Constrained Nevanlinna-Pick interpolation in Hardy and Bergman spaces

Rachid Zarouf

Abstract

Given a finite set σ of the unit disc $\mathbb{D}=\{z \in \mathbb{C}:,|z|<1\}$ and a holomorphic function f in \mathbb{D} which belongs to a class X, we are looking for a function g in another class Y (smaller than X) which minimizes the norm $\|g\|_{Y}$ among all functions g such that $g_{\mid \sigma}=f_{\mid \sigma}$. For $Y=H^{\infty}, X=H^{p}$ (the Hardy space) or $X=L_{a}^{2}$ (the Bergman space), and for the corresponding interpolation constant $c\left(\sigma, X, H^{\infty}\right)$, we show that $c\left(\sigma, X, H^{\infty}\right) \leq a \varphi_{X}\left(1-\frac{1-r}{n}\right)$ where $n=\# \sigma, r=\max _{\lambda \in \sigma}|\lambda|$ and where $\varphi_{X}(t)$ stands for the norm of the evaluation functional $f \mapsto f(t)$ on the space X. The upper bound is sharp over sets σ with given n and r.

Introduction

(1) General framework. The problem considered is the following: given X and Y two Banach spaces of holomorphic functions on the unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}, X \supset Y$, and a finite set $\sigma \subset \mathbb{D}$, to find the least norm interpolation by functions of the space Y for the traces $f_{\mid \sigma}$ of functions of the space X, in the worst case of f.

The classical interpolation problems- those of Nevanlinna-Pick and Carathéodory-Schur (on the one hand) and Carleson's free interpolation (on the other hand)- are of this nature. Two first are "individual", in the sens that one looks simply to compute the norms $\|f\|_{H_{\mid \sigma}^{\infty}}$ or $\|f\|_{H^{\infty} / z^{n} H^{\infty}}$ for a given f, whereas the third one is to compare the norms $\|a\|_{l^{\infty}(\sigma)}=\max _{\lambda \in \sigma}\left|a_{\lambda}\right|$ and

$$
\inf \left(\|g\|_{\infty}: g(\lambda)=a_{\lambda}, \lambda \in \sigma\right)
$$

Here and everywhere below, H^{∞} stands for the space (algebra) of bounded holomorphic functions in the unit disc \mathbb{D} endowed with the norm $\|f\|_{\infty}=s u p_{z \in \mathbb{D}}|f(z)|$. Looking at this comparison problem, say, in the form of computing/estimating the interpolation constant

$$
c(\sigma, X, Y)=\sup _{f \in X,\|f\|_{X} \leq 1} \inf \left\{\|g\|_{Y}: g_{\mid \sigma}=f_{\mid \sigma}\right\},
$$

which is nothing but the norm of the embedding operator $\left(X_{\mid \sigma},\|\cdot\|_{X_{\mid \sigma}}\right) \rightarrow\left(Y_{\mid \sigma},\|\cdot\|_{Y_{\mid \sigma}}\right)$, one can think, of course, on passing (after) to the limit- in the case of an infinite sequence $\left\{\lambda_{j}\right\}$ and its finite sections $\left\{\lambda_{j}\right\}_{j=1^{-}}^{n}$ in order to obtain a Carleson type interpolation theorem $X_{\mid \sigma}=Y_{\mid \sigma}$. But not necessarily. In particular, even the classical Pick-Nevanlinna theorem (giving a necessary and sufficient condition on a function a for the existence of $f \in H^{\infty}$ such that $\|f\|_{\infty} \leq 1$ and $f(\lambda)=a_{\lambda}, \lambda \in \sigma$), does not lead immediately to Carleson's criterion for $H_{\mid \sigma}^{\infty}=l^{\infty}(\sigma)$. (Finally, a direct deduction of Carleson's theorem from Pick's result was done by P. Koosis [K] in 1999 only). Similarly, the problem stated for $c(\sigma, X, Y)$ is of interest in its own. For this paper, the following question was especially stimulating (which is a part of a more complicated question arising in an applied situation in [BL1] and [BL2]): given a set $\sigma \subset \mathbb{D}$, how to estimate $c\left(\sigma, H^{2}, H^{\infty}\right)$ in terms of $n=\operatorname{card}(\sigma)$ and $\max _{\lambda \in \sigma}|\lambda|=r$ only? (H^{2} being the standard Hardy space of the disc).

Here, we consider the case of H^{∞} interpolation $\left(Y=H^{\infty}\right)$ and the following scales of Banach spaces X :
(a) $X=H^{p}=H^{p}(\mathbb{D}), 1 \leq p \leq \infty$, the standard Hardy spaces on the disc \mathbb{D},
(b) $X=l_{a}^{2}(1 / \sqrt{k+1})$, the Bergman space of all $f(z)=\sum_{k \geq 0} \hat{f}(k) z^{k}$ satisfying

$$
\sum_{k \geq 0}|\hat{f}(k)|^{2} \frac{1}{(k+1)}<\infty
$$

An equivalent description of this space is:
$X=L_{a}^{2}$, the space of holomorphic functions such that

$$
\int_{\mathbb{D}}|f(z)|^{2}\left(1-|z|^{2}\right)^{\beta} d x d y<\infty
$$

For spaces of type (a)\&(b), we show

$$
c_{1} \varphi_{X}\left(1-\frac{1-r}{n}\right) \leq \sup \left\{c\left(\sigma, X, H^{\infty}\right): \# \sigma \leq n,|\lambda| \leq r, \lambda \in \sigma\right\} \leq c_{2} \varphi_{X}\left(1-\frac{1-r}{n}\right)
$$

where $\varphi_{X}(t), 0 \leq t<1$ stands for the norm of the evaluation functional $f \mapsto f(t)$ on the space X.
In order to prove the right hand side inequality, we first use a linear interpolation:

$$
f \mapsto \sum_{k=1}^{n}\left\langle f, e_{k}\right\rangle e_{k}
$$

where $\langle.,$.$\rangle means the Cauchy sesquilinear form \langle h, g\rangle=\sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}}(k)$, and $\left(e_{k}\right)_{k=1}^{n}$ is the explicitly known Malmquist basis of the space $K_{B}=H^{2} \Theta B H^{2}, \bar{B}=\prod_{i=1}^{n} b_{\lambda_{i}}$ being the corresponding Blaschke product, $b_{\lambda}=\frac{\lambda-z}{1-\bar{\lambda} z}$ (see N. Nikolski, [N1] p. 117)). Next, we use the complex interpolation between Banach spaces, (see H. Triebel [Tr] Theorem 1.9.3 p.59). Among the technical tools used in order to find an upper bound for $\left\|\sum_{k=1}^{n}\left\langle f, e_{k}\right\rangle e_{k}\right\|_{\infty}$ (in terms of $\|f\|_{X}$), the most important is a Bernstein-type inequality $\left\|f^{\prime}\right\|_{p} \leq c_{p}\left\|B^{\prime}\right\|_{\infty}\|f\|_{p}$ for a (rational) function f in the star-invariant subspace $H^{p} \cap B \bar{H}_{0}^{p}$ generated by a (finite) Blaschke product B, (K. Dyakonov [Dy]). For $p=2$, we give an alternative proof of the Bernstein-type estimate we need.

The lower bound problem is treated by using the "worst" interpolation n-tuple $\sigma=\sigma_{\lambda, n}=$ $\{\lambda, \ldots, \lambda\}$, a one-point set of multiplicity n (the Carathéodory-Schur type interpolation). The "worst" interpolation data comes from the Dirichlet kernels $\sum_{k=0}^{n-1} z^{k}$ transplanted from the origin to λ. We notice that spaces X of (a)\&(b) satisfy the condition $X \circ b_{\lambda} \subset X$ which makes the problem of upper/lower bound easier.
(2) Principal results. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{2}, \ldots, \lambda_{t}, \ldots, \lambda_{t}\right\}$ be a finite sequence in the unit disc, where every λ_{s} is repeated according its multiplicity $m_{s}, \sum_{s=1}^{t} m_{s}=n$ and $r=\max _{i=1 . . t}\left|\lambda_{i}\right|$. Let X, Y be Banach spaces of holomorphic functions continuously embedded into the space $\operatorname{Hol}(\mathbb{D})$ of holomorphic functions in the unit disc \mathbb{D}. In what follows, we systematically use the following conditions for the spaces X and Y,
$\left(P_{1}\right) \quad \operatorname{Hol}((1+\epsilon) \mathbb{D})$ is continuously embedded into Y for every $\epsilon>0$,

$$
\begin{equation*}
\mathrm{Pol}_{+} \subset X \text { and } \mathrm{Pol}_{+} \text {is dense in } X, \tag{2}
\end{equation*}
$$

where Pol_{+}stands for the set of all complex polynomials $p, p(z)=\sum_{k=0}^{N} a_{k} z^{k}$,

$$
\begin{gather*}
{[f \in X] \Rightarrow\left[z^{n} f \in X, \forall n \geq 0 \text { and } \overline{\lim }\left\|z^{n} f\right\|^{\frac{1}{n}} \leq 1\right]} \tag{3}\\
{[f \in X, \lambda \in \mathbb{D}, \text { and } f(\lambda)=0] \Rightarrow\left[\frac{f}{z-\lambda} \in X\right]}
\end{gather*}
$$

We are interested in estimating the quantity

$$
c(\sigma, X, Y)=\sup _{\|f\|_{X} \leq 1} \inf \left\{\|g\|_{Y}: g \in Y, g^{(j)}\left(\lambda_{i}\right)=f^{(j)}\left(\lambda_{i}\right) \forall i, j, 1 \leq i \leq t, 0 \leq j<m_{i}\right\}
$$

In order to simplify the notation, the condition

$$
g^{(j)}\left(\lambda_{i}\right)=f^{(j)}\left(\lambda_{i}\right) \forall i, j, 1 \leq i \leq t, 0 \leq j<m_{i}
$$

will also be written as

$$
g_{\mid \sigma}=f_{\mid \sigma}
$$

Supposing X verifies property $\left(P_{4}\right)$ and $Y \subset X$, the quantity $c(\sigma, X, Y)$ can be written as follows,

$$
c(\sigma, X, Y)=\sup _{\|f\|_{X} \leq 1} \inf \left\{\|g\|_{Y}: g \in Y, g-f \in B_{\sigma} X\right\},
$$

where B_{σ} is the Blaschke product

$$
B_{\sigma}=\Pi_{i=1 . . n} b_{\lambda_{i}},
$$

corresponding to $\sigma, b_{\lambda}(z)=\frac{\lambda-z}{1-\lambda z}$ being an elementary Blaschke factor for $\lambda \in \mathbb{D}$.
The interesting case is obviously when X is larger than Y, and the sens of the issue lies in comparing $\|.\|_{X}$ and $\|.\|_{Y}$ when Y interpolates X on the set σ. For example, we can wonder what happens when $X=H^{p}$, the classical Hardy spaces of the disc or $X=L_{a}^{p}$, the Bergman spaces, etc..., and when $Y=H^{\infty}$, but also $Y=W$ the Wiener algebra (of absolutely converging Fourier series) or $Y=B_{\infty, 1}^{0}$, a Besov algebra (an interesting case for the functional calculus of finite rank operators, in particular, those satisfying the so-called Ritt condition). Here, H^{p} stands for the classical Hardy space of the disc (see below).

It is also important to understand what kind of interpolation we are going to study when bounding the constant $c(\sigma, X, Y)$. Namely, comparing with the Carleson free interpolation, we can say that the latter one deals with the interpolation constant defined as

$$
c\left(\sigma, l^{\infty}(\sigma), H^{\infty}\right)=\sup \left\{\inf \left(\|g\|_{\infty}: g \in H^{\infty}, g_{\mid \sigma}=a\right): a \in l^{\infty}(\sigma),\|a\|_{l^{\infty}} \leq 1\right\}
$$

We also can add some more motivations to our problem:
(a) One of the most interesting cases is $Y=H^{\infty}$. In this case, the quantity $c\left(\sigma, X, H^{\infty}\right)$ has a meaning of an intermediate interpolation between the Carleson one (when $\|f\|_{X_{\mid \sigma}} \asymp$ $\sup _{1 \leq i \leq n}\left|f\left(\lambda_{i}\right)\right|$) and the individual Nevanlinna-Pick interpolation (no conditions on f).
(b) There is a straight link between the constant $c(\sigma, X, Y)$ and numerical analysis. For example, in matrix analysis, it is of interest to bound the norm of an H^{∞}-calculus $\|f(A)\| \leq c\|f\|_{\infty}$,
$f \in H^{\infty}$, for an arbitrary Banach space n-dimensional contraction A with a given spectrum $\sigma(A) \subset \sigma$. The best possible constant is $c=c\left(\sigma, H^{\infty}, W\right)$, so that

$$
c\left(\sigma, H^{\infty}, W\right)=\sup _{\|f\|_{\infty} \leq 1} \sup \left\{\|f(A)\|: A:\left(\mathbb{C}^{n},|\cdot|\right) \rightarrow\left(\mathbb{C}^{n},|.|\right),\|A\| \leq 1, \sigma(A) \subset \sigma\right\}
$$

where $W=\left\{f=\sum_{k \geq 0} \hat{f}(k) z^{k}: \sum_{k \geq 0}|\hat{f}(k)|<\infty\right\}$ stands for the Wiener algebra, and the interior sup is taken over all contractions on n-dimensional Banach spaces. An interesting case occurs for $f \in H^{\infty}$ such that $f_{\mid \sigma}=\left.\frac{1}{z}\right|_{\sigma}$ (estimation of condition numbers and the norms inverses of $n \times n$ matrices) or $f_{\mid \sigma}=\left.\frac{1}{\lambda-z}\right|_{\sigma}$ (for estimation of the norm of the resolvent of an $n \times n$ matrix).

This paper is devoted to upper/lower bounds for generalized Nevanlinna-Pick interpolation.
We starts studying general Banach spaces X and Y and gives some sufficients conditions under which $C_{n, r}(X, Y)<\infty$, where

$$
C_{n, r}(X, Y)=\sup \left\{c(\sigma, X, Y): \# \sigma \leq n, \forall j=1 . . n,\left|\lambda_{j}\right| \leq r\right\}
$$

In particular, we prove the following basic fact.
Theorem 1.1.1 Let X, Y be Banach spaces verifying properties $\left(P_{i}\right), i=1 \ldots 4$, then

$$
C_{n, r}(X, Y)<\infty,
$$

for every $n \geq 1$ and $r, 0 \leq r<1$.
Next, we add the condition that X is a Hilbert space, and give in this case a general upper bound for the quantity $C_{n, r}(X, Y)$.
Theorem 1.2.1 Let Y be a Banach space verifying property $\left(P_{1}\right)$ and $X=\left(H,(.)_{H}\right)$ a Hilbert space satisfying properties $\left(P_{i}\right)$ for $i=2,3,4$. We moreover suppose that for every $0<r<1$ there exists $\epsilon>0$ such that $k_{\lambda} \in \operatorname{Hol}((1+\epsilon) \mathbb{D})$ for all $|\lambda|<r$, where k_{λ} stands for the reproducing kernel of X at point λ, and $\bar{\lambda} \mapsto k_{\lambda}$ is holomorphic on $|\lambda|<r$ as a $\operatorname{Hol}((1+\epsilon) \mathbb{D})$-valued function. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{2}, \ldots, \lambda_{t}, \ldots, \lambda_{t}\right\}$ be a sequence in \mathbb{D}, where λ_{s} are repeated according their multiplicity $m_{s}, \sum_{s=1}^{t} m_{s}=n$. Then we have,
i)

$$
c(\sigma, X, Y) \leq\left(\sum_{k=1}^{n}\left\|e_{k}\right\|_{Y}^{2}\right)^{\frac{1}{2}}
$$

where $\left(e_{k}\right)_{k=1}^{n}$ stands for the Gram-Schmidt orthogonalization (in the space H) of the sequence

$$
k_{\lambda_{1}, 0}, k_{\lambda_{1}, 1}, k_{\lambda_{1}, 2} \ldots, k_{\lambda_{1}, m_{1}-1}, k_{\lambda_{2}, 0}, k_{\lambda_{2}, 1}, k_{\lambda_{2}, 2}, k_{\lambda_{2}, m_{2}-1}, \ldots, k_{\lambda_{t}, 0}, k_{\lambda_{t}, 1}, k_{\lambda_{t}, 2}, k_{\lambda_{t}, m_{t}-1}
$$

