Constrained Nevanlinna-Pick interpolation in Hardy and Bergman spaces

RACHID ZAROUF

Abstract

Given a finite set σ of the unit disc $\mathbb{D} = \{z \in \mathbb{C} :, |z| < 1\}$ and a holomorphic function f in \mathbb{D} which belongs to a class X, we are looking for a function g in another class Y (smaller than X) which minimizes the norm $||g||_Y$ among all functions g such that $g_{|\sigma} = f_{|\sigma}$. For $Y = H^{\infty}$, $X = H^p$ (the Hardy space) or $X = L_a^2$ (the Bergman space), and for the corresponding interpolation constant $c(\sigma, X, H^{\infty})$, we show that $c(\sigma, X, H^{\infty}) \leq a\varphi_X \left(1 - \frac{1-r}{n}\right)$ where $n = \#\sigma$, $r = \max_{\lambda \in \sigma} |\lambda|$ and where $\varphi_X(t)$ stands for the norm of the evaluation functional $f \mapsto f(t)$ on the space X. The upper bound is sharp over sets σ with given n and r.

Introduction

(1) General framework. The problem considered is the following: given X and Y two Banach spaces of holomorphic functions on the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}, X \supset Y$, and a finite set $\sigma \subset \mathbb{D}$, to find the least norm interpolation by functions of the space Y for the traces $f_{|\sigma}$ of functions of the space X, in the worst case of f.

The classical interpolation problems- those of Nevanlinna-Pick and Carathéodory-Schur (on the one hand) and Carleson's free interpolation (on the other hand)- are of this nature. Two first are "individual", in the sens that one looks simply to compute the norms $||f||_{H^{\infty}_{|\sigma}}$ or $||f||_{H^{\infty}/z^{n}H^{\infty}}$ for a given f, whereas the third one is to compare the norms $||a||_{l^{\infty}(\sigma)} = max_{\lambda \in \sigma} |a_{\lambda}|$ and

$$\inf \left(\parallel g \parallel_{\infty} : g(\lambda) = a_{\lambda}, \ \lambda \in \sigma \right).$$

Here and everywhere below, H^{∞} stands for the space (algebra) of bounded holomorphic functions in the unit disc \mathbb{D} endowed with the norm $||f||_{\infty} = \sup_{z \in \mathbb{D}} |f(z)|$. Looking at this comparison problem, say, in the form of computing/estimating the interpolation constant

$$c(\sigma, X, Y) = \sup_{f \in X, \, \|f\|_X \le 1} \inf \left\{ \|g\|_Y : \, g_{|\sigma} = f_{|\sigma} \right\}$$

which is nothing but the norm of the embedding operator $(X_{|\sigma}, \|.\|_{X_{|\sigma}}) \to (Y_{|\sigma}, \|.\|_{Y_{|\sigma}})$, one can think, of course, on passing (after) to the limit- in the case of an infinite sequence $\{\lambda_j\}$ and its finite sections $\{\lambda_j\}_{j=1}^n$ - in order to obtain a Carleson type interpolation theorem $X_{|\sigma} = Y_{|\sigma}$. But not necessarily. In particular, even the classical Pick-Nevanlinna theorem (giving a necessary and sufficient condition on a function a for the existence of $f \in H^{\infty}$ such that $\|f\|_{\infty} \leq 1$ and $f(\lambda) = a_{\lambda}, \lambda \in \sigma$), does not lead immediately to Carleson's criterion for $H_{|\sigma}^{\infty} = l^{\infty}(\sigma)$. (Finally, a direct deduction of Carleson's theorem from Pick's result was done by P. Koosis [K] in 1999 only). Similarly, the problem stated for $c(\sigma, X, Y)$ is of interest in its own. For this paper, the following question was especially stimulating (which is a part of a more complicated question arising in an applied situation in [BL1] and [BL2]): given a set $\sigma \subset \mathbb{D}$, how to estimate $c(\sigma, H^2, H^{\infty})$ in terms of $n = card(\sigma)$ and $max_{\lambda\in\sigma}|\lambda| = r$ only? (H^2 being the standard Hardy space of the disc).

Here, we consider the case of H^{∞} interpolation $(Y = H^{\infty})$ and the following scales of Banach spaces X :

(a) $X = H^p = H^p(\mathbb{D}), 1 \le p \le \infty$, the standard Hardy spaces on the disc \mathbb{D} , (b) $X = l_a^2 \left(1/\sqrt{k+1} \right)$, the Bergman space of all $f(z) = \sum_{k \ge 0} \hat{f}(k) z^k$ satisfying

$$\sum_{k\geq 0} \left| \hat{f}(k) \right|^2 \frac{1}{(k+1)} < \infty.$$

An equivalent description of this space is:

 $X = L_a^2$, the space of holomorphic functions such that

$$\int_{\mathbb{D}} \left| f(z) \right|^2 \left(1 - |z|^2 \right)^{\beta} dx dy < \infty.$$

For spaces of type (a)&(b), we show

$$c_1\varphi_X\left(1-\frac{1-r}{n}\right) \le \sup\left\{c\left(\sigma, X, H^{\infty}\right): \ \#\sigma \le n, \ |\lambda| \le r, \ \lambda \in \sigma\right\} \le c_2\varphi_X\left(1-\frac{1-r}{n}\right),$$

where $\varphi_X(t)$, $0 \le t < 1$ stands for the norm of the evaluation functional $f \mapsto f(t)$ on the space X.

In order to prove the right hand side inequality, we first use a linear interpolation:

$$f \mapsto \sum_{k=1}^{n} \langle f, e_k \rangle e_k,$$

where $\langle ., . \rangle$ means the Cauchy sesquilinear form $\langle h, g \rangle = \sum_{k \ge 0} \hat{h}(k)\overline{\hat{g}(k)}$, and $(e_k)_{k=1}^n$ is the explicitly known Malmquist basis of the space $K_B = H^2 \Theta B H^2$, $B = \prod_{i=1}^n b_{\lambda_i}$ being the corresponding Blaschke product, $b_{\lambda} = \frac{\lambda - z}{1 - \lambda z}$ (see N. Nikolski, [N1] p. 117)). Next, we use the complex interpolation between Banach spaces, (see H. Triebel [Tr] Theorem 1.9.3 p.59). Among the technical tools used in order to find an upper bound for $\|\sum_{k=1}^n \langle f, e_k \rangle e_k\|_{\infty}$ (in terms of $\|f\|_X$), the most important is a Bernstein-type inequality $\|f'\|_p \le c_p \|B'\|_{\infty} \|f\|_p$ for a (rational) function f in the star-invariant subspace $H^p \cap B\overline{H}_0^p$ generated by a (finite) Blaschke product B, (K. Dyakonov [Dy]). For p = 2, we give an alternative proof of the Bernstein-type estimate we need.

The lower bound problem is treated by using the "worst" interpolation n-tuple $\sigma = \sigma_{\lambda,n} = \{\lambda, ..., \lambda\}$, a one-point set of multiplicity n (the Carathéodory-Schur type interpolation). The "worst" interpolation data comes from the Dirichlet kernels $\sum_{k=0}^{n-1} z^k$ transplanted from the origin to λ . We notice that spaces X of (a)&(b) satisfy the condition $X \circ b_{\lambda} \subset X$ which makes the problem of upper/lower bound easier.

(2) Principal results. Let $\sigma = \{\lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_2, ..., \lambda_t, ..., \lambda_t\}$ be a finite sequence in the unit disc, where every λ_s is repeated according its multiplicity m_s , $\sum_{s=1}^t m_s = n$ and $r = max_{i=1..t}|\lambda_i|$. Let X, Y be Banach spaces of holomorphic functions continuously embedded into the space $Hol(\mathbb{D})$ of holomorphic functions in the unit disc \mathbb{D} . In what follows, we systematically use the following conditions for the spaces X and Y,

(P₁) $Hol((1 + \epsilon)\mathbb{D})$ is continuously embedded into Y for every $\epsilon > 0$,

(
$$P_2$$
) $Pol_+ \subset X \text{ and } Pol_+ \text{ is dense in } X,$

where Pol_+ stands for the set of all complex polynomials $p, p(z) = \sum_{k=0}^{N} a_k z^k$,

$$(P_3) \qquad [f \in X] \Rightarrow \left[z^n f \in X, \, \forall n \ge 0 \text{ and } \overline{\lim} \, \|z^n f\|^{\frac{1}{n}} \le 1 \right],$$

(P₄)
$$[f \in X, \lambda \in \mathbb{D}, and f(\lambda) = 0] \Rightarrow \left[\frac{f}{z - \lambda} \in X\right].$$

We are interested in estimating the quantity

$$c(\sigma, X, Y) = \sup_{\|f\|_X \le 1} \inf \left\{ \|g\|_Y : g \in Y, g^{(j)}(\lambda_i) = f^{(j)}(\lambda_i) \ \forall i, j, 1 \le i \le t, 0 \le j < m_i \right\}.$$

In order to simplify the notation, the condition

$$g^{(j)}(\lambda_i) = f^{(j)}(\lambda_i) \ \forall i, j, 1 \le i \le t, 0 \le j < m_i$$

will also be written as

$$g_{|\sigma} = f_{|\sigma}$$

Supposing X verifies property (P_4) and $Y \subset X$, the quantity $c(\sigma, X, Y)$ can be written as follows,

$$c(\sigma, X, Y) = \sup_{\|f\|_X \le 1} \inf \{ \|g\|_Y : g \in Y, g - f \in B_{\sigma}X \},\$$

where B_{σ} is the Blaschke product

$$B_{\sigma} = \prod_{i=1..n} b_{\lambda_i}$$

corresponding to σ , $b_{\lambda}(z) = \frac{\lambda - z}{1 - \lambda z}$ being an elementary Blaschke factor for $\lambda \in \mathbb{D}$.

The interesting case is obviously when X is larger than Y, and the sens of the issue lies in comparing $\| \cdot \|_X$ and $\| \cdot \|_Y$ when Y interpolates X on the set σ . For example, we can wonder what happens when $X = H^p$, the classical Hardy spaces of the disc or $X = L^p_a$, the Bergman spaces, etc..., and when $Y = H^{\infty}$, but also Y = W the Wiener algebra (of absolutely converging Fourier series) or $Y = B^0_{\infty,1}$, a Besov algebra (an interesting case for the functional calculus of finite rank operators, in particular, those satisfying the so-called Ritt condition). Here, H^p stands for the classical Hardy space of the disc (see below).

It is also important to understand what kind of interpolation we are going to study when bounding the constant $c(\sigma, X, Y)$. Namely, comparing with the Carleson free interpolation, we can say that the latter one deals with the interpolation constant defined as

$$c(\sigma, l^{\infty}(\sigma), H^{\infty}) = \sup\left\{\inf\left(\parallel g\parallel_{\infty}: g \in H^{\infty}, g_{\mid \sigma} = a\right): a \in l^{\infty}(\sigma), \parallel a \parallel_{l^{\infty}} \leq 1\right\}.$$

We also can add some more motivations to our problem:

(a) One of the most interesting cases is $Y = H^{\infty}$. In this case, the quantity $c(\sigma, X, H^{\infty})$ has a meaning of an intermediate interpolation between the Carleson one (when $||f||_{X_{|\sigma}} \approx \sup_{1 \leq i \leq n} |f(\lambda_i)|$) and the individual Nevanlinna-Pick interpolation (no conditions on f).

(b) There is a straight link between the constant $c(\sigma, X, Y)$ and numerical analysis. For example, in matrix analysis, it is of interest to bound the norm of an H^{∞} -calculus $||f(A)|| \leq c ||f||_{\infty}$,

 $f \in H^{\infty}$, for an arbitrary Banach space *n*-dimensional contraction A with a given spectrum $\sigma(A) \subset \sigma$. The best possible constant is $c = c(\sigma, H^{\infty}, W)$, so that

$$c(\sigma, H^{\infty}, W) = \sup_{\|f\|_{\infty} \le 1} \sup \{ \|f(A)\| : A : (\mathbb{C}^{n}, |.|) \to (\mathbb{C}^{n}, |.|), \|A\| \le 1, \, \sigma(A) \subset \sigma \},\$$

where $W = \left\{ f = \sum_{k \ge 0} \hat{f}(k) z^k : \sum_{k \ge 0} \left| \hat{f}(k) \right| < \infty \right\}$ stands for the Wiener algebra, and the interior sup is taken over all contractions on *n*-dimensional Banach spaces. An interesting case occurs for $f \in H^{\infty}$ such that $f_{|\sigma} = \frac{1}{z_{|\sigma}}$ (estimation of condition numbers and the norms inverses of $n \times n$ matrices) or $f_{|\sigma} = \frac{1}{\lambda - z_{|\sigma}}$ (for estimation of the norm of the resolvent of an $n \times n$ matrix).

This paper is devoted to upper/lower bounds for generalized Nevanlinna-Pick interpolation.

We starts studying general Banach spaces X and Y and gives some sufficients conditions under which $C_{n,r}(X,Y) < \infty$, where

$$C_{n,r}(X,Y) = \sup \{ c(\sigma, X, Y) : \#\sigma \le n, \forall j = 1..n, |\lambda_j| \le r \}.$$

In particular, we prove the following basic fact.

Theorem 1.1.1 Let X, Y be Banach spaces verifying properties (P_i) , i = 1...4, then

$$C_{n,r}(X,Y) < \infty,$$

for every $n \ge 1$ and $r, 0 \le r < 1$.

Next, we add the condition that X is a Hilbert space, and give in this case a general upper bound for the quantity $C_{n,r}(X, Y)$.

