
√
|B′(w)|.

Since we have

B′(w) = −
n∑

i=1

1 − |λi|2
(1 − λ̄iw)2

Πn
j=1, j 6=ibλj

(w),

for all w ∈ T . This completes the proof since

1 − |B(rw)|2
1 − |rw|2 =

(1 − |B(rw)|)(1 + |B(rw)|)
(1 − |rw|)(1 + |rw|) ≤ 2

1 − |B(rw)|
1 − |rw| . �

Corollary. 2.2. Let σ = {λ1, ..., λn} and r = max1≤i≤n|λi|. Then

c
(
σ, H2, H∞) ≤ 2

(
n

1 − r

) 1
2

,

and hence,

Cn, r(H
2, H∞) ≤ 2

(
n

1 − r

) 1
2

.

Indeed, we apply Proposition 2.1 and observe that

|B′(w)| ≤
∣∣∣∣∣
∑

i=1..n

1 − |λi|2
(1 − |λi|)2

∣∣∣∣∣ ≤ n
1 + r

1 − r
≤ 2n

1 − r
.

�

Now, we develop a slightly different approach to the interpolation constant c (σ, H2, H∞).

Theorem. 2.3. For every sequence σ = {λ1, ..., λn} of D ,

c
(
σ, H2, H∞) ≤ supz∈T

(
n∑

k=1

(1 − |λk|2)
|z − λk|2

) 1
2

Proof. We give two proofs to this estimate. The first proof is shorter than the second one, but it
contains an extra

√
2 factor.

First proof. Using Proposition 2.1., we obtain

c
(
σ, H2, H∞) ≤

√
2sup|ζ|=1

∣∣∣∣∣

n∑

j=1

1 − |λj|2(
1 − λjζ

)2
Bσ

bλj

∣∣∣∣∣

1
2

≤
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≤
√

2sup|ζ|=1

(
n∑

i=1

1 − |λi|2
|1 − λiζ |2

) 1
2

=
√

2sup|ζ|=1

(
n∑

i=1

1 − |λi|2
|ζ̄ − λi|2

) 1
2

.

Second proof. In order to simplify the notation, we set B = Bσ. Consider KB, the n-dimensional
subspace of H2 defined by

KB =
(
BH2

)⊥ = H2ΘBH2.

Then the family (ek)
n
k=1 introduced in the proof of Theorem 1.1.1, (known as Malmquist’s basis),

is an orthonormal basis of KB, (see [N1], Malmquist-Walsh Lemma, p.116). Recall that

e1 =
f1

‖f1‖2

,

and

ek =
fk

‖fk‖2

Πk−1
j=1bλj

,

for all k = 2..n, where

fk =
1

1 − λkz
,

is the reproducing kernel of H2 associated to λk. Now, let f ∈ H2 and

g = PBf =

n∑

k=1

(f, ek)H2 ek.

Function g belongs to H∞ because it is a finite sum of H∞ functions. Moreover,

g (λi) = f (λi)

for all i = 1...n, counting with multiplicities. (Indeed, we can write f = PBf + g1 with g1 ∈ K⊥
B =

BH2). We have

|g(ζ)| ≤
n∑

k=1

|(f, ek)H2 | |ek(ζ)| ,

for all ζ ∈ D. And by Cauchy-Schwarz inequality,

|g(ζ)| ≤
(

n∑

k=1

|(f, ek)H2 |2
) 1

2 ( n∑

k=1

(1 − |λk|2)
|1 − λkζ |2

) 1
2

,

‖g‖∞ ≤ ‖f‖2 supζ∈T

(
n∑

k=1

(1 − |λk|2)
|1 − λkζ |2

) 1
2

.

Since f is an arbitrary H2 function, we obtain

c(σ, H2, H∞) ≤ supζ∈T

(
n∑

k=1

(1 − |λk|2)
|ζ − λk|2

)1
2

,

which completes the proof.
�
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Corollary. 2.4. For any sequence σ = {λ1, ..., λn} in D ,

c(σ, H2, H∞) ≤
(

n∑

j=1

1 + |λj|
1 − |λj|

) 1
2

.

Indeed,

n∑

k=1

(1 − |λk|2)
|ζ − λk|2

≤
(

n∑

k=1

(1 − |λk|2)
(1 − |λk|) 2

)1
2

and the result follows from Theorem 2.3. �

Remark 2.5. As a result, we get once more the same estimate for Cn,r(H
2, H∞) as in Corollary

2.2, with the constant
√

2 instead of 2: since 1 + |λj| ≤ 2 and 1− |λj| ≥ 1− r, applying Corollary
2.4, we get

Cn,r(H
2, H∞) ≤

√
2

√
n√

1 − r
.

It is natural to wonder if it is possible to improve the bound
√

2
√

n√
1−r

. We return to this question

in Chapter 5 below.

3. Upper bounds for Cn, r (Hp, H∞) , p ≥ 1
The aim of this section is to extend Corollary 2.2 to all Hardy spaces Hp. This is the subject

of the following theorem.

Theorem. 3.0. Let 1 ≤ p ≤ ∞. Then

Cn,r (Hp, H∞) ≤ Ap

(
n

1 − r

) 1
p

,

for all n ≥ 1, 0 ≤ r < 1, where Ap is a constant depending only on p.

We first prove the following lemma.

Lemma. 3.1. Let σ = {λ1, ..., λn} and r = max1≤i≤n|λi|, then

c(σ, H1, H∞) ≤ 2n

1 − r
and hence,

Cn,r(H
1, H∞) ≤ 2n

1 − r
.

Proof. Let f ∈ H1 such that ‖f‖1 ≤ 1 and let,

g = PBf =
∑

k=1..n

〈f, ek〉 ek,

where, as always, (ek)
n
k=1 is the Malmquist basis corresponding to σ, and where 〈., .〉 means the

Cauchy sesquilinear form 〈f, g〉 =
∑

k≥0 ĥ(k)ĝ(k). That is to say that,
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g(ζ) =
∑

k=1..n

〈f, ek〉 ek(ζ) =

〈
f,
∑

k=1..n

ekek(ζ)

〉
,

for all ζ ∈ D, which gives,

|g(ζ)| ≤ ‖f‖H1

∥∥∥∥∥
∑

k=1..n

ekek(ζ)

∥∥∥∥∥
H∞

≤
∥∥∥∥∥
∑

k=1..n

ekek(ζ)

∥∥∥∥∥
H∞

.

