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ABSTRACT

Parameter estimation for closely spaced or crossing frequen-
cy trajectories is a difficult signal processing problem, es-
pecially in the presence of both nonlinear amplitude and
frequency modulations. In this paper, polynomial models
are assumed for the instantaneous frequencies and ampli-
tudes (IF/IA). We suggest two different strategies to pro-
cess multicomponent signals. In the first one, which is opti-
mal, all model parameters are simultaneously estimated us-
ing a maximum likelihood procedure (ML), maximized via
a stochastic technique called Simulated Annealing (SA). In
the second strategy, which is suboptimal, the signal is it-
eratively reconstructed component by component. At each
iteration, the IF and IA of one component are estimated us-
ing the ML procedure and the SA technique. To evaluate
the accuracy of the proposed strategies, Monte Carlo simu-
lations are presented and compared to the derived Cramer-
Rao Bounds for closely spaced and crossing frequency tra-
jectories. The results show the proposed algorithms perform
well compared to existing techniques.

1. INTRODUCTION

The analysis of multicomponent signals has been investi-
gated in the recent signal processing literature [1, 2, 3, 4,5,
6, 7, 8]. These signals are encountered in applications such
as radar, sonar, mobile communications and other engineer-
ing systems. Suboptimal approaches, based on the Higher
Ambiguity Function (HAF) or Product HAF (PHAF) [1, 2,
4, 5, 7], provide performances close to the Maximum Like-
lihood estimators for high signal to noise ratio (SNR). How-
ever, the appearance of cross-terms due to the presence of
multiple components deteriorates the estimation accuracy.
Moreover the HAF and the PHAF must be used with cau-
tion at low SNR. In [1, 4, 5, 6], most of the proposed ap-
proaches are designed for linear amplitude and frequency
modulations (AM/FM).

Here we are concerned with nonlinear AM and FM mod-
ulations. This paper is an extension of previous published

works [9, 10, 11], where only single component signals we-
re considered. The instantaneous amplitude and frequency
were modeled by nonlinear polynomial functions on con-
tiguous short-time segments. A maximum likelihood pro-
cedure allowed the estimation of the model parameters. It
was maximized via a Simulated Annealing technique. En-
couraged by the estimation accuracy results, we now pro-
cess multicomponent signals. We propose and compare two
methods based on the same approach. In Section 2, we
present our signal model. Section 3 describes the two pro-
posed methods. The first one estimates all parameters at
the same time, hence all components are reconstructed in
an optimal way. The second method, which is suboptimal,
operates component by component. As a result the instanta-
neous frequency and amplitude of one component are eval-
uated at each iteration. In Section 4, we derive the appropri-
ate Cramer-Rao Bounds (CRB). In Section 5, Monte Carlo
simulations show the algorithms perform well. Finally , we
draw conclusions in Section 6.

2. AM/FM POLYNOMIAL MODELS

Let us consider a multicomponent signals[n], embedded
in additive white Gaussian noisee[n] with zero mean and
unknown varianceσ2,

s[n] =
∑K

i=1 Ai[n] exp ( j Φi[n])
y[n] = s[n] + e[n], for −N

2 ≤ n ≤ N
2 .

(1)

Ai[n] andΦi[n] are the instantaneous amplitude and phase
of the ith component.Fi[n] = 1

2π

∂Φi[n]
∂n

is the instanta-
neous frequency. We assume positive amplitudes and non
discontinuous phases.y[n] is the noisy signal.N + 1 is the
sample number assumed to be odd for simplicity. K is the
number of the components.

As in [9, 10], we consider the signal on short-time seg-
ments. Actually, this helps us to locally track the frequency
and amplitude modulations of highly nonstationnary sig-
nals. So,N is about thirty samples. The polynomial model
is motivated by Weierstrass’ theorem and the shortness of



the segments. Let us consider(g0[n], g1[n], g2[n]), a sec-
ond order polynomial base defined on[−N

2 , N
2 ]. We assume

that the order is enough to model the nonstationarity which
is actually true due to the shortness of the segment. The IA,
IF and phase models of theith component are given in the
following:

Ai[n] =
∑2

m=0 ai,m gm[n],

Fi[n] =
∑2

m=0 fi,m gm[n],

Φi[n] = θi,0 + 2π(
∑n

l=−N

2

Fi[l]−
∑0

l=−N

2

Fi[l]).