Theorem 1.2.1 Let Y be a Banach space verifying property (P_1) and $X = (H, (.)_H)$ a Hilbert space satisfying properties (P_i) for i = 2, 3, 4. We moreover suppose that for every 0 < r < 1there exists $\epsilon > 0$ such that $k_{\lambda} \in Hol((1 + \epsilon)\mathbb{D})$ for all $|\lambda| < r$, where k_{λ} stands for the reproducing kernel of X at point λ , and $\overline{\lambda} \mapsto k_{\lambda}$ is holomorphic on $|\lambda| < r$ as a $Hol((1 + \epsilon)\mathbb{D})$ -valued function. Let $\sigma = \{\lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_2, ..., \lambda_t, ..., \lambda_t\}$ be a sequence in \mathbb{D} , where λ_s are repeated according their multiplicity m_s , $\sum_{s=1}^t m_s = n$. Then we have, i)

$$c(\sigma, X, Y) \le \left(\sum_{k=1}^{n} \|e_k\|_Y^2\right)^{\frac{1}{2}}$$

where $(e_k)_{k=1}^n$ stands for the Gram-Schmidt orthogonalization (in the space H) of the sequence

 $k_{\lambda_{1},0}, k_{\lambda_{1},1}, k_{\lambda_{1},2}..., k_{\lambda_{1},m_{1}-1}, k_{\lambda_{2},0}, k_{\lambda_{2},1}, k_{\lambda_{2},2}..., k_{\lambda_{2},m_{2}-1}, ..., k_{\lambda_{t},0}, k_{\lambda_{t},1}, k_{\lambda_{t},2}..., k_{\lambda_{t},m_{t}-1}, k_{\lambda_{t},i} = \left(\frac{d}{d\lambda}\right)^{i} k_{\lambda} \text{ and } k_{\lambda} \text{ is the reproducing kernel of } X \text{ at point } \lambda \text{ for every } \lambda \in \mathbb{D}.$

ii) For the case $Y = H^{\infty}$, we have

$$c(\sigma, H, H^{\infty}) \leq \sup_{z \in \mathbb{D}} \left\| P_{B_{\sigma}} k_z \right\|_H$$

where $P_{B_{\sigma}} = \sum_{k=1}^{n} (., e_k)_H e_k$ stands for the orthogonal projection of H onto $K_{B_{\sigma}}$,

$$K_{B_{\sigma}} = span(k_{\lambda_{j},i}: 1 \le i < m_{j}, j = 1, ..., t)$$

After that, we specialize the upper bound obtained in **Theorem 1.2 (ii)** to the case $X = H^2$ and prove the following (see **Corollary 2.0** and **Proposition 2.1**). We get among other results that for every sequence $\sigma = \{\lambda_1, ..., \lambda_n\}$ of \mathbb{D} ,

$$c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup_{z \in \mathbb{D}} \left(\frac{1 - |B_{\sigma}(z)|^{2}}{1 - |z|^{2}}\right)^{\frac{1}{2}} \leq \sqrt{2} \sup_{|\zeta| = 1} |B'(\zeta)|^{\frac{1}{2}} \leq 2\sqrt{\frac{n}{1 - r}}.$$

Next we present a slightly different approach to the interpolation constant $c(\sigma, H^2, H^{\infty})$ proving an estimate in the following form:

$$c(\sigma, H^2, H^\infty) \le \sup_{z \in \mathbb{T}} \left(\sum_{k=1}^n \frac{(1-|\lambda_k|^2)}{|z-\lambda_k|^2} \right)^{\frac{1}{2}} \le \left(\sum_{j=1}^n \frac{1+|\lambda_j|}{1-|\lambda_j|} \right)^{\frac{1}{2}} \le \sqrt{\frac{2n}{1-r}}.$$

In particular, we get once more the same estimate for $c(\sigma, H^2, H^{\infty})$, and hence for $C_{n,r}(H^2, H^{\infty})$. Later on (see Section 6), we show that this estimate is sharp (over *n* and *r*). This lower bound problem is treated by using the "worst" interpolation *n*-tuple $\sigma = \sigma_{\lambda,n} = \{\lambda, ..., \lambda\}$, a one-point set of multiplicity *n* (the Carathéodory-Schur type interpolation). More precisely, we prove the following **Theorem A**, which gathers the results from **Corollary 2.2** (for the upper bound) and from **Theorem 6.1.0** (for the lower bound, with N = 1).

Theorem A. We have

$$\frac{1}{4\sqrt{2}}\frac{\sqrt{n}}{\sqrt{1-r}} \le c\left(\sigma_{r,n}, H^2, H^\infty\right) \le C_{n,r}\left(H^2, H^\infty\right) \le \sqrt{2}\frac{\sqrt{n}}{\sqrt{1-r}},$$

for all $n \ge 1$, $0 \le r < 1$.

Then, we extend these results to the H^p spaces through **Theorem B** wich sums up **Theorem 3.0** (for the upper bound) and **Theorem 6.2.0** (for the lower bound).

Theorem B. Let $1 \le p \le \infty$. Then

$$\frac{1}{32^{\frac{1}{p}}} \left(\frac{n}{1-|\lambda|}\right)^{\frac{1}{p}} \le c\left(\sigma_{r,n}, H^{p}, H^{\infty}\right) \le C_{n,r}\left(H^{p}, H^{\infty}\right) \le A_{p}\left(\frac{n}{1-r}\right)^{\frac{1}{p}},$$

for all $n \ge 1$, $0 \le r < 1$, where A_p is a constant depending only on p and the left hand side inequality is proved only for $p \in 2\mathbb{Z}_+$.

In particular, this gives yet another proof of the fact that $C_{n,r}(H^2, H^{\infty}) \leq a\sqrt{n}/\sqrt{1-r}$.

The same study applied to the Bergman space $X = L_a^2$ leads us to the following **Theorem C** which again gathers **Theorem 4.0** (for the upper bound, with $\alpha = 3/2$) and **Theorem 6.1.0** (for the lower bound, with N = 2).

Theorem C. We have

$$\frac{1}{32} \frac{n}{1-r} \le c \left(\sigma_{r,n}, L_a^2, H^\infty\right) \le C_{n,r} \left(L_a^2, H^\infty\right) \le 6\sqrt{2} \frac{n}{1-r},$$

for all $n \ge 1$, $0 \le r < 1$.

Section 5 is devoted to compare the method used in Sections 1, 2, 3 and 4 with those resulting from the Carleson-free interpolation. Especially, we are interested in the cases of circular

and radial sequences σ (see below). Recall that given a (finite) set $\sigma = \{\lambda_1, ..., \lambda_n\} \subset \mathbb{D}$, the Carleson interpolation constant $C_I(\sigma)$ is defined by

$$C_I(\sigma) = \sup_{\|a\|_{l^{\infty}} \le 1} \inf \left(\|g\|_{\infty} : g \in H^{\infty}, g_{|\sigma} = a \right).$$

We introduce the evaluation functionals φ_{λ} for $\lambda \in \mathbb{D}$,

$$\varphi_{\lambda}(f) = f(\lambda), \ f \in X,$$

as well as the evaluation of the derivatives $\varphi_{\lambda,s}$ (s = 0, 1, ...),

$$\varphi_{\lambda,s}(f) = f^{(s)}(\lambda), \ f \in X.$$

Theorem. 5.0 Let X be a Banach space, $X \subset Hol(\mathbb{D})$. Then, for all sequences $\sigma = \{\lambda_1, ..., \lambda_n\}$ of distinct points in the unit disc \mathbb{D} ,

$$\max_{1 \le i \le n} \|\varphi_{\lambda_i}\| \le c(\sigma, X, H^{\infty}) \le C_I(\sigma) \cdot \max_{1 \le i \le n} \|\varphi_{\lambda_i}\|,$$

where $C_I(\sigma)$ stands for the Carleson interpolation constant.

Theorem 5.0 tells us that, for σ with a "reasonable" interpolation constant $C_I(\sigma)$, the quantity $c(\sigma, X, H^{\infty})$ behaves as $max_i ||\varphi_{\lambda_i}||$. However, for "tight" sequences σ , the constant $C_I(\sigma)$ is so large that the estimate in question contains almost no information. On the other hand, an advantage of the estimate of **Theorem 5.0** is that it does not contain $\#\sigma = n$ explicitly. Therefore, for well-separated sequences σ , **Theorem 5.0** should give a better estimate than those of **Theorem A**, and of **Theorem C**.

Now, how does the interpolation constant $C_I(\sigma)$ behave in terms of the caracteristics r and n of σ ? We answer this question for some particular sequences σ .

Example 5.2. Two points sets. Let $\sigma = \{\lambda_1, \lambda_2\}, \lambda_i \in \mathbb{D}, \lambda_1 \neq \lambda_2$. Then,

$$\frac{1}{|b_{\lambda_1}(\lambda_2)|} \le C_I(\sigma) \le \frac{2}{|b_{\lambda_1}(\lambda_2)|},$$

and Theorem 5.0 implies

$$c(\sigma, X, H^{\infty}) \leq \frac{2}{|b_{\lambda_1}(\lambda_2)|} max_{i=1,2} \|\varphi_{\lambda_i}\|,$$

whereas a straightforward estimate gives (see Section 5)

 $c(\sigma, X, H^{\infty}) \leq \|\varphi_{\lambda_{1}}\| + \max_{|\lambda| \leq r} \|\varphi_{\lambda, 1}\| (1 + |\lambda_{1}|),$

where $r = max(|\lambda_1|, |\lambda_2|)$. The difference is that the first upper bound blows up when $\lambda_1 \rightarrow \lambda_2$, whereas the second one is still well-bounded.

Example 5.3. Circular sequences. Let 0 < r < 1 and $\sigma = \{\lambda_1, \lambda_2, ..., \lambda_n\}, \lambda_i \neq \lambda_j, |\lambda_i| = r$ for every *i*, and let $\alpha = \frac{\min_{i \neq j} |\lambda_i - \lambda_j|}{1 - r}$. Then, $\frac{1}{\alpha} \leq C_I(\sigma) \leq 8e^{K'(1 + \frac{K}{\alpha^3})}$, where *K*, K' > 0 are absolute constants. Therefore,

$$c(\sigma, X, H^{\infty}) \le 8e^{K'\left(1+\frac{K}{\alpha^3}\right)} max_{|\lambda|=r} \|\varphi_{\lambda}\|$$

for every r - circular set σ (an estimate does not depending on n explicitly). In particular, there exists an increasing function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that, for any n uniformly distributed points $\lambda_1, ..., \lambda_n, |\lambda_i| = r, |\lambda_i - \lambda_{i+1}| = 2rsin(\frac{\pi}{2n})$, we have

(1) $c(\sigma, H^2, H^\infty) \leq \varphi\left(\frac{n(1-r)}{r}\right) \frac{1}{(1-r)^{\frac{1}{2}}}$, for every n and r, 0 < r < 1 and in particular, for $n \leq [r(1-r)^{-1}]$ we obtain

$$c(\sigma, H^2, H^\infty) \le c \frac{1}{(1-r)^{\frac{1}{2}}},$$

whereas our specific upper bound in Theorem A, (which is sharp over all n elements sequences σ), gives

$$c(\sigma, H^2, H^{\infty}) \le c \frac{1}{(1-r)}$$

only.

(2) $c(\sigma, L_a^2, H^\infty) \leq \varphi\left(\frac{n(1-r)}{r}\right)\frac{1}{(1-r)}$, for every n and r, 0 < r < 1 and in particular, for $n \leq [r(1-r)^{-1}]$ we obtain

$$c(\sigma, L_a^2, H^\infty) \le c \frac{1}{(1-r)}$$

whereas our specific upper bound in Theorem C, (which, again, is sharp over all n elements sequences σ), gives

$$c(\sigma, L_a^2, H^\infty) \le c \frac{1}{(1-r)^2}$$

only.

We finally deal with a special case of radial sequences, in which we study *sparse sequences*, *condensed sequences*, and *long sequences*, and prove the following claim.

Example 5.4. Radial sequences.

Claim. Let $\sigma = \{1 - \rho^{p+k}\}_{k=1}^n$, $0 < \rho < 1$, p > 0. The estimate of $c(\sigma, H^2, H^\infty)$ via the Carleson constant $C_I(\sigma)$ (using Theorem 5.0) is comparable with or better than the estimates from Theorem A (for $X = H^2$) and Theorem C (for $X = L_a^2$) for sufficiently small values of ρ (as $\rho \to 0$) and/or for a fixed ρ and $n \to \infty$. In all other cases, as for $p \to \infty$ (which means $\lambda_1 \to 1$), or $\rho \to 1$, or $n \to \infty$ and $\rho \to 1$, it is worse.

1. Upper bounds for $c(\sigma, X, Y)$, as a kind of the Nevanlinna-Pick problem

1.1. General Banach spaces X and Y satisfying properties (P_i) , i = 1...4The following theorem shows that if X and Y satisfy properties (P_i) for i = 1...4, then our interpolation constant $c(\sigma, X, Y)$ is bounded by a quantity $M_{n,r}$ which depends only on $n = \#\sigma$ and $r = \max_{1 \le i \le n} |\lambda_i|$ (and of course on X and Y). In this generality, we cannot discuss the question of sharpness of the bounds obtained. First, we prove the following lemma.

Lemma. 1.1.0. Under (P_2) , (P_3) and (P_4) , $B_{\sigma}X$ is a closed subspace of X and moreover,

$$B_{\sigma}X = \{f \in X : f(\lambda) = 0, \forall \lambda \in \sigma (including multiplicities)\}.$$

Proof. Since $X \subset Hol(\mathbb{D})$ continuously, and evaluation functionals $f \mapsto f(\lambda)$ and

$$f \mapsto f^{(k)}(\lambda), \ k = 1, 2, ...,$$

are continuous on $Hol(\mathbb{D})$, the subspace

 $M = \{ f \in X : f(\lambda) = 0, \forall \lambda \in \sigma (including multiplicities) \},\$

is closed in X.

On the other hand, $B_{\sigma}X \subset X$, and hence $B_{\sigma}X \subset M$. Indeed, properties (P_2) and (P_3) imply that $h.X \subset X$, for all $h \in Hol((1 + \epsilon)\mathbb{D})$ with $\epsilon > 0$; we can write $h(z) = \sum_{k\geq 0} \hat{h}(k)z^k$ with $\left|\hat{h}(k)\right| \leq Cq^n, C > 0$ and q < 1. Then $\sum_{n\geq 0} \left\|\hat{h}(k)z^kf\right\|_X < \infty$ for every $f \in X$. Since X is a Banach space we can conclude that $hf = \sum_{n\geq 0} \hat{h}(k)z^kf \in X$. In order to see that $M \subset B_{\sigma}X$, it suffices to justify that

$$[f \in X \text{ and } f(\lambda) = 0] \Longrightarrow \left[\frac{f}{b_{\lambda}} = (1 - \overline{\lambda}z) \cdot \frac{f}{\lambda - z} \in X\right]$$

But this is obvious from (P_4) and the previous arguments.

Theorem. 1.1.1 Let X, Y be Banach spaces verifying properties (P_i) , i = 1...4, then

$$C_{n,r}(X,Y) < \infty,$$

for every $n \ge 1$ and $r, 0 \le r < 1$.

Proof. For k = 1..n, we set

$$f_k(z) = \frac{1}{1 - \overline{\lambda_k z}},$$

and define the family $(e_k)_{k=1}^n$, (which is known as Malmquist basis, see [N1] p.117), by

$$e_1 = (1 - |\lambda_1|^2)^{\frac{1}{2}} f_1,$$

and

$$e_{k} = \left(1 - |\lambda_{k}|^{2}\right)^{\frac{1}{2}} \left(\Pi_{j=1..k-1}b_{\lambda_{j}}\right) f_{k} = \frac{f_{k}}{\|f_{k}\|_{2}} \Pi_{j=1}^{k-1}b_{\lambda_{j}}$$

for k = 2...n. Now, taking $f \in X$, we set

$$g = \sum_{k=1}^{n} \left(\sum_{j \ge 0} \hat{f}(j) \overline{\hat{e}_k(j)} \right) e_k,$$

where the series

$$\sum_{j\geq 0} \widehat{f}(j)\overline{\widehat{e_k}(j)}$$

are absolutely convergent. Indeed,

$$\widehat{e_k}(j) = \frac{1}{2\pi i} \int_{R\mathbb{T}} \frac{e_k(w)}{w^{j+1}} dw,$$

for all $j \ge 0$ and for all $1 < R < \frac{1}{r}$. For a subset A of \mathbb{C} and for a bounded function h on A, we define

$$\left\|h\right\|_{A} := \sup_{z \in A} \left|h(z)\right|.$$

As a result,

$$|\widehat{e_k}(j)| \le \frac{1}{2\pi} \frac{1}{R^{j+1}} \parallel e_k \parallel_{R\mathbb{T}}.$$

So

$$\sum_{j\geq 0} \left| \widehat{f}(j)\overline{\widehat{e_k}(j)} \right| \leq \frac{\|e_k\|_{RT}}{2\pi R} \sum_{j\geq 0} \left| \widehat{f}(j) \right| \left(\frac{1}{R}\right)^j < \infty,$$

since R > 1 and f is holomorphic in \mathbb{D} .