$k_{\lambda, i}=\left(\frac{d}{d \bar{\lambda}}\right)^{i} k_{\lambda}$ and k_{λ} is the reproducing kernel of X at point λ for every $\lambda \in \mathbb{D}$.
ii) For the case $Y=H^{\infty}$, we have

$$
c\left(\sigma, H, H^{\infty}\right) \leq \sup _{z \in \mathbb{D}}\left\|P_{B_{\sigma}} k_{z}\right\|_{H}
$$

where $P_{B_{\sigma}}=\sum_{k=1}^{n}\left(., e_{k}\right)_{H} e_{k}$ stands for the orthogonal projection of H onto $K_{B_{\sigma}}$,

$$
K_{B_{\sigma}}=\operatorname{span}\left(k_{\lambda_{j}, i}: 1 \leq i<m_{j}, j=1, \ldots, t\right)
$$

After that, we specialize the upper bound obtained in Theorem 1.2 (ii) to the case $X=H^{2}$ and prove the following (see Corollary 2.0 and Proposition 2.1). We get among other results that for every sequence $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of \mathbb{D},

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup _{z \in \mathbb{D}}\left(\frac{1-\left|B_{\sigma}(z)\right|^{2}}{1-|z|^{2}}\right)^{\frac{1}{2}} \leq \sqrt{2} \sup _{|\zeta|=1}\left|B^{\prime}(\zeta)\right|^{\frac{1}{2}} \leq 2 \sqrt{\frac{n}{1-r}}
$$

Next we present a slightly different approach to the interpolation constant $c\left(\sigma, H^{2}, H^{\infty}\right)$ proving an estimate in the following form:

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup _{z \in \mathbb{T}}\left(\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left|z-\lambda_{k}\right|^{2}}\right)^{\frac{1}{2}} \leq\left(\sum_{j=1}^{n} \frac{1+\left|\lambda_{j}\right|}{1-\left|\lambda_{j}\right|}\right)^{\frac{1}{2}} \leq \sqrt{\frac{2 n}{1-r}}
$$

In particular, we get once more the same estimate for $c\left(\sigma, H^{2}, H^{\infty}\right)$, and hence for $C_{n, r}\left(H^{2}, H^{\infty}\right)$. Later on (see Section 6), we show that this estimate is sharp (over n and r). This lower bound problem is treated by using the "worst" interpolation n-tuple $\sigma=\sigma_{\lambda, n}=\{\lambda, \ldots, \lambda\}$, a one-point set of multiplicity n (the Carathéodory-Schur type interpolation). More precisely, we prove the following Theorem A, which gathers the results from Corollary 2.2 (for the upper bound) and from Theorem 6.1.0 (for the lower bound, with $N=1$).
Theorem A. We have

$$
\frac{1}{4 \sqrt{2}} \frac{\sqrt{n}}{\sqrt{1-r}} \leq c\left(\sigma_{r, n}, H^{2}, H^{\infty}\right) \leq C_{n, r}\left(H^{2}, H^{\infty}\right) \leq \sqrt{2} \frac{\sqrt{n}}{\sqrt{1-r}}
$$

for all $n \geq 1,0 \leq r<1$.
Then, we extend these results to the H^{p} spaces through Theorem B wich sums up Theorem 3.0 (for the upper bound) and Theorem 6.2.0 (for the lower bound).

Theorem B. Let $1 \leq p \leq \infty$. Then

$$
\frac{1}{32^{\frac{1}{p}}}\left(\frac{n}{1-|\lambda|}\right)^{\frac{1}{p}} \leq c\left(\sigma_{r, n}, H^{p}, H^{\infty}\right) \leq C_{n, r}\left(H^{p}, H^{\infty}\right) \leq A_{p}\left(\frac{n}{1-r}\right)^{\frac{1}{p}}
$$

for all $n \geq 1,0 \leq r<1$, where A_{p} is a constant depending only on p and the left hand side inequality is proved only for $p \in 2 \mathbb{Z}_{+}$.
In particular, this gives yet another proof of the fact that $C_{n, r}\left(H^{2}, H^{\infty}\right) \leq a \sqrt{n} / \sqrt{1-r}$.
The same study applied to the Bergman space $X=L_{a}^{2}$ leads us to the following Theorem \mathbf{C} which again gathers Theorem 4.0 (for the upper bound, with $\alpha=3 / 2$) and Theorem 6.1.0 (for the lower bound, with $N=2$).
Theorem C. We have

$$
\frac{1}{32} \frac{n}{1-r} \leq c\left(\sigma_{r, n}, L_{a}^{2}, H^{\infty}\right) \leq C_{n, r}\left(L_{a}^{2}, H^{\infty}\right) \leq 6 \sqrt{2} \frac{n}{1-r}
$$

for all $n \geq 1,0 \leq r<1$.
Section 5 is devoted to compare the method used in Sections 1, 2, 3 and 4 with those resulting from the Carleson-free interpolation. Especially, we are interested in the cases of circular
and radial sequences σ (see below). Recall that given a (finite) set $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{D}$, the Carleson interpolation constant $C_{I}(\sigma)$ is defined by

$$
C_{I}(\sigma)=\sup _{\|a\|_{l \infty} \leq 1} \inf \left(\|g\|_{\infty}: g \in H^{\infty}, g_{\mid \sigma}=a\right) .
$$

We introduce the evaluation functionals φ_{λ} for $\lambda \in \mathbb{D}$,

$$
\varphi_{\lambda}(f)=f(\lambda), \quad f \in X,
$$

as well as the evaluation of the derivatives $\varphi_{\lambda, s}(s=0,1, \ldots)$,

$$
\varphi_{\lambda, s}(f)=f^{(s)}(\lambda), \quad f \in X
$$

Theorem. 5.0 Let X be a Banach space, $X \subset \operatorname{Hol}(\mathbb{D})$. Then, for all sequences $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of distinct points in the unit disc \mathbb{D},

$$
\max _{1 \leq i \leq n}\left\|\varphi_{\lambda_{i}}\right\| \leq c\left(\sigma, X, H^{\infty}\right) \leq C_{I}(\sigma) \cdot \max _{1 \leq i \leq n}\left\|\varphi_{\lambda_{i}}\right\|,
$$

where $C_{I}(\sigma)$ stands for the Carleson interpolation constant.
Theorem 5.0 tells us that, for σ with a "reasonable" interpolation constant $C_{I}(\sigma)$, the quantity $c\left(\sigma, X, H^{\infty}\right)$ behaves as $\max _{i}\left\|\varphi_{\lambda_{i}}\right\|$. However, for "tight" sequences σ, the constant $C_{I}(\sigma)$ is so large that the estimate in question contains almost no information. On the other hand, an advantage of the estimate of Theorem $\mathbf{5 . 0}$ is that it does not contain $\# \sigma=n$ explicitly. Therefore, for well-separated sequences σ, Theorem $\mathbf{5 . 0}$ should give a better estimate than those of Theorem A, and of Theorem C.

Now, how does the interpolation constant $C_{I}(\sigma)$ behave in terms of the caracteristics r and n of σ ? We answer this question for some particular sequences σ.
Example 5.2. Two points sets. Let $\sigma=\left\{\lambda_{1}, \lambda_{2}\right\}, \lambda_{i} \in \mathbb{D}, \lambda_{1} \neq \lambda_{2}$. Then,

$$
\frac{1}{\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|} \leq C_{I}(\sigma) \leq \frac{2}{\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|}
$$

and Theorem 5.0 implies

$$
c\left(\sigma, X, H^{\infty}\right) \leq \frac{2}{\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|} \max _{i=1,2}\left\|\varphi_{\lambda_{i}}\right\|
$$

whereas a straightforward estimate gives (see Section 5)

$$
c\left(\sigma, X, H^{\infty}\right) \leq\left\|\varphi_{\lambda_{1}}\right\|+\max _{|\lambda| \leq r}\left\|\varphi_{\lambda, 1}\right\|\left(1+\left|\lambda_{1}\right|\right),
$$

where $r=\max \left(\left|\lambda_{1}\right|,\left|\lambda_{2}\right|\right)$. The difference is that the first upper bound blows up when $\lambda_{1} \rightarrow \lambda_{2}$, whereas the second one is still well-bounded.
Example 5.3. Circular sequences. Let $0<r<1$ and $\sigma=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}, \lambda_{i} \neq \lambda_{j},\left|\lambda_{i}\right|=r$ for every i, and let $\alpha=\frac{\min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|}{1-r}$. Then, $\frac{1}{\alpha} \leq C_{I}(\sigma) \leq 8 e^{K^{\prime}\left(1+\frac{K}{\alpha^{3}}\right)}$, where $K, K^{\prime}>0$ are absolute constants. Therefore,

$$
c\left(\sigma, X, H^{\infty}\right) \leq 8 e^{K^{\prime}\left(1+\frac{K}{\alpha^{3}}\right)} \max _{|\lambda|=r}\left\|\varphi_{\lambda}\right\|
$$

for every r - circular set σ (an estimate does not depending on n explicitly). In particular, there exists an increasing function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that, for any n uniformly distributed points $\lambda_{1}, \ldots, \lambda_{n},\left|\lambda_{i}\right|=r,\left|\lambda_{i}-\lambda_{i+1}\right|=2 r \sin \left(\frac{\pi}{2 n}\right)$, we have
(1) $c\left(\sigma, H^{2}, H^{\infty}\right) \leq \varphi\left(\frac{n(1-r)}{r}\right) \frac{1}{(1-r)^{\frac{1}{2}}}$, for every n and $r, 0<r<1$ and in particular, for $n \leq\left[r(1-r)^{-1}\right]$ we obtain

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq c \frac{1}{(1-r)^{\frac{1}{2}}},
$$

whereas our specific upper bound in Theorem A, (which is sharp over all n elements sequences σ), gives

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq c \frac{1}{(1-r)}
$$

only.
(2) $c\left(\sigma, L_{a}^{2}, H^{\infty}\right) \leq \varphi\left(\frac{n(1-r)}{r}\right) \frac{1}{(1-r)}$, for every n and $r, 0<r<1$ and in particular, for $n \leq\left[r(1-r)^{-1}\right]$ we obtain

$$
c\left(\sigma, L_{a}^{2}, H^{\infty}\right) \leq c \frac{1}{(1-r)},
$$

whereas our specific upper bound in Theorem C, (which, again, is sharp over all n elements sequences σ), gives

$$
c\left(\sigma, L_{a}^{2}, H^{\infty}\right) \leq c \frac{1}{(1-r)^{2}}
$$

only.
We finally deal with a special case of radial sequences, in which we study sparse sequences, condensed sequences, and long sequences, and prove the following claim.
Example 5.4. Radial sequences.
Claim. Let $\sigma=\left\{1-\rho^{p+k}\right\}_{k=1}^{n}, 0<\rho<1, p>0$. The estimate of $c\left(\sigma, H^{2}, H^{\infty}\right)$ via the Carleson constant $C_{I}(\sigma)$ (using Theorem 5.0) is comparable with or better than the estimates from Theorem A (for $X=H^{2}$) and Theorem C (for $X=L_{a}^{2}$) for sufficently small values of $\rho($ as $\rho \rightarrow 0)$ and/or for a fixed ρ and $n \rightarrow \infty$. In all other cases, as for $p \rightarrow \infty$ (which means $\lambda_{1} \rightarrow 1$), or $\rho \rightarrow 1$, or $n \rightarrow \infty$ and $\rho \rightarrow 1$, it is worse.

1. Upper bounds for $c(\sigma, X, Y)$, as a kind of the Nevanlinna-Pick problem

1.1. General Banach spaces X and Y satisfying properties $\left(P_{i}\right), i=1 \ldots 4$

The following theorem shows that if X and Y satisfy properties $\left(P_{i}\right)$ for $i=1 \ldots 4$, then our interpolation constant $c(\sigma, X, Y)$ is bounded by a quantity $M_{n, r}$ which depends only on $n=\# \sigma$ and $r=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|$ (and of course on X and Y). In this generality, we cannot discuss the question of sharpness of the bounds obtained. First, we prove the following lemma.
Lemma. 1.1.0. Under $\left(P_{2}\right),\left(P_{3}\right)$ and $\left(P_{4}\right), B_{\sigma} X$ is a closed subspace of X and moreover,

$$
B_{\sigma} X=\{f \in X: f(\lambda)=0, \forall \lambda \in \sigma(\text { including multiplicities })\}
$$

Proof. Since $X \subset \operatorname{Hol}(\mathbb{D})$ continuously, and evaluation functionals $f \mapsto f(\lambda)$ and

$$
f \mapsto f^{(k)}(\lambda), k=1,2, \ldots
$$

are continous on $\operatorname{Hol}(\mathbb{D})$, the subspace

$$
M=\{f \in X: f(\lambda)=0, \forall \lambda \in \sigma(\text { including multiplicities })\},
$$

is closed in X.
On the other hand, $B_{\sigma} X \subset X$, and hence $B_{\sigma} X \subset M$. Indeed, properties $\left(P_{2}\right)$ and $\left(P_{3}\right)$ imply that $h . X \subset X$, for all $h \in \operatorname{Hol}((1+\epsilon) \mathbb{D})$ with $\epsilon>0$; we can write $h(z)=\sum_{k \geq 0} \widehat{h}(k) z^{k}$ with $|\widehat{h}(k)| \leq C q^{n}, C>0$ and $q<1$. Then $\sum_{n \geq 0}\left\|\widehat{h}(k) z^{k} f\right\|_{X}<\infty$ for every $f \in X$. Since X is a Banach space we can conclude that $h f=\sum_{n \geq 0} \widehat{h}(k) z^{k} f \in X$.

In order to see that $M \subset B_{\sigma} X$, it suffices to justify that

$$
[f \in X \text { and } f(\lambda)=0] \Longrightarrow\left[\frac{f}{b_{\lambda}}=(1-\bar{\lambda} z) \cdot \frac{f}{\lambda-z} \in X\right] .
$$

But this is obvious from $\left(P_{4}\right)$ and the previous arguments.
Theorem. 1.1.1 Let X, Y be Banach spaces verifying properties $\left(P_{i}\right), i=1 \ldots 4$, then

$$
C_{n, r}(X, Y)<\infty
$$

for every $n \geq 1$ and $r, 0 \leq r<1$.
Proof. For $k=1 . . n$, we set

$$
f_{k}(z)=\frac{1}{1-\overline{\lambda_{k}} z},
$$

and define the family $\left(e_{k}\right)_{k=1}^{n}$, (which is known as Malmquist basis, see [N1] p.117), by

$$
e_{1}=\left(1-\left|\lambda_{1}\right|^{2}\right)^{\frac{1}{2}} f_{1},
$$

and

$$
e_{k}=\left(1-\left|\lambda_{k}\right|^{2}\right)^{\frac{1}{2}}\left(\Pi_{j=1 . . k-1} b_{\lambda_{j}}\right) f_{k}=\frac{f_{k}}{\left\|f_{k}\right\|_{2}} \Pi_{j=1}^{k-1} b_{\lambda_{j}}
$$

for $k=2 \ldots n$. Now, taking $f \in X$, we set

$$
g=\sum_{k=1}^{n}\left(\sum_{j \geq 0} \hat{f}(j) \overline{\widehat{e_{k}}(j)}\right) e_{k},
$$

where the series

$$
\sum_{j \geq 0} \hat{f}(j) \overline{\widehat{e_{k}}(j)}
$$

are absolutely convergent. Indeed,

$$
\widehat{e}_{k}(j)=\frac{1}{2 \pi i} \int_{R \mathbb{T}} \frac{e_{k}(w)}{w^{j+1}} d w
$$

for all $j \geq 0$ and for all $1<R<\frac{1}{r}$. For a subset A of \mathbb{C} and for a bounded function h on A, we define

$$
\|h\|_{A}:=\sup _{z \in A}|h(z)| .
$$

As a result,

$$
\left|\widehat{e_{k}}(j)\right| \leq \frac{1}{2 \pi} \frac{1}{R^{j+1}}\left\|e_{k}\right\|_{R \mathbb{T}}
$$