Now, we recall that

ek =

(
1 − |λk|2

) 1
2

(
1 − λkz

)
(
Πk−1

j=1bλj

)
,

and, as we saw it in Theorem 2.3. (second proof),

‖ek‖H∞ ≤ (1 + |λk|)
1
2

(1 − |λk|)
1
2

.

As a consequence,

|g(ζ)| ≤
n∑

k=1

‖ek‖H∞

∣∣∣ek(ζ)
∣∣∣ =

n∑

k=1

‖ek‖2
H∞ ≤

n∑

k=1

(1 + |λk|)
(1 − |λk|)

≤ 2n

1 − r
,

for all ζ ∈ D, which completes the proof. �

Proof of Theorem 3.0. Let σ = {λ1, ..., λn} be a sequence in the unit disc D, Bσ = Πn
i=1bλi

, and
T : Hp −→ H∞/BσH

∞ be the restriction map defined by

Tf = {g ∈ H∞ : f − g ∈ BσH
p} ,

for every f . Then,

‖ T ‖Hp→H∞/BσH∞= c (σ, Hp, H∞) .

There exists 0 ≤ θ ≤ 1 such that 1
p

= 1 − θ, and since (we use the notation of the interpolation

theory between Banach spaces see [Tr] or [Be]) [H1, H∞]θ = Hp (a topological identity: the spaces
are the same and the norms are equivalent (up to constants depending on p only), see [J]), by a
known interpolation Theorem (see [Tr] , Theorem 1.9.3, p.59),

‖ T ‖[H1,H∞]θ→H∞/BσH∞≤
(
A1c

(
σ, H1, H∞))1−θ

(A∞c (σ, H∞, H∞))θ ,

where A1, A∞ are numerical constants, and using both Lemma 3.1 and the fact that c (σ, H∞, H∞) ≤
1, we find

‖ T ‖[H1,H∞]θ→H∞/BσH∞≤
(
A1

2n

1 − r

)1−θ

Aθ
∞ = (2A1)

1−θ Aθ
∞

(
n

1 − r

) 1
p

,

which completes the proof.

�

4. Upper bounds for Cn, r
(
L2
a, H

∞)
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In this section, we generalize Corollary 2.2 to the case of spaces X which contain H2: X =

l2a

(
1

(k+1)α−1

)
, α ≥ 1, the Hardy weighted spaces of all f(z) =

∑
k≥0 f̂(k)zk satisfying

∑

k≥0

∣∣∣f̂(k)
∣∣∣
2 1

(k + 1)2(α−1)
<∞.

It is also important to recall that

l2a

(
1

(k + 1)α−1

)
= L2

a

((
1 − |z|2

)2α−3
dA
)
, α > 1,

where L2
a

((
1 − |z|2

)β
dA
)
, β > −1, stand for the Bergman weighted spaces of all holomorphic

functions f such that ∫

D

|f(z)|2
(
1 − |z|2

)β
dA <∞.

Notice also that H2 = l2a(1) and L2
a(D) = l2a

(
1

(k+1)
1
2

)
, where L2

a(D) stands for the Bergman space

of the unit disc D.

Theorem. 4.0. Let σ be a sequence in D, α ∈ [1, 2] and β ∈] − 1, 1]. Then

c

(
σ, l2a

(
1

(k + 1)α−1

)
, H∞

)
≤ A

(
n

1 − r

) 2α−1
2

.

Otherwise,

Cn, r

(
l2a

(
1

(k + 1)α−1

)
, H∞

)
≤ A

(
n

1 − r

) 2α−1
2

,

Cn, r

(
L2

a

((
1 − |z|2

)β
dA
)
, H∞

)
≤ A

′

(
n

1 − r

)β+2
2

,

for all n ≥ 1, 0 ≤ r < 1, where A = A(α − 1) is a constant depending only on α and A
′
= A

′
(β)

is a constant depending only on β.
In particular, for α = 3

2
(or equivalently β = 0) we get

Cn, r

(
L2

a, H
∞) ≤ 2

√
3

n

1 − r
,

for all n ≥ 1, 0 ≤ r < 1.

First, we prove a following lemma. In fact, Lemma 4.1 below is a partial case (p = 2) of the
following K. Dyakonov’s result [D] (which is, in turn, a generalization of M. Levin’s inequality [L]
corresponding to the case p = ∞): for every p, 1 < p ≤ ∞ there exists a constant cp > 0 such that

∥∥∥f
′
∥∥∥

Hp
≤ cp

∥∥∥B
′
∥∥∥
∞
‖f‖Hp

for all f ∈ KB, where B is a finite Blaschke product (of order n) and ‖.‖∞ means the norm in
L∞(T). For our partial case, our proof is different and the constant is slightly better. We notice
that in general, Bernstein type inequalities have already been the subject of a lot of papers. Among
others, Chapter 7 of P. Borwein and T. Erdélyi book’s, see [BoEr], is devoted to such inequalities.
This is also the case of A. Baranaov’s work, see [B1], [B2] and [B3], and also of R. A. DeVore and
G. G. Lorentz’s book, see [DeLo].
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Lemma. 4.1. Let B = Πn
j=1bλj

, be a finite Blaschke product (of order n), r = maxj |λj | , and

f ∈ KB =: H2ΘBH2. Then, ∥∥∥f
′
∥∥∥

H2
≤ 5

2

n

1 − r
‖f‖H2 .

Proof. Since f ∈ KB, f = PBf =
∑n

k=1 (f, ek)H2 ek. Noticing that,

e
′

k =
k−1∑

i=1

b
′

λi

bλi

ek + λk
1(

1 − λkz
)ek,

for k = 2..n, we get

f
′

= (PBf)
′

= (f, e1)H2 e
′

1 +

n∑

k=2

(f, ek)H2 e
′

k =

= (f, e1)H2

λ̄1(
1 − λ1z

)e1 +
n∑

k=2

(f, ek)H2

k−1∑

i=1

b
′

λi

bλi

ek +
n∑

k=2

(f, ek)H2 λk
1(

1 − λkz
)ek,

which gives

f
′

= (f, e1)H2

λ̄1(
1 − λ1z

)e1 +
n∑

k=2

n−1∑

i=1

(f, ek)H2

b
′

λi

bλi

ekχ[1, k−1](i) +
n∑

k=2

(f, ek)H2 λk
1(

1 − λkz
)ek =

= (f, e1)H2

λ̄1(
1 − λ1z

)e1 +

n∑

i=1

b
′

λi

bλi

n−1∑

k=i+1

(f, ek)H2 ek +

n∑

k=2

(f, ek)H2 λk
1(

1 − λkz
)ek,

where χ[1, k−1] is the characteristic function of [1, k − 1]. Now,

∥∥∥∥∥(f, e1)H2

λ̄1(
1 − λ1z

)e1

∥∥∥∥∥
H2

≤ |(f, e1)H2 |
∥∥∥∥∥

λ̄1(
1 − λ1z

)