Next, we observe that the map

$$\Phi: Hol(\mathbb{D}) \to Y \subset Hol(\mathbb{D})$$

$$\Phi: f \mapsto \sum_{k=1}^n \left(\sum_{j \ge 0} \hat{f}(j) \overline{\hat{e}_k(j)} \right) e_k,$$

is well defined and has the following properties. (a) $\Phi_{|H^2} = P_{B_{\sigma}}$ where $P_{B_{\sigma}}$ is the orthogonal projection on the *n*-dimensional subspace of H^2 , $K_{B_{\sigma}}$ defined by

$$K_{B_{\sigma}} = (B_{\sigma}H^2)^{\perp} = H^2 \Theta B_{\sigma}H^2,$$

the last equality being a consequence of Lemma 1.2.0 of Section 1.2. Here, H^2 stands for the classical Hardy space $H^2(\mathbb{D})$ of the disc,

$$H^{2}(\mathbb{D}) = \left\{ f = \sum_{k \ge 0} \hat{f}(k) z^{k} : \sum_{k \ge 0} \left| \hat{f}(k) \right|^{2} < \infty \right\}$$

or equivalently,

$$H^{2}(\mathbb{D}) = \left\{ f \in Hol(\mathbb{D}) : \, sup_{0 \leq r < 1} \int_{\mathbb{T}} \left| f(rz) \right|^{2} dm(z) < \infty \right\},$$

m being the normalized Lebesgue measure on \mathbb{T} . See [N2] p.31-p.57 for more details on the Hardy spaces H^p , $1 \leq p \leq \infty$.

(b) Φ is continuous on $Hol(\mathbb{D})$ for the uniform convergence on compact sets of \mathbb{D} . Indeed, the point (a) is obvious since $(e_k)_{k=1}^n$ is an orthonormal basis of $K_{B_{\sigma}}$ and

$$\sum_{j\geq 0}\widehat{f}(j)\overline{\widehat{e_k}(j)} = \langle f, e_k \rangle \,,$$

where $\langle .,. \rangle$ means the Cauchy sesquilinear form $\langle h, g \rangle = \sum_{k \ge 0} \hat{h}(k) \overline{\hat{g}(k)}$. In order to check point (b), let $(f_l)_{l \in \mathbb{N}}$ be a sequence of $Hol(\mathbb{D})$ converging to 0 uniformly on compact sets of \mathbb{D} . We need to see that $(\Phi(f_l))_{l \in \mathbb{N}}$ converges to 0, for which it is sufficient to show that $\lim_{l \to 0} |\widehat{f_l(j)}| = 0$, for every k = 1, 2, ..., n. Let $\rho \in]0, 1[$, then

$$\widehat{f}_l(j) = \frac{1}{2\pi} \int_{\rho \mathbb{T}} \frac{f_l(w)}{w^{j+1}} dw,$$

for all $j, l \ge 0$. As a result,

$$\left|\widehat{f}_l(j)\right| \leq \frac{1}{2\pi} \frac{1}{\rho^{j+1}} \|f_l\|_{\rho\mathbb{T}}.$$

So

$$\left|\sum_{j\geq 0}\widehat{f}_{l}(j)\overline{\widehat{e}_{k}(j)}\right| \leq \sum_{j\geq 0}\left|\widehat{f}_{l}(j)\overline{\widehat{e}_{k}(j)}\right| \leq \frac{\|f_{l}\|_{\rho\mathbb{T}}}{2\pi\rho}\sum_{j\geq 0}\left|\widehat{e}_{k}(j)\right|\frac{1}{\rho^{j}}$$

Now if ρ is close enough to 1, it satisfies the inequality $1 \leq \frac{1}{\rho} < \frac{1}{r}$, which entails

$$\sum_{j\geq 0} |\widehat{e_k}(j)| \frac{1}{\rho^j} < +\infty$$

for each k = 1..n. The result follows.

Let

$$\Psi = Id_{|X} - \Phi_{|X}.$$

Using point (a), since $Pol_+ \subset H^2$ (Pol_+ standing for the set of all complex polynomials $p, p(z) = \sum_{k=0}^{N} a_k z^k$), we get that $Im(\Psi_{|Pol_+}) \subset B_{\sigma}H^2$. Now, since $Pol_+ \subset Y$ and $Im(\Phi) \subset Y$, we deduce that

$$Im\left(\Psi_{|Pol_{+}}\right) \subset B_{\sigma}H^{2} \cap Y \subset B_{\sigma}H^{2} \cap X,$$

since $Y \subset X$. Now $\Psi(p) \in X$ and satisfies $(\Psi(p))_{|\sigma} = 0$ (that is to say $(\Psi(p))(\lambda) = 0, \forall \lambda \in \sigma$ (including multiplicities)) for all $p \in Pol_+$. Using Lemma 1.1.0, we get that $Im(\Psi_{|Pol_+}) \subset B_{\sigma}X$. Now, Pol_+ being dense in X (property (P_2)), and Ψ being continuous on X, we can conclude that $Im(\Psi) \subset B_{\sigma}X$.

Now, we return to the proof of Theorem 1.1.1. Let $f \in X$ such that $|| f ||_X \leq 1$ and $g = \Phi(f)$. Since $Hol\left(\frac{1}{r}\mathbb{D}\right) \subset Y$, we have

$$g = \Phi(f) \in Y$$

and

$$f - g = \Psi(f) \in B_{\sigma}X.$$

Moreover,

$$||g||_Y \le \sum_{k=1..n} |\langle f, e_k \rangle| ||e_k||_Y.$$

In order to bound the right hand side, recall that for all $j \ge 0$ and for $R = \frac{2}{r+1} \in]1, \frac{1}{r}[$,

$$\sum_{j\geq 0} \left|\widehat{f}(j)\overline{\widehat{e_k}(j)}\right| \leq \frac{\|e_k\|_{\frac{2}{r+1}\mathbb{T}}}{2\pi} \sum_{j\geq 0} \left|\widehat{f}(j)\right| \left(\frac{r+1}{2}\right)^j.$$

Since the norm $f \mapsto \sum_{j \ge 0} \left| \widehat{f}(j) \right| \left(\frac{r+1}{2} \right)^j$ is continuous on $Hol(\mathbb{D})$, and the inclusion $X \subset Hol(\mathbb{D})$ is also continuous, there exists $C_r > 0$ such that

$$\sum_{j\geq 0} \left| \widehat{f}(j) \right| \left(\frac{r+1}{2} \right)^j \leq C_r \parallel f \parallel_X,$$

for every $f \in X$. On the other hand,

$$Hol\left(\frac{2}{r+1}\mathbb{D}\right)\subset Y,$$

(continuous inclusion again), and hence there exists $K_r > 0$ such that

$$||e_k||_Y \le K_r \sup_{|z| < \frac{2}{r+1}} |e_k(z)| = K_r ||e_k||_{\frac{2}{r+1}\mathbb{T}}.$$

It is more or less clear that the right hand side of the last inequality can be bounded in terms of r and n only. Let us give a proof to this fact. It is clear that it suffices to estimate

$$\sup_{1 < |z| < \frac{2}{r+1}} |e_k(z)|.$$

In order to bound this quantity, notice that

(1.1.0)
$$|b_{\lambda}(z)|^{2} \leq \left|\frac{\lambda-z}{1-\bar{\lambda}z}\right|^{2} = 1 + \frac{(|z|^{2}-1)(1-|\lambda|^{2})}{|1-\bar{\lambda}z|^{2}},$$

for all $\lambda \in \mathbb{D}$ and all $z \in \frac{1}{|\lambda|}\mathbb{D}$. Using the identity (1.1.0) for $\lambda = \lambda_j$, $1 \leq j \leq n$, and $z = \rho e^{it}$, $\rho = \frac{2}{r+1}$, we get

$$|e_k(\rho e^{it})|^2 = (1 - |\lambda_k|^2) \left(\prod_{j=1}^{k-1} |b_{\lambda_j}(\rho e^{it})|^2 \right) \left| \frac{1}{1 - \bar{\lambda_k} \rho e^{it}} \right|^2,$$
$$|e_k(\rho e^{it})|^2 \le \left(\prod_{j=1}^{k-1} |b_{\lambda_j}(\rho e^{it})|^2 \right) \left(\frac{1}{1 - |\lambda_k| \rho} \right)^2,$$

for all k = 2..n,

$$\left| e_k \left(\rho e^{it} \right) \right|^2 \le 2 \left(\prod_{j=1}^{k-1} \left(1 + \frac{(\rho^2 - 1)(1 - |\lambda_j|^2)}{1 - |\lambda_j|^2 \rho^2} \right) \right) \left(\frac{1}{1 - |\lambda_k| \rho} \right)^2.$$

Hence,

$$\left| e_k \left(\rho e^{it} \right) \right|^2 \le 2 \left(\prod_{j=1}^{k-1} \left(1 + \frac{2(\frac{1}{r^2} - 1)}{1 - r^2 \frac{4}{(r+1)^2}} \right) \right) \left(\frac{1}{1 - \frac{2r}{r+1}} \right)^2.$$

Finally,

$$\|e_k\|_{\frac{2}{r+1}\mathbb{T}} \leq \frac{1}{1-\frac{2r}{r+1}} \sqrt{2\left(\Pi_{j=1..n-1}\left(1+\frac{2(\frac{1}{r^2}-1)}{1-r^2\frac{4}{(r+1)^2}}\right)\right)} =: C_1(r,n).$$

and

$$\begin{split} \sum_{j\geq 0} \left| \hat{f}(j)\overline{\hat{e_k}(j)} \right| &\leq \frac{C_r \left\| e_k \right\|_{\frac{2}{r+1}\mathbb{T}}}{2\pi} \parallel f \parallel_X \leq \\ &\leq \frac{C_r C_1(r,n)}{2\pi} \parallel f \parallel_X . \end{split}$$

On the other hand,

$$||e_k||_Y \le K_r ||e_k||_{\frac{2}{r+1}\mathbb{T}} \le K_r C_1(r,n).$$

So

$$\|g\|_{Y} \leq \sum_{k=1}^{n} |\langle f, e_{k} \rangle| \, \|e_{k}\|_{Y} \leq$$

$$\leq \sum_{k=1}^{n} \frac{C_r C_1(r,n)}{2\pi} \|f\|_X K_r C_1(r,n) = \frac{n C_r K_r}{2\pi} \left(C_1(r,n)\right)^2 \|f\|_X,$$

which proves that

$$c(\sigma, X, Y) \le \frac{nC_r K_r}{2\pi} \left(C_1(r, n)\right)^2$$

and completes the proof of Theorem 1.1.1. \Box

1.2. The case where X is a Hilbert space

In the following theorem, we suppose that X is a Hilbert space and both X, Y satisfy properties (P_i) for i = 1...4. In this case, we obtain a better estimate for $c(\sigma, X, Y)$ than in **Theorem 1.1.1** (see point (i) of **Theorem 1.2.1**). For the case $Y = H^{\infty}$, (point (ii) of **Theorem 1.2.1**), we can considerably improve this estimate.

Lemma. 1.2.0. Let $\sigma = \{\lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_2, ..., \lambda_t, ..., \lambda_t\}$ be a finite sequence of \mathbb{D} where every λ_s is repeated according to its multiplicity m_s , $\sum_{s=1}^t m_s = n$. Let $(H, (.)_H)$ be a Hilbert space continuously embedded into $Hol(\mathbb{D})$ and satisfying properties (P_i) for i = 2, 3, 4. Then

 $K_{B_{\sigma}} =: H\Theta B_{\sigma}H = span\left(k_{\lambda_{j},i}: 1 \le j \le t, \ 0 \le i \le m_j - 1\right),$

where $k_{\lambda,i} = \left(\frac{d}{d\lambda}\right)^i k_{\lambda}$ and k_{λ} is the reproducing kernel of X at point λ for every $\lambda \in \mathbb{D}$.

Proof. First, we explain the notation. Namely, since $H \subset Hol(\mathbb{D})$ (with continuous inclusion), the function $\lambda \mapsto f(\lambda)$ is holomorphic and since $f(\lambda) = (f, k_{\lambda})_{H}$ for every f, the function $\overline{\lambda} \mapsto k_{\lambda}$ is (weakly, and hence strongly) holomorphic. We have $f'(\lambda) = \left(f, \frac{d}{d\lambda}k_{\lambda}\right)_{H}$, and by induction,

 $f^{(i)}(\lambda) = \left(f, \left(\frac{d}{d\lambda}\right)^i k_\lambda\right)_H \text{ for every } i, i = 0, 1, \dots \text{ Denote}$ $\left(\frac{d}{d\lambda}\right)^i k_\lambda = k_{\lambda,i},$

we know, (see Lemma 1.1.0), that

$$B_{\sigma}H = \{ f \in H : f^{(i)}(\lambda_j) = 0, \forall i, j, 1 \le i < m_j, j = 1, ..., t \} = \{ f \in H : (f, k_{\lambda_j, i})_H = 0, \forall i, j, 1 \le i < m_j, j = 1, ..., t \}.$$

This means that

$$H\Theta B_{\sigma}H = span\left(k_{\lambda_{j},i}: 1 \leq i < m_{j}, j = 1, ..., t\right).$$

Theorem. 1.2.1. Let Y be a Banach space verifying property (P_1) and $X = (H, (.)_H)$ a Hilbert space satisfying properties (P_i) for i = 2, 3, 4. We moreover suppose that for every 0 < r < 1 there exists $\epsilon > 0$ such that $k_{\lambda} \in Hol((1 + \epsilon)\mathbb{D})$ for all $|\lambda| < r$, where k_{λ} stands for the reproducing kernel of X at point λ , and $\overline{\lambda} \mapsto k_{\lambda}$ is holomorphic on $|\lambda| < r$ as a $Hol((1 + \epsilon)\mathbb{D})$ -valued function. Let $\sigma = \{\lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_t, ..., \lambda_t\}$ be a sequence in \mathbb{D} , where λ_s are repeated according their multiplicity m_s , $\sum_{s=1}^t m_s = n$. Then we have, i

$$c(\sigma, X, Y) \le \left(\sum_{k=1}^{n} \|e_k\|_Y^2\right)^{\frac{1}{2}},$$

where $(e_k)_{k=1}^n$ stands for the Gram-Schmidt orthogonalization (in the space H) of the sequence

 $k_{\lambda_1,0}, k_{\lambda_1,1}, k_{\lambda_1,2}..., k_{\lambda_1,m_1-1}, k_{\lambda_2,0}, k_{\lambda_2,1}, k_{\lambda_2,2}..., k_{\lambda_2,m_2-1}, ..., k_{\lambda_t,0}, k_{\lambda_t,1}, k_{\lambda_t,2}..., k_{\lambda_t,m_t-1}, k_{\lambda_t,m_t-$

notation $k_{\lambda,i}$ is introduced in Lemma 1.2.0. ii) For the case $Y = H^{\infty}$, we have

 $c(\sigma, H, H^{\infty}) \leq \sup_{z \in \mathbb{D}} \|P_{B_{\sigma}}k_{z}\|_{H},$ where $P_{B_{\sigma}} = \sum_{k=1}^{n} (., e_{k})_{H} e_{k}$ stands for the orthogonal projection of H onto $K_{B_{\sigma}},$ $K_{B_{\sigma}} = span \left(k_{\lambda_{j}, i} : 1 \leq i < m_{j}, j = 1, ..., t\right).$

Proof. i). Let $f \in X$, $||f||_X \le 1$. Lemma 1.2.0 shows that

$$g = P_{B_{\sigma}}f = \sum_{k=1}^{n} (f, e_k)_H e_k$$

is the orthogonal projection of f onto subspace $K_{B_{\sigma}}$. Function g belongs to Y because all $k_{\lambda_{j},i}$ are in $Hol((1 + \epsilon)\mathbb{D})$ for a convenient $\epsilon > 0$, and Y satisfies (P_1) . On the other hand,

$$g-f\in B_{\sigma}H$$

again by Lemma 1.2.0.