So

$$
\sum_{j \geq 0}\left|\hat{f}(j) \overline{\widehat{e_{k}}(j)}\right| \leq \frac{\left\|e_{k}\right\|_{R T}}{2 \pi R} \sum_{j \geq 0}|\hat{f}(j)|\left(\frac{1}{R}\right)^{j}<\infty
$$

since $R>1$ and f is holomorphic in \mathbb{D}.
Next, we observe that the map

$$
\begin{gathered}
\Phi: \operatorname{Hol}(\mathbb{D}) \rightarrow Y \subset \operatorname{Hol}(\mathbb{D}) \\
\Phi: f \mapsto \sum_{k=1}^{n}\left(\sum_{j \geq 0} \hat{f}(j) \overline{e_{k}(j)}\right) e_{k},
\end{gathered}
$$

is well defined and has the following properties.
(a) $\Phi_{\mid H^{2}}=P_{B_{\sigma}}$ where $P_{B_{\sigma}}$ is the orthogonal projection on the n-dimensional subspace of $H^{2}, K_{B_{\sigma}}$ defined by

$$
K_{B_{\sigma}}=\left(B_{\sigma} H^{2}\right)^{\perp}=H^{2} \Theta B_{\sigma} H^{2}
$$

the last equality being a consequence of Lemma 1.2.0 of Section 1.2. Here, H^{2} stands for the classical Hardy space $H^{2}(\mathbb{D})$ of the disc,

$$
H^{2}(\mathbb{D})=\left\{f=\sum_{k \geq 0} \hat{f}(k) z^{k}: \sum_{k \geq 0}|\hat{f}(k)|^{2}<\infty\right\}
$$

or equivalently,

$$
H^{2}(\mathbb{D})=\left\{f \in \operatorname{Hol}(\mathbb{D}): \sup _{0 \leq r<1} \int_{\mathbb{T}}|f(r z)|^{2} d m(z)<\infty\right\}
$$

m being the normalized Lebesgue measure on \mathbb{T}. See [N2] p.31-p. 57 for more details on the Hardy spaces $H^{p}, 1 \leq p \leq \infty$.
(b) Φ is continuous on $\operatorname{Hol}(\mathbb{D})$ for the uniform convergence on compact sets of \mathbb{D}. Indeed, the point (a) is obvious since $\left(e_{k}\right)_{k=1}^{n}$ is an orthonormal basis of $K_{B_{\sigma}}$ and

$$
\sum_{j \geq 0} \widehat{f}(j) \overline{\widehat{e_{k}}(j)}=\left\langle f, e_{k}\right\rangle
$$

where $\langle.,$.$\rangle means the Cauchy sesquilinear form \langle h, g\rangle=\sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}(k)}$. In order to check point (b), let $\left(f_{l}\right)_{l \in \mathbb{N}}$ be a sequence of $\operatorname{Hol}(\mathbb{D})$ converging to 0 uniformly on compact sets of \mathbb{D}. We need to see that $\left(\Phi\left(f_{l}\right)\right)_{l \in \mathbb{N}}$ converges to 0 , for which it is sufficient to show that $\lim _{l}\left|\sum_{j \geq 0} \widehat{f_{l}}(j) \widehat{\widehat{e_{k}}(j)}\right|=0$, for every $k=1,2, \ldots, n$. Let $\rho \in] 0,1[$, then

$$
\widehat{f}_{l}(j)=\frac{1}{2 \pi} \int_{\rho \mathbb{T}} \frac{f_{l}(w)}{w^{j+1}} d w
$$

for all $j, l \geq 0$. As a result,

$$
\left|\widehat{f}_{l}(j)\right| \leq \frac{1}{2 \pi} \frac{1}{\rho^{j+1}}\left\|f_{l}\right\|_{\rho \mathbb{T}} .
$$

So

$$
\left|\sum_{j \geq 0} \widehat{f_{l}}(j) \overline{\widehat{e_{k}}(j)}\right| \leq \sum_{j \geq 0}\left|\widehat{f_{l}}(j) \overline{\widehat{e_{k}}(j)}\right| \leq \frac{\left\|f_{l}\right\|_{\rho \mathbb{T}}}{2 \pi \rho} \sum_{j \geq 0}\left|\widehat{e_{k}}(j)\right| \frac{1}{\rho^{j}} .
$$

Now if ρ is close enough to 1 , it satisfies the inequality $1 \leq \frac{1}{\rho}<\frac{1}{r}$, which entails

$$
\sum_{j \geq 0}\left|\widehat{e_{k}}(j)\right| \frac{1}{\rho^{j}}<+\infty
$$

for each $k=1 . . n$. The result follows.
Let

$$
\Psi=I d_{\mid X}-\Phi_{\mid X}
$$

Using point (a), since $\mathrm{Pol}_{+} \subset H^{2}\left(\mathrm{Pol}_{+}\right.$standing for the set of all complex polynomials $p, p(z)=$ $\sum_{k=0}^{N} a_{k} z^{k}$, we get that $\operatorname{Im}\left(\Psi_{\mid P o l_{+}}\right) \subset B_{\sigma} H^{2}$. Now, since $\operatorname{Pol}_{+} \subset Y$ and $\operatorname{Im}(\Phi) \subset Y$, we deduce that

$$
\operatorname{Im}\left(\Psi_{\mid P o l_{+}}\right) \subset B_{\sigma} H^{2} \cap Y \subset B_{\sigma} H^{2} \cap X,
$$

since $Y \subset X$. Now $\Psi(p) \in X$ and satisfies $(\Psi(p))_{\mid \sigma}=0$ (that is to say $(\Psi(p))(\lambda)=0, \forall \lambda \in \sigma$ (including multiplicities)) for all $p \in$ Pol $_{+}$. Using Lemma 1.1.0, we get that $\operatorname{Im}\left(\Psi_{\mid P o l_{+}}\right) \subset B_{\sigma} X$. Now, $P o l_{+}$being dense in X (property $\left(P_{2}\right)$), and Ψ being continuous on X, we can conclude that $\operatorname{Im}(\Psi) \subset B_{\sigma} X$.

Now, we return to the proof of Theorem 1.1.1. Let $f \in X$ such that $\|f\|_{X} \leq 1$ and $g=\Phi(f)$. Since $\operatorname{Hol}\left(\frac{1}{r} \mathbb{D}\right) \subset Y$, we have

$$
g=\Phi(f) \in Y
$$

and

$$
f-g=\Psi(f) \in B_{\sigma} X
$$

Moreover,

$$
\|g\|_{Y} \leq \sum_{k=1 . . n}\left|\left\langle f, e_{k}\right\rangle\right|\left\|e_{k}\right\|_{Y}
$$

In order to bound the right hand side, recall that for all $j \geq 0$ and for $\left.R=\frac{2}{r+1} \in\right] 1, \frac{1}{r}[$,

$$
\sum_{j \geq 0}\left|\widehat{f}(j) \overline{\widehat{e_{k}}(j)}\right| \leq \frac{\left\|e_{k}\right\|_{\frac{2}{r+1} \mathbb{T}}}{2 \pi} \sum_{j \geq 0}|\widehat{f}(j)|\left(\frac{r+1}{2}\right)^{j}
$$

Since the norm $f \mapsto \sum_{j \geq 0}|\widehat{f}(j)|\left(\frac{r+1}{2}\right)^{j}$ is continuous on $\operatorname{Hol}(\mathbb{D})$, and the inclusion $X \subset \operatorname{Hol}(\mathbb{D})$ is also continuous, there exists $C_{r}>0$ such that

$$
\sum_{j \geq 0}|\widehat{f}(j)|\left(\frac{r+1}{2}\right)^{j} \leq C_{r}\|f\|_{X}
$$

for every $f \in X$. On the other hand,

$$
\operatorname{Hol}\left(\frac{2}{r+1} \mathbb{D}\right) \subset Y
$$

(continuous inclusion again), and hence there exists $K_{r}>0$ such that

$$
\left\|e_{k}\right\|_{Y} \leq K_{r} \sup _{|z|<\frac{2}{r+1}}\left|e_{k}(z)\right|=K_{r}\left\|e_{k}\right\|_{\frac{2}{r+1} \mathbb{T}}
$$

It is more or less clear that the right hand side of the last inequality can be bounded in terms of r and n only. Let us give a proof to this fact. It is clear that it suffices to estimate

$$
\sup _{1<|z|<\frac{2}{r+1}}\left|e_{k}(z)\right| .
$$

In order to bound this quantity, notice that

$$
\begin{equation*}
\left|b_{\lambda}(z)\right|^{2} \leq\left|\frac{\lambda-z}{1-\bar{\lambda} z}\right|^{2}=1+\frac{\left(|z|^{2}-1\right)\left(1-|\lambda|^{2}\right)}{|1-\bar{\lambda} z|^{2}} \tag{1.1.0}
\end{equation*}
$$

for all $\lambda \in \mathbb{D}$ and all $z \in \frac{1}{|\lambda|} \mathbb{D}$. Using the identity (1.1.0) for $\lambda=\lambda_{j}, 1 \leq j \leq n$, and $z=\rho e^{i t}$, $\rho=\frac{2}{r+1}$, we get

$$
\begin{gathered}
\left|e_{k}\left(\rho e^{i t}\right)\right|^{2}=\left(1-\left|\lambda_{k}\right|^{2}\right)\left(\Pi_{j=1}^{k-1}\left|b_{\lambda_{j}}\left(\rho e^{i t}\right)\right|^{2}\right)\left|\frac{1}{1-\bar{\lambda}_{k} \rho e^{i t}}\right|^{2}, \\
\left|e_{k}\left(\rho e^{i t}\right)\right|^{2} \leq\left(\Pi_{j=1}^{k-1}\left|b_{\lambda_{j}}\left(\rho e^{i t}\right)\right|^{2}\right)\left(\frac{1}{1-\left|\lambda_{k}\right| \rho}\right)^{2},
\end{gathered}
$$

for all $k=2 . . n$,

$$
\left|e_{k}\left(\rho e^{i t}\right)\right|^{2} \leq 2\left(\Pi_{j=1}^{k-1}\left(1+\frac{\left(\rho^{2}-1\right)\left(1-\left|\lambda_{j}\right|^{2}\right)}{1-\left|\lambda_{j}\right|^{2} \rho^{2}}\right)\right)\left(\frac{1}{1-\left|\lambda_{k}\right| \rho}\right)^{2}
$$

Hence,

$$
\left|e_{k}\left(\rho e^{i t}\right)\right|^{2} \leq 2\left(\Pi_{j=1}^{k-1}\left(1+\frac{2\left(\frac{1}{r^{2}}-1\right)}{1-r^{2} \frac{4}{(r+1)^{2}}}\right)\right)\left(\frac{1}{1-\frac{2 r}{r+1}}\right)^{2}
$$

Finally,

$$
\begin{gathered}
\left\|e_{k}\right\|_{\frac{2}{r+1} \mathbb{T}} \leq \\
\leq \frac{1}{1-\frac{2 r}{r+1}} \sqrt{2\left(\Pi_{j=1 . . n-1}\left(1+\frac{2\left(\frac{1}{r^{2}}-1\right)}{1-r^{2} \frac{4}{(r+1)^{2}}}\right)\right)}=: C_{1}(r, n) .
\end{gathered}
$$

and

$$
\begin{gathered}
\sum_{j \geq 0}\left|\hat{f}(j) \overline{\hat{e}_{k}(j)}\right| \leq \frac{C_{r}\left\|e_{k}\right\|_{\frac{2}{r+1} \mathbb{T}}}{2 \pi}\|f\|_{X} \leq \\
\leq \frac{C_{r} C_{1}(r, n)}{2 \pi}\|f\|_{X}
\end{gathered}
$$

On the other hand,

$$
\left\|e_{k}\right\|_{Y} \leq K_{r}\left\|e_{k}\right\|_{\frac{2}{r+1} \mathbb{T}} \leq K_{r} C_{1}(r, n)
$$

So

$$
\|g\|_{Y} \leq \sum_{k=1}^{n}\left|\left\langle f, e_{k}\right\rangle\right|\left\|e_{k}\right\|_{Y} \leq
$$

$$
\leq \sum_{k=1}^{n} \frac{C_{r} C_{1}(r, n)}{2 \pi}\|f\|_{X} K_{r} C_{1}(r, n)=\frac{n C_{r} K_{r}}{2 \pi}\left(C_{1}(r, n)\right)^{2}\|f\|_{X},
$$

which proves that

$$
c(\sigma, X, Y) \leq \frac{n C_{r} K_{r}}{2 \pi}\left(C_{1}(r, n)\right)^{2}
$$

and completes the proof of Theorem 1.1.1.

1.2. The case where X is a Hilbert space

In the following theorem, we suppose that X is a Hilbert space and both X, Y satisfy properties $\left(P_{i}\right)$ for $i=1 \ldots 4$. In this case, we obtain a better estimate for $c(\sigma, X, Y)$ than in Theorem 1.1.1 (see point (i) of Theorem 1.2.1). For the case $Y=H^{\infty}$, (point (ii) of Theorem 1.2.1), we can considerably improve this estimate.

Lemma. 1.2.0. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{2}, \ldots, \lambda_{t}, \ldots, \lambda_{t}\right\}$ be a finite sequence of \mathbb{D} where every λ_{s} is repeated according to its multiplicity $m_{s}, \sum_{s=1}^{t} m_{s}=n$. Let $\left(H,(.)_{H}\right)$ be a Hilbert space continuously emebedded into $\operatorname{Hol}(\mathbb{D})$ and satisfying properties $\left(P_{i}\right)$ for $i=2,3,4$. Then

$$
K_{B_{\sigma}}=: H \Theta B_{\sigma} H=\operatorname{span}\left(k_{\lambda_{j}, i}: 1 \leq j \leq t, 0 \leq i \leq m_{j}-1\right),
$$

where $k_{\lambda, i}=\left(\frac{d}{d \bar{\lambda}}\right)^{i} k_{\lambda}$ and k_{λ} is the reproducing kernel of X at point λ for every $\lambda \in \mathbb{D}$.
Proof. First, we explain the notation. Namely, since $H \subset H o l(\mathbb{D})$ (with continuous inclusion), the function $\lambda \mapsto f(\lambda)$ is holomorphic and since $f(\lambda)=\left(f, k_{\lambda}\right)_{H}$ for every f, the function $\bar{\lambda} \mapsto k_{\lambda}$ is (weakly, and hence strongly) holomorphic. We have $f^{\prime}(\lambda)=\left(f, \frac{d}{d \bar{\lambda}} k_{\lambda}\right)_{H}$, and by induction, $f^{(i)}(\lambda)=\left(f,\left(\frac{d}{d \bar{\lambda}}\right)^{i} k_{\lambda}\right)_{H}$ for every $i, i=0,1, \ldots$ Denote

$$
\left(\frac{d}{d \bar{\lambda}}\right)^{i} k_{\lambda}=k_{\lambda, i}
$$

we know, (see Lemma 1.1.0), that

$$
\begin{gathered}
B_{\sigma} H=\left\{f \in H: f^{(i)}\left(\lambda_{j}\right)=0, \forall i, j, 1 \leq i<m_{j}, j=1, \ldots, t\right\}= \\
=\left\{f \in H:\left(f, k_{\lambda_{j}, i}\right)_{H}=0, \forall i, j, 1 \leq i<m_{j}, j=1, \ldots, t\right\} .
\end{gathered}
$$

This means that

$$
H \Theta B_{\sigma} H=\operatorname{span}\left(k_{\lambda_{j}, i}: 1 \leq i<m_{j}, j=1, \ldots, t\right)
$$

Theorem. 1.2.1. Let Y be a Banach space verifying property $\left(P_{1}\right)$ and $X=\left(H,(.)_{H}\right)$ a Hilbert space satisfying properties $\left(P_{i}\right)$ for $i=2,3,4$. We moreover suppose that for every $0<r<1$ there exists $\epsilon>0$ such that $k_{\lambda} \in \operatorname{Hol}((1+\epsilon) \mathbb{D})$ for all $|\lambda|<r$, where k_{λ} stands for the reproducing kernel of X at point λ, and $\bar{\lambda} \mapsto k_{\lambda}$ is holomorphic on $|\lambda|<r$ as a $\operatorname{Hol}((1+\epsilon) \mathbb{D})$-valued function. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{2}, \ldots, \lambda_{t}, \ldots, \lambda_{t}\right\}$ be a sequence in \mathbb{D}, where λ_{s} are repeated according their multiplicity $m_{s}, \sum_{s=1}^{t} m_{s}=n$. Then we have,
i)

$$
c(\sigma, X, Y) \leq\left(\sum_{k=1}^{n}\left\|e_{k}\right\|_{Y}^{2}\right)^{\frac{1}{2}}
$$

where $\left(e_{k}\right)_{k=1}^{n}$ stands for the Gram-Schmidt orthogonalization (in the space H) of the sequence

$$
k_{\lambda_{1}, 0}, k_{\lambda_{1}, 1}, k_{\lambda_{1}, 2} \ldots, k_{\lambda_{1}, m_{1}-1}, k_{\lambda_{2}, 0}, k_{\lambda_{2}, 1}, k_{\lambda_{2}, 2} \ldots, k_{\lambda_{2}, m_{2}-1}, \ldots, k_{\lambda_{t}, 0}, k_{\lambda_{t}, 1}, k_{\lambda_{t}, \ldots}, k_{\lambda_{t}, m_{t}-1},
$$

notation $k_{\lambda, i}$ is introduced in Lemma 1.2.0.
ii) For the case $Y=H^{\infty}$, we have

$$
c\left(\sigma, H, H^{\infty}\right) \leq \sup _{z \in \mathbb{D}}\left\|P_{B_{\sigma}} k_{z}\right\|_{H},
$$

where $P_{B_{\sigma}}=\sum_{k=1}^{n}\left(., e_{k}\right)_{H} e_{k}$ stands for the orthogonal projection of H onto $K_{B_{\sigma}}$,

$$
K_{B_{\sigma}}=\operatorname{span}\left(k_{\lambda_{j}, i}: 1 \leq i<m_{j}, j=1, \ldots, t\right)
$$

Proof. i). Let $f \in X,\|f\|_{X} \leq 1$. Lemma 1.2 .0 shows that

$$
g=P_{B_{\sigma}} f=\sum_{k=1}^{n}\left(f, e_{k}\right)_{H} e_{k}
$$

is the orthogonal projection of f onto subspace $K_{B_{\sigma}}$. Function g belongs to Y because all $k_{\lambda_{j}, i}$ are in $\operatorname{Hol}((1+\epsilon) \mathbb{D})$ for a convenient $\epsilon>0$, and Y satisfies $\left(P_{1}\right)$.
On the other hand,

$$
g-f \in B_{\sigma} H
$$

again by Lemma 1.2.0.
Moreover,

$$
\|g\|_{Y} \leq \sum_{k=1}^{n}\left|\left(f, e_{k}\right)_{H}\right|\left\|e_{k}\right\|_{Y}
$$

and by Cauchy-Schwarz inequality,

$$
\begin{gathered}
\|g\|_{Y} \leq\left(\sum_{k=1}^{n}\left|\left(f, e_{k}\right)_{H}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{k=1}^{n}\left\|e_{k}\right\|_{Y}^{2}\right)^{\frac{1}{2}} \leq \\
\leq\|f\|_{H}\left(\sum_{k=1}^{n}\left\|e_{k}\right\|_{Y}^{2}\right)^{\frac{1}{2}}
\end{gathered}
$$

which proves i).
ii). If $Y=H^{\infty}$, then

$$
|g(z)|=\left|\left(P_{B_{\sigma}} f, k_{z}\right)_{H}\right|=\left|\left(f, P_{B_{\sigma}} k_{z}\right)_{H}\right| \leq\|f\|_{H}\left\|P_{B_{\sigma}} k_{z}\right\|_{H},
$$

for all $z \in \mathbb{D}$, which proves ii).