∥∥∥∥∥
∞

‖e1‖H2 ≤

≤ ‖f‖H2 ‖e1‖H2

1

1 − r
‖e1‖H2 ≤ ‖f‖H2

1

1 − r
,

using both Cauchy-Schwarz inequality and the fact that e1 is a vector of norm 1 in H2. By the
same reason, we have

∥∥∥∥∥

n∑

k=2

λk (f, ek)H2

1(
1 − λkz

)ek

∥∥∥∥∥
H2

≤
n∑

k=2

|(f, ek)H2|
∥∥∥∥∥λk

1(
1 − λkz

)

∥∥∥∥∥
∞

‖ek‖H2 ≤

≤ 1

1 − r

n∑

k=2

|(f, ek)H2 | ≤
1

1 − r

(
n∑

k=2

|(f, ek)H2 |2
) 1

2 √
n− 2 ≤ 1

1 − r
‖f‖H2

√
n− 2.

Finally, ∥∥∥∥∥

n−1∑

i=1

b
′

λi

bλi

n∑

k=i+1

ek (f, ek)H2

∥∥∥∥∥
H2

≤
n−1∑

i=1

∥∥∥∥∥
b
′

λi

bλi

∥∥∥∥∥
∞

∥∥∥∥∥

n∑

k=i+1

(f, ek)H2 ek

∥∥∥∥∥
H2

=

=

(

max1≤i≤n−1

∥∥∥∥∥
b
′

λi

bλi

∥∥∥∥∥
∞

)
n−1∑

i=1

(
n∑

k=i+1

|(f, ek)H2 |2
) 1

2

≤ maxi

∥∥∥∥∥
b
′

λi

bλi

∥∥∥∥∥
∞

n−1∑

i=1

‖f‖H2 .

Moreover, since ∥∥∥∥∥
b
′

λi

bλi

∥∥∥∥∥
∞

=

∥∥∥∥∥
|λi|2 − 1(

1 − λiz
)
(λi − z)

∥∥∥∥∥
∞

≤ 2

1 − |λi|
≤ 2

1 − r
,
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we get, ∥∥∥∥∥

n−1∑

i=1

b
′

λi

bλi

n∑

k=i+1

(f, ek)H2 ek

∥∥∥∥∥
H2

≤ 2(n− 1)

1 − r
‖f‖H2 .

Finally,

∥∥∥f
′
∥∥∥

H2
≤ 1

1 − r
‖f‖H2 +

2(n− 1)

1 − r
‖f‖H2 +

1

1 − r

√
n− 2 ‖f‖H2 ≤

(
2n− 1 +

√
n− 2

)

1 − r
‖f‖H2 ≤

≤ 5

2

n

1 − r
‖f‖H2 ,

for all n ≥ 2 and for every f ∈ KB. (The case n = 1 is obvious since
∥∥f ′
∥∥

H2 ≤ 1
1−r

‖f‖H2). �

Corollary. 4.2. Let σ a sequence in D. Then,

c

(
σ, l2a

(
1

k + 1

)
, H∞

)
≤ 6

√
2

(
n

1 − r

) 3
2

.

Indeed, if f ∈ l2a

(
1

(k+1)N

)
= H then |PBf(ζ)| = |〈PBf, kζ〉| = |〈f, PBkζ〉|, where 〈., .〉 means

the Cauchy pairing and kζ =
(
1 − ζz

)−1
. Denoting H⋆ the dual of H with respect to this pairing,

H⋆ = l2a
(
(k + 1)N

)
, we get

|PBf(ζ)| ≤ ‖f‖H ‖PBkζ‖H⋆ ≤ ‖f‖H K
(
‖PBkζ‖H2 +

∥∥∥(PBkζ)
′
∥∥∥

H2

)
,

where

K = max

{
1, supk≥1

k + 1

k

}
= 2

Since PBkζ ∈ KB, Lemma 4.1 implies

|PBf(ζ)| ≤ ‖f‖H ‖PBkζ‖H⋆ ≤ ‖f‖H K

(
‖PBkζ‖H2 +

(
5

2

n

1 − r

)
‖PBkζ‖H2

)
≤

≤ A

(
n

1 − r

) 3
2

‖f‖H ,

where A =
√

2K
(

1
2

+ 5
2

)
= 6

√
2, since ‖PBkζ‖2 ≤

√
2n√
1−r

, and since we can suppose n ≥ 2, (the case

n = 1 being obvious).

�

Proof of Theorem 4.0. The case α = 1 corresponds to X = H2 and has already been studied
in Section 1 (we can choose A(0) =

√
2). We now suppose α > 1. Let Bσ = Πn

i=1bλi
and T :

l2A

(
1

(k+1)α−1

)
−→ H∞/BσH

∞ be the restriction map defined by

Tf =

{
g ∈ H∞ : f − g ∈ Bσl

2
a

(
1

(k + 1)α−1

)}
,

for every f . Then,

‖ T ‖
l2A

“

1
(k+1)α−1

”

→H∞/BσH∞= c

(
σ, l2a

(
1

(k + 1)α−1

)
, H∞

)
.
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We set such that α− 1 = θ with 0 < θ ≤ 1, and since (as in Theorem 3.0, we use the notation of
the interpolation theory between Banach spaces see [Tr] or [Be])

[
l2a

(
1

(k + 1)0

)
, l2a

(
1

(k + 1)1

)]

θ,2

= l2a

((
1

(k + 1)0

)2 1−θ
2
(

1

(k + 1)1

)2 θ
2

)
=

= l2a

(
1

(k + 1)θ

)
= l2A

(
1

(k + 1)α−1

)
,

this gives, using Corollary 4.2 and (again) [Tr] Theorem 1.9.3 p.59,

‖ T ‖
l2a

“

1
(k+1)α−1

”

→H∞/BσH∞≤

≤
(
c

(
σλ,n, l

2
a

(
1

(k + 1)0

)
, H∞

))1−θ (
c

(
σλ,n, l

2
a

(
1

(k + 1)1

)
, H∞

))θ

≤

≤
(
A(0)

(
n

1 − r

) 1
2

)1−θ(
A(1)

(
n

1 − r

) 3
2

)θ

=

= A(0)1−θA(1)θ

(
n

1 − r

) 1−θ
2

+ 3θ
2

.