(2)

Initial phases are not necessarily set to zero. Consequently,
we have to estimate seven parameters for each component:
initial phaseθi,0, three amplitude parameters{ai,0, ai,1, ai,2}
and three frequency parameters{fi,0, fi,1, fi,2}. In other
words, we have to estimateθ = {θ1, ...., θK} whereθi =
{ai,0, ai,1, ai,2, θi,0, fi,0, fi,1, fi,2}. We here use a ML pro-
cedure to carry out the parameter estimation. As the noise
is Gaussian, the ML is equivalent to the Least Squares. So,
the function to be minimized is given as follows:

θ̂ = argmin︸ ︷︷ ︸
θ∈<7K

N

2∑

n=−N

2

|y[n] − s̃[n]|2, (3)

wheres̃[n] is the signal model evaluated for eachθ by sub-
stituting (2) into (1). Since (3) is a nonlinear equation with
7K unknown parameters, iterative optimization procedures
such as quasi-Newton method converge to local minima un-
less a good initialization and high SNR. Instead, we propose
to use stochastic optimization procedure in order to solve
(3).

3. ALGORITHMS

For monocomponent signals, a comparison between some
stochastic techniques in [9] shows the SA techniques is a
good compromise in terms of bias and mean square errors
(MSE) for the parameter estimates. So, we propose to de-
velop methods including the SA technique in order to achieve
multicomponent signal estimations. In this part, we de-
scribe two different strategies.

3.1. Optimal Algorithm

The optimal algorithm is a modified version of SA whose
main steps are in [10] . We initializeθ the set of the7K

parameters using a simple periodogram. Then, we runI

iterations of the three first steps.I is a given iteration num-
ber, which is found experimentally in order to accelerate the
convergence.I ranges between1500 and3000.

1. We generate new candidatesθC from a Gaussian prob-
ability law, centered onθ and with varianceδ. δ is

an agitation value, which avoids converging to local
minima.

2. If θC minimizes the Likelihood function (3), then we
setθ = θC , otherwiseθ is not modified.

3. Then, we generateu from a binomial law with a prob-
ability belongs to[0, 0.5]. If u = 1, thenδ = 0.97xδ.
This step linearly reduces the agitation value in a ran-
dom way in order to increase the convergence rate.
We go to step 1 so far asI iterations are not achieved.

4. We remove the estimated signal from the noisy signal
to generate a residuẽe[n]. We check ifẽ[n] is a white
process. If so, signal estimation is finished. If not, we
restartI iterations of the estimation steps. In 98% of
the cases, the convergence is guaranteed after the first
I iterations and we don’t need to restart the estimation
steps.

Let us note :EQM =
∑N

2

n=−N

2

|y[n] − s̃[n]|2.

For real parameter values,EQM is a chi-2 random variable
with a degree of freedom equal to2(N + 1). So, its expec-
tation isσ2(N + 1) and its variance isσ4(N + 1). So we
check the whiteness criterion by verifying that

N

2∑

n=−N

2

|ẽ[n]|2 ∈ D

D =
[
σ2(N + 1) − σ2

√
N + 1, σ2(N + 1) + σ2

√
N + 1

]

3.2. Suboptimal Algorithm

We develop here an iterative algorithm: the estimation of
Ai[n] andFi[n] for the ith component is carried out using
the SA technique and equation (3). At each iteration, only
one component is reconstructed. In this approach, we do
not estimate 7xK parameters simultaneously, so the compu-
tational time is reduced. The main steps of the algorithm
are as follows:

1. Seti = 1,

2. Initialize the parameter values of theith component.
We determine the amplitude, the frequency and the
phase of the FFT peak of the noisy signaly[n]. Then
we setθi = {aFFT , 0, 0, θFFT , fFFT , 0, 0}, The other
parameters are equal to 0.

3. Apply I iterations of the steps 1,2 and 3 described in
paragraph (3.1) to estimateθi only.

4. Once the frequencyFi[n] and the amplitudeAi[n] of
theith component are evaluated using (2), we recon-
struct the componentsi[n] = Ai[n].e j Φi[n]. We re-
move it from the noisy signal to generate a new noisy
signaly[n].



5. Check if the residuey[n] is a white process. If so,
component estimation is finished. If not, seti = i+1
and restart step 2 in order to estimate the next com-
ponent. The white process criterion is the same as in
the paragraph (3.1).