2. Upper bounds for $C_{n, r}\left(H^{2}, H^{\infty}\right)$

In this section, we specialize the estimate obtained in point (ii) of Theorem 1.2.1 for the case $X=H^{2}$, the Hardy space of the disc. Later on, we will see that this estimate is sharp at least for some special sequences σ (see Section 6). We also develop a slightly different approach to the interpolation constant $c\left(\sigma, H^{2}, H^{\infty}\right)$ giving more estimates for individual sequences $\sigma=$ $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of \mathbb{D}.
Corollary. 2.0. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a sequence in \mathbb{D}. Then,

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup _{z \in \mathbb{D}}\left(\frac{1-\left|B_{\sigma}(z)\right|^{2}}{1-|z|^{2}}\right)^{\frac{1}{2}}
$$

Indeed, applying point (ii) of Theorem 1.2.1 for $X=H^{2}$ and $Y=H^{\infty}$, and using

$$
k_{z}(\zeta)=\frac{1}{1-\bar{z} \zeta}
$$

and

$$
\left(P_{B_{\sigma}} k_{z}\right)(\zeta)=\frac{1-\overline{B_{\sigma}(z)} B_{\sigma}(\zeta)}{1-\bar{z} \zeta}
$$

(see [N1] p.199), we obtain

$$
\left\|P_{B_{\sigma}} k_{z}\right\|_{H^{2}}=\left(\frac{1-\left|B_{\sigma}(z)\right|^{2}}{1-|z|^{2}}\right)^{\frac{1}{2}}
$$

which gives the result.

Proposition. 2.1. For every sequence $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of \mathbb{D} we have

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sqrt{2} \sup _{|\zeta|=1}\left|B^{\prime}(\zeta)\right|^{\frac{1}{2}}=\sqrt{2} \sup _{|\zeta|=1}\left|\sum_{i=1}^{n} \frac{1-\left|\lambda_{i}\right|^{2}}{\left(1-\bar{\lambda}_{i} \zeta\right)^{2}} \frac{B_{\sigma}(\zeta)}{b_{\lambda_{i}}(\zeta)}\right|^{\frac{1}{2}} .
$$

Proof. We use Corollary 2.0. The map $\zeta \mapsto\left\|P_{B}\left(k_{\zeta}\right)\right\|=\sup \left\{|f(\zeta)|: f \in K_{B},\|f\| \leq 1\right\}$, and hence the map

$$
\zeta \mapsto\left(\frac{1-|B(\zeta)|^{2}}{1-|\zeta|^{2}}\right)^{\frac{1}{2}}
$$

is a subharmonic function so

$$
\sup _{|\zeta|<1}\left(\frac{1-|B(\zeta)|^{2}}{1-|\zeta|^{2}}\right)^{\frac{1}{2}} \leq \sup _{|w|=1} \lim _{r \rightarrow 1}\left(\frac{1-|B(r w)|^{2}}{1-|r w|^{2}}\right)^{\frac{1}{2}}
$$

Now apply Taylor's Formula of order 1 for points $w \in \mathbb{T}$ and $u=r w, 0<r<1$. (It is applicable because B is holomorphic at every point of \mathbb{T}). We get

$$
\frac{B(u)-B(w)}{u-w}=B^{\prime}(w)+o(1)
$$

and since

$$
|u-w|=1-|u|
$$

$$
\left|\frac{B(u)-B(w)}{u-w}\right|=\frac{|B(u)-B(w)|}{1-|u|}=\left|B^{\prime}(w)+o(1)\right| .
$$

Now,

$$
\begin{aligned}
& |B(u)-B(w)| \geq|B(w)|-|B(u)|=1-|B(u)| \\
& \frac{1-|B(u)|}{1-|u|} \leq \frac{|B(u)-B(w)|}{1-|u|}=\left|B^{\prime}(w)+o(1)\right|
\end{aligned}
$$

and

$$
\lim _{r \rightarrow 1}\left(\frac{1-|B(r w)|}{1-|r w|}\right)^{\frac{1}{2}} \leq \sqrt{\left|B^{\prime}(w)\right|}
$$

Since we have

$$
B^{\prime}(w)=-\sum_{i=1}^{n} \frac{1-\left|\lambda_{i}\right|^{2}}{\left(1-\bar{\lambda}_{i} w\right)^{2}} \Pi_{j=1, j \neq i}^{n} b_{\lambda_{j}}(w),
$$

for all $w \in \mathbb{T}$. This completes the proof since

$$
\frac{1-|B(r w)|^{2}}{1-|r w|^{2}}=\frac{(1-|B(r w)|)(1+|B(r w)|)}{(1-|r w|)(1+|r w|)} \leq 2 \frac{1-|B(r w)|}{1-|r w|}
$$

Corollary. 2.2. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ and $r=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|$. Then

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq 2\left(\frac{n}{1-r}\right)^{\frac{1}{2}}
$$

and hence,

$$
C_{n, r}\left(H^{2}, H^{\infty}\right) \leq 2\left(\frac{n}{1-r}\right)^{\frac{1}{2}}
$$

Indeed, we apply Proposition 2.1 and observe that

$$
\left|B^{\prime}(w)\right| \leq\left|\sum_{i=1 . . n} \frac{1-\left|\lambda_{i}\right|^{2}}{\left(1-\left|\lambda_{i}\right|\right)^{2}}\right| \leq n \frac{1+r}{1-r} \leq \frac{2 n}{1-r}
$$

Now, we develop a slightly different approach to the interpolation constant $c\left(\sigma, H^{2}, H^{\infty}\right)$.
Theorem. 2.3. For every sequence $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of \mathbb{D},

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup _{z \in \mathbb{T}}\left(\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left|z-\lambda_{k}\right|^{2}}\right)^{\frac{1}{2}}
$$

Proof. We give two proofs to this estimate. The first proof is shorter than the second one, but it contains an extra $\sqrt{2}$ factor.

First proof. Using Proposition 2.1., we obtain

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sqrt{2} \sup _{|\zeta|=1}\left|\sum_{j=1}^{n} \frac{1-\left|\lambda_{j}\right|^{2}}{\left(1-\overline{\lambda_{j}} \zeta\right)^{2}} \frac{B_{\sigma}}{b_{\lambda_{j}}}\right|^{\frac{1}{2}} \leq
$$

$$
\leq \sqrt{2} \sup _{|\zeta|=1}\left(\sum_{i=1}^{n} \frac{1-\left|\lambda_{i}\right|^{2}}{\left|1-\overline{\lambda_{i}}\right|^{2}}\right)^{\frac{1}{2}}=\sqrt{2} \sup _{|\zeta|=1}\left(\sum_{i=1}^{n} \frac{1-\left|\lambda_{i}\right|^{2}}{\left|\bar{\zeta}-\overline{\lambda_{i}}\right|^{2}}\right)^{\frac{1}{2}}
$$

Second proof. In order to simplify the notation, we set $B=B_{\sigma}$. Consider K_{B}, the n-dimensional subspace of H^{2} defined by

$$
K_{B}=\left(B H^{2}\right)^{\perp}=H^{2} \Theta B H^{2}
$$

Then the family $\left(e_{k}\right)_{k=1}^{n}$ introduced in the proof of Theorem 1.1.1, (known as Malmquist's basis), is an orthonormal basis of K_{B}, (see [N1], Malmquist-Walsh Lemma, p.116). Recall that

$$
e_{1}=\frac{f_{1}}{\left\|f_{1}\right\|_{2}}
$$

and

$$
e_{k}=\frac{f_{k}}{\left\|f_{k}\right\|_{2}} \Pi_{j=1}^{k-1} b_{\lambda_{j}}
$$

for all $k=2 . . n$, where

$$
f_{k}=\frac{1}{1-\overline{\lambda_{k}} z}
$$

is the reproducing kernel of H^{2} associated to λ_{k}. Now, let $f \in H^{2}$ and

$$
g=P_{B} f=\sum_{k=1}^{n}\left(f, e_{k}\right)_{H^{2}} e_{k}
$$

Function g belongs to H^{∞} because it is a finite sum of H^{∞} functions. Moreover,

$$
g\left(\lambda_{i}\right)=f\left(\lambda_{i}\right)
$$

for all $i=1 \ldots n$, counting with multiplicities. (Indeed, we can write $f=P_{B} f+g_{1}$ with $g_{1} \in K_{B}^{\perp}=$ $B H^{2}$). We have

$$
|g(\zeta)| \leq \sum_{k=1}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right|\left|e_{k}(\zeta)\right|
$$

for all $\zeta \in \mathbb{D}$. And by Cauchy-Schwarz inequality,

$$
\begin{gathered}
|g(\zeta)| \leq\left(\sum_{k=1}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left|1-\lambda_{k} \zeta\right|^{2}}\right)^{\frac{1}{2}}, \\
\|g\|_{\infty} \leq\|f\|_{2} \sup _{\zeta \in \mathbb{T}}\left(\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left|1-\lambda_{k} \zeta\right|^{2}}\right)^{\frac{1}{2}}
\end{gathered}
$$

Since f is an arbitrary H^{2} function, we obtain

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup _{\zeta \in \mathbb{T}}\left(\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left|\zeta-\lambda_{k}\right|^{2}}\right)^{\frac{1}{2}}
$$

which completes the proof.

Corollary. 2.4. For any sequence $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ in \mathbb{D},

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq\left(\sum_{j=1}^{n} \frac{1+\left|\lambda_{j}\right|}{1-\left|\lambda_{j}\right|}\right)^{\frac{1}{2}}
$$

Indeed,

$$
\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left|\zeta-\lambda_{k}\right|^{2}} \leq\left(\sum_{k=1}^{n} \frac{\left(1-\left|\lambda_{k}\right|^{2}\right)}{\left(1-\left|\lambda_{k}\right|\right)^{2}}\right)^{\frac{1}{2}}
$$

and the result follows from Theorem 2.3.

Remark 2.5. As a result, we get once more the same estimate for $C_{n, r}\left(H^{2}, H^{\infty}\right)$ as in Corollary 2.2 , with the constant $\sqrt{2}$ instead of 2 : since $1+\left|\lambda_{j}\right| \leq 2$ and $1-\left|\lambda_{j}\right| \geq 1-r$, applying Corollary 2.4, we get

$$
C_{n, r}\left(H^{2}, H^{\infty}\right) \leq \sqrt{2} \frac{\sqrt{n}}{\sqrt{1-r}}
$$

It is natural to wonder if it is possible to improve the bound $\sqrt{2} \frac{\sqrt{n}}{\sqrt{1-r}}$. We return to this question in Chapter 5 below.

3. Upper bounds for $C_{n, r}\left(H^{p}, H^{\infty}\right), p \geq 1$

The aim of this section is to extend Corollary 2.2 to all Hardy spaces H^{p}. This is the subject of the following theorem.

Theorem. 3.0. Let $1 \leq p \leq \infty$. Then

$$
C_{n, r}\left(H^{p}, H^{\infty}\right) \leq A_{p}\left(\frac{n}{1-r}\right)^{\frac{1}{p}}
$$

for all $n \geq 1,0 \leq r<1$, where A_{p} is a constant depending only on p.
We first prove the following lemma.
Lemma. 3.1. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ and $r=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|$, then

$$
c\left(\sigma, H^{1}, H^{\infty}\right) \leq \frac{2 n}{1-r}
$$

and hence,

$$
C_{n, r}\left(H^{1}, H^{\infty}\right) \leq \frac{2 n}{1-r}
$$

Proof. Let $f \in H^{1}$ such that $\|f\|_{1} \leq 1$ and let,

$$
g=P_{B} f=\sum_{k=1 . . n}\left\langle f, e_{k}\right\rangle e_{k}
$$

where, as always, $\left(e_{k}\right)_{k=1}^{n}$ is the Malmquist basis corresponding to σ, and where $\langle.,$.$\rangle means the$ Cauchy sesquilinear form $\langle f, g\rangle=\sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}(k)}$. That is to say that,

$$
g(\zeta)=\sum_{k=1 . . n}\left\langle f, e_{k}\right\rangle e_{k}(\zeta)=\left\langle f, \sum_{k=1 . . n} e_{k} \overline{e_{k}(\zeta)}\right\rangle
$$

for all $\zeta \in \mathbb{D}$, which gives,

$$
|g(\zeta)| \leq\|f\|_{H^{1}}\left\|\sum_{k=1 . . n} e_{k} \overline{e_{k}(\zeta)}\right\|_{H^{\infty}} \leq\left\|\sum_{k=1 . . n} e_{k} \overline{e_{k}(\zeta)}\right\|_{H^{\infty}}
$$

Now, we recall that

$$
e_{k}=\frac{\left(1-\left|\lambda_{k}\right|^{2}\right)^{\frac{1}{2}}}{\left(1-\overline{\lambda_{k}} z\right)}\left(\Pi_{j=1}^{k-1} b_{\lambda_{j}}\right)
$$

and, as we saw it in Theorem 2.3. (second proof),

$$
\left\|e_{k}\right\|_{H^{\infty}} \leq \frac{\left(1+\left|\lambda_{k}\right|\right)^{\frac{1}{2}}}{\left(1-\left|\lambda_{k}\right|\right)^{\frac{1}{2}}}
$$

As a consequence,

$$
|g(\zeta)| \leq \sum_{k=1}^{n}\left\|e_{k}\right\|_{H^{\infty}}\left|\overline{e_{k}(\zeta)}\right|=\sum_{k=1}^{n}\left\|e_{k}\right\|_{H^{\infty}}^{2} \leq \sum_{k=1}^{n} \frac{\left(1+\left|\lambda_{k}\right|\right)}{\left(1-\left|\lambda_{k}\right|\right)} \leq \frac{2 n}{1-r}
$$

for all $\zeta \in \mathbb{D}$, which completes the proof.
Proof of Theorem 3.0. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a sequence in the unit disc $\mathbb{D}, B_{\sigma}=\prod_{i=1}^{n} b_{\lambda_{i}}$, and $T: H^{p} \longrightarrow H^{\infty} / B_{\sigma} H^{\infty}$ be the restriction map defined by

$$
T f=\left\{g \in H^{\infty}: f-g \in B_{\sigma} H^{p}\right\}
$$

for every f. Then,

$$
\|T\|_{H^{p} \rightarrow H^{\infty} / B_{\sigma} H^{\infty}}=c\left(\sigma, H^{p}, H^{\infty}\right) .
$$

There exists $0 \leq \theta \leq 1$ such that $\frac{1}{p}=1-\theta$, and since (we use the notation of the interpolation theory between Banach spaces see $[\operatorname{Tr}]$ or $[\mathrm{Be}]$) $\left[H^{1}, H^{\infty}\right]_{\theta}=H^{p}$ (a topological identity: the spaces are the same and the norms are equivalent (up to constants depending on p only), see $[J]$), by a known interpolation Theorem (see [Tr], Theorem 1.9.3, p.59),

$$
\|T\|_{\left[H^{1}, H^{\infty}\right]_{\theta} \rightarrow H^{\infty} / B_{\sigma} H^{\infty}} \leq\left(A_{1} c\left(\sigma, H^{1}, H^{\infty}\right)\right)^{1-\theta}\left(A_{\infty} c\left(\sigma, H^{\infty}, H^{\infty}\right)\right)^{\theta}
$$

where A_{1}, A_{∞} are numerical constants, and using both Lemma 3.1 and the fact that $c\left(\sigma, H^{\infty}, H^{\infty}\right) \leq$ 1, we find

$$
\|T\|_{\left[H^{1}, H^{\infty}\right]_{\theta} \rightarrow H^{\infty} / B_{\sigma} H^{\infty}} \leq\left(A_{1} \frac{2 n}{1-r}\right)^{1-\theta} A_{\infty}^{\theta}=\left(2 A_{1}\right)^{1-\theta} A_{\infty}^{\theta}\left(\frac{n}{1-r}\right)^{\frac{1}{p}}
$$

which completes the proof.