It remains to use θ = α − 1 and set A(α − 1) = A(0)1−θA(1)θ. In particular, for α = 3/2 we get
1−θ
2

+ 3θ
2

= 1 and

A

(
3

2

)
= A(0)(1− 1

2
)A(1)

1
2 =

√
2

1
2 (6

√
2)

1
2 = 2

√
3.

�

5. About the links with Carleson interpolation
In this section, we compare the method used in Sections 1, 2, 3 and 4 with those resulting

from Carleson-type interpolation. Especially, we are interested in the case of circular sequences
σ and radial sequences σ. Recall that given a (finite) set σ = {λ1, ..., λn} ⊂ D, the interpolation
constant CI(σ) is defined by

CI(σ) = sup‖a‖l∞≤1inf
(
‖ g ‖∞: g ∈ H∞, g|σ = a

)
.

We introduce the evaluation functionals ϕλ for λ ∈ D,

ϕλ(f) = f(λ), f ∈ X,

as well as the evaluation of the derivatives ϕλ,s (s = 0, 1, ...),

ϕλ,s(f) = f (s)(λ), f ∈ X.

Theorem. 5.0. Let X be a Banach space, X ⊂ Hol(D). Then, for all sequences σ = {λ1, ..., λn}
of distinct points in the unit disc D,

max1≤i≤n ‖ϕλi
‖ ≤ c(σ, X, H∞) ≤ CI(σ).max1≤i≤n ‖ϕλi

‖ ,
where CI(σ) stands for the interpolation constant.
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Proof. Let f ∈ X. By definition of CI(σ), there exist a g ∈ H∞ such that

f (λi) = g (λi) ∀i = 1..n,

with

‖ g ‖∞≤ CI(σ)maxi |f (λi)| ≤

≤ CI(σ)maxi ‖ϕλi
‖ ‖f‖X .

Now, taking the supremum over all f ∈ X such that ‖f‖X ≤ 1, we get the right hand side
inequality. The left hand side one is clear since if g ∈ H∞ satisfies f (λi) = g (λi) ∀i = 1..n, then
‖ g ‖∞≥ |g (λi)| = |f (λi)| = |ϕλi

(f)| , ∀i = 1..n. �

Comments 5.1.

Theorem 5.0 tells us that, for σ with a “reasonable” interpolation constant CI(σ), the quantity
c(σ, X, H∞) behaves as maxi ‖ϕλi

‖. However, for “tight” sequences σ, the constant CI(σ) is so
large that the estimate in question contains almost no information. On the other hand, an advan-
tage of the estimate of Theorem 5.0 is that it does not contain #σ = n explicitly. Therefore, for
well-separated sequences σ, Theorem 5.0 should give a better estimate than those of Corollary
2.2, and of Theorem 4.0.

Now, how does the interpolation constant CI(σ) behave in terms of the caracteristic r and n of
σ? In what follows we try to answer that question when σ is a r− circular sequence. In that case,
we recall the definition of the constant α:

α =
mini6=j |λi−λj |

1−r
= ra

1−r
.

Example. 5.2. Two points sets. Let σ = {λ1, λ2}, λi ∈ D, λ1 6= λ2. Then,

1

|bλ1 (λ2)|
≤ CI(σ) ≤ 2

|bλ1 (λ2)|
,

and Theorem 5.0 implies

c(σ, X, H∞) ≤ 2

|bλ1 (λ2)|
maxi=1, 2 ‖ϕλi

‖ ,

whereas a straightforward estimate gives

c(σ, X, H∞) ≤ ‖ϕλ1‖ +max|λ|≤r ‖ϕλ, 1‖ (1 + |λ1|),
where r = max (|λ1| , |λ2|) and the functional ϕλ, 1 is defined in 5. The difference is that the first
upper bound blows up when λ1 → λ2, whereas the second one is still well-bounded.

Indeed, for an H∞-function f solving the interpolation f (λ1) = 1, f (λ2) = −1, we have

2 = |f (λ1) − f (λ2)| ≤ 2 ‖f‖∞ |bλ1 (λ2)| ,
(indeed, the function g = f(λ1)−f

bλ1
is holomorphic in D and its H∞− norm on T is equal to

‖f (λ1) − f‖∞ , (which is less or equal than 2 ‖f‖∞), since the Blaschke factor bλ1 has modu-
lus 1 on the torus T). Hence, ‖f‖∞ ≥ 1

|bλ1
(λ2)| , which shows CI(σ) ≥ 1

|bλ1
(λ2)| .

On the other hand, setting

f = a1
bλ2

bλ2 (λ1)
+ a2

bλ1

bλ1 (λ2)
,

for arbitrary a1, a1 ∈ C, we get ‖f‖∞ ≤ |a1|+|a2|
|bλ1

(λ2)| ≤
max(|a1|, |a2|)
|bλ1

(λ2)| . This implies CI(σ) ≤ 2

|bλ1
(λ2)| .
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For the second estimate stated in the example, taking f ∈ X we set

g = f (λ1) +
f (λ2) − f (λ1)

λ2 − λ1
(z − λ1) ,

and we get

‖g‖∞ ≤ |f (λ1)| +
∣∣∣∣
f (λ2) − f (λ1)

λ2 − λ1

∣∣∣∣ (1 + |λ1|) ≤

≤ ‖ϕλ1‖ +maxλ∈[λ1, λ2] ‖ϕλ, 1‖ (1 + |λ1|),
and the result follows.