Moreover,

$$||g||_Y \le \sum_{k=1}^n |(f, e_k)_H| ||e_k||_Y,$$

and by Cauchy-Schwarz inequality,

$$\begin{split} \|g\|_{Y} &\leq \left(\sum_{k=1}^{n} \left|(f, e_{k})_{H}\right|^{2}\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} \|e_{k}\|_{Y}^{2}\right)^{\frac{1}{2}} \leq \\ &\leq \|f\|_{H} \left(\sum_{k=1}^{n} \|e_{k}\|_{Y}^{2}\right)^{\frac{1}{2}}, \end{split}$$

which proves i). ii). If $Y = H^{\infty}$, then

$$|g(z)| = |(P_{B_{\sigma}}f, k_z)_H| = |(f, P_{B_{\sigma}}k_z)_H| \le ||f||_H ||P_{B_{\sigma}}k_z||_H,$$

for all $z \in \mathbb{D}$, which proves ii).

2. Upper bounds for
$$C_{n,r}(H^2, H^\infty)$$

In this section, we specialize the estimate obtained in point (ii) of **Theorem 1.2.1** for the case $X = H^2$, the Hardy space of the disc. Later on, we will see that this estimate is sharp at least for some special sequences σ (see **Section 6**). We also develop a slightly different approach to the interpolation constant $c(\sigma, H^2, H^{\infty})$ giving more estimates for individual sequences $\sigma = \{\lambda_1, ..., \lambda_n\}$ of \mathbb{D} .

Corollary. 2.0. Let $\sigma = \{\lambda_1, ..., \lambda_n\}$ be a sequence in \mathbb{D} . Then,

$$c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sup_{z \in \mathbb{D}} \left(\frac{1 - |B_{\sigma}(z)|^{2}}{1 - |z|^{2}}\right)^{\frac{1}{2}}.$$

Indeed, applying point (ii) of Theorem 1.2.1 for $X = H^2$ and $Y = H^{\infty}$, and using

$$k_z(\zeta) = \frac{1}{1 - \bar{z}\zeta}$$

and

$$(P_{B_{\sigma}}k_z)(\zeta) = \frac{1 - \overline{B_{\sigma}(z)}B_{\sigma}(\zeta)}{1 - \overline{z}\zeta},$$

(see [N1] p.199), we obtain

$$\|P_{B_{\sigma}}k_{z}\|_{H^{2}} = \left(\frac{1-|B_{\sigma}(z)|^{2}}{1-|z|^{2}}\right)^{\frac{1}{2}},$$

which gives the result.

Proposition. 2.1. For every sequence $\sigma = \{\lambda_1, ..., \lambda_n\}$ of \mathbb{D} we have

$$c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sqrt{2} sup_{|\zeta|=1} |B'(\zeta)|^{\frac{1}{2}} = \sqrt{2} sup_{|\zeta|=1} \left| \sum_{i=1}^{n} \frac{1 - |\lambda_{i}|^{2}}{\left(1 - \bar{\lambda_{i}}\zeta\right)^{2}} \frac{B_{\sigma}(\zeta)}{b_{\lambda_{i}}(\zeta)} \right|^{\frac{1}{2}}$$

Proof. We use Corollary 2.0. The map $\zeta \mapsto \|P_B(k_{\zeta})\| = \sup\{|f(\zeta)|: f \in K_B, \|f\| \le 1\}$, and hence the map

$$\zeta \mapsto \left(\frac{1 - |B(\zeta)|^2}{1 - |\zeta|^2}\right)^{\frac{1}{2}},$$

is a subharmonic function so

$$\sup_{|\zeta|<1} \left(\frac{1-|B(\zeta)|^2}{1-|\zeta|^2}\right)^{\frac{1}{2}} \le \sup_{|w|=1} \lim_{r\to 1} \left(\frac{1-|B(rw)|^2}{1-|rw|^2}\right)^{\frac{1}{2}}.$$

Now apply Taylor's Formula of order 1 for points $w \in \mathbb{T}$ and u = rw, 0 < r < 1. (It is applicable because B is holomorphic at every point of \mathbb{T}). We get

$$\frac{B(u) - B(w)}{u - w} = B'(w) + o(1),$$

and since

$$|u - w| = 1 - |u|,$$

$$\frac{B(u) - B(w)}{u - w} \bigg| = \frac{|B(u) - B(w)|}{1 - |u|} = |B'(w) + o(1)|.$$

Now,

$$|B(u) - B(w)| \ge |B(w)| - |B(u)| = 1 - |B(u)|,$$
$$\frac{1 - |B(u)|}{1 - |u|} \le \frac{|B(u) - B(w)|}{1 - |u|} = |B'(w) + o(1)|,$$

and

$$\lim_{r \to 1} \left(\frac{1 - |B(rw)|}{1 - |rw|} \right)^{\frac{1}{2}} \le \sqrt{|B'(w)|}.$$

Since we have

$$B'(w) = -\sum_{i=1}^{n} \frac{1 - |\lambda_i|^2}{(1 - \bar{\lambda}_i w)^2} \prod_{j=1, \ j \neq i}^{n} b_{\lambda_j}(w),$$

for all $w \in \mathbb{T}$. This completes the proof since

$$\frac{1-|B(rw)|^2}{1-|rw|^2} = \frac{(1-|B(rw)|)(1+|B(rw)|)}{(1-|rw|)(1+|rw|)} \le 2\frac{1-|B(rw)|}{1-|rw|}.$$

Corollary. 2.2. Let $\sigma = \{\lambda_1, ..., \lambda_n\}$ and $r = max_{1 \le i \le n} |\lambda_i|$. Then

$$c\left(\sigma, H^{2}, H^{\infty}\right) \leq 2\left(\frac{n}{1-r}\right)^{\frac{1}{2}},$$

and hence,

$$C_{n,r}(H^2, H^\infty) \le 2\left(\frac{n}{1-r}\right)^{\frac{1}{2}}.$$

Indeed, we apply Proposition 2.1 and observe that

$$|B'(w)| \le \left| \sum_{i=1..n} \frac{1 - |\lambda_i|^2}{(1 - |\lambda_i|)^2} \right| \le n \frac{1+r}{1-r} \le \frac{2n}{1-r}.$$

Now, we develop a slightly different approach to the interpolation constant $c(\sigma, H^2, H^{\infty})$. **Theorem. 2.3.** For every sequence $\sigma = \{\lambda_1, ..., \lambda_n\}$ of \mathbb{D} ,

$$c\left(\sigma, H^2, H^{\infty}\right) \leq \sup_{z \in \mathbb{T}} \left(\sum_{k=1}^{n} \frac{(1-|\lambda_k|^2)}{|z-\lambda_k|^2}\right)^{\frac{1}{2}}$$

Proof. We give two proofs to this estimate. The first proof is shorter than the second one, but it contains an extra $\sqrt{2}$ factor.

First proof. Using Proposition 2.1., we obtain

$$c\left(\sigma, H^{2}, H^{\infty}\right) \leq \sqrt{2} sup_{|\zeta|=1} \left|\sum_{j=1}^{n} \frac{1-\left|\lambda_{j}\right|^{2}}{\left(1-\overline{\lambda_{j}}\zeta\right)^{2}} \frac{B_{\sigma}}{b_{\lambda_{j}}}\right|^{\frac{1}{2}} \leq$$

1

$$\leq \sqrt{2} sup_{|\zeta|=1} \left(\sum_{i=1}^{n} \frac{1-|\lambda_i|^2}{|1-\overline{\lambda_i}\zeta|^2} \right)^{\frac{1}{2}} = \sqrt{2} sup_{|\zeta|=1} \left(\sum_{i=1}^{n} \frac{1-|\lambda_i|^2}{|\overline{\zeta}-\overline{\lambda_i}|^2} \right)^{\frac{1}{2}}.$$

Second proof. In order to simplify the notation, we set $B = B_{\sigma}$. Consider K_B , the *n*-dimensional subspace of H^2 defined by

$$K_B = \left(BH^2\right)^{\perp} = H^2 \Theta B H^2.$$

Then the family $(e_k)_{k=1}^n$ introduced in the proof of Theorem 1.1.1, (known as Malmquist's basis), is an orthonormal basis of K_B , (see [N1], Malmquist-Walsh Lemma, p.116). Recall that

$$e_1 = \frac{f_1}{\|f_1\|_2},$$

and

$$e_k = \frac{f_k}{\|f_k\|_2} \prod_{j=1}^{k-1} b_{\lambda_j},$$

for all k = 2..n, where

$$f_k = \frac{1}{1 - \overline{\lambda_k z}}$$

is the reproducing kernel of H^2 associated to λ_k . Now, let $f \in H^2$ and

$$g = P_B f = \sum_{k=1}^n (f, e_k)_{H^2} e_k.$$

Function g belongs to H^{∞} because it is a finite sum of H^{∞} functions. Moreover,

$$g\left(\lambda_{i}\right) = f\left(\lambda_{i}\right)$$

for all i = 1...n, counting with multiplicities. (Indeed, we can write $f = P_B f + g_1$ with $g_1 \in K_B^{\perp} = BH^2$). We have

$$|g(\zeta)| \le \sum_{k=1}^{n} |(f, e_k)_{H^2}| |e_k(\zeta)|,$$

for all $\zeta \in \mathbb{D}$. And by Cauchy-Schwarz inequality,

$$\begin{split} |g(\zeta)| &\leq \left(\sum_{k=1}^{n} |(f, e_k)_{H^2}|^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} \frac{(1 - |\lambda_k|^2)}{|1 - \lambda_k \zeta|^2}\right)^{\frac{1}{2}},\\ \|g\|_{\infty} &\leq \|f\|_2 \sup_{\zeta \in \mathbb{T}} \left(\sum_{k=1}^{n} \frac{(1 - |\lambda_k|^2)}{|1 - \lambda_k \zeta|^2}\right)^{\frac{1}{2}}. \end{split}$$

Since f is an arbitrary H^2 function, we obtain

$$c(\sigma, H^2, H^{\infty}) \le \sup_{\zeta \in \mathbb{T}} \left(\sum_{k=1}^n \frac{(1-|\lambda_k|^2)}{|\zeta - \lambda_k|^2} \right)^{\frac{1}{2}},$$

which completes the proof.

1		

Corollary. 2.4. For any sequence $\sigma = \{\lambda_1, ..., \lambda_n\}$ in \mathbb{D} ,

$$c(\sigma, H^2, H^\infty) \le \left(\sum_{j=1}^n \frac{1+|\lambda_j|}{1-|\lambda_j|}\right)^{\frac{1}{2}}.$$

Indeed,

$$\sum_{k=1}^{n} \frac{(1-|\lambda_k|^2)}{|\zeta-\lambda_k|^2} \le \left(\sum_{k=1}^{n} \frac{(1-|\lambda_k|^2)}{(1-|\lambda_k|)^2}\right)^{\frac{1}{2}}$$

and the result follows from Theorem 2.3. \Box

Remark 2.5. As a result, we get once more the same estimate for $C_{n,r}(H^2, H^\infty)$ as in Corollary 2.2, with the constant $\sqrt{2}$ instead of 2: since $1 + |\lambda_j| \leq 2$ and $1 - |\lambda_j| \geq 1 - r$, applying Corollary 2.4, we get

$$C_{n,r}(H^2, H^\infty) \le \sqrt{2} \frac{\sqrt{n}}{\sqrt{1-r}}.$$

It is natural to wonder if it is possible to improve the bound $\sqrt{2}\frac{\sqrt{n}}{\sqrt{1-r}}$. We return to this question in **Chapter 5** below.

3. Upper bounds for $C_{n,r}(H^p, H^\infty), p \ge 1$

The aim of this section is to extend **Corollary 2.2** to all Hardy spaces H^p . This is the subject of the following theorem.

Theorem. 3.0. Let $1 \le p \le \infty$. Then

$$C_{n,r}(H^p, H^\infty) \le A_p\left(\frac{n}{1-r}\right)^{\frac{1}{p}},$$

for all $n \ge 1$, $0 \le r < 1$, where A_p is a constant depending only on p.

We first prove the following lemma.

Lemma. 3.1. Let $\sigma = \{\lambda_1, ..., \lambda_n\}$ and $r = \max_{1 \le i \le n} |\lambda_i|$, then

$$c(\sigma, H^1, H^\infty) \le \frac{2n}{1-r}$$

and hence,

$$C_{n,r}(H^1, H^\infty) \le \frac{2n}{1-r}.$$

Proof. Let $f \in H^1$ such that $||f||_1 \leq 1$ and let,

$$g = P_B f = \sum_{k=1..n} \langle f, e_k \rangle e_k,$$

where, as always, $(e_k)_{k=1}^n$ is the Malmquist basis corresponding to σ , and where $\langle ., . \rangle$ means the Cauchy sesquilinear form $\langle f, g \rangle = \sum_{k \ge 0} \hat{h}(k) \overline{\hat{g}(k)}$. That is to say that,

$$g(\zeta) = \sum_{k=1..n} \langle f, e_k \rangle e_k(\zeta) = \left\langle f, \sum_{k=1..n} e_k \overline{e_k(\zeta)} \right\rangle,$$

for all $\zeta \in \mathbb{D}$, which gives,

$$|g(\zeta)| \le \|f\|_{H^1} \left\| \sum_{k=1..n} e_k \overline{e_k(\zeta)} \right\|_{H^{\infty}} \le \left\| \sum_{k=1..n} e_k \overline{e_k(\zeta)} \right\|_{H^{\infty}}.$$

Now, we recall that

$$e_k = \frac{\left(1 - |\lambda_k|^2\right)^{\frac{1}{2}}}{\left(1 - \overline{\lambda_k}z\right)} \left(\Pi_{j=1}^{k-1}b_{\lambda_j}\right),$$

and, as we saw it in Theorem 2.3. (second proof),

$$\|e_k\|_{H^{\infty}} \le \frac{(1+|\lambda_k|)^{\frac{1}{2}}}{(1-|\lambda_k|)^{\frac{1}{2}}}$$

As a consequence,

$$|g(\zeta)| \le \sum_{k=1}^{n} \|e_k\|_{H^{\infty}} \left| \overline{e_k(\zeta)} \right| = \sum_{k=1}^{n} \|e_k\|_{H^{\infty}}^2 \le \sum_{k=1}^{n} \frac{(1+|\lambda_k|)}{(1-|\lambda_k|)} \le \frac{2n}{1-r},$$

for all $\zeta \in \mathbb{D}$, which completes the proof.

Proof of Theorem 3.0. Let $\sigma = \{\lambda_1, ..., \lambda_n\}$ be a sequence in the unit disc \mathbb{D} , $B_{\sigma} = \prod_{i=1}^n b_{\lambda_i}$, and $T : H^p \longrightarrow H^{\infty}/B_{\sigma}H^{\infty}$ be the restriction map defined by

$$Tf = \{g \in H^{\infty} : f - g \in B_{\sigma}H^p\},\$$

for every f. Then,

$$\| T \|_{H^p \to H^\infty/B_\sigma H^\infty} = c \left(\sigma, \ H^p, H^\infty \right).$$

There exists $0 \le \theta \le 1$ such that $\frac{1}{p} = 1 - \theta$, and since (we use the notation of the interpolation theory between Banach spaces see [Tr] or [Be]) $[H^1, H^{\infty}]_{\theta} = H^p$ (a topological identity: the spaces are the same and the norms are equivalent (up to constants depending on p only), see [J]), by a known interpolation Theorem (see [Tr], Theorem 1.9.3, p.59),

$$\|T\|_{[H^1,H^\infty]_{\theta}\to H^\infty/B_{\sigma}H^\infty} \leq \left(A_1c\left(\sigma,\ H^1,H^\infty\right)\right)^{1-\theta} \left(A_\infty c\left(\sigma,\ H^\infty,H^\infty\right)\right)^{\theta}$$

where A_1 , A_{∞} are numerical constants, and using both Lemma 3.1 and the fact that $c(\sigma, H^{\infty}, H^{\infty}) \leq 1$, we find

$$\| T \|_{[H^1, H^\infty]_{\theta} \to H^\infty/B_{\sigma}H^\infty} \le \left(A_1 \frac{2n}{1-r} \right)^{1-\theta} A_{\infty}^{\theta} = (2A_1)^{1-\theta} A_{\infty}^{\theta} \left(\frac{n}{1-r} \right)^{\frac{1}{p}},$$

which completes the proof.