4. Upper bounds for $C_{n, r}\left(L_{a}^{2}, H^{\infty}\right)$

In this section, we generalize Corollary 2.2 to the case of spaces X which contain $H^{2}: X=$ $l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right), \alpha \geq 1$, the Hardy weighted spaces of all $f(z)=\sum_{k \geq 0} \hat{f}(k) z^{k}$ satisfying

$$
\sum_{k \geq 0}|\hat{f}(k)|^{2} \frac{1}{(k+1)^{2(\alpha-1)}}<\infty
$$

It is also important to recall that

$$
l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right)=L_{a}^{2}\left(\left(1-|z|^{2}\right)^{2 \alpha-3} d A\right), \alpha>1
$$

where $L_{a}^{2}\left(\left(1-|z|^{2}\right)^{\beta} d A\right), \beta>-1$, stand for the Bergman weighted spaces of all holomorphic functions f such that

$$
\int_{\mathbb{D}}|f(z)|^{2}\left(1-|z|^{2}\right)^{\beta} d A<\infty
$$

Notice also that $H^{2}=l_{a}^{2}(1)$ and $L_{a}^{2}(\mathbb{D})=l_{a}^{2}\left(\frac{1}{(k+1)^{\frac{1}{2}}}\right)$, where $L_{a}^{2}(\mathbb{D})$ stands for the Bergman space of the unit disc \mathbb{D}.

Theorem. 4.0. Let σ be a sequence in $\mathbb{D}, \alpha \in[1,2]$ and $\beta \in]-1,1]$. Then

$$
c\left(\sigma, l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right), H^{\infty}\right) \leq A\left(\frac{n}{1-r}\right)^{\frac{2 \alpha-1}{2}} .
$$

Otherwise,

$$
\begin{gathered}
C_{n, r}\left(l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right), H^{\infty}\right) \leq A\left(\frac{n}{1-r}\right)^{\frac{2 \alpha-1}{2}} \\
C_{n, r}\left(L_{a}^{2}\left(\left(1-|z|^{2}\right)^{\beta} d A\right), H^{\infty}\right) \leq A^{\prime}\left(\frac{n}{1-r}\right)^{\frac{\beta+2}{2}}
\end{gathered}
$$

for all $n \geq 1,0 \leq r<1$, where $A=A(\alpha-1)$ is a constant depending only on α and $A^{\prime}=A^{\prime}(\beta)$ is a constant depending only on β.

In particular, for $\alpha=\frac{3}{2}$ (or equivalently $\beta=0$) we get

$$
C_{n, r}\left(L_{a}^{2}, H^{\infty}\right) \leq 2 \sqrt{3} \frac{n}{1-r}
$$

for all $n \geq 1,0 \leq r<1$.
First, we prove a following lemma. In fact, Lemma 4.1 below is a partial case $(p=2)$ of the following K. Dyakonov's result [D] (which is, in turn, a generalization of M. Levin's inequality [L] corresponding to the case $p=\infty$): for every $p, 1<p \leq \infty$ there exists a constant $c_{p}>0$ such that

$$
\left\|f^{\prime}\right\|_{H^{p}} \leq c_{p}\left\|B^{\prime}\right\|_{\infty}\|f\|_{H^{p}}
$$

for all $f \in K_{B}$, where B is a finite Blaschke product (of order n) and $\|.\|_{\infty}$ means the norm in $L^{\infty}(\mathbb{T})$. For our partial case, our proof is different and the constant is slightly better. We notice that in general, Bernstein type inequalities have already been the subject of a lot of papers. Among others, Chapter 7 of P. Borwein and T. Erdélyi book's, see $[\mathrm{BoEr}]$, is devoted to such inequalities. This is also the case of A. Baranaov's work, see [B1], [B2] and [B3], and also of R. A. DeVore and G. G. Lorentz's book, see [DeLo].

Lemma. 4.1. Let $B=\Pi_{j=1}^{n} b_{\lambda_{j}}$, be a finite Blaschke product (of order n), $r=\max _{j}\left|\lambda_{j}\right|$, and $f \in K_{B}=: H^{2} \Theta B H^{2}$. Then,

$$
\left\|f^{\prime}\right\|_{H^{2}} \leq \frac{5}{2} \frac{n}{1-r}\|f\|_{H^{2}}
$$

Proof. Since $f \in K_{B}, f=P_{B} f=\sum_{k=1}^{n}\left(f, e_{k}\right)_{H^{2}} e_{k}$. Noticing that,

$$
e_{k}^{\prime}=\sum_{i=1}^{k-1} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} e_{k}+\overline{\lambda_{k}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)} e_{k},
$$

for $k=2 . . n$, we get

$$
\begin{gathered}
f^{\prime}=\left(P_{B} f\right)^{\prime}=\left(f, e_{1}\right)_{H^{2}} e_{1}^{\prime}+\sum_{k=2}^{n}\left(f, e_{k}\right)_{H^{2}} e_{k}^{\prime}= \\
=\left(f, e_{1}\right)_{H^{2}} \frac{\bar{\lambda}_{1}}{\left(1-\overline{\lambda_{1}} z\right)} e_{1}+\sum_{k=2}^{n}\left(f, e_{k}\right)_{H^{2}} \sum_{i=1}^{k-1} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} e_{k}+\sum_{k=2}^{n}\left(f, e_{k}\right)_{H^{2}} \overline{\lambda_{k}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)} e_{k},
\end{gathered}
$$

which gives

$$
\begin{aligned}
f^{\prime}= & \left(f, e_{1}\right)_{H^{2}} \frac{\bar{\lambda}_{1}}{\left(1-\overline{\lambda_{1}} z\right)} e_{1}+\sum_{k=2}^{n} \sum_{i=1}^{n-1}\left(f, e_{k}\right)_{H^{2}} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} e_{k} \chi_{[1, k-1]}(i)+\sum_{k=2}^{n}\left(f, e_{k}\right)_{H^{2}} \overline{\lambda_{k}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)} e_{k}= \\
& =\left(f, e_{1}\right)_{H^{2}} \frac{\bar{\lambda}_{1}}{\left(1-\overline{\lambda_{1}} z\right)} e_{1}+\sum_{i=1}^{n} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} \sum_{k=i+1}^{n-1}\left(f, e_{k}\right)_{H^{2}} e_{k}+\sum_{k=2}^{n}\left(f, e_{k}\right)_{H^{2}} \overline{\lambda_{k}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)} e_{k}
\end{aligned}
$$

where $\chi_{[1, k-1]}$ is the characteristic function of $[1, k-1]$. Now,

$$
\begin{gathered}
\left\|\left(f, e_{1}\right)_{H^{2}} \frac{\bar{\lambda}_{1}}{\left(1-\overline{\lambda_{1}} z\right)} e_{1}\right\|_{H^{2}} \leq\left|\left(f, e_{1}\right)_{H^{2}}\right|\left\|\frac{\bar{\lambda}_{1}}{\left(1-\overline{\lambda_{1}} z\right)}\right\|_{\infty}\left\|e_{1}\right\|_{H^{2}} \leq \\
\leq\|f\|_{H^{2}}\left\|e_{1}\right\|_{H^{2}} \frac{1}{1-r}\left\|e_{1}\right\|_{H^{2}} \leq\|f\|_{H^{2}} \frac{1}{1-r}
\end{gathered}
$$

using both Cauchy-Schwarz inequality and the fact that e_{1} is a vector of norm 1 in H^{2}. By the same reason, we have

$$
\begin{aligned}
& \left\|\sum_{k=2}^{n} \overline{\lambda_{k}}\left(f, e_{k}\right)_{H^{2}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)} e_{k}\right\|_{H^{2}} \leq \sum_{k=2}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right|\left\|\overline{\lambda_{k}} \frac{1}{\left(1-\overline{\lambda_{k}} z\right)}\right\|_{\infty}\left\|e_{k}\right\|_{H^{2}} \leq \\
\leq & \frac{1}{1-r} \sum_{k=2}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right| \leq \frac{1}{1-r}\left(\sum_{k=2}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right|^{2}\right)^{\frac{1}{2}} \sqrt{n-2} \leq \frac{1}{1-r}\|f\|_{H^{2}} \sqrt{n-2} .
\end{aligned}
$$

Finally,

$$
\begin{gathered}
\left\|\sum_{i=1}^{n-1} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} \sum_{k=i+1}^{n} e_{k}\left(f, e_{k}\right)_{H^{2}}\right\|_{H^{2}} \leq \sum_{i=1}^{n-1}\left\|\frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}}\right\|_{\infty}\left\|\sum_{k=i+1}^{n}\left(f, e_{k}\right)_{H^{2}} e_{k}\right\|_{H^{2}}= \\
=\left(\max _{1 \leq i \leq n-1}\left\|\frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}}\right\|_{\infty}\right) \sum_{i=1}^{n-1}\left(\sum_{k=i+1}^{n}\left|\left(f, e_{k}\right)_{H^{2}}\right|^{2}\right)^{\frac{1}{2}} \leq \max _{i}\left\|\frac{b_{\lambda_{i}^{\prime}}^{\prime}}{b_{\lambda_{i}}}\right\|_{\infty}^{n-1} \sum_{i=1}^{n-1}\|f\|_{H^{2}} .
\end{gathered}
$$

Moreover, since

$$
\left\|\frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}}\right\|_{\infty}=\left\|\frac{\left|\lambda_{i}\right|^{2}-1}{\left(1-\overline{\lambda_{i}} z\right)\left(\lambda_{i}-z\right)}\right\|_{\infty} \leq \frac{2}{1-\left|\lambda_{i}\right|} \leq \frac{2}{1-r}
$$

we get,

$$
\left\|\sum_{i=1}^{n-1} \frac{b_{\lambda_{i}}^{\prime}}{b_{\lambda_{i}}} \sum_{k=i+1}^{n}\left(f, e_{k}\right)_{H^{2}} e_{k}\right\|_{H^{2}} \leq \frac{2(n-1)}{1-r}\|f\|_{H^{2}} .
$$

Finally,

$$
\begin{gathered}
\left\|f^{\prime}\right\|_{H^{2}} \leq \frac{1}{1-r}\|f\|_{H^{2}}+\frac{2(n-1)}{1-r}\|f\|_{H^{2}}+\frac{1}{1-r} \sqrt{n-2}\|f\|_{H^{2}} \leq \frac{(2 n-1+\sqrt{n-2})}{1-r}\|f\|_{H^{2}} \leq \\
\leq \frac{5}{2} \frac{n}{1-r}\|f\|_{H^{2}}
\end{gathered}
$$

for all $n \geq 2$ and for every $f \in K_{B}$. (The case $n=1$ is obvious since $\left\|f^{\prime}\right\|_{H^{2}} \leq \frac{1}{1-r}\|f\|_{H^{2}}$).
Corollary. 4.2. Let σ a sequence in \mathbb{D}. Then,

$$
c\left(\sigma, l_{a}^{2}\left(\frac{1}{k+1}\right), H^{\infty}\right) \leq 6 \sqrt{2}\left(\frac{n}{1-r}\right)^{\frac{3}{2}} .
$$

Indeed, if $f \in l_{a}^{2}\left(\frac{1}{(k+1)^{N}}\right)=H$ then $\left|P_{B} f(\zeta)\right|=\left|\left\langle P_{B} f, k_{\zeta}\right\rangle\right|=\left|\left\langle f, P_{B} k_{\zeta}\right\rangle\right|$, where $\langle.$, . \rangle means the Cauchy pairing and $k_{\zeta}=(1-\bar{\zeta} z)^{-1}$. Denoting H^{\star} the dual of H with respect to this pairing, $H^{\star}=l_{a}^{2}\left((k+1)^{N}\right)$, we get

$$
\left|P_{B} f(\zeta)\right| \leq\|f\|_{H}\left\|P_{B} k_{\zeta}\right\|_{H^{\star}} \leq\|f\|_{H} K\left(\left\|P_{B} k_{\zeta}\right\|_{H^{2}}+\left\|\left(P_{B} k_{\zeta}\right)^{\prime}\right\|_{H^{2}}\right)
$$

where

$$
K=\max \left\{1, \sup _{k \geq 1} \frac{k+1}{k}\right\}=2
$$

Since $P_{B} k_{\zeta} \in K_{B}$, Lemma 4.1 implies

$$
\begin{aligned}
\left|P_{B} f(\zeta)\right| \leq\|f\|_{H}\left\|P_{B} k_{\zeta}\right\|_{H^{\star}} & \leq\|f\|_{H} K\left(\left\|P_{B} k_{\zeta}\right\|_{H^{2}}+\left(\frac{5}{2} \frac{n}{1-r}\right)\left\|P_{B} k_{\zeta}\right\|_{H^{2}}\right) \leq \\
& \leq A\left(\frac{n}{1-r}\right)^{\frac{3}{2}}\|f\|_{H}
\end{aligned}
$$

where $A=\sqrt{2} K\left(\frac{1}{2}+\frac{5}{2}\right)=6 \sqrt{2}$, since $\left\|P_{B} k_{\zeta}\right\|_{2} \leq \frac{\sqrt{2 n}}{\sqrt{1-r}}$, and since we can suppose $n \geq 2$, (the case $n=1$ being obvious).