�

Example. 5.3. Circular sequences. Let 0 < r < 1 and σ = {λ1, λ2, ..., λn}, λi 6= λj , |λi| = r for

every i, and let α =
mini6=j |λi−λj |

1−r
. Then, 1

α
≤ CI(σ) ≤ 8eK

′
(1+ K

α3 ), where K, K
′
> 0 are absolute

constants. Therefore,

c(σ, X, H∞) ≤
(
8eK

′
(1+ K

α3 )
)
.max|λ|=r ‖ϕλ‖

for every r − circular set σ (an estimate does not depending on n explicitly). In particular, there
exists an increasing function ϕ : R+ → R+ such that, for n uniformly distincts points λ1, ..., λn,
|λi| = r, |λi − λi+1| = 2rsin

(
π
2n

)
, we have

(1) c(σ, H2, H∞) ≤ ϕ
(

n(1−r)
r

)
1

(1−r)
1
2

, for every n and r, 0 < r < 1 and in particular, for

n ≤ [r(1 − r)−1] we obtain

c(σ, H2, H∞) ≤ c
1

(1 − r)
1
2

,

whereas our specific Corollary 2.2, (which is sharp over all n elements sequences σ), gives

c(σ, H2, H∞) ≤ c
1

(1 − r)

only.

(2) c(σ, L2
a, H

∞) ≤ ϕ
(

n(1−r)
r

)
1

(1−r)
, for every n and r, 0 < r < 1 and in particular, for

n ≤ [r(1 − r)−1] we obtain

c(σ, L2
a, H

∞) ≤ c
1

(1 − r)
,

whereas our specific Theorem 4.0, (which, again, is sharp over all n elements sequences σ), gives

c(σ, L2
a, H

∞) ≤ c
1

(1 − r)2

only.
In order to explain the statements of this example, we observe first that the Carleson interpo-

lation constant CI(σ), for r − circular sets σ, essentially depends on α only. Indeed, as is known,
the separation constant

∆ = inf1≤j, k≤n, j 6=k|bλj
(λk)|,

is of the order of min(α, 1), and the Carleson measure density for µ =
∑n

i=1

(
1 − |λi|2

)
δλi

also
depends on α only. All together, CI(σ) is bounded if and only if α is separated from 0; see [N1]
p.158 for the details of this reasoning. In fact, we can show that

α

1 + αr
≤ ∆ ≤ α
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and
1

α
≤ CI(σ) ≤ eK

′
(1+ K

α3 ),

(as claimed as above), where K, K
′
> 0 are absolute constants, see Appendix 5.5 for details.

Now, checking point (1) for n equidistant points on the circle |z| = r, λj = re
2iπj

n ,j = 1, 2, ..., n,
one obtains |λi − λi+1| = 2rsin

(
π
2n

)
≥ 2r

n
, and hence α ≥ 2r

n(1−r)
. The above estimate for CI(σ)

entails that we can take ϕ(t) = 8eK
′
(1+Kt3) and then,

CI(σ) ≤ 8eK
′
(1+ K

α3 ) ≤ ϕ

(
n(1 − r)

r

)
.

Since, for the space H2, we have ‖ϕλ‖ = (1−|λ|2)− 1
2 , the upper estimate for c(σ, H2, H∞) follows.

Since for the space L2
a, we have ‖ϕλ‖ = (1 − |λ|2), the same reasoning works for c(σ, L2

a, H
∞).

�

Example. 5.4. Radial sequences. Now we compare our two estimates of the interpolation con-
stant c(σ, X, H∞) (through the Carleson interpolation, and by the preceding general and specific
methods) for special (geometric) sequences on the radius of the unit disc D, say on the radius
[0, 1). Let 0 < ρ < 1, p ∈ (0, ∞)and

λj = 1 − ρj+p, j = 0, ..., n,

so that the distances 1−λj = ρjρp form a geometric progression; the starting point is λ0 = 1− ρp.
Let

r = max0≤j≤nλj = λk = 1 − ρn+p,

and δ = δ(B) = min0≤k≤n |Bk (λk)| , where Bk = B
bλk

. It is known that 1
δ
≤ CI(σ) ≤ 8

δ2 . (The left

hand side inequality is easy: if f ∈ H∞, f (λk) = 1, f (λj) = 0 for j 6= k, then f = Bkg and
‖f‖∞ = ‖g‖∞ ≥ |g (λk)| = 1

|Bk(λk)| , and hence CI(σ) ≥ 1
|Bk(λk)| for every k = 0, 1, 2, ..., n. The

right hand side inequality is a theorem by P. Jones and S. Vinogradov, see ([N1], p 189). So, we
need to know the asymptotic behaviour of δ = δ(B) when n→ ∞, or ρ→ 1, or ρ→ 0, or p→ ∞,
or p→ 0.

Claim. Let σ =
{
1 − ρp+k

}n

k=1
, 0 < ρ < 1, p > 0. The estimate of c(σ, H2, H∞) via the Carleson

constant CI(σ) (using Theorem 5.0) is comparable with or better than the estimates from Corollary

2.2 (for X = H2) and Theorem 4.0 (for X = L2
a and X = L2

a

(
(1 − |z|2)β

)
) for sufficently small

values of ρ (as ρ → 0) and/or for a fixed ρ and n → ∞. In all other cases, as for p→ ∞ (which
means λ1 → 1), or ρ→ 1, or n→ ∞ and ρ→ 1, it is worse.

In order to justify that claim, we use the following upper bound for δ(B) = min0≤k≤n |Bk (λk)| ,
assuming (for the notation convenience) the n is an even integer n = 2k and computing Bk (λk),

|Bk (λk)| = Πk−1
j=1

λk − λj

1 − λjλk
.Π2k

j=k+1

λj − λk

1 − λjλk
=

= Πk−1
j=1

1 − ρk−j

1 + ρk−j − ρk+p
.Π2k

j=k+1

1 − ρj−k

1 + ρj−k − ρj+p
=

= Πk
s=1

1 − ρs

1 + ρs (1 − ρp+k−s)
.Πk

s=1

1 − ρs

1 + ρs (1 − ρp+k)
≤

≤
(

Πk
s=1

1 − ρs

1 + ρs (1 − ρp+k−s)

)2

≤
(

Πk
s=1

1 − ρs

1 + ρs (1 − ρp)

)2

=: A(n, ρ, p).
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For a lower bound, we proceed as in [N1] p.160 and get

|Bk (λk)| = Πk
s=1

1 − ρs

1 + ρs (1 − ρp+k−s)
.Πn−k

s=1

1 − ρs

1 + ρs (1 − ρp+k)
≥

≥
(

Πn
s=1

1 − ρs

1 + ρs (1 − ρp+n)

)2

=: C(n, ρ, p)

for every k = 0, 1, ..., n. Hence,

C(n, ρ, p) ≤ δ(B) ≤ A(n, ρ, p).