4. Upper bounds for
$$C_{n,r}(L^2_a, H^{\infty})$$

In this section, we generalize **Corollary 2.2** to the case of spaces X which contain H^2 : $X = l_a^2 \left(\frac{1}{(k+1)^{\alpha-1}}\right)$, $\alpha \ge 1$, the Hardy weighted spaces of all $f(z) = \sum_{k\ge 0} \hat{f}(k) z^k$ satisfying

$$\sum_{k \ge 0} \left| \hat{f}(k) \right|^2 \frac{1}{(k+1)^{2(\alpha-1)}} < \infty.$$

It is also important to recall that

$$l_a^2\left(\frac{1}{(k+1)^{\alpha-1}}\right) = L_a^2\left(\left(1-|z|^2\right)^{2\alpha-3} dA\right), \ \alpha > 1,$$

where $L_a^2\left(\left(1-|z|^2\right)^{\beta}dA\right)$, $\beta > -1$, stand for the Bergman weighted spaces of all holomorphic functions f such that

$$\int_{\mathbb{D}} |f(z)|^2 \left(1 - |z|^2\right)^{\beta} dA < \infty.$$

Notice also that $H^2 = l_a^2(1)$ and $L_a^2(\mathbb{D}) = l_a^2\left(\frac{1}{(k+1)^{\frac{1}{2}}}\right)$, where $L_a^2(\mathbb{D})$ stands for the Bergman space of the unit disc \mathbb{D} .

Theorem. 4.0. Let σ be a sequence in \mathbb{D} , $\alpha \in [1, 2]$ and $\beta \in [-1, 1]$. Then

$$c\left(\sigma, l_a^2\left(\frac{1}{(k+1)^{\alpha-1}}\right), H^{\infty}\right) \le A\left(\frac{n}{1-r}\right)^{\frac{2\alpha-1}{2}}$$

Otherwise,

$$C_{n,r}\left(l_a^2\left(\frac{1}{(k+1)^{\alpha-1}}\right), H^{\infty}\right) \le A\left(\frac{n}{1-r}\right)^{\frac{2\alpha-1}{2}},$$
$$C_{n,r}\left(L_a^2\left(\left(1-|z|^2\right)^{\beta} dA\right), H^{\infty}\right) \le A'\left(\frac{n}{1-r}\right)^{\frac{\beta+2}{2}},$$

for all $n \ge 1$, $0 \le r < 1$, where $A = A(\alpha - 1)$ is a constant depending only on α and $A' = A'(\beta)$ is a constant depending only on β .

In particular, for $\alpha = \frac{3}{2}$ (or equivalently $\beta = 0$) we get

$$C_{n,r}\left(L_a^2, H^\infty\right) \le 2\sqrt{3}\frac{n}{1-r},$$

for all $n \ge 1$, $0 \le r < 1$.

First, we prove a following lemma. In fact, **Lemma 4.1** below is a partial case (p = 2) of the following K. Dyakonov's result [D] (which is, in turn, a generalization of M. Levin's inequality [L] corresponding to the case $p = \infty$): for every $p, 1 there exists a constant <math>c_p > 0$ such that

$$\left\|f'\right\|_{H^p} \le c_p \left\|B'\right\|_{\infty} \|f\|_{H^p}$$

for all $f \in K_B$, where B is a finite Blaschke product (of order n) and $\|.\|_{\infty}$ means the norm in $L^{\infty}(\mathbb{T})$. For our partial case, our proof is different and the constant is slightly better. We notice that in general, Bernstein type inequalities have already been the subject of a lot of papers. Among others, Chapter 7 of P. Borwein and T. Erdélyi book's, see [BoEr], is devoted to such inequalities. This is also the case of A. Baranaov's work, see [B1], [B2] and [B3], and also of R. A. DeVore and G. G. Lorentz's book, see [DeLo].

Lemma. 4.1. Let $B = \prod_{j=1}^{n} b_{\lambda_j}$, be a finite Blaschke product (of order n), $r = \max_j |\lambda_j|$, and $f \in K_B =: H^2 \Theta B H^2$. Then,

$$\left\|f'\right\|_{H^2} \le \frac{5}{2} \frac{n}{1-r} \|f\|_{H^2}.$$

Proof. Since $f \in K_B$, $f = P_B f = \sum_{k=1}^n (f, e_k)_{H^2} e_k$. Noticing that,

$$e'_{k} = \sum_{i=1}^{k-1} \frac{b'_{\lambda_{i}}}{b_{\lambda_{i}}} e_{k} + \overline{\lambda_{k}} \frac{1}{\left(1 - \overline{\lambda_{k}}z\right)} e_{k},$$

for k = 2..n, we get

$$f' = (P_B f)' = (f, e_1)_{H^2} e_1' + \sum_{k=2}^n (f, e_k)_{H^2} e_k' =$$
$$= (f, e_1)_{H^2} \frac{\overline{\lambda}_1}{\left(1 - \overline{\lambda_1} z\right)} e_1 + \sum_{k=2}^n (f, e_k)_{H^2} \sum_{i=1}^{k-1} \frac{b'_{\lambda_i}}{b_{\lambda_i}} e_k + \sum_{k=2}^n (f, e_k)_{H^2} \overline{\lambda_k} \frac{1}{\left(1 - \overline{\lambda_k} z\right)} e_k,$$
wes

which gives

$$f' = (f, e_1)_{H^2} \frac{\bar{\lambda}_1}{(1 - \bar{\lambda}_1 z)} e_1 + \sum_{k=2}^n \sum_{i=1}^{n-1} (f, e_k)_{H^2} \frac{b'_{\lambda_i}}{b_{\lambda_i}} e_k \chi_{[1,k-1]}(i) + \sum_{k=2}^n (f, e_k)_{H^2} \overline{\lambda_k} \frac{1}{(1 - \bar{\lambda_k} z)} e_k = (f, e_1)_{H^2} \frac{\bar{\lambda}_1}{(1 - \bar{\lambda}_1 z)} e_1 + \sum_{i=1}^n \frac{b'_{\lambda_i}}{b_{\lambda_i}} \sum_{k=i+1}^{n-1} (f, e_k)_{H^2} e_k + \sum_{k=2}^n (f, e_k)_{H^2} \overline{\lambda_k} \frac{1}{(1 - \bar{\lambda_k} z)} e_k,$$

here χ_{i_1, \dots, i_k} is the characteristic function of $[1, k - 1]$. Now

where $\chi_{[1,k-1]}$ is the characteristic function of [1, k-1]. Now,

$$\left\| (f, e_1)_{H^2} \frac{\bar{\lambda}_1}{\left(1 - \overline{\lambda_1} z\right)} e_1 \right\|_{H^2} \le \left\| (f, e_1)_{H^2} \right\| \left\| \frac{\bar{\lambda}_1}{\left(1 - \overline{\lambda_1} z\right)} \right\|_{\infty} \|e_1\|_{H^2} \le \\ \le \|f\|_{H^2} \|e_1\|_{H^2} \frac{1}{1 - r} \|e_1\|_{H^2} \le \|f\|_{H^2} \frac{1}{1 - r},$$

using both Cauchy-Schwarz inequality and the fact that e_1 is a vector of norm 1 in H^2 . By the same reason, we have

$$\left\|\sum_{k=2}^{n} \overline{\lambda_{k}}(f, e_{k})_{H^{2}} \frac{1}{(1-\overline{\lambda_{k}}z)} e_{k}\right\|_{H^{2}} \leq \sum_{k=2}^{n} |(f, e_{k})_{H^{2}}| \left\|\overline{\lambda_{k}} \frac{1}{(1-\overline{\lambda_{k}}z)}\right\|_{\infty} \|e_{k}\|_{H^{2}} \leq \frac{1}{1-r} \sum_{k=2}^{n} |(f, e_{k})_{H^{2}}| \leq \frac{1}{1-r} \left(\sum_{k=2}^{n} |(f, e_{k})_{H^{2}}|^{2}\right)^{\frac{1}{2}} \sqrt{n-2} \leq \frac{1}{1-r} \|f\|_{H^{2}} \sqrt{n-2}.$$

Finally,

$$\left\| \sum_{i=1}^{n-1} \frac{b'_{\lambda_i}}{b_{\lambda_i}} \sum_{k=i+1}^n e_k (f, e_k)_{H^2} \right\|_{H^2} \le \sum_{i=1}^{n-1} \left\| \frac{b'_{\lambda_i}}{b_{\lambda_i}} \right\|_{\infty} \left\| \sum_{k=i+1}^n (f, e_k)_{H^2} e_k \right\|_{H^2} = \\ = \left(\max_{1 \le i \le n-1} \left\| \frac{b'_{\lambda_i}}{b_{\lambda_i}} \right\|_{\infty} \right) \sum_{i=1}^{n-1} \left(\sum_{k=i+1}^n \left| (f, e_k)_{H^2} \right|^2 \right)^{\frac{1}{2}} \le \max_i \left\| \frac{b'_{\lambda_i}}{b_{\lambda_i}} \right\|_{\infty} \sum_{i=1}^{n-1} \| f \|_{H^2} .$$

Moreover, since

$$\left\|\frac{b_{\lambda_i}'}{b_{\lambda_i}}\right\|_{\infty} = \left\|\frac{|\lambda_i|^2 - 1}{\left(1 - \overline{\lambda_i}z\right)\left(\lambda_i - z\right)}\right\|_{\infty} \le \frac{2}{1 - |\lambda_i|} \le \frac{2}{1 - r},$$

we get,

$$\left\|\sum_{i=1}^{n-1} \frac{b_{\lambda_i}'}{b_{\lambda_i}} \sum_{k=i+1}^n (f, e_k)_{H^2} e_k\right\|_{H^2} \le \frac{2(n-1)}{1-r} \|f\|_{H^2}.$$

Finally,

$$\begin{split} \left\| f' \right\|_{H^2} &\leq \frac{1}{1-r} \left\| f \right\|_{H^2} + \frac{2(n-1)}{1-r} \left\| f \right\|_{H^2} + \frac{1}{1-r} \sqrt{n-2} \left\| f \right\|_{H^2} \leq \frac{\left(2n-1+\sqrt{n-2}\right)}{1-r} \left\| f \right\|_{H^2} \leq \frac{5}{2} \frac{n}{1-r} \left\| f \right\|_{H^2}, \end{split}$$

for all $n \ge 2$ and for every $f \in K_B$. (The case n = 1 is obvious since $\|f'\|_{H^2} \le \frac{1}{1-r} \|f\|_{H^2}$). \Box Corollary. 4.2. Let σ a sequence in \mathbb{D} . Then,

$$c\left(\sigma, l_a^2\left(\frac{1}{k+1}\right), H^{\infty}\right) \le 6\sqrt{2}\left(\frac{n}{1-r}\right)^{\frac{3}{2}}.$$

Indeed, if $f \in l_a^2\left(\frac{1}{(k+1)^N}\right) = H$ then $|P_B f(\zeta)| = |\langle P_B f, k_\zeta\rangle| = |\langle f, P_B k_\zeta\rangle|$, where $\langle ., .\rangle$ means the Cauchy pairing and $k_\zeta = \left(1 - \overline{\zeta}z\right)^{-1}$. Denoting H^* the dual of H with respect to this pairing, $H^* = l_a^2\left((k+1)^N\right)$, we get

$$|P_B f(\zeta)| \le ||f||_H ||P_B k_{\zeta}||_{H^*} \le ||f||_H K \left(||P_B k_{\zeta}||_{H^2} + \left\| (P_B k_{\zeta})' \right\|_{H^2} \right),$$

where

$$K = max\left\{1, \ sup_{k\geq 1}\frac{k+1}{k}\right\} = 2$$

Since $P_B k_{\zeta} \in K_B$, Lemma 4.1 implies

$$|P_B f(\zeta)| \le ||f||_H ||P_B k_{\zeta}||_{H^*} \le ||f||_H K \left(||P_B k_{\zeta}||_{H^2} + \left(\frac{5}{2}\frac{n}{1-r}\right) ||P_B k_{\zeta}||_{H^2} \right) \le \\ \le A \left(\frac{n}{1-r}\right)^{\frac{3}{2}} ||f||_H,$$

where $A = \sqrt{2}K\left(\frac{1}{2} + \frac{5}{2}\right) = 6\sqrt{2}$, since $\|P_B k_{\zeta}\|_2 \leq \frac{\sqrt{2n}}{\sqrt{1-r}}$, and since we can suppose $n \geq 2$, (the case n = 1 being obvious).