Proof of Theorem 4.0. The case $\alpha=1$ corresponds to $X=H^{2}$ and has already been studied in Section 1 (we can choose $A(0)=\sqrt{2}$). We now suppose $\alpha>1$. Let $B_{\sigma}=\Pi_{i=1}^{n} b_{\lambda_{i}}$ and T : $l_{A}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right) \longrightarrow H^{\infty} / B_{\sigma} H^{\infty}$ be the restriction map defined by

$$
T f=\left\{g \in H^{\infty}: f-g \in B_{\sigma} l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right)\right\}
$$

for every f. Then,

$$
\|T\|_{l_{A}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right) \rightarrow H^{\infty} / B_{\sigma} H^{\infty}}=c\left(\sigma, l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right), H^{\infty}\right) .
$$

We set such that $\alpha-1=\theta$ with $0<\theta \leq 1$, and since (as in Theorem 3.0, we use the notation of the interpolation theory between Banach spaces see [Tr] or [Be])

$$
\begin{gathered}
{\left[l_{a}^{2}\left(\frac{1}{(k+1)^{0}}\right), l_{a}^{2}\left(\frac{1}{(k+1)^{1}}\right)\right]_{\theta, 2}=l_{a}^{2}\left(\left(\frac{1}{(k+1)^{0}}\right)^{2 \frac{1-\theta}{2}}\left(\frac{1}{(k+1)^{1}}\right)^{2 \frac{\theta}{2}}\right)=} \\
=l_{a}^{2}\left(\frac{1}{(k+1)^{\theta}}\right)=l_{A}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right)
\end{gathered}
$$

this gives, using Corollary 4.2 and (again) [Tr] Theorem 1.9.3 p.59,

$$
\begin{gathered}
\|T\|_{l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right) \rightarrow H^{\infty} / B_{\sigma} H^{\infty}} \leq \\
\leq\left(c\left(\sigma_{\lambda, n}, l_{a}^{2}\left(\frac{1}{(k+1)^{0}}\right), H^{\infty}\right)\right)^{1-\theta}\left(c\left(\sigma_{\lambda, n}, l_{a}^{2}\left(\frac{1}{(k+1)^{1}}\right), H^{\infty}\right)\right)^{\theta} \leq \\
\leq\left(A(0)\left(\frac{n}{1-r}\right)^{\frac{1}{2}}\right)^{1-\theta}\left(A(1)\left(\frac{n}{1-r}\right)^{\frac{3}{2}}\right)^{\theta}= \\
=A(0)^{1-\theta} A(1)^{\theta}\left(\frac{n}{1-r}\right)^{\frac{1-\theta}{2}+\frac{3 \theta}{2}}
\end{gathered}
$$

It remains to use $\theta=\alpha-1$ and set $A(\alpha-1)=A(0)^{1-\theta} A(1)^{\theta}$. In particular, for $\alpha=3 / 2$ we get $\frac{1-\theta}{2}+\frac{3 \theta}{2}=1$ and

$$
A\left(\frac{3}{2}\right)=A(0)^{\left(1-\frac{1}{2}\right)} A(1)^{\frac{1}{2}}=\sqrt{2}^{\frac{1}{2}}(6 \sqrt{2})^{\frac{1}{2}}=2 \sqrt{3}
$$

5. About the links with Carleson interpolation

In this section, we compare the method used in Sections 1, 2, 3 and 4 with those resulting from Carleson-type interpolation. Especially, we are interested in the case of circular sequences σ and radial sequences σ. Recall that given a (finite) set $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{D}$, the interpolation constant $C_{I}(\sigma)$ is defined by

$$
C_{I}(\sigma)=\sup _{\|a\|_{l \infty} \leq 1} \inf \left(\|g\|_{\infty}: g \in H^{\infty}, g_{\mid \sigma}=a\right) .
$$

We introduce the evaluation functionals φ_{λ} for $\lambda \in \mathbb{D}$,

$$
\varphi_{\lambda}(f)=f(\lambda), \quad f \in X
$$

as well as the evaluation of the derivatives $\varphi_{\lambda, s}(s=0,1, \ldots)$,

$$
\varphi_{\lambda, s}(f)=f^{(s)}(\lambda), \quad f \in X
$$

Theorem. 5.0. Let X be a Banach space, $X \subset \operatorname{Hol}(\mathbb{D})$. Then, for all sequences $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of distinct points in the unit disc \mathbb{D},

$$
\max _{1 \leq i \leq n}\left\|\varphi_{\lambda_{i}}\right\| \leq c\left(\sigma, X, H^{\infty}\right) \leq C_{I}(\sigma) \cdot \max _{1 \leq i \leq n}\left\|\varphi_{\lambda_{i}}\right\|,
$$

where $C_{I}(\sigma)$ stands for the interpolation constant.

Proof. Let $f \in X$. By definition of $C_{I}(\sigma)$, there exist a $g \in H^{\infty}$ such that

$$
f\left(\lambda_{i}\right)=g\left(\lambda_{i}\right) \forall i=1 . . n,
$$

with

$$
\begin{gathered}
\|g\|_{\infty} \leq C_{I}(\sigma) \max _{i}\left|f\left(\lambda_{i}\right)\right| \leq \\
\leq C_{I}(\sigma) \max _{i}\left\|\varphi_{\lambda_{i}}\right\|\|f\|_{X} .
\end{gathered}
$$

Now, taking the supremum over all $f \in X$ such that $\|f\|_{X} \leq 1$, we get the right hand side inequality. The left hand side one is clear since if $g \in H^{\infty}$ satisfies $f\left(\lambda_{i}\right)=g\left(\lambda_{i}\right) \forall i=1 . . n$, then $\|g\|_{\infty} \geq\left|g\left(\lambda_{i}\right)\right|=\left|f\left(\lambda_{i}\right)\right|=\left|\varphi_{\lambda_{i}}(f)\right|, \forall i=1 . . n$.

Comments 5.1.

Theorem 5.0 tells us that, for σ with a "reasonable" interpolation constant $C_{I}(\sigma)$, the quantity $c\left(\sigma, X, H^{\infty}\right)$ behaves as $\max _{i}\left\|\varphi_{\lambda_{i}}\right\|$. However, for "tight" sequences σ, the constant $C_{I}(\sigma)$ is so large that the estimate in question contains almost no information. On the other hand, an advantage of the estimate of Theorem 5.0 is that it does not contain $\# \sigma=n$ explicitly. Therefore, for well-separated sequences σ, Theorem $\mathbf{5 . 0}$ should give a better estimate than those of Corollary 2.2, and of Theorem 4.0.

Now, how does the interpolation constant $C_{I}(\sigma)$ behave in terms of the caracteristic r and n of σ ? In what follows we try to answer that question when σ is a r-circular sequence. In that case, we recall the definition of the constant α :

$$
\alpha=\frac{\min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|}{1-r}=\frac{r a}{1-r} .
$$

Example. 5.2. Two points sets. Let $\sigma=\left\{\lambda_{1}, \lambda_{2}\right\}, \lambda_{i} \in \mathbb{D}, \lambda_{1} \neq \lambda_{2}$. Then,

$$
\frac{1}{\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|} \leq C_{I}(\sigma) \leq \frac{2}{\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|},
$$

and Theorem 5.0 implies

$$
c\left(\sigma, X, H^{\infty}\right) \leq \frac{2}{\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|} \max _{i=1,2}\left\|\varphi_{\lambda_{i}}\right\|
$$

whereas a straightforward estimate gives

$$
c\left(\sigma, X, H^{\infty}\right) \leq\left\|\varphi_{\lambda_{1}}\right\|+\max _{|\lambda| \leq r}\left\|\varphi_{\lambda, 1}\right\|\left(1+\left|\lambda_{1}\right|\right),
$$

where $r=\max \left(\left|\lambda_{1}\right|,\left|\lambda_{2}\right|\right)$ and the functional $\varphi_{\lambda, 1}$ is defined in 5 . The difference is that the first upper bound blows up when $\lambda_{1} \rightarrow \lambda_{2}$, whereas the second one is still well-bounded.

Indeed, for an H^{∞}-function f solving the interpolation $f\left(\lambda_{1}\right)=1, f\left(\lambda_{2}\right)=-1$, we have

$$
2=\left|f\left(\lambda_{1}\right)-f\left(\lambda_{2}\right)\right| \leq 2\|f\|_{\infty}\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|
$$

(indeed, the function $g=\frac{f\left(\lambda_{1}\right)-f}{b_{\lambda_{1}}}$ is holomorphic in \mathbb{D} and its H^{∞} - norm on \mathbb{T} is equal to $\left\|f\left(\lambda_{1}\right)-f\right\|_{\infty}$, (which is less or equal than $2\|f\|_{\infty}$), since the Blaschke factor $b_{\lambda_{1}}$ has modulus 1 on the torus \mathbb{T}). Hence, $\|f\|_{\infty} \geq \frac{1}{\mid b_{\lambda_{1}}\left(\lambda_{2}\right)}$, which shows $C_{I}(\sigma) \geq \frac{1}{\mid b_{\lambda_{1}}\left(\lambda_{2}\right)}$.

On the other hand, setting

$$
f=a_{1} \frac{b_{\lambda_{2}}}{b_{\lambda_{2}}\left(\lambda_{1}\right)}+a_{2} \frac{b_{\lambda_{1}}}{b_{\lambda_{1}}\left(\lambda_{2}\right)},
$$

for arbitrary $a_{1}, a_{1} \in \mathbb{C}$, we get $\|f\|_{\infty} \leq \frac{\left|a_{1}\right|+\left|a_{2}\right|}{\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|} \leq \frac{\max \left(\left|a_{1}\right|,\left|a_{2}\right|\right)}{\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|}$. This implies $C_{I}(\sigma) \leq \frac{2}{\left|b_{\lambda_{1}}\left(\lambda_{2}\right)\right|}$.

For the second estimate stated in the example, taking $f \in X$ we set

$$
g=f\left(\lambda_{1}\right)+\frac{f\left(\lambda_{2}\right)-f\left(\lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}\left(z-\lambda_{1}\right),
$$

and we get

$$
\begin{gathered}
\|g\|_{\infty} \leq\left|f\left(\lambda_{1}\right)\right|+\left|\frac{f\left(\lambda_{2}\right)-f\left(\lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}\right|\left(1+\left|\lambda_{1}\right|\right) \leq \\
\leq\left\|\varphi_{\lambda_{1}}\right\|+\max _{\lambda \in\left[\lambda_{1}, \lambda_{2}\right]}\left\|\varphi_{\lambda, 1}\right\|\left(1+\left|\lambda_{1}\right|\right),
\end{gathered}
$$

and the result follows.

Example. 5.3. Circular sequences. Let $0<r<1$ and $\sigma=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}, \lambda_{i} \neq \lambda_{j},\left|\lambda_{i}\right|=r$ for every i, and let $\alpha=\frac{\min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|}{1-r}$. Then, $\frac{1}{\alpha} \leq C_{I}(\sigma) \leq 8 e^{K^{\prime}\left(1+\frac{K}{\alpha^{3}}\right)}$, where $K, K^{\prime}>0$ are absolute constants. Therefore,

$$
c\left(\sigma, X, H^{\infty}\right) \leq\left(8 e^{K^{\prime}\left(1+\frac{K}{\alpha^{3}}\right)}\right) \cdot \max _{|\lambda|=r}\left\|\varphi_{\lambda}\right\|
$$

for every r - circular set σ (an estimate does not depending on n explicitly). In particular, there exists an increasing function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that, for n uniformly distincts points $\lambda_{1}, \ldots, \lambda_{n}$, $\left|\lambda_{i}\right|=r,\left|\lambda_{i}-\lambda_{i+1}\right|=2 r \sin \left(\frac{\pi}{2 n}\right)$, we have
(1) $c\left(\sigma, H^{2}, H^{\infty}\right) \leq \varphi\left(\frac{n(1-r)}{r}\right) \frac{1}{(1-r)^{\frac{1}{2}}}$, for every n and $r, 0<r<1$ and in particular, for $n \leq\left[r(1-r)^{-1}\right]$ we obtain

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq c \frac{1}{(1-r)^{\frac{1}{2}}},
$$

whereas our specific Corollary 2.2, (which is sharp over all n elements sequences σ), gives

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq c \frac{1}{(1-r)}
$$

only.
(2) $c\left(\sigma, L_{a}^{2}, H^{\infty}\right) \leq \varphi\left(\frac{n(1-r)}{r}\right) \frac{1}{(1-r)}$, for every n and $r, 0<r<1$ and in particular, for $n \leq\left[r(1-r)^{-1}\right]$ we obtain

$$
c\left(\sigma, L_{a}^{2}, H^{\infty}\right) \leq c \frac{1}{(1-r)}
$$

whereas our specific Theorem 4.0, (which, again, is sharp over all n elements sequences σ), gives

$$
c\left(\sigma, L_{a}^{2}, H^{\infty}\right) \leq c \frac{1}{(1-r)^{2}}
$$

only.
In order to explain the statements of this example, we observe first that the Carleson interpolation constant $C_{I}(\sigma)$, for r-circular sets σ, essentially depends on α only. Indeed, as is known, the separation constant

$$
\Delta=i n f_{1 \leq j, k \leq n, j \neq k}\left|b_{\lambda_{j}}\left(\lambda_{k}\right)\right|,
$$

is of the order of $\min (\alpha, 1)$, and the Carleson measure density for $\mu=\sum_{i=1}^{n}\left(1-\left|\lambda_{i}\right|^{2}\right) \delta_{\lambda_{i}}$ also depends on α only. All together, $C_{I}(\sigma)$ is bounded if and only if α is separated from 0 ; see [N1] p. 158 for the details of this reasoning. In fact, we can show that

$$
\frac{\alpha}{1+\alpha r} \leq \Delta \leq \alpha
$$

and

$$
\frac{1}{\alpha} \leq C_{I}(\sigma) \leq e^{K^{\prime}\left(1+\frac{K}{\alpha^{3}}\right)},
$$

(as claimed as above), where $K, K^{\prime}>0$ are absolute constants, see Appendix 5.5 for details.
Now, checking point (1) for n equidistant points on the circle $|z|=r, \lambda_{j}=r e^{\frac{2 i \pi j}{n}}, j=1,2, \ldots, n$, one obtains $\left|\lambda_{i}-\lambda_{i+1}\right|=2 r \sin \left(\frac{\pi}{2 n}\right) \geq \frac{2 r}{n}$, and hence $\alpha \geq \frac{2 r}{n(1-r)}$. The above estimate for $C_{I}(\sigma)$ entails that we can take $\varphi(t)=8 e^{K^{\prime}\left(1+K t^{3}\right)}$ and then,

$$
C_{I}(\sigma) \leq 8 e^{K^{\prime}\left(1+\frac{K}{\alpha^{3}}\right)} \leq \varphi\left(\frac{n(1-r)}{r}\right) .
$$

Since, for the space H^{2}, we have $\left\|\varphi_{\lambda}\right\|=\left(1-|\lambda|^{2}\right)^{-\frac{1}{2}}$, the upper estimate for $c\left(\sigma, H^{2}, H^{\infty}\right)$ follows. Since for the space L_{a}^{2}, we have $\left\|\varphi_{\lambda}\right\|=\left(1-|\lambda|^{2}\right)$, the same reasoning works for $c\left(\sigma, L_{a}^{2}, H^{\infty}\right)$.

Example. 5.4. Radial sequences. Now we compare our two estimates of the interpolation constant $c\left(\sigma, X, H^{\infty}\right)$ (through the Carleson interpolation, and by the preceding general and specific methods) for special (geometric) sequences on the radius of the unit disc \mathbb{D}, say on the radius $[0,1)$. Let $0<\rho<1, p \in(0, \infty)$ and

$$
\lambda_{j}=1-\rho^{j+p}, j=0, \ldots, n,
$$

so that the distances $1-\lambda_{j}=\rho^{j} \rho^{p}$ form a geometric progression; the starting point is $\lambda_{0}=1-\rho^{p}$. Let

$$
r=\max _{0 \leq j \leq n} \lambda_{j}=\lambda_{k}=1-\rho^{n+p},
$$

and $\delta=\delta(B)=\min _{0 \leq k \leq n}\left|B_{k}\left(\lambda_{k}\right)\right|$, where $B_{k}=\frac{B}{b_{\lambda_{k}}}$. It is known that $\frac{1}{\delta} \leq C_{I}(\sigma) \leq \frac{8}{\delta^{2}}$. (The left hand side inequality is easy: if $f \in H^{\infty}, f\left(\lambda_{k}\right)=1, f\left(\lambda_{j}\right)=0$ for $j \neq k$, then $f=B_{k} g$ and $\|f\|_{\infty}=\|g\|_{\infty} \geq\left|g\left(\lambda_{k}\right)\right|=\frac{1}{\left|B_{k}\left(\lambda_{k}\right)\right|}$, and hence $C_{I}(\sigma) \geq \frac{1}{\left|S_{k}\left(\lambda_{k}\right)\right|}$ for every $k=0,1,2, \ldots, n$. The right hand side inequality is a theorem by P. Jones and S. Vinogradov, see ([N1], p 189). So, we need to know the asymptotic behaviour of $\delta=\delta(B)$ when $n \rightarrow \infty$, or $\rho \rightarrow 1$, or $\rho \rightarrow 0$, or $p \rightarrow \infty$, or $p \rightarrow 0$.

Claim. Let $\sigma=\left\{1-\rho^{p+k}\right\}_{k=1}^{n}, 0<\rho<1, p>0$. The estimate of $c\left(\sigma, H^{2}, H^{\infty}\right)$ via the Carleson constant $C_{I}(\sigma)$ (using Theorem 5.0) is comparable with or better than the estimates from Corollary 2.2 (for $X=H^{2}$) and Theorem 4.0 (for $X=L_{a}^{2}$ and $X=L_{a}^{2}\left(\left(1-|z|^{2}\right)^{\beta}\right)$) for sufficently small values of $\rho($ as $\rho \rightarrow 0)$ and/or for a fixed ρ and $n \rightarrow \infty$. In all other cases, as for $p \rightarrow \infty$ (which means $\lambda_{1} \rightarrow 1$), or $\rho \rightarrow 1$, or $n \rightarrow \infty$ and $\rho \rightarrow 1$, it is worse.