On the other hand, using Corollary 2.4 (for X = H2)

c(σ, H2, H∞) ≤
(

n∑

j=1

1 + |λj|
1 − |λj |

)1
2

≤
(

n∑

j=1

2

ρj+p

) 1
2

=

=

(
2

ρn+p

) 1
2

(
n∑

j=1

ρn−j

)1
2

=

(
2

1 − r

) 1
2
(

1 − ρn

1 − ρ

) 1
2

=: D(n, ρ, p).

Now, we can compare the behaviour of D(n, ρ, p) and CI(σ).maxj

∥∥ϕλj

∥∥
H2 for every parameter

n, ρ, p.
5.4. (a) Sparse sequences σ (ρ→ 0, or at least 0 < ρ ≤ ǫ < 1).
If ρ → 0, one has limρ→0C(n, ρ, p) = 1, and hence limρ→0CI (σn, ρ, p) ≤ 8. So, asymptotically,

Theorem 5.0 implies

c(σn, ρ, p, H
2, H∞) ≤ (8 + ǫ)

(
2

1 − r

) 1
2

,

and Corollary 2.4 gives slightly better but comparable estimate,

c(σn, ρ, p, H
2, H∞) ≤ (1 + ǫ)

(
2

1 − r

) 1
2

.

In our definition, if p > 0 is fixed and ρ → 0 then λ1 = λ1 (ρ, p) → 1. In order to keep λ1

at a fixed position we can set p = p (ρ) = c

log( 1
ρ)
. Then λ1 = 1 − ρp = 1 − e−c, c > 0. Still,

limρ→0C (n, ρ, p (ρ)) = 1.

5.4. (b) Condensed sequences σ (ρ→ 1). In this case, limρ→0D(n, ρ, p) =
(

2
1−r

) 1
2
√
n + 1,

and hence using Corollary 2.4 we cannot get better than the general estimate of Corollary

2.5, c(σ, H2, H∞) ≤
(√

n+ 1 + ǫ
) (

2
1−r

) 1
2 . To the contrary, A(n, ρ, p) ∼ρ→1

(n
2 )!

2
n
2

(1 − ρ)
n
2 , and

therefore CI(σ) ≥ δ−1 ≥ (A(n, ρ, p))−1 which blows up as const
(1−ρ)n . So, as it can be predicted, in

this case the Carleson interpolation is worse for our problem. Fixing λ1 = 1 − ρp at an arbitrary

position

(
p = c

log( 1
ρ)

)
will not change the conclusion.

5.4 (c) Long sequences (n→ ∞). With fixed ρ and p, let n→ ∞. Then, by Corollary 2.4,

c(σ, H2, H∞) ≤
(

2

1 − r

) 1
2
(

1

1 − ρ

) 1
2

.

(Observe, however, that is also not constant 1 − r = ρn+p). In its turn, Theorem 5.0 gives

c(σ, H2, H∞) ≤ 8

δ2

1

(1 − r)
1
2

∼n→∞

(
Π∞

s=1

1 − ρs

1 + ρs

)−4
8

(1 − r)
1
2

,
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because limnC(n, ρ, p) = limnA(n, ρ, p) =
(
Πn

s=1
1−ρs

1+ρs

)−4

for every ρ, 0 < ρ < 1. Of course,

the latter estimate is much worse than the former one, because Π∞
s=1

1+ρs

1−ρs ∼
√

1−ρ
2
√

π
exp

(
3π2

12
1

1−ρ

)
as

ρ→ 1. Indeed, setting ϕ(ρ) = Π∞
s=1

1
1−ρs for all ρ ∈ [0, 1[, we have (see [Ne] p.22),

ϕ(ρ) =

√
1 − ρ

2π
exp

(
π2

12

1 + ρ

1 − ρ

)
[1 +O(1 − ρ)].

Now, setting ψ(ρ) = Π∞
s=1

1
1+ρs we get (ϕψ) (ρ) = 1

Πk≥1(1−ρ2k)
= ϕ (ρ2) and,

Π∞
s=1

1 + ρs

1 − ρs
=
ϕ(ρ)

ψ(ρ)
= ϕ(ρ)

ϕ(ρ)

ϕ (ρ2)
=

(ϕ(ρ))2

ϕ (ρ2)
=

=
1 − ρ

2π
exp

(
π2

6

1 + 1

1 − ρ

)√
2π

1 − ρ2
exp

(
−π

2

12

1 + 1

(1 − ρ) (1 + 1)

)
[1 + o(1)] =

=

√
1 − ρ

2
√
π
exp

(
3π2

12

1

1 − ρ

)
[1 + o(1)], as ρ→ 1.

Appendix 5.5.

Let σ = {λ1, ..., λn} be a r − circular sequence, |λi| = r ∀i = 1...n, 0 ≤ r < 1; here we show the

links between the constants ∆ = ∆(σ) = infi6=j |bλi
(λj)| , and α =

mini6=j |λi−λj |
1−r

, and establish an
estimate for the Carleson interpolation constant CI(σ).

Lemma 5.6. In the above notation, we have

α

1 + αr
≤ ∆ ≤ α.

Lemma 5.7. In the above notation, we have the following estimate for the Carleson
interpolation constant CI(σ) : there exists numerical constants K, K

′
> 0 such that

CI(σ) ≤ 8eK
′
(1+ K

α3 ).

See [N1] for the proofs of these two Lemmas.

6. Lower bounds for Cn, r(X, H
∞)

6.1. The cases X = H2 and X = L2
a

Here, we consider the reproducing kernel Hilbert spaces on the disc D: X = H2 = l2a(1) and
X = L2

a = l2a(1/
√
k + 1), and the problem of lower estimates for the one point special case σλ,n =

{λ, λ, ..., λ}, (n times) λ ∈ D. Recall the definition of the semi-free interpolation constant

c(σλ,n, H,H
∞) = sup

{
‖f‖H∞/bn

λ
H∞ : f ∈ H, ‖f‖H ≤ 1

}
,

where ‖f‖H∞/bn
λH∞ = inf {‖f + bnλg‖∞ : g ∈ H}. In particular, our aim is to prove the sharpness

of the upper estimate for the quantities

Cn, r

(
H2, H∞) and Cn, r

(
L2

a, H
∞)

in Corollary 2.2 and Theorem 4.0.
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Theorem. 6.1.0 Let N ∈ {1, 2} be an integer. Then,

c

(
σλ,n, l

2
a

(
1

(k + 1)
N−1

2

)
, H∞

)
≥ aN

(
n

1 − |λ|

)N
2

,

where a1 = 1/4
√

2 and a2 = 1/32. In particular,

aN

(
n

1 − r

)N
2

≤ Cn, r

(

l2a

(
1

(k + 1)
N−1

2

)

, H∞

)

≤ A

(
n

1 − r

)N
2

,

for all n ≥ 1, 0 ≤ r < 1, where A = A
(

N−1
2

)
is a constant defined in Theorem 4.0, and where

spaces l2a

(
1

(k+1)
N−1

2

)
are defined in Section 4.