Proof of Theorem 4.0. The case $\alpha = 1$ corresponds to $X = H^2$ and has already been studied in Section 1 (we can choose $A(0) = \sqrt{2}$). We now suppose $\alpha > 1$. Let $B_{\sigma} = \prod_{i=1}^{n} b_{\lambda_i}$ and T: $l_A^2\left(\frac{1}{(k+1)^{\alpha-1}}\right) \longrightarrow H^{\infty}/B_{\sigma}H^{\infty}$ be the restriction map defined by

$$Tf = \left\{ g \in H^{\infty} : f - g \in B_{\sigma} l_a^2 \left(\frac{1}{(k+1)^{\alpha-1}} \right) \right\},$$

for every f. Then,

$$\|T\|_{l^2_A\left(\frac{1}{(k+1)^{\alpha-1}}\right)\to H^\infty/B_\sigma H^\infty} = c\left(\sigma, l^2_a\left(\frac{1}{(k+1)^{\alpha-1}}\right), H^\infty\right).$$

We set such that $\alpha - 1 = \theta$ with $0 < \theta \leq 1$, and since (as in Theorem 3.0, we use the notation of the interpolation theory between Banach spaces see [Tr] or [Be])

$$\begin{bmatrix} l_a^2 \left(\frac{1}{(k+1)^0} \right), l_a^2 \left(\frac{1}{(k+1)^1} \right) \end{bmatrix}_{\theta,2} = l_a^2 \left(\left(\frac{1}{(k+1)^0} \right)^{2\frac{1-\theta}{2}} \left(\frac{1}{(k+1)^1} \right)^{2\frac{\theta}{2}} \right) = l_a^2 \left(\frac{1}{(k+1)^{\theta}} \right) = l_A^2 \left(\frac{1}{(k+1)^{\alpha-1}} \right),$$

this gives, using Corollary 4.2 and (again) [Tr] Theorem 1.9.3 p.59,

$$\|T\|_{l^2_a\left(\frac{1}{(k+1)^{\alpha-1}}\right) \to H^\infty/B_\sigma H^\infty} \leq \leq \left(c\left(\sigma_{\lambda,n}, l^2_a\left(\frac{1}{(k+1)^0}\right), H^\infty\right)\right)^{1-\theta} \left(c\left(\sigma_{\lambda,n}, l^2_a\left(\frac{1}{(k+1)^1}\right), H^\infty\right)\right)^{\theta} \leq \\ \leq \left(A(0)\left(\frac{n}{1-r}\right)^{\frac{1}{2}}\right)^{1-\theta} \left(A(1)\left(\frac{n}{1-r}\right)^{\frac{3}{2}}\right)^{\theta} = \\ = A(0)^{1-\theta}A(1)^{\theta} \left(\frac{n}{1-r}\right)^{\frac{1-\theta}{2}+\frac{3\theta}{2}}.$$

It remains to use $\theta = \alpha - 1$ and set $A(\alpha - 1) = A(0)^{1-\theta}A(1)^{\theta}$. In particular, for $\alpha = 3/2$ we get $\frac{1-\theta}{2} + \frac{3\theta}{2} = 1$ and

$$A\left(\frac{3}{2}\right) = A(0)^{(1-\frac{1}{2})}A(1)^{\frac{1}{2}} = \sqrt{2}^{\frac{1}{2}}(6\sqrt{2})^{\frac{1}{2}} = 2\sqrt{3}.$$

5. About the links with Carleson interpolation

In this section, we compare the method used in Sections 1, 2, 3 and 4 with those resulting from Carleson-type interpolation. Especially, we are interested in the case of circular sequences σ and radial sequences σ . Recall that given a (finite) set $\sigma = \{\lambda_1, ..., \lambda_n\} \subset \mathbb{D}$, the interpolation constant $C_I(\sigma)$ is defined by

$$C_I(\sigma) = \sup_{\|a\|_{l^{\infty}} \le 1} \inf \left(\|g\|_{\infty} : g \in H^{\infty}, g_{|\sigma} = a \right).$$

We introduce the evaluation functionals φ_{λ} for $\lambda \in \mathbb{D}$,

$$\varphi_{\lambda}(f) = f(\lambda), \ f \in X,$$

as well as the evaluation of the derivatives $\varphi_{\lambda,s}$ (s = 0, 1, ...),

$$\varphi_{\lambda,s}(f) = f^{(s)}(\lambda), \ f \in X.$$

Theorem. 5.0. Let X be a Banach space, $X \subset Hol(\mathbb{D})$. Then, for all sequences $\sigma = \{\lambda_1, ..., \lambda_n\}$ of distinct points in the unit disc \mathbb{D} ,

 $\max_{1 \le i \le n} \|\varphi_{\lambda_i}\| \le c(\sigma, X, H^{\infty}) \le C_I(\sigma) \cdot \max_{1 \le i \le n} \|\varphi_{\lambda_i}\|,$

where $C_I(\sigma)$ stands for the interpolation constant.

Proof. Let $f \in X$. By definition of $C_I(\sigma)$, there exist a $g \in H^{\infty}$ such that

$$f(\lambda_i) = g(\lambda_i) \ \forall i = 1..n,$$

with

$$\| g \|_{\infty} \leq C_{I}(\sigma) \max_{i} ||f(\lambda_{i})| \leq$$
$$\leq C_{I}(\sigma) \max_{i} \|\varphi_{\lambda_{i}}\| \|f\|_{X}.$$

Now, taking the supremum over all $f \in X$ such that $||f||_X \leq 1$, we get the right hand side inequality. The left hand side one is clear since if $g \in H^{\infty}$ satisfies $f(\lambda_i) = g(\lambda_i) \quad \forall i = 1..n$, then $||g||_{\infty} \geq |g(\lambda_i)| = |f(\lambda_i)| = |\varphi_{\lambda_i}(f)|, \quad \forall i = 1..n$.

Comments 5.1.

Theorem 5.0 tells us that, for σ with a "reasonable" interpolation constant $C_I(\sigma)$, the quantity $c(\sigma, X, H^{\infty})$ behaves as $max_i ||\varphi_{\lambda_i}||$. However, for "tight" sequences σ , the constant $C_I(\sigma)$ is so large that the estimate in question contains almost no information. On the other hand, an advantage of the estimate of **Theorem 5.0** is that it does not contain $\#\sigma = n$ explicitly. Therefore, for well-separated sequences σ , **Theorem 5.0** should give a better estimate than those of **Corollary 2.2**, and of **Theorem 4.0**.

Now, how does the interpolation constant $C_I(\sigma)$ behave in terms of the caracteristic r and n of σ ? In what follows we try to answer that question when σ is a r-circular sequence. In that case, we recall the definition of the constant α :

$$\alpha = \frac{\min_{i \neq j} |\lambda_i - \lambda_j|}{1 - r} = \frac{ra}{1 - r}.$$

Example. 5.2. Two points sets. Let $\sigma = \{\lambda_1, \lambda_2\}, \lambda_i \in \mathbb{D}, \lambda_1 \neq \lambda_2$. Then,

$$\frac{1}{|b_{\lambda_1}(\lambda_2)|} \le C_I(\sigma) \le \frac{2}{|b_{\lambda_1}(\lambda_2)|},$$

and Theorem 5.0 implies

$$c(\sigma, X, H^{\infty}) \leq \frac{2}{|b_{\lambda_1}(\lambda_2)|} max_{i=1,2} \|\varphi_{\lambda_i}\|,$$

whereas a straightforward estimate gives

$$c(\sigma, X, H^{\infty}) \le \|\varphi_{\lambda_1}\| + \max_{|\lambda| \le r} \|\varphi_{\lambda,1}\| (1 + |\lambda_1|),$$

where $r = max(|\lambda_1|, |\lambda_2|)$ and the functional $\varphi_{\lambda,1}$ is defined in 5. The difference is that the first upper bound blows up when $\lambda_1 \to \lambda_2$, whereas the second one is still well-bounded.

Indeed, for an H^{∞} -function f solving the interpolation $f(\lambda_1) = 1$, $f(\lambda_2) = -1$, we have

$$2 = |f(\lambda_1) - f(\lambda_2)| \le 2 ||f||_{\infty} |b_{\lambda_1}(\lambda_2)|$$

(indeed, the function $g = \frac{f(\lambda_1) - f}{b_{\lambda_1}}$ is holomorphic in \mathbb{D} and its H^{∞} - norm on \mathbb{T} is equal to $\|f(\lambda_1) - f\|_{\infty}$, (which is less or equal than $2\|f\|_{\infty}$), since the Blaschke factor b_{λ_1} has modulus 1 on the torus \mathbb{T}). Hence, $\|f\|_{\infty} \geq \frac{1}{|b_{\lambda_1}(\lambda_2)|}$, which shows $C_I(\sigma) \geq \frac{1}{|b_{\lambda_1}(\lambda_2)|}$.

On the other hand, setting

$$f = a_1 \frac{b_{\lambda_2}}{b_{\lambda_2} (\lambda_1)} + a_2 \frac{b_{\lambda_1}}{b_{\lambda_1} (\lambda_2)}$$

for arbitrary $a_1, a_1 \in \mathbb{C}$, we get $||f||_{\infty} \leq \frac{|a_1|+|a_2|}{|b_{\lambda_1}(\lambda_2)|} \leq \frac{max(|a_1|, |a_2|)}{|b_{\lambda_1}(\lambda_2)|}$. This implies $C_I(\sigma) \leq \frac{2}{|b_{\lambda_1}(\lambda_2)|}$.

For the second estimate stated in the example, taking $f \in X$ we set

$$g = f(\lambda_1) + \frac{f(\lambda_2) - f(\lambda_1)}{\lambda_2 - \lambda_1} (z - \lambda_1)$$

and we get

$$\|g\|_{\infty} \leq |f(\lambda_{1})| + \left|\frac{f(\lambda_{2}) - f(\lambda_{1})}{\lambda_{2} - \lambda_{1}}\right| (1 + |\lambda_{1}|) \leq \\ \leq \|\varphi_{\lambda_{1}}\| + \max_{\lambda \in [\lambda_{1}, \lambda_{2}]} \|\varphi_{\lambda_{1}}\| (1 + |\lambda_{1}|),$$

and the result follows.

Example. 5.3. Circular sequences. Let 0 < r < 1 and $\sigma = \{\lambda_1, \lambda_2, ..., \lambda_n\}$, $\lambda_i \neq \lambda_j$, $|\lambda_i| = r$ for every *i*, and let $\alpha = \frac{\min_{i \neq j} |\lambda_i - \lambda_j|}{1 - r}$. Then, $\frac{1}{\alpha} \leq C_I(\sigma) \leq 8e^{K'(1 + \frac{K}{\alpha^3})}$, where *K*, K' > 0 are absolute constants. Therefore,

$$c(\sigma, X, H^{\infty}) \le \left(8e^{K'\left(1+\frac{K}{\alpha^3}\right)}\right) .max_{|\lambda|=r} \|\varphi_{\lambda}\|$$

for every r - circular set σ (an estimate does not depending on n explicitly). In particular, there exists an increasing function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that, for n uniformly distincts points $\lambda_1, ..., \lambda_n$, $|\lambda_i| = r, |\lambda_i - \lambda_{i+1}| = 2rsin(\frac{\pi}{2n})$, we have

(1) $c(\sigma, H^2, H^\infty) \leq \varphi\left(\frac{n(1-r)}{r}\right) \frac{1}{(1-r)^{\frac{1}{2}}}$, for every n and r, 0 < r < 1 and in particular, for $n \leq [r(1-r)^{-1}]$ we obtain

$$c(\sigma, H^2, H^\infty) \le c \frac{1}{(1-r)^{\frac{1}{2}}},$$

whereas our specific Corollary 2.2, (which is sharp over all n elements sequences σ), gives

$$c(\sigma, H^2, H^{\infty}) \le c \frac{1}{(1-r)}$$

only.

(2) $c(\sigma, L_a^2, H^\infty) \leq \varphi\left(\frac{n(1-r)}{r}\right) \frac{1}{(1-r)}$, for every n and r, 0 < r < 1 and in particular, for $n \leq [r(1-r)^{-1}]$ we obtain

$$c(\sigma, L_a^2, H^\infty) \le c \frac{1}{(1-r)},$$

whereas our specific Theorem 4.0, (which, again, is sharp over all n elements sequences σ), gives

$$c(\sigma, L_a^2, H^{\infty}) \le c \frac{1}{(1-r)^2}$$

only.

In order to explain the statements of this example, we observe first that the Carleson interpolation constant $C_I(\sigma)$, for r - circular sets σ , essentially depends on α only. Indeed, as is known, the separation constant

$$\Delta = inf_{1 \le j, k \le n, j \ne k} |b_{\lambda_j}(\lambda_k)|,$$

is of the order of $min(\alpha, 1)$, and the Carleson measure density for $\mu = \sum_{i=1}^{n} (1 - |\lambda_i|^2) \delta_{\lambda_i}$ also depends on α only. All together, $C_I(\sigma)$ is bounded if and only if α is separated from 0; see [N1] p.158 for the details of this reasoning. In fact, we can show that

$$\frac{\alpha}{1+\alpha r} \le \Delta \le \alpha$$

and

$$\frac{1}{\alpha} \le C_I(\sigma) \le e^{K'\left(1 + \frac{K}{\alpha^3}\right)},$$

(as claimed as above), where K, K' > 0 are absolute constants, see Appendix 5.5 for details.

Now, checking point (1) for *n* equidistant points on the circle |z| = r, $\lambda_j = re^{\frac{2i\pi j}{n}}, j = 1, 2, ..., n$, one obtains $|\lambda_i - \lambda_{i+1}| = 2rsin\left(\frac{\pi}{2n}\right) \geq \frac{2r}{n}$, and hence $\alpha \geq \frac{2r}{n(1-r)}$. The above estimate for $C_I(\sigma)$ entails that we can take $\varphi(t) = 8e^{K'(1+Kt^3)}$ and then,

$$C_I(\sigma) \le 8e^{K'\left(1+\frac{K}{\alpha^3}\right)} \le \varphi\left(\frac{n(1-r)}{r}\right).$$

Since, for the space H^2 , we have $\|\varphi_{\lambda}\| = (1 - |\lambda|^2)^{-\frac{1}{2}}$, the upper estimate for $c(\sigma, H^2, H^{\infty})$ follows. Since for the space L_a^2 , we have $\|\varphi_{\lambda}\| = (1 - |\lambda|^2)$, the same reasoning works for $c(\sigma, L_a^2, H^{\infty})$.

Example. 5.4. Radial sequences. Now we compare our two estimates of the interpolation constant $c(\sigma, X, H^{\infty})$ (through the Carleson interpolation, and by the preceding general and specific methods) for special (geometric) sequences on the radius of the unit disc \mathbb{D} , say on the radius [0, 1). Let $0 < \rho < 1$, $p \in (0, \infty)$ and

$$\lambda_j = 1 - \rho^{j+p}, \ j = 0, \ ..., \ n,$$

so that the distances $1 - \lambda_j = \rho^j \rho^p$ form a geometric progression; the starting point is $\lambda_0 = 1 - \rho^p$. Let

$$r = max_{0 \le j \le n}\lambda_j = \lambda_k = 1 - \rho^{n+p},$$

and $\delta = \delta(B) = \min_{0 \le k \le n} |B_k(\lambda_k)|$, where $B_k = \frac{B}{b_{\lambda_k}}$. It is known that $\frac{1}{\delta} \le C_I(\sigma) \le \frac{8}{\delta^2}$. (The left hand side inequality is easy: if $f \in H^{\infty}$, $f(\lambda_k) = 1$, $f(\lambda_j) = 0$ for $j \ne k$, then $f = B_k g$ and $\|f\|_{\infty} = \|g\|_{\infty} \ge |g(\lambda_k)| = \frac{1}{|B_k(\lambda_k)|}$, and hence $C_I(\sigma) \ge \frac{1}{|B_k(\lambda_k)|}$ for every k = 0, 1, 2, ..., n. The right hand side inequality is a theorem by P. Jones and S. Vinogradov, see ([N1], p 189). So, we need to know the asymptotic behaviour of $\delta = \delta(B)$ when $n \to \infty$, or $\rho \to 1$, or $\rho \to 0$, or $p \to \infty$, or $p \to 0$.

Claim. Let $\sigma = \{1 - \rho^{p+k}\}_{k=1}^n$, $0 < \rho < 1$, p > 0. The estimate of $c(\sigma, H^2, H^\infty)$ via the Carleson constant $C_I(\sigma)$ (using Theorem 5.0) is comparable with or better than the estimates from Corollary 2.2 (for $X = H^2$) and Theorem 4.0 (for $X = L_a^2$ and $X = L_a^2 \left((1 - |z|^2)^{\beta} \right)$) for sufficiently small values of ρ (as $\rho \to 0$) and/or for a fixed ρ and $n \to \infty$. In all other cases, as for $p \to \infty$ (which means $\lambda_1 \to 1$), or $\rho \to 1$, or $n \to \infty$ and $\rho \to 1$, it is worse.