In order to justify that claim, we use the following upper bound for $\delta(B)=\min _{0 \leq k \leq n}\left|B_{k}\left(\lambda_{k}\right)\right|$, assuming (for the notation convenience) the n is an even integer $n=2 k$ and computing $B_{k}\left(\lambda_{k}\right)$,

$$
\begin{gathered}
\left|B_{k}\left(\lambda_{k}\right)\right|=\Pi_{j=1}^{k-1} \frac{\lambda_{k}-\lambda_{j}}{1-\lambda_{j} \lambda_{k}} \cdot \Pi_{j=k+1}^{2 k} \frac{\lambda_{j}-\lambda_{k}}{1-\lambda_{j} \lambda_{k}}= \\
=\Pi_{j=1}^{k-1} \frac{1-\rho^{k-j}}{1+\rho^{k-j}-\rho^{k+p}} \cdot \Pi_{j=k+1}^{2 k} \frac{1-\rho^{j-k}}{1+\rho^{j-k}-\rho^{j+p}}= \\
=\Pi_{s=1}^{k} \frac{1-\rho^{s}}{1+\rho^{s}\left(1-\rho^{p+k-s}\right)} \cdot \Pi_{s=1}^{k} \frac{1-\rho^{s}}{1+\rho^{s}\left(1-\rho^{p+k}\right)} \leq \\
\leq\left(\Pi_{s=1}^{k} \frac{1-\rho^{s}}{1+\rho^{s}\left(1-\rho^{p+k-s}\right)}\right)^{2} \leq\left(\Pi_{s=1}^{k} \frac{1-\rho^{s}}{1+\rho^{s}\left(1-\rho^{p}\right)}\right)^{2}=: A(n, \rho, p) .
\end{gathered}
$$

For a lower bound, we proceed as in [N1] p. 160 and get

$$
\begin{aligned}
\left|B_{k}\left(\lambda_{k}\right)\right| & =\Pi_{s=1}^{k} \frac{1-\rho^{s}}{1+\rho^{s}\left(1-\rho^{p+k-s}\right)} \cdot \Pi_{s=1}^{n-k} \frac{1-\rho^{s}}{1+\rho^{s}\left(1-\rho^{p+k}\right)} \geq \\
& \geq\left(\Pi_{s=1}^{n} \frac{1-\rho^{s}}{1+\rho^{s}\left(1-\rho^{p+n}\right)}\right)^{2}=: C(n, \rho, p)
\end{aligned}
$$

for every $k=0,1, \ldots, n$. Hence,

$$
C(n, \rho, p) \leq \delta(B) \leq A(n, \rho, p)
$$

On the other hand, using Corollary 2.4 (for $X=H^{2}$)

$$
\begin{gathered}
c\left(\sigma, H^{2}, H^{\infty}\right) \leq\left(\sum_{j=1}^{n} \frac{1+\left|\lambda_{j}\right|}{1-\left|\lambda_{j}\right|}\right)^{\frac{1}{2}} \leq\left(\sum_{j=1}^{n} \frac{2}{\rho^{j+p}}\right)^{\frac{1}{2}}= \\
=\left(\frac{2}{\rho^{n+p}}\right)^{\frac{1}{2}}\left(\sum_{j=1}^{n} \rho^{n-j}\right)^{\frac{1}{2}}=\left(\frac{2}{1-r}\right)^{\frac{1}{2}}\left(\frac{1-\rho^{n}}{1-\rho}\right)^{\frac{1}{2}}=: D(n, \rho, p) .
\end{gathered}
$$

Now, we can compare the behaviour of $D(n, \rho, p)$ and $C_{I}(\sigma) \cdot \max _{j}\left\|\varphi_{\lambda_{j}}\right\|_{H^{2}}$ for every parameter n, ρ, p.
5.4. (a) Sparse sequences σ ($\rho \rightarrow 0$, or at least $0<\rho \leq \epsilon<1$).

If $\rho \rightarrow 0$, one has $\lim _{\rho \rightarrow 0} C(n, \rho, p)=1$, and hence $\overline{\lim }_{\rho \rightarrow 0} C_{I}\left(\sigma_{n, \rho, p}\right) \leq 8$. So, asymptotically, Theorem 5.0 implies

$$
c\left(\sigma_{n, \rho, p}, H^{2}, H^{\infty}\right) \leq(8+\epsilon)\left(\frac{2}{1-r}\right)^{\frac{1}{2}}
$$

and Corollary 2.4 gives slightly better but comparable estimate,

$$
c\left(\sigma_{n, \rho, p}, H^{2}, H^{\infty}\right) \leq(1+\epsilon)\left(\frac{2}{1-r}\right)^{\frac{1}{2}}
$$

In our definition, if $p>0$ is fixed and $\rho \rightarrow 0$ then $\lambda_{1}=\lambda_{1}(\rho, p) \rightarrow 1$. In order to keep λ_{1} at a fixed position we can set $p=p(\rho)=\frac{c}{\log \left(\frac{1}{\rho}\right)}$. Then $\lambda_{1}=1-\rho^{p}=1-e^{-c}, c>0$. Still, $\lim _{\rho \rightarrow 0} C(n, \rho, p(\rho))=1$.
5.4. (b) Condensed sequences $\sigma(\rho \rightarrow 1)$. In this case, $\lim _{\rho \rightarrow 0} D(n, \rho, p)=\left(\frac{2}{1-r}\right)^{\frac{1}{2}} \sqrt{n+1}$, and hence using Corollary 2.4 we cannot get better than the general estimate of Corollary 2.5, $c\left(\sigma, H^{2}, H^{\infty}\right) \leq(\sqrt{n+1}+\epsilon)\left(\frac{2}{1-r}\right)^{\frac{1}{2}}$. To the contrary, $A(n, \rho, p) \sim_{\rho \rightarrow 1} \frac{\left(\frac{n}{2}\right)!}{2^{\frac{n}{2}}}(1-\rho)^{\frac{n}{2}}$, and therefore $C_{I}(\sigma) \geq \delta^{-1} \geq(A(n, \rho, p))^{-1}$ which blows up as $\frac{c o n s t}{(1-\rho)^{n}}$. So, as it can be predicted, in this case the Carleson interpolation is worse for our problem. Fixing $\lambda_{1}=1-\rho^{p}$ at an arbitrary position $\left(p=\frac{c}{\log \left(\frac{1}{\rho}\right)}\right)$ will not change the conclusion.
5.4 (c) Long sequences $(n \rightarrow \infty)$. With fixed ρ and p, let $n \rightarrow \infty$. Then, by Corollary 2.4,

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq\left(\frac{2}{1-r}\right)^{\frac{1}{2}}\left(\frac{1}{1-\rho}\right)^{\frac{1}{2}}
$$

(Observe, however, that is also not constant $1-r=\rho^{n+p}$). In its turn, Theorem 5.0 gives

$$
c\left(\sigma, H^{2}, H^{\infty}\right) \leq \frac{8}{\delta^{2}} \frac{1}{(1-r)^{\frac{1}{2}}} \sim_{n \rightarrow \infty}\left(\Pi_{s=1}^{\infty} \frac{1-\rho^{s}}{1+\rho^{s}}\right)^{-4} \frac{8}{(1-r)^{\frac{1}{2}}}
$$

because $\lim _{n} C(n, \rho, p)=\lim _{n} A(n, \rho, p)=\left(\Pi_{s=1}^{n} \frac{1-\rho^{s}}{1+\rho^{s}}\right)^{-4}$ for every $\rho, 0<\rho<1$. Of course, the latter estimate is much worse than the former one, because $\Pi_{s=1}^{\infty} \frac{1+\rho^{s}}{1-\rho^{s}} \sim \frac{\sqrt{1-\rho}}{2 \sqrt{\pi}} \exp \left(\frac{3 \pi^{2}}{12} \frac{1}{1-\rho}\right)$ as $\rho \rightarrow 1$. Indeed, setting $\varphi(\rho)=\Pi_{s=1}^{\infty} \frac{1}{1-\rho^{s}}$ for all $\rho \in[0,1[$, we have (see [Ne] p.22),

$$
\varphi(\rho)=\sqrt{\frac{1-\rho}{2 \pi}} \exp \left(\frac{\pi^{2}}{12} \frac{1+\rho}{1-\rho}\right)[1+O(1-\rho)]
$$

Now, setting $\psi(\rho)=\Pi_{s=1}^{\infty} \frac{1}{1+\rho^{s}}$ we get $(\varphi \psi)(\rho)=\frac{1}{\Pi_{k \geq 1}\left(1-\rho^{2 k}\right)}=\varphi\left(\rho^{2}\right)$ and,

$$
\begin{gathered}
\Pi_{s=1}^{\infty} \frac{1+\rho^{s}}{1-\rho^{s}}=\frac{\varphi(\rho)}{\psi(\rho)}=\varphi(\rho) \frac{\varphi(\rho)}{\varphi\left(\rho^{2}\right)}=\frac{(\varphi(\rho))^{2}}{\varphi\left(\rho^{2}\right)}= \\
=\frac{1-\rho}{2 \pi} \exp \left(\frac{\pi^{2}}{6} \frac{1+1}{1-\rho}\right) \sqrt{\frac{2 \pi}{1-\rho^{2}}} \exp \left(-\frac{\pi^{2}}{12} \frac{1+1}{(1-\rho)(1+1)}\right)[1+o(1)]= \\
=\frac{\sqrt{1-\rho}}{2 \sqrt{\pi}} \exp \left(\frac{3 \pi^{2}}{12} \frac{1}{1-\rho}\right)[1+o(1)], \text { as } \rho \rightarrow 1 .
\end{gathered}
$$

Appendix 5.5.

Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a r-circular sequence, $\left|\lambda_{i}\right|=r \forall i=1 \ldots n, 0 \leq r<1$; here we show the links between the constants $\Delta=\Delta(\sigma)=\inf f_{i \neq j}\left|b_{\lambda_{i}}\left(\lambda_{j}\right)\right|$, and $\alpha=\frac{\min n_{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|}{1-r}$, and establish an estimate for the Carleson interpolation constant $C_{I}(\sigma)$.
Lemma 5.6. In the above notation, we have

$$
\frac{\alpha}{1+\alpha r} \leq \Delta \leq \alpha .
$$

Lemma 5.7. In the above notation, we have the following estimate for the Carleson interpolation constant $C_{I}(\sigma)$: there exists numerical constants $K, K^{\prime}>0$ such that

$$
C_{I}(\sigma) \leq 8 e^{K^{\prime}\left(1+\frac{K}{\alpha^{3}}\right)}
$$

See [N1] for the proofs of these two Lemmas.

6. Lower bounds for $C_{n, r}\left(X, H^{\infty}\right)$

6.1. The cases $X=H^{2}$ and $X=L_{a}^{2}$

Here, we consider the reproducing kernel Hilbert spaces on the disc $\mathbb{D}: X=H^{2}=l_{a}^{2}(1)$ and $X=L_{a}^{2}=l_{a}^{2}(1 / \sqrt{k+1})$, and the problem of lower estimates for the one point special case $\sigma_{\lambda, n}=$ $\{\lambda, \lambda, \ldots, \lambda\},(n$ times $) \lambda \in \mathbb{D}$. Recall the definition of the semi-free interpolation constant

$$
c\left(\sigma_{\lambda, n}, H, H^{\infty}\right)=\sup \left\{\|f\|_{H^{\infty} / b_{\lambda}^{n} H^{\infty}}: f \in H,\|f\|_{H} \leq 1\right\}
$$

where $\|f\|_{H^{\infty} / b_{\lambda}^{n} H^{\infty}}=\inf \left\{\left\|f+b_{\lambda}^{n} g\right\|_{\infty}: g \in H\right\}$. In particular, our aim is to prove the sharpness of the upper estimate for the quantities

$$
C_{n, r}\left(H^{2}, H^{\infty}\right) \text { and } C_{n, r}\left(L_{a}^{2}, H^{\infty}\right)
$$

in Corollary 2.2 and Theorem 4.0.

Theorem. 6.1.0 Let $N \in\{1,2\}$ be an integer. Then,

$$
c\left(\sigma_{\lambda, n}, l_{a}^{2}\left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right), H^{\infty}\right) \geq a_{N}\left(\frac{n}{1-|\lambda|}\right)^{\frac{N}{2}}
$$

where $a_{1}=1 / 4 \sqrt{2}$ and $a_{2}=1 / 32$. In particular,

$$
a_{N}\left(\frac{n}{1-r}\right)^{\frac{N}{2}} \leq C_{n, r}\left(l_{a}^{2}\left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right), H^{\infty}\right) \leq A\left(\frac{n}{1-r}\right)^{\frac{N}{2}}
$$

for all $n \geq 1,0 \leq r<1$, where $A=A\left(\frac{N-1}{2}\right)$ is a constant defined in Theorem 4.0, and where spaces $l_{a}^{2}\left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right)$ are defined in Section 4.
(1) We first recall some properties of reproducing kernel Hilbert space on the disc $\mathbb{D}, X=$ $l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right)$. As it is mentionned in Section 4,

$$
l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right)=\left\{f=\sum_{k \geq 0} \hat{f}(k) z^{k}:\|f\|^{2}=\sum_{k \geq 0}|\hat{f}(k)|^{2} \frac{1}{(k+1)^{2(\alpha-1)}}<\infty\right\}
$$

The reproducing kernel of $l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right)$, by definition, is a $l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right)$-valued function $\lambda \longmapsto k_{\lambda}^{\alpha}$, $\lambda \in \mathbb{D}$, such that $\left(f, k_{\lambda}^{w}\right)=f(\lambda)$ for every $f \in l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha-1}}\right)$, where (.,.) means the scalar product $(h, g)=\sum_{k \geq 0} \hat{h}(k) \overline{\hat{g}(k)} \frac{1}{(k+1)^{2(\alpha-1)}}$. Since one has $f(\lambda)=\sum_{k \geq 0} \hat{f}(k) \lambda^{k}(k+1)^{2(\alpha-1)} \frac{1}{(k+1)^{2(\alpha-1)}}$ $(\lambda \in \mathbb{D})$, it follows that

$$
k_{\lambda}^{\alpha}(z)=\sum_{k \geq 0}(k+1)^{2(\alpha-1)} \bar{\lambda}^{k} z^{k}, z \in \mathbb{D} .
$$

In particular, for the Hardy space $H^{2}=l_{a}^{2}(1)(\alpha=1)$, we get the Szegö kernel

$$
k_{\lambda}(z)=(1-\bar{\lambda} z)^{-1},
$$

for the Bergman space $L_{a}^{2}(\mathbb{D})=l_{a}^{2}\left(\frac{1}{(k+1)^{\frac{1}{2}}}\right)\left(\alpha=\frac{3}{2}\right)$ - the Bergman kernel $k_{\lambda}^{3 / 2}(z)=(1-\bar{\lambda} z)^{-2}$.
(2) Reproducing kernel Hilbert spaces containing H^{2}. We will use the previous observations for the following composed reproducing kernels (Aronszajn-deBranges, see [N2] p.320): given the reproducing kernel k of H^{2} and $\varphi \in\left\{z^{N}: N=1,2\right\}$, the function $\varphi \circ k$ is also positive definit and the corresponding RKHS

$$
H(\varphi \circ k)=: \varphi(H(k))=\varphi\left(H^{2}\right)=l_{a}^{2}\left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right)
$$

satisfies the following. For every $f \in H(k)$ we have $\varphi \circ f \in \varphi(H(k))$ and $\|\varphi \circ f\|_{\varphi(H(k))}^{2} \leq \varphi\left(\|f\|_{H(k)}^{2}\right)$ (see [N2] p.320).

We notice in particular that

$$
H_{z}=H^{2} \text { and } H_{z^{2}}=L_{a}^{2}
$$

(a topological identity: the spaces are the same and the norms are equivalent). The link between spaces of type $l_{a}^{2}\left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right)$ and of type $\varphi\left(H^{2}\right)=H_{\varphi}$ being established, we give the following result.

Lemma 6.1.1 Let $\varphi \in\left\{z^{N}: N=1,2\right\}$, and $H_{\varphi}=\varphi\left(H^{2}\right)$ be the reproducing kernel Hilbert space corresponding to the kernel $\varphi\left(\frac{1}{1-\bar{\lambda} z}\right)$. Then, there exists a constant a_{N} depending on φ such that

$$
c\left(\sigma_{\lambda, n}, H_{\varphi}, H^{\infty}\right) \geq a_{N} \varphi\left(\sqrt{\frac{n}{1-|\lambda|}}\right)
$$

Moreover, we can choose $a_{1}=1 / 4 \sqrt{2}$ and $a_{2}=1 / 32$. In particular, we have

$$
\begin{aligned}
\frac{1}{4 \sqrt{2}} \frac{\sqrt{n}}{\sqrt{1-r}} \leq C_{n, r}\left(H^{2}, H^{\infty}\right) & \leq \sqrt{2} \frac{\sqrt{n}}{\sqrt{1-r}}, \text { and } \\
\frac{1}{32} \frac{n}{1-r} & \leq C_{n, r}\left(L_{a}^{2}, H^{\infty}\right)
\end{aligned}
$$

$\forall n \geq 1, \forall r \in[0,1[$.