(1) We first recall some properties of reproducing kernel Hilbert space on the disc D, X =

l2a

(
1

(k+1)α−1

)
. As it is mentionned in Section 4,

l2a

(
1

(k + 1)α−1

)
=

{
f =

∑

k≥0

f̂(k)zk : ‖f‖2 =
∑

k≥0

|f̂(k)|2 1

(k + 1)2(α−1)
<∞

}
.

The reproducing kernel of l2a

(
1

(k+1)α−1

)
, by definition, is a l2a

(
1

(k+1)α−1

)
-valued function λ 7−→ kα

λ ,

λ ∈ D, such that (f, kw
λ ) = f(λ) for every f ∈ l2a

(
1

(k+1)α−1

)
, where (., .) means the scalar product

(h, g) =
∑

k≥0 ĥ(k)ĝ(k)
1

(k+1)2(α−1) . Since one has f(λ) =
∑

k≥0 f̂(k)λk(k + 1)2(α−1) 1
(k+1)2(α−1)

(λ ∈ D), it follows that

kα
λ (z) =

∑

k≥0

(k + 1)2(α−1)λ
k
zk, z ∈ D.

In particular, for the Hardy space H2 = l2a(1) (α = 1), we get the Szegö kernel

kλ(z) = (1 − λz)−1,

for the Bergman space L2
a(D) = l2a

(
1

(k+1)
1
2

)
(α = 3

2
) - the Bergman kernel k

3/2
λ (z) = (1 − λz)−2.

(2) Reproducing kernel Hilbert spaces containing H2. We will use the previous observations
for the following composed reproducing kernels (Aronszajn-deBranges, see [N2] p.320): given the
reproducing kernel k of H2 and ϕ ∈ {zN : N = 1, 2}, the function ϕ ◦ k is also positive definit
and the corresponding RKHS

H(ϕ ◦ k) =: ϕ(H(k)) = ϕ(H2) = l2a

(
1

(k + 1)
N−1

2

)

satisfies the following. For every f ∈ H(k) we have ϕ◦f ∈ ϕ(H(k)) and ‖ϕ◦f‖2
ϕ(H(k)) ≤ ϕ(‖f‖2

H(k))

(see [N2] p.320).
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We notice in particular that

Hz = H2 andHz2 = L2
a,

(a topological identity: the spaces are the same and the norms are equivalent). The link between

spaces of type l2a

(
1

(k+1)
N−1

2

)
and of type ϕ(H2) = Hϕ being established, we give the following

result.

Lemma 6.1.1 Let ϕ ∈ {zN : N = 1, 2}, and Hϕ = ϕ(H2) be the reproducing kernel Hilbert space

corresponding to the kernel ϕ
(

1
1−λz

)
. Then, there exists a constant aN depending on ϕ such that

c(σλ,n, Hϕ, H
∞) ≥ aNϕ

(√
n

1 − |λ|

)
.

Moreover, we can choose a1 = 1/4
√

2 and a2 = 1/32. In particular, we have

1

4
√

2

√
n√

1 − r
≤ Cn, r

(
H2, H∞) ≤

√
2

√
n√

1 − r
, and

1

32

n

1 − r
≤ Cn, r

(
L2

a, H
∞) ≤ 6

√
2

n

1 − r
∀n ≥ 1, ∀r ∈ [0, 1[.

Proof. 1) We set

Qn =
n−1∑

k=0

bkλ
(1 − |λ|2)1/2

1 − λz
, Hn = ϕ ◦Qn,

Ψ = bHn.

Then ‖Qn‖2
2 = n, and hence by the Aronszajn-deBranges inequality, see [N2] p.320, point (k) of

Exercise 6.5.2, with ϕ ∈ {1, z} and K(λ, z) = kλ(z) = 1
1−λ̄z

, and noticing that H(ϕ ◦K) = Hϕ,

‖Ψ‖2
Hϕ

≤ b2ϕ
(
‖Qn‖2

2

)
= b2ϕ(n).

Let b > 0 such that b2ϕ(n) = 1.

2) Since the spacesHϕ andH∞ are rotation invariant, we have c (σλ,n, Hϕ, H
∞) = c (σµ,n, Hϕ, H

∞)
for every λ, µ with |λ| = |µ| = r. Let λ = −r. To get a lower estimate for ‖Ψ‖Hϕ/bn

λ
Hϕ consider G

such that Ψ −G ∈ bnλHol(D), i.e. such that bHn ◦ bλ −G ◦ bλ ∈ znHol(D).

3) First, we show that

ψ =: Ψ ◦ bλ = bHn ◦ bλ
is a polynomial (of degree n if ϕ = z and 2n if ϕ = z2) with positive coefficients. Note that
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Qn ◦ bλ =
n−1∑

k=0

zk (1 − |λ|2)1/2

1 − λbλ(z)
=

=
(
1 − |λ|2

)− 1
2

(
1 + (1 − λ)

n−1∑

k=1

zk − λzn

)
=

= (1 − r2)−1/2

(
1 + (1 + r)

n−1∑

k=1

zk + rzn

)
=: (1 − r2)−1/2ψ1.

Hence, ψ = Ψ ◦ bλ = bHn ◦ bλ = bϕ ◦
(
(1 − r2)

− 1
2 ψ1

)
and

ϕ ◦ ψ1 = ψN
1 (z), N = 1, 2.

4) Next, we show that

m∑
(ψ) =:

m∑

j=0

ψ̂(j) ≥
{ 1

2
√

2

√
n

1−r
if N = 1

1
16

n
1−r

if N = 2
,

where m ≥ 1 is such that 2m = n if n is even and 2m− 1 = n if n is odd.

Indeed, setting

Sn =
n∑

j=0

zj ,

we have for every N ∈ {1, 2}
m∑(

ψN
1

)
=

m∑



(

1 + (1 + r)
n−1∑

t=1

zt + rzn

)N


 ≥
m∑(

SN
n−1

)
.