The suboptimal algorithm gives an estimation of the com-
ponent numbers with regard to the SNR level.

4. CRAMER-RAO BOUNDS

According to [3], and with respect to our parameter defini-
tion, we derive the Fisher Information Matrix (FIM) for θ

FIM(θ) =
2

σ2
Re






[
A

H
i Aj A

H
i φj

φH
i Aj φH

i φj

]

1 ≤ i ≤ K

1 ≤ j ≤ K





(4)

where

Ai = [ g0(n).ej Φi(n), g1(n).ej Φi(n), g2(n).ej Φi(n)]

φi = j [η−1(n).si(n), η0(n). si(n), η1(n). si(n),
η2(n). si(n)]

si(n) = Ai(n). e( j Φi(n))

Φi(n) andsi(n) are the phase and the signal time-vectors
of theith component respectively.
Also, we noten = [−N

2 , −N
2 + 1, ..., N

2 ] , η−1[n] = 1 and

ηi[n] = 2π(
∑n

k=−N

2

gi[k] − ∑0
k=−N

2

gi[k]) for i = 0, 1, 2

andn ∈ [−N
2 , N

2 ]. (.) denotes element by element multipli-
cation of vector entries.

The CRB forθ is the inverse of the FIM given by (4).
In [9], for a single component signal, the estimation of am-
plitude and frequency parameters is decoupled. Moreover,
when we use an orthonormal base, the FIM for the am-
plitude parameters is diagonal and there where no corre-
lation between estimated parameters. Here the correlation
between all the parameters is very high in the presence of
multicomponent signals. The FIM (4) is a badly condi-
tioned matrix especially when crossing frequency trajecto-
ries occur. More specifically it tends to a singular matrix
for closely spaced frequencies. Therefore estimating such
cases is a real challenge.

5. RESULTS

In this section, we give some numerical examples demon-
strating the performances of the two proposed algorithms.
We also evaluate the CRB given in Section 4. All the con-
sidered signals are of 33 samples. The sampling frequency
is 1 Hz. The SNR is defined as the ratio of the energy of a

constant amplitude signal, whose energy equals that of the
time-varying signal, to noise variance. We estimate two-
component of quadratic AM/FM signals, which means cu-
bic polynomial phase signals, embedded in Gaussian noise.
The experimental plots are based on 50 independent noise
realizations. Two cases of quadratic amplitude and frequency
modulations are discussed.

• Case I: The Frequency trajectories are separated,

• Case II: The Frequency trajectories are crossing one
another.

5.1. IF/IA Reconstruction

Fig.1(a) and Fig.2(a) show the reconstruction of the fre-
quency and the amplitude in case I, (using the optimal al-
gorithm compared to the suboptimal one) for 20 dB and 10
dB respectively. The estimations of the corresponding sig-
nal are reported in Fig. 3. Fig.1(b) and Fig.2 (b) display the
IF and IA estimates versus the original ones in case II for
SNR equal to 20 dB and 10 dB respectively. All estimated
curves are the mean of 50 Monte Carlo simulations.

Comparing the two different proposed procedures, we
deduce that the suboptimal method gives the better accuracy
when we estimate the most energetic component. However
since the estimation of the next components strongly de-
pends on the first one, the performance gradually decreases
as the component number increases. This means that the es-
timation error is more important for the last estimated com-
ponent than for the first one. Nevertheless this procedure
is a good compromise between computation time and esti-
mation accuracy and gives an estimation of the component
number conditionally to the SNR level.

On the other hand, a zoom at the window center (see
Fig. 4), shows the curves estimated by the optimal algo-
rithm are the closest to the original ones. Actually, the esti-
mation error is reduced in the window center with this pro-
cedure. We note that the local SNR is smaller at the window
center than at the window extremities. However the error es-
timation is spread out on all components in the opposite of
the suboptimal method. The estimation of one parameter is
conditioned by the estimation of the others.

The MSE of the estimation of the IF and IA are plotted
in Fig.5 versus the CRB (derived from [3] with respect to
our base) at 20 and 10 dB. We run 50 independent realiza-
tions. For the optimal algorithm, the estimation accuracy
of the IF and IA waveform is more accurate than the sub-
optimal for low SNR. The MSE are symmetric too. This
is mainly due to the procedure optimality . But since the
computational time is increased compared to the suboptimal