Proof. 1) We set

$$
\begin{gathered}
Q_{n}=\sum_{k=0}^{n-1} b_{\lambda}^{k} \frac{\left(1-|\lambda|^{2}\right)^{1 / 2}}{1-\bar{\lambda} z}, H_{n}=\varphi \circ Q_{n} \\
\Psi=b H_{n}
\end{gathered}
$$

Then $\left\|Q_{n}\right\|_{2}^{2}=n$, and hence by the Aronszajn-deBranges inequality, see [N2] p.320, point (k) of Exercise 6.5.2, with $\varphi \in\{1, z\}$ and $K(\lambda, z)=k_{\lambda}(z)=\frac{1}{1-\lambda z}$, and noticing that $H(\varphi \circ K)=H_{\varphi}$,

$$
\|\Psi\|_{H_{\varphi}}^{2} \leq b^{2} \varphi\left(\left\|Q_{n}\right\|_{2}^{2}\right)=b^{2} \varphi(n) .
$$

Let $b>0$ such that $b^{2} \varphi(n)=1$.
2) Since the spaces H_{φ} and H^{∞} are rotation invariant, we have $c\left(\sigma_{\lambda, n}, H_{\varphi}, H^{\infty}\right)=c\left(\sigma_{\mu, n}, H_{\varphi}, H^{\infty}\right)$ for every λ, μ with $|\lambda|=|\mu|=r$. Let $\lambda=-r$. To get a lower estimate for $\|\Psi\|_{H_{\varphi} / b_{\lambda}^{n} H_{\varphi}}$ consider G such that $\Psi-G \in b_{\lambda}^{n} \operatorname{Hol}(\mathbb{D})$, i.e. such that $b H_{n} \circ b_{\lambda}-G \circ b_{\lambda} \in z^{n} \operatorname{Hol}(\mathbb{D})$.
3) First, we show that

$$
\psi=: \Psi \circ b_{\lambda}=b H_{n} \circ b_{\lambda}
$$

is a polynomial (of degree n if $\varphi=z$ and $2 n$ if $\varphi=z^{2}$) with positive coefficients. Note that

$$
\begin{gathered}
Q_{n} \circ b_{\lambda}=\sum_{k=0}^{n-1} z^{k} \frac{\left(1-|\lambda|^{2}\right)^{1 / 2}}{1-\bar{\lambda} b_{\lambda}(z)}= \\
=\left(1-|\lambda|^{2}\right)^{-\frac{1}{2}}\left(1+(1-\bar{\lambda}) \sum_{k=1}^{n-1} z^{k}-\bar{\lambda} z^{n}\right)= \\
=\left(1-r^{2}\right)^{-1 / 2}\left(1+(1+r) \sum_{k=1}^{n-1} z^{k}+r z^{n}\right)=:\left(1-r^{2}\right)^{-1 / 2} \psi_{1} .
\end{gathered}
$$

Hence, $\psi=\Psi \circ b_{\lambda}=b H_{n} \circ b_{\lambda}=b \varphi \circ\left(\left(1-r^{2}\right)^{-\frac{1}{2}} \psi_{1}\right)$ and

$$
\varphi \circ \psi_{1}=\psi_{1}^{N}(z), N=1,2 .
$$

4) Next, we show that

$$
\sum^{m}(\psi)=: \sum_{j=0}^{m} \hat{\psi}(j) \geq\left\{\begin{array}{c}
\frac{1}{2 \sqrt{2}} \sqrt{\frac{n}{1-r}} \text { if } N=1 \\
\frac{1}{16} \frac{n}{1-r} \text { if } N=2
\end{array}\right.
$$

where $m \geq 1$ is such that $2 m=n$ if n is even and $2 m-1=n$ if n is odd.

Indeed, setting

$$
S_{n}=\sum_{j=0}^{n} z^{j}
$$

we have for every $N \in\{1,2\}$

$$
\sum^{m}\left(\psi_{1}^{N}\right)=\sum^{m}\left(\left(1+(1+r) \sum_{t=1}^{n-1} z^{t}+r z^{n}\right)^{N}\right) \geq \sum^{m}\left(S_{n-1}^{N}\right) .
$$

Next, we obtain

$$
\begin{aligned}
& \sum^{m}\left(S_{n-1}^{N}\right)=\sum^{m}\left(\left(\frac{1-z^{n}}{1-z}\right)^{N}\right)==\sum^{m}\left(\sum_{j=0}^{N} C_{k}^{j} \frac{1}{(1-z)^{j}} \cdot\left(\frac{-z^{n}}{1-z}\right)^{N-j}\right)= \\
& \sum^{m}\left(\frac{1}{(1-z)^{N}}\right)=\sum^{m}\left(\sum_{j \geq 0} C_{N+j-1}^{j} z^{j}\right)=\sum_{j=0}^{m} C_{N+j-1}^{j}= \\
& =\left\{\begin{array}{c}
m+1 \text { if } N=1 \\
(m+1)(m+2) / 2 \text { if } N=2
\end{array} \geq\left\{\begin{array}{c}
n / 2 \text { if } N=1 \\
(n+2)(n+4) / 8 \text { if } N=2
\end{array} \geq\left\{\begin{array}{c}
n / 2 \text { if } N=1 \\
n^{2} / 8 \text { if } N=2
\end{array} .\right.\right.\right.
\end{aligned}
$$

Finally, since $\sum^{m}(\psi)=b \sum^{m}\left(\varphi \circ \psi_{1}\right)=b\left(1-r^{2}\right)^{-N / 2} \sum^{m}\left(\psi_{1}^{N}\right)$ we get

$$
\sum^{m}(\psi) \geq\left\{\begin{array}{c}
(2(1-r))^{-1 / 2} n b / 2 \text { if } N=1 \\
(2(1-r))^{-1} n^{2} b / 8 \text { if } N=2
\end{array}\right.
$$

with $b=\varphi(n)=\left\{\begin{array}{c}n^{-1 / 2} \text { if } N=1 \\ n^{-1} \text { if } N=2\end{array}\right.$ and obtain the result claimed.
5) Now, using point 4) and the preceding Fejer kernel argument and denoting $F_{n}=\Phi_{m}+z^{m} \Phi_{m}$, where Φ_{k} stands for the k-th Fejer kernel, we get

$$
\begin{aligned}
\|\Psi\|_{H^{\infty} / b_{\lambda}^{n} H^{\infty}}= & \|\psi\|_{H^{\infty} / z^{n} H^{\infty}} \geq \frac{1}{2}\left\|\psi * F_{n}\right\|_{\infty} \geq \frac{1}{2} \sum_{j=0}^{m} \hat{\psi}(j) \geq \\
& \geq\left\{\begin{array}{c}
\frac{1}{4 \sqrt{2}} \sqrt{\frac{n}{1-r}} \text { if } N=1 \\
\frac{1}{32} \frac{n}{1-r} \text { if } N=2 .
\end{array}\right.
\end{aligned}
$$

Proof of Theorem 6.1.0. In order to prove the left hand side inequality, it suffices to apply Lemma 6.1.1 with $\varphi(z)=z^{N}$. Indeed, in this case $H_{\varphi}=l_{a}^{2}\left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right)=H_{z^{N}}$. The right hand side inequality is a straightforward consequence of Corollary 2.2 and Theorem 4.0.

6.2. The case $X=H^{p}$

The aim of this section is to prove the sharpness (for even p) of the upper estimate, found in Theorem 3.0, of the quantity $C_{n, r}\left(H^{p}, H^{\infty}\right)$. This is the subject of the following theorem.

Theorem. 6.2.0 Let $p \in 2 \mathbb{Z}_{+}$, then

$$
c\left(\sigma_{\lambda, n}, H^{p}, H^{\infty}\right) \geq \frac{1}{32^{\frac{1}{p}}}\left(\frac{n}{1-|\lambda|}\right)^{\frac{1}{p}}
$$

for every $\lambda \in \mathbb{D}$ and every integer $n \geq 1$, where $\sigma_{\lambda, n}=\{\lambda, \lambda, \ldots, \lambda\}$ and hence

$$
\frac{1}{32^{\frac{1}{p}}}\left(\frac{n}{1-r}\right)^{\frac{1}{p}} \leq C_{n, r}\left(H^{p}, H^{\infty}\right) \leq A_{p}\left(\frac{n}{1-r}\right)^{\frac{1}{p}}
$$

for all $n \geq 1,0 \leq r<1$, where A_{p} is a constant depending only on p which is defined in Theorem 3.0.

We first prove the following lemma.
Lemma. 6.2.1 Let p, q such that $\frac{p}{q} \in \mathbb{Z}_{+}$, then $c\left(\sigma, H^{p}, H^{\infty}\right) \geq c\left(\sigma, H^{q}, H^{\infty}\right)^{\frac{q}{p}}$ for every sequence σ of \mathbb{D}.

Proof. Step 1. Recalling that

$$
c\left(\sigma, H^{p}, H^{\infty}\right)=\sup _{\|f\|_{p} \leq 1} \inf \left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{\mid \sigma}\right\}
$$

we first prove that

$$
c\left(\sigma, H^{p}, H^{\infty}\right)=\sup _{\|f\|_{p} \leq 1, f \text { outer }} \text { inf }\left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{\mid \sigma}\right\}
$$

Indeed, we clearly have the inequality

$$
\sup _{\|f\|_{p} \leq 1, f \text { outer }} \inf \left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{\mid \sigma}\right\} \leq c\left(\sigma, H^{p}, H^{\infty}\right)
$$

and if the inequality were strict, that is to say

$$
\sup _{\|f\|_{p} \leq 1, f \text { outer }} \inf \left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{\mid \sigma}\right\}<\sup _{\|f\|_{p} \leq 1} \inf \left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{\mid \sigma}\right\},
$$

then we could write that there exists $\epsilon>0$ such that for every $f=f_{i} . f_{o} \in H^{p}$ (where f_{i} stands for the inner function corresponding to f and f_{o} to the outer one) with $\|f\|_{p} \leq 1$ (which also implies that $\left\|f_{o}\right\|_{p} \leq 1$, since $\left\|f_{o}\right\|_{p}=\|f\|_{p}$), there exists a function $g \in H^{\infty}$ verifying both $\|g\|_{\infty} \leq(1-\epsilon) c\left(\sigma, H^{p}, H^{\infty}\right)$ and $g_{\mid \sigma}=f_{o \mid \sigma}$. This entails that $f_{\mid \sigma}=\left(f_{i} g\right)_{\mid \sigma}$ and since $\left\|f_{i} g\right\|_{\infty}=$
$\|g\|_{\infty} \leq(1-\epsilon) c\left(\sigma, H^{p}, H^{\infty}\right)$, we get that $c\left(\sigma, H^{p}, H^{\infty}\right) \leq(1-\epsilon) c\left(\sigma, H^{p}, H^{\infty}\right)$, which is a contradiction and proves the equality of Step 1.

Step 2. Using the result of Step 1, we get that $\forall \epsilon>0$ there exists an outer function $f_{o} \in H^{q}$ with $\left\|f_{o}\right\|_{p} \leq 1$ and such that

$$
\inf \left\{\|g\|_{\infty}: g \in Y, g_{\mid \sigma}=f_{o \mid \sigma}\right\} \geq c\left(\sigma, H^{q}, H^{\infty}\right)-\epsilon
$$

Now let $F=f_{o}^{\frac{q}{p}} \in H^{p}$, then $\|F\|_{p}^{p}=\left\|f_{o}\right\|_{q}^{q} \leq 1$. We suppose that there exists $g \in H^{\infty}$ such that $g_{\mid \sigma}=F_{\mid \sigma}$ with

$$
\|g\|_{\infty}<\left(c\left(\sigma, H^{q}, H^{\infty}\right)-\epsilon\right)^{\frac{q}{p}}
$$

Then, since $g\left(\lambda_{i}\right)=F\left(\lambda_{i}\right)=f_{o}\left(\lambda_{i}\right)^{\frac{q}{p}}$ for all $i=1$..n, we have $g\left(\lambda_{i}\right)^{\frac{p}{q}}=f_{o}\left(\lambda_{i}\right)$ and $g^{\frac{p}{q}} \in H^{\infty}$ since $\frac{p}{q} \in \mathbb{Z}_{+}$. We also have

$$
\left\|g^{\frac{p}{q}}\right\|_{\infty}=\|g\|_{\infty}^{\frac{p}{q}}<\left(c\left(\sigma, H^{q}, H^{\infty}\right)-\epsilon\right)^{\frac{q}{p}},
$$

which is a contradiction. As a result, we have

$$
\|g\|_{\infty} \geq\left(c\left(\sigma, H^{q}, H^{\infty}\right)-\epsilon\right)^{\frac{q}{p}}
$$

for all $g \in H^{\infty}$ such that $g_{\mid \sigma}=F_{\mid \sigma}$, which gives

$$
c\left(\sigma, H^{p}, H^{\infty}\right) \geq\left(c\left(\sigma, H^{q}, H^{\infty}\right)-\epsilon\right)^{\frac{q}{p}},
$$

and since that inequality is true for every $\epsilon>0$, we get the result.
Proof of Theorem 6.2.0. We first prove the left hand side inequality. Writing $p=2 \cdot \frac{p}{2}$, we apply Lemma 6.2.1 with $q=2$ and this gives

$$
c\left(\sigma_{\lambda, n}, H^{p}, H^{\infty}\right) \geq c\left(\sigma_{\lambda, n}, H^{2}, H^{\infty}\right)^{\frac{2}{p}} \geq \frac{1}{32^{\frac{1}{p}}}\left(\frac{n}{1-|\lambda|}\right)^{\frac{2}{p}}
$$

for all integer $n \geq 1$. The last inequality being a consequence of Theorem 2.1.2. The right hand side inequality is proved in Theorem 3.0.

Acknowledgement.

I would like to thank Professor Nikolai Nikolski for its invaluable self-sacrifice.

References

[A] N. Aronszajn, Theory of reproducing kernels, Transactions of American Mathematical Society, 68:337-404, 1950.
[B1] A. Baranov, Inégalités de Bernstein dans les espaces modèles et applications, Thèse soutenue à l'université de Bordeaux 1, 2005.
[B2] A. Baranov, Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings. Journal of Functional Analysis (2005) 223 (1): 116-146.
[B3] A. Baranov, Compact embeddings of model subspaces of the Hardy space, posted in Arxiv, 05.12.2007.
[BL1] L. Baratchart, Rational and meromorphic approximation in Lp of the circle : systemtheoretic motivations, critical points and error rates. In N. Papamichael, S. Ruscheweyh, and E. Saff, editors, Computational Methods and Function Theory, pages 45-78. World Scientific Publish. Co, 1999.
[BL2] L. Baratchart, F. Wielonsky, Rational approximation problem in the real Hardy space H_{2} and Stieltjes integrals: a uniqueness theorem, Constr. Approx. 9 (1993), 1-21.
[Be] J. Bergh , J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag (1976).
[BoEr] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
[DeLo] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
[Dy] K. Dyakonov, Differentiation in Star-Invariant Subspaces I. Boundedness and Compactness, J.Funct.Analysis, 192 (2002), 364-386.
[H] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Springer-Verlag, New-York, 2000.
[J] P. W. Jones, L^{∞} estimates for the $\bar{\partial}$ problem in the half plane, Acta Math. 150 (1983), 137-152.
[K] P. Koosis, Carleson's interpolation theorem deduced from a result of Pick, Complex analysis, operators, and related topics. In V. Havin, and N. Nikolski, editors, 151-162, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000.
[L] M. Levin, Teoria Funkzii, Funkzionalnyi Analiz i Prolozhenia, Harzov, 24 (1975), 68-85.
[Ne] D. J. Newman, Analytic number theory, Springer, 1998.
[N1] N.Nikolski, Treatise on the shift operator, Springer-Verlag, Berlin etc., 1986 (Transl. from Russian, Lekzii ob operatore sdviga, "Nauja", Moskva, 1980).
[N2] N.Nikolski, Operators, Function, and Systems: an easy reading, Vol.1, Amer. Math. Soc. Monographs and Surveys, 2002.
[N3] N.Nikolski, Condition Numbers of Large Matrices and Analytic Capacities, St. Petersburg Math. J., 17 (2006), 641-682.
[S] E.Stein and G.Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton, 1971.
[T] H. Triebel, Interpolation theory, functions spaces, differential operators, North-Holland Publishing Comp., 1978.