Next, we obtain

m∑(
SN

n−1

)
=

m∑
((

1 − zn

1 − z

)N
)

==
m∑
(

N∑

j=0

Cj
k

1

(1 − z)j
·
( −zn

1 − z

)N−j
)

=

m∑(
1

(1 − z)N

)
=

m∑
(
∑

j≥0

Cj
N+j−1z

j

)
=

m∑

j=0

Cj
N+j−1 =

=

{
m+ 1 if N = 1

(m+ 1)(m+ 2)/2 if N = 2
≥
{

n/2 if N = 1
(n + 2)(n+ 4)/8 if N = 2

≥
{

n/2 if N = 1
n2/8 if N = 2

.

Finally, since
∑m(ψ) = b

∑m(ϕ ◦ ψ1) = b (1 − r2)−N/2
∑m(ψN

1 ) we get

m∑
(ψ) ≥

{
(2(1 − r))−1/2nb/2 if N = 1
(2(1 − r))−1n2b/8 if N = 2

,

with b = ϕ(n) =

{
n−1/2 if N = 1
n−1 if N = 2

and obtain the result claimed.
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5) Now, using point 4) and the preceding Fejer kernel argument and denoting Fn = Φm +zmΦm,
where Φk stands for the k-th Fejer kernel, we get

‖Ψ‖H∞/bn
λ
H∞ = ‖ψ‖H∞/znH∞ ≥ 1

2
‖ψ ∗ Fn‖∞ ≥ 1

2

m∑

j=0

ψ̂(j) ≥

≥
{ 1

4
√

2

√
n

1−r
if N = 1

1
32

n
1−r

if N = 2
.

�

Proof of Theorem 6.1.0. In order to prove the left hand side inequality, it suffices to apply

Lemma 6.1.1 with ϕ(z) = zN . Indeed, in this case Hϕ =l2a

(
1

(k+1)
N−1

2

)
= HzN . The right hand

side inequality is a straightforward consequence of Corollary 2.2 and Theorem 4.0.

�

6.2. The case X = Hp

The aim of this section is to prove the sharpness ( for even p) of the upper estimate, found in
Theorem 3.0, of the quantity Cn, r (Hp, H∞) . This is the subject of the following theorem.

Theorem. 6.2.0 Let p∈ 2Z+, then

c (σλ,n, H
p, H∞) ≥ 1

32
1
p

(
n

1 − |λ|

) 1
p

,

for every λ ∈ D and every integer n ≥ 1, where σλ, n = {λ, λ, ..., λ} and hence

1

32
1
p

(
n

1 − r

) 1
p

≤ Cn, r (Hp, H∞) ≤ Ap

(
n

1 − r

) 1
p

,

for all n ≥ 1, 0 ≤ r < 1, where Ap is a constant depending only on p which is defined in Theorem
3.0.

We first prove the following lemma.

Lemma. 6.2.1 Let p,q such that p
q
∈ Z+, then c (σ, Hp, H∞) ≥ c (σ, Hq, H∞)

q
p for every sequence

σ of D.

Proof. Step 1. Recalling that

c (σ, Hp, H∞) = sup‖f‖p≤1inf
{
‖g‖∞ : g ∈ Y, g|σ = f|σ

}
,

we first prove that

c (σ, Hp, H∞) = sup‖f‖p≤1, f outer inf
{
‖g‖∞ : g ∈ Y, g|σ = f|σ

}
.

Indeed, we clearly have the inequality

sup‖f‖p≤1, f outer inf
{
‖g‖∞ : g ∈ Y, g|σ = f|σ

}
≤ c (σ, Hp, H∞) ,

and if the inequality were strict, that is to say

sup‖f‖p≤1, f outer inf
{
‖g‖∞ : g ∈ Y, g|σ = f|σ

}
< sup‖f‖p≤1inf

{
‖g‖∞ : g ∈ Y, g|σ = f|σ

}
,

then we could write that there exists ǫ > 0 such that for every f = fi.fo ∈ Hp (where fi stands
for the inner function corresponding to f and fo to the outer one) with ‖f‖p ≤ 1 (which also

implies that ‖fo‖p ≤ 1, since ‖fo‖p = ‖f‖p), there exists a function g ∈ H∞ verifying both

‖g‖∞ ≤ (1 − ǫ)c (σ, Hp, H∞) and g|σ = fo|σ. This entails that f|σ = (fig)|σ and since ‖fig‖∞ =
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‖g‖∞ ≤ (1 − ǫ)c (σ, Hp, H∞) , we get that c (σ, Hp, H∞) ≤ (1 − ǫ)c (σ, Hp, H∞), which is a
contradiction and proves the equality of Step 1.

Step 2. Using the result of Step 1, we get that ∀ǫ > 0 there exists an outer function fo ∈ Hq

with ‖fo‖p ≤ 1 and such that

inf
{
‖g‖∞ : g ∈ Y, g|σ = fo|σ

}
≥ c (σ, Hq, H∞) − ǫ.

Now let F = f
q
p
o ∈ Hp, then ‖F‖p

p = ‖fo‖q
q ≤ 1. We suppose that there exists g ∈ H∞ such that

g|σ = F|σ with

‖g‖∞ < (c (σ, Hq, H∞) − ǫ)
q
p .

Then, since g (λi) = F (λi) = fo (λi)
q
p for all i = 1..n, we have g (λi)

p
q = fo (λi) and g

p
q ∈ H∞ since

p
q
∈ Z+. We also have ∥∥∥g

p
q

∥∥∥
∞

= ‖g‖
p
q
∞ < (c (σ, Hq, H∞) − ǫ)

q
p ,

which is a contradiction. As a result, we have

‖g‖∞ ≥ (c (σ, Hq, H∞) − ǫ)
q
p ,

for all g ∈ H∞ such that g|σ = F|σ, which gives

c (σ, Hp, H∞) ≥ (c (σ, Hq, H∞) − ǫ)
q
p ,

and since that inequality is true for every ǫ > 0, we get the result. �

Proof of Theorem 6.2.0. We first prove the left hand side inequality. Writing p = 2.p
2
, we apply

Lemma 6.2.1 with q = 2 and this gives

c (σλ,n, H
p, H∞) ≥ c

(
σλ,n, H

2, H∞) 2
p ≥ 1

32
1
p

(
n

1 − |λ|

) 2
p

for all integer n ≥ 1. The last inequality being a consequence of Theorem 2.1.2. The right hand
side inequality is proved in Theorem 3.0. �
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