In order to justify that claim, we use the following upper bound for $\delta(B) = \min_{0 \le k \le n} |B_k(\lambda_k)|$, assuming (for the notation convenience) the *n* is an even integer n = 2k and computing $B_k(\lambda_k)$,

$$|B_{k}(\lambda_{k})| = \prod_{j=1}^{k-1} \frac{\lambda_{k} - \lambda_{j}}{1 - \lambda_{j}\lambda_{k}} \cdot \prod_{j=k+1}^{2k} \frac{\lambda_{j} - \lambda_{k}}{1 - \lambda_{j}\lambda_{k}} =$$

$$= \prod_{j=1}^{k-1} \frac{1 - \rho^{k-j}}{1 + \rho^{k-j} - \rho^{k+p}} \cdot \prod_{j=k+1}^{2k} \frac{1 - \rho^{j-k}}{1 + \rho^{j-k} - \rho^{j+p}} =$$

$$= \prod_{s=1}^{k} \frac{1 - \rho^{s}}{1 + \rho^{s} (1 - \rho^{p+k-s})} \cdot \prod_{s=1}^{k} \frac{1 - \rho^{s}}{1 + \rho^{s} (1 - \rho^{p+k})} \leq$$

$$\leq \left(\prod_{s=1}^{k} \frac{1 - \rho^{s}}{1 + \rho^{s} (1 - \rho^{p+k-s})} \right)^{2} \leq \left(\prod_{s=1}^{k} \frac{1 - \rho^{s}}{1 + \rho^{s} (1 - \rho^{p})} \right)^{2} =: A(n, \rho, p).$$

For a lower bound, we proceed as in [N1] p.160 and get

$$|B_{k}(\lambda_{k})| = \Pi_{s=1}^{k} \frac{1-\rho^{s}}{1+\rho^{s}(1-\rho^{p+k-s})} \cdot \Pi_{s=1}^{n-k} \frac{1-\rho^{s}}{1+\rho^{s}(1-\rho^{p+k})} \ge \left(\Pi_{s=1}^{n} \frac{1-\rho^{s}}{1+\rho^{s}(1-\rho^{p+n})}\right)^{2} =: C(n, \rho, p)$$

for every k = 0, 1, ..., n. Hence,

=

$$C(n, \rho, p) \le \delta(B) \le A(n, \rho, p).$$

On the other hand, using Corollary 2.4 (for $X = H^2$)

$$c(\sigma, H^2, H^{\infty}) \le \left(\sum_{j=1}^n \frac{1+|\lambda_j|}{1-|\lambda_j|}\right)^{\frac{1}{2}} \le \left(\sum_{j=1}^n \frac{2}{\rho^{j+p}}\right)^{\frac{1}{2}} = \left(\frac{2}{\rho^{n+p}}\right)^{\frac{1}{2}} \left(\sum_{j=1}^n \rho^{n-j}\right)^{\frac{1}{2}} = \left(\frac{2}{1-r}\right)^{\frac{1}{2}} \left(\frac{1-\rho^n}{1-\rho}\right)^{\frac{1}{2}} =: D(n, \rho, p).$$

Now, we can compare the behaviour of $D(n, \rho, p)$ and $C_I(\sigma) \cdot max_j \|\varphi_{\lambda_j}\|_{H^2}$ for every parameter n, ρ, p .

5.4. (a) Sparse sequences σ ($\rho \rightarrow 0$, or at least $0 < \rho \le \epsilon < 1$).

If $\rho \to 0$, one has $\lim_{\rho \to 0} C(n, \rho, p) = 1$, and hence $\overline{\lim_{\rho \to 0} C_I}(\sigma_{n,\rho,p}) \leq 8$. So, asymptotically, Theorem 5.0 implies

$$c(\sigma_{n,\rho,p}, H^2, H^\infty) \le (8+\epsilon) \left(\frac{2}{1-r}\right)^{\frac{1}{2}}$$

and Corollary 2.4 gives slightly better but comparable estimate,

$$c(\sigma_{n,\rho,p}, H^2, H^\infty) \le (1+\epsilon) \left(\frac{2}{1-r}\right)^{\frac{1}{2}}$$

In our definition, if p > 0 is fixed and $\rho \to 0$ then $\lambda_1 = \lambda_1(\rho, p) \to 1$. In order to keep λ_1 at a fixed position we can set $p = p(\rho) = \frac{c}{\log(\frac{1}{\rho})}$. Then $\lambda_1 = 1 - \rho^p = 1 - e^{-c}$, c > 0. Still, $\lim_{\rho \to 0} C(n, \rho, p(\rho)) = 1$.

5.4. (b) Condensed sequences σ $(\rho \to 1)$. In this case, $\lim_{\rho \to 0} D(n, \rho, p) = \left(\frac{2}{1-r}\right)^{\frac{1}{2}} \sqrt{n+1}$, and hence using **Corollary 2.4** we cannot get better than the general estimate of **Corollary 2.5**, $c(\sigma, H^2, H^\infty) \leq \left(\sqrt{n+1}+\epsilon\right) \left(\frac{2}{1-r}\right)^{\frac{1}{2}}$. To the contrary, $A(n, \rho, p) \sim_{\rho \to 1} \frac{\left(\frac{n}{2}\right)!}{2^{\frac{n}{2}}} (1-\rho)^{\frac{n}{2}}$, and therefore $C_I(\sigma) \geq \delta^{-1} \geq (A(n, \rho, p))^{-1}$ which blows up as $\frac{const}{(1-\rho)^n}$. So, as it can be predicted, in this case the Carleson interpolation is worse for our problem. Fixing $\lambda_1 = 1 - \rho^p$ at an arbitrary position $\left(p = \frac{c}{\log\left(\frac{1}{\rho}\right)}\right)$ will not change the conclusion. **5.4** (c) Long sequences $(n \to \infty)$. With fixed ρ and p, let $n \to \infty$. Then, by **Corollary 2.4**,

$$c(\sigma, H^2, H^{\infty}) \le \left(\frac{2}{1-r}\right)^{\frac{1}{2}} \left(\frac{1}{1-\rho}\right)^{\frac{1}{2}}$$

(Observe, however, that is also not constant $1 - r = \rho^{n+p}$). In its turn, **Theorem 5.0** gives

$$c(\sigma, H^2, H^{\infty}) \le \frac{8}{\delta^2} \frac{1}{(1-r)^{\frac{1}{2}}} \sim_{n \to \infty} \left(\prod_{s=1}^{\infty} \frac{1-\rho^s}{1+\rho^s} \right)^{-4} \frac{8}{(1-r)^{\frac{1}{2}}},$$

because $\lim_{n} C(n, \rho, p) = \lim_{n} A(n, \rho, p) = \left(\prod_{s=1}^{n} \frac{1-\rho^{s}}{1+\rho^{s}}\right)^{-4}$ for every ρ , $0 < \rho < 1$. Of course, the latter estimate is much worse than the former one, because $\prod_{s=1}^{\infty} \frac{1+\rho^{s}}{1-\rho^{s}} \sim \frac{\sqrt{1-\rho}}{2\sqrt{\pi}} exp\left(\frac{3\pi^{2}}{12}\frac{1}{1-\rho}\right)$ as $\rho \to 1$. Indeed, setting $\varphi(\rho) = \prod_{s=1}^{\infty} \frac{1}{1-\rho^{s}}$ for all $\rho \in [0, 1[$, we have (see [Ne] p.22),

$$\varphi(\rho) = \sqrt{\frac{1-\rho}{2\pi}} exp\left(\frac{\pi^2}{12}\frac{1+\rho}{1-\rho}\right) \left[1+O(1-\rho)\right].$$

Now, setting $\psi(\rho) = \prod_{s=1}^{\infty} \frac{1}{1+\rho^s}$ we get $(\varphi\psi)(\rho) = \frac{1}{\prod_{k\geq 1}(1-\rho^{2k})} = \varphi(\rho^2)$ and,

$$\Pi_{s=1}^{\infty} \frac{1+\rho^{s}}{1-\rho^{s}} = \frac{\varphi(\rho)}{\psi(\rho)} = \varphi(\rho) \frac{\varphi(\rho)}{\varphi(\rho^{2})} = \frac{(\varphi(\rho))^{2}}{\varphi(\rho^{2})} =$$
$$= \frac{1-\rho}{2\pi} exp\left(\frac{\pi^{2}}{6}\frac{1+1}{1-\rho}\right) \sqrt{\frac{2\pi}{1-\rho^{2}}} exp\left(-\frac{\pi^{2}}{12}\frac{1+1}{(1-\rho)(1+1)}\right) [1+o(1)] =$$
$$= \frac{\sqrt{1-\rho}}{2\sqrt{\pi}} exp\left(\frac{3\pi^{2}}{12}\frac{1}{1-\rho}\right) [1+o(1)], \text{ as } \rho \to 1.$$

Appendix 5.5.

Let $\sigma = \{\lambda_1, ..., \lambda_n\}$ be a r - circular sequence, $|\lambda_i| = r \forall i = 1...n, 0 \le r < 1$; here we show the links between the constants $\Delta = \Delta(\sigma) = inf_{i \ne j} |b_{\lambda_i}(\lambda_j)|$, and $\alpha = \frac{\min_{i \ne j} |\lambda_i - \lambda_j|}{1-r}$, and establish an estimate for the Carleson interpolation constant $C_I(\sigma)$.

Lemma 5.6. In the above notation, we have

$$\frac{\alpha}{1+\alpha r} \leq \Delta \leq \alpha$$

Lemma 5.7. In the above notation, we have the following estimate for the Carleson interpolation constant $C_I(\sigma)$: there exists numerical constants K, K' > 0 such that

$$C_I(\sigma) < 8e^{K'\left(1+\frac{K}{\alpha^3}\right)}.$$

See [N1] for the proofs of these two Lemmas.

6. Lower bounds for $C_{n,r}(X, H^{\infty})$

6.1. The cases $X = H^2$ and $X = L_a^2$

Here, we consider the reproducing kernel Hilbert spaces on the disc \mathbb{D} : $X = H^2 = l_a^2(1)$ and $X = L_a^2 = l_a^2(1/\sqrt{k+1})$, and the problem of lower estimates for the one point special case $\sigma_{\lambda,n} = \{\lambda, \lambda, ..., \lambda\}$, (*n* times) $\lambda \in \mathbb{D}$. Recall the definition of the semi-free interpolation constant

$$c(\sigma_{\lambda,n}, H, H^{\infty}) = \sup \left\{ \|f\|_{H^{\infty}/b_{\lambda}^{n}H^{\infty}} : f \in H, \|f\|_{H} \le 1 \right\},\$$

where $||f||_{H^{\infty}/b_{\lambda}^{n}H^{\infty}} = inf \{ ||f + b_{\lambda}^{n}g||_{\infty} : g \in H \}$. In particular, our aim is to prove the sharpness of the upper estimate for the quantities

$$C_{n,r}\left(H^2, H^\infty\right)$$
 and $C_{n,r}\left(L_a^2, H^\infty\right)$

in Corollary 2.2 and Theorem 4.0.

Theorem. 6.1.0 Let $N \in \{1, 2\}$ be an integer. Then,

$$c\left(\sigma_{\lambda,n}, l_a^2\left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right), H^{\infty}\right) \ge a_N\left(\frac{n}{1-|\lambda|}\right)^{\frac{N}{2}},$$

where $a_1 = 1/4\sqrt{2}$ and $a_2 = 1/32$. In particular,

$$a_N\left(\frac{n}{1-r}\right)^{\frac{N}{2}} \le C_{n,r}\left(l_a^2\left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right), H^{\infty}\right) \le A\left(\frac{n}{1-r}\right)^{\frac{N}{2}},$$

for all $n \ge 1, 0 \le r < 1$, where $A = A\left(\frac{N-1}{2}\right)$ is a constant defined in Theorem 4.0, and where spaces $l_a^2\left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right)$ are defined in Section 4.

(1) We first recall some properties of reproducing kernel Hilbert space on the disc \mathbb{D} , X =

 $l_a^2\left(\frac{1}{(k+1)^{\alpha-1}}\right)$. As it is mentionned in Section 4,

$$l_a^2\left(\frac{1}{(k+1)^{\alpha-1}}\right) = \left\{ f = \sum_{k \ge 0} \hat{f}(k) z^k : \|f\|^2 = \sum_{k \ge 0} |\hat{f}(k)|^2 \frac{1}{(k+1)^{2(\alpha-1)}} < \infty \right\}.$$

The reproducing kernel of $l_a^2\left(\frac{1}{(k+1)^{\alpha-1}}\right)$, by definition, is a $l_a^2\left(\frac{1}{(k+1)^{\alpha-1}}\right)$ -valued function $\lambda \mapsto k_{\lambda}^{\alpha}$, $\lambda \in \mathbb{D}$, such that $(f, k_{\lambda}^w) = f(\lambda)$ for every $f \in l_a^2\left(\frac{1}{(k+1)^{\alpha-1}}\right)$, where (., .) means the scalar product $(h, g) = \sum_{k\geq 0} \hat{h}(k)\overline{\hat{g}(k)} \frac{1}{(k+1)^{2(\alpha-1)}}$. Since one has $f(\lambda) = \sum_{k\geq 0} \hat{f}(k)\lambda^k(k+1)^{2(\alpha-1)}\frac{1}{(k+1)^{2(\alpha-1)}}$ $(\lambda \in \mathbb{D})$, it follows that

$$k_{\lambda}^{\alpha}(z) = \sum_{k \ge 0} (k+1)^{2(\alpha-1)} \overline{\lambda}^{k} z^{k}, \ z \in \mathbb{D}.$$

In particular, for the Hardy space $H^2 = l_a^2(1)$ ($\alpha = 1$), we get the Szegö kernel

$$k_{\lambda}(z) = (1 - \overline{\lambda}z)^{-1},$$

for the Bergman space $L_a^2(\mathbb{D}) = l_a^2\left(\frac{1}{(k+1)^{\frac{1}{2}}}\right)$ ($\alpha = \frac{3}{2}$) - the Bergman kernel $k_\lambda^{3/2}(z) = (1 - \overline{\lambda}z)^{-2}$.

(2) Reproducing kernel Hilbert spaces containing H^2 . We will use the previous observations for the following composed reproducing kernels (Aronszajn-deBranges, see [N2] p.320): given the reproducing kernel k of H^2 and $\varphi \in \{z^N : N = 1, 2\}$, the function $\varphi \circ k$ is also positive definit and the corresponding RKHS

$$H(\varphi \circ k) =: \varphi(H(k)) = \varphi(H^2) = l_a^2 \left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right)$$

satisfies the following. For every $f \in H(k)$ we have $\varphi \circ f \in \varphi(H(k))$ and $\|\varphi \circ f\|_{\varphi(H(k))}^2 \leq \varphi(\|f\|_{H(k)}^2)$ (see [N2] p.320).

We notice in particular that

$$H_z = H^2 \text{ and } H_{z^2} = L_a^2,$$

(a topological identity: the spaces are the same and the norms are equivalent). The link between spaces of type $l_a^2\left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right)$ and of type $\varphi(H^2) = H_{\varphi}$ being established, we give the following result.

Lemma 6.1.1 Let $\varphi \in \{z^N : N = 1, 2\}$, and $H_{\varphi} = \varphi(H^2)$ be the reproducing kernel Hilbert space corresponding to the kernel $\varphi\left(\frac{1}{1-\overline{\lambda}z}\right)$. Then, there exists a constant a_N depending on φ such that

$$c(\sigma_{\lambda,n}, H_{\varphi}, H^{\infty}) \ge a_N \varphi\left(\sqrt{\frac{n}{1-|\lambda|}}\right).$$

Moreover, we can choose $a_1 = 1/4\sqrt{2}$ and $a_2 = 1/32$. In particular, we have

$$\frac{1}{4\sqrt{2}}\frac{\sqrt{n}}{\sqrt{1-r}} \le C_{n,r} \left(H^2, H^\infty\right) \le \sqrt{2}\frac{\sqrt{n}}{\sqrt{1-r}}, and \\ \frac{1}{32}\frac{n}{1-r} \le C_{n,r} \left(L_a^2, H^\infty\right) \le 6\sqrt{2}\frac{n}{1-r}$$

 $\forall n\geq 1, \ \forall r\in [0,\ 1[.$

Proof. 1) We set

$$Q_n = \sum_{k=0}^{n-1} b_{\lambda}^k \frac{(1-|\lambda|^2)^{1/2}}{1-\overline{\lambda}z}, \ H_n = \varphi \circ Q_n,$$
$$\Psi = bH_n.$$

Then $||Q_n||_2^2 = n$, and hence by the Aronszajn-deBranges inequality, see [N2] p.320, point (k) of Exercise 6.5.2, with $\varphi \in \{1, z\}$ and $K(\lambda, z) = k_{\lambda}(z) = \frac{1}{1-\lambda z}$, and noticing that $H(\varphi \circ K) = H_{\varphi}$,

$$\|\Psi\|_{H_{\varphi}}^2 \le b^2 \varphi\left(\|Q_n\|_2^2\right) = b^2 \varphi(n)$$

Let b > 0 such that $b^2 \varphi(n) = 1$.

2) Since the spaces H_{φ} and H^{∞} are rotation invariant, we have $c(\sigma_{\lambda,n}, H_{\varphi}, H^{\infty}) = c(\sigma_{\mu,n}, H_{\varphi}, H^{\infty})$ for every λ, μ with $|\lambda| = |\mu| = r$. Let $\lambda = -r$. To get a lower estimate for $||\Psi||_{H_{\varphi}/b_{\lambda}^{n}H_{\varphi}}$ consider Gsuch that $\Psi - G \in b_{\lambda}^{n}Hol(\mathbb{D})$, i.e. such that $bH_{n} \circ b_{\lambda} - G \circ b_{\lambda} \in z^{n}Hol(\mathbb{D})$.

3) First, we show that

$$\psi =: \Psi \circ b_{\lambda} = bH_n \circ b_{\lambda}$$

is a polynomial (of degree n if $\varphi = z$ and 2n if $\varphi = z^2$) with positive coefficients. Note that

$$Q_n \circ b_{\lambda} = \sum_{k=0}^{n-1} z^k \frac{(1-|\lambda|^2)^{1/2}}{1-\overline{\lambda}b_{\lambda}(z)} = \\ = \left(1-|\lambda|^2\right)^{-\frac{1}{2}} \left(1+(1-\overline{\lambda})\sum_{k=1}^{n-1} z^k - \overline{\lambda}z^n\right) = \\ = (1-r^2)^{-1/2} \left(1+(1+r)\sum_{k=1}^{n-1} z^k + rz^n\right) =: (1-r^2)^{-1/2}\psi_1.$$

Hence, $\psi = \Psi \circ b_{\lambda} = bH_n \circ b_{\lambda} = b\varphi \circ \left((1-r^2)^{-\frac{1}{2}}\psi_1\right)$ and
 $\varphi \circ \psi_1 = \psi_1^N(z), \ N = 1, 2.$

4) Next, we show that

$$\sum_{j=0}^{m} (\psi) =: \sum_{j=0}^{m} \hat{\psi}(j) \ge \begin{cases} \frac{1}{2\sqrt{2}} \sqrt{\frac{n}{1-r}} & if \ N = 1\\ \frac{1}{16} \frac{n}{1-r} & if \ N = 2 \end{cases},$$

where $m \ge 1$ is such that 2m = n if n is even and 2m - 1 = n if n is odd.

Indeed, setting

$$S_n = \sum_{j=0}^n z^j,$$

we have for every $N \in \{1,\,2\}$

$$\sum_{k=1}^{m} \left(\psi_{1}^{N} \right) = \sum_{k=1}^{m} \left(\left(1 + (1+r) \sum_{t=1}^{n-1} z^{t} + r z^{n} \right)^{N} \right) \ge \sum_{k=1}^{m} \left(S_{n-1}^{N} \right).$$

Next, we obtain

$$\begin{split} \sum_{n=1}^{m} \left(S_{n-1}^{N}\right) &= \sum_{n=1}^{m} \left(\left(\frac{1-z^{n}}{1-z}\right)^{N}\right) = = \sum_{j=0}^{m} \left(\sum_{j=0}^{N} C_{k}^{j} \frac{1}{(1-z)^{j}} \cdot \left(\frac{-z^{n}}{1-z}\right)^{N-j}\right) = \\ \sum_{n=1}^{m} \left(\frac{1}{(1-z)^{N}}\right) &= \sum_{j=0}^{m} \left(\sum_{j\geq 0} C_{N+j-1}^{j}z^{j}\right) = \sum_{j=0}^{m} C_{N+j-1}^{j} = \\ &= \begin{cases} m+1 \ if \ N=1 \\ (m+1)(m+2)/2 \ if \ N=2 \end{cases} \geq \begin{cases} n/2 \ if \ N=1 \\ (n+2)(n+4)/8 \ if \ N=2 \end{cases} \geq \begin{cases} n/2 \ if \ N=1 \\ n^{2}/8 \ if \ N=2 \end{cases} \\ Finally, since \ \sum^{m}(\psi) &= b \sum^{m}(\varphi \circ \psi_{1}) = b \ (1-r^{2})^{-N/2} \sum^{m}(\psi_{1}^{N}) \ we \ get \\ \sum_{j=0}^{m}(\psi) &\geq \begin{cases} (2(1-r))^{-1/2} nb/2 \ if \ N=2 \end{cases}, \end{split}$$

with $b = \varphi(n) = \begin{cases} n^{-1/2} if N = 1 \\ n^{-1} if N = 2 \end{cases}$ and obtain the result claimed.

.

5) Now, using point 4) and the preceding Fejer kernel argument and denoting $F_n = \Phi_m + z^m \Phi_m$, where Φ_k stands for the k-th Fejer kernel, we get

$$\begin{split} \|\Psi\|_{H^{\infty}/b_{\lambda}^{n}H^{\infty}} &= \|\psi\|_{H^{\infty}/z^{n}H^{\infty}} \ge \frac{1}{2} \|\psi * F_{n}\|_{\infty} \ge \frac{1}{2} \sum_{j=0}^{m} \hat{\psi}(j) \ge \\ &\ge \begin{cases} \frac{1}{4\sqrt{2}} \sqrt{\frac{n}{1-r}} & \text{if } N = 1\\ \frac{1}{32} \frac{n}{1-r} & \text{if } N = 2 \end{cases} . \end{split}$$

Proof of Theorem 6.1.0. In order to prove the left hand side inequality, it suffices to apply Lemma 6.1.1 with $\varphi(z) = z^N$. Indeed, in this case $H_{\varphi} = l_a^2 \left(\frac{1}{(k+1)^{\frac{N-1}{2}}}\right) = H_{z^N}$. The right hand side inequality is a straightforward consequence of Corollary 2.2 and Theorem 4.0.

6.2. The case $X = H^p$

The aim of this section is to prove the sharpness (for even p) of the upper estimate, found in **Theorem 3.0**, of the quantity $C_{n,r}(H^p, H^\infty)$. This is the subject of the following theorem.

Theorem. 6.2.0 Let $p \in 2\mathbb{Z}_+$, then

$$c\left(\sigma_{\lambda,n}, H^{p}, H^{\infty}\right) \geq \frac{1}{32^{\frac{1}{p}}} \left(\frac{n}{1-|\lambda|}\right)^{\frac{1}{p}}$$

for every $\lambda \in \mathbb{D}$ and every integer $n \geq 1$, where $\sigma_{\lambda,n} = \{\lambda, \lambda, ..., \lambda\}$ and hence

$$\frac{1}{32^{\frac{1}{p}}} \left(\frac{n}{1-r}\right)^{\frac{1}{p}} \le C_{n,r} \left(H^{p}, H^{\infty}\right) \le A_{p} \left(\frac{n}{1-r}\right)^{\frac{1}{p}},$$

for all $n \ge 1$, $0 \le r < 1$, where A_p is a constant depending only on p which is defined in Theorem 3.0.

We first prove the following lemma.

Lemma. 6.2.1 Let p,q such that $\frac{p}{q} \in \mathbb{Z}_+$, then $c(\sigma, H^p, H^\infty) \ge c(\sigma, H^q, H^\infty)^{\frac{q}{p}}$ for every sequence σ of \mathbb{D} .

Proof. Step 1. Recalling that

$$c(\sigma, H^p, H^\infty) = \sup_{\|f\|_p \le 1} \inf \{ \|g\|_\infty : g \in Y, g_{|\sigma} = f_{|\sigma} \},\$$

we first prove that

$$c(\sigma, H^p, H^{\infty}) = \sup_{\|f\|_p \le 1, f \text{ outer } inf} \left\{ \|g\|_{\infty} : g \in Y, g_{|\sigma} = f_{|\sigma} \right\}.$$

Indeed, we clearly have the inequality

$$\sup_{\|f\|_{p} \leq 1, f \text{ outer } inf \left\{ \|g\|_{\infty} : g \in Y, g_{|\sigma} = f_{|\sigma} \right\} \leq c \left(\sigma, H^{p}, H^{\infty}\right),$$

and if the inequality were strict, that is to say

$$\sup_{\|f\|_{p} \le 1, f \text{ outer } inf \left\{ \|g\|_{\infty} : g \in Y, g_{|\sigma} = f_{|\sigma} \right\} < \sup_{\|f\|_{p} \le 1} \inf \left\{ \|g\|_{\infty} : g \in Y, g_{|\sigma} = f_{|\sigma} \right\}$$

then we could write that there exists $\epsilon > 0$ such that for every $f = f_i f_o \in H^p$ (where f_i stands for the inner function corresponding to f and f_o to the outer one) with $||f||_p \leq 1$ (which also implies that $||f_o||_p \leq 1$, since $||f_o||_p = ||f||_p$), there exists a function $g \in H^\infty$ verifying both $||g||_{\infty} \leq (1 - \epsilon)c (\sigma, H^p, H^\infty)$ and $g_{|\sigma} = f_{o|\sigma}$. This entails that $f_{|\sigma} = (f_ig)_{|\sigma}$ and since $||f_ig||_{\infty} =$ $\|g\|_{\infty} \leq (1-\epsilon)c(\sigma, H^p, H^{\infty})$, we get that $c(\sigma, H^p, H^{\infty}) \leq (1-\epsilon)c(\sigma, H^p, H^{\infty})$, which is a contradiction and proves the equality of Step 1.

Step 2. Using the result of Step 1, we get that $\forall \epsilon > 0$ there exists an outer function $f_o \in H^q$ with $\|f_o\|_p \leq 1$ and such that

$$\inf\left\{\left\|g\right\|_{\infty}: g \in Y, g_{|\sigma} = f_{o|\sigma}\right\} \ge c\left(\sigma, H^{q}, H^{\infty}\right) - \epsilon.$$

Now let $F = f_o^{\frac{q}{p}} \in H^p$, then $||F||_p^p = ||f_o||_q^q \leq 1$. We suppose that there exists $g \in H^{\infty}$ such that $g_{|\sigma} = F_{|\sigma}$ with

$$\|g\|_{\infty} < (c(\sigma, H^q, H^{\infty}) - \epsilon)^{\frac{q}{p}}.$$

Then, since $g(\lambda_i) = F(\lambda_i) = f_o(\lambda_i)^{\frac{q}{p}}$ for all i = 1..n, we have $g(\lambda_i)^{\frac{p}{q}} = f_o(\lambda_i)$ and $g^{\frac{p}{q}} \in H^{\infty}$ since $\frac{p}{q} \in \mathbb{Z}_+$. We also have

$$\left\|g^{\frac{p}{q}}\right\|_{\infty} = \left\|g\right\|_{\infty}^{\frac{p}{q}} < \left(c\left(\sigma, H^{q}, H^{\infty}\right) - \epsilon\right)^{\frac{q}{p}}$$

which is a contradiction. As a result, we have

$$\|g\|_{\infty} \ge (c(\sigma, H^q, H^{\infty}) - \epsilon)^{\frac{q}{p}},$$

for all $g \in H^{\infty}$ such that $g_{|\sigma} = F_{|\sigma}$, which gives

$$c(\sigma, H^p, H^\infty) \ge (c(\sigma, H^q, H^\infty) - \epsilon)^{\frac{q}{p}},$$

and since that inequality is true for every $\epsilon > 0$, we get the result.

Proof of Theorem 6.2.0. We first prove the left hand side inequality. Writing $p = 2.\frac{p}{2}$, we apply Lemma 6.2.1 with q = 2 and this gives

$$c\left(\sigma_{\lambda,n}, H^{p}, H^{\infty}\right) \geq c\left(\sigma_{\lambda,n}, H^{2}, H^{\infty}\right)^{\frac{2}{p}} \geq \frac{1}{32^{\frac{1}{p}}} \left(\frac{n}{1-|\lambda|}\right)^{\frac{2}{p}}$$

for all integer $n \ge 1$. The last inequality being a consequence of Theorem 2.1.2. The right hand side inequality is proved in Theorem 3.0. \Box

Acknowledgement.

I would like to thank Professor Nikolai Nikolski for its invaluable self-sacrifice.

References

- [A] N. Aronszajn, Theory of reproducing kernels, Transactions of American Mathematical Society, 68:337-404, 1950.
- [B1] A. Baranov, Inégalités de Bernstein dans les espaces modèles et applications, Thèse soutenue à l'université de Bordeaux 1, 2005.
- [B2] A. Baranov, Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings. Journal of Functional Analysis (2005) 223 (1): 116-146.
- [B3] A. Baranov, Compact embeddings of model subspaces of the Hardy space, posted in Arxiv, 05.12.2007.
- [BL1] L. Baratchart, Rational and meromorphic approximation in Lp of the circle : systemtheoretic motivations, critical points and error rates. In N. Papamichael, S. Ruscheweyh, and E. Saff, editors, Computational Methods and Function Theory, pages 45–78. World Scientific Publish. Co, 1999.
- [BL2] L. Baratchart, F. Wielonsky, Rational approximation problem in the real Hardy space H₂ and Stieltjes integrals: a uniqueness theorem, Constr. Approx. 9 (1993), 1-21.
- [Be] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag (1976).

- [BoEr] P. Borwein and T. Erdélyi, *Polynomials and Polynomial Inequalities*, Springer, New York, 1995.
- [DeLo] R. A. DeVore and G. G. Lorentz, *Constructive Approximation*, Springer-Verlag, Berlin, 1993.
- [Dy] K. Dyakonov, Differentiation in Star-Invariant Subspaces I. Boundedness and Compactness, J.Funct.Analysis, 192 (2002), 364-386.
- [H] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Springer-Verlag, New-York, 2000.
- [J] P. W. Jones, L^{∞} estimates for the $\overline{\partial}$ problem in the half plane, Acta Math. 150 (1983), 137-152.
- [K] P. Koosis, Carleson's interpolation theorem deduced from a result of Pick, Complex analysis, operators, and related topics. In V. Havin, and N. Nikolski, editors, 151–162, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000.
- [L] M. Levin, Teoria Funkzii, Funkzionalnyi Analiz i Prolozhenia, Harzov, 24 (1975), 68-85.
- [Ne] D. J. Newman, Analytic number theory, Springer, 1998.
- [N1] N.Nikolski, Treatise on the shift operator, Springer-Verlag, Berlin etc., 1986 (Transl. from Russian, Lekzii ob operatore sdviga, "Nauja", Moskva, 1980).
- [N2] N.Nikolski, Operators, Function, and Systems: an easy reading, Vol.1, Amer. Math. Soc. Monographs and Surveys, 2002.
- [N3] N.Nikolski, Condition Numbers of Large Matrices and Analytic Capacities, St. Petersburg Math. J., 17 (2006), 641-682.
- [S] E.Stein and G.Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton, 1971.
- [T] H. Triebel, Interpolation theory, functions spaces, differential operators, North-Holland Publishing Comp., 1978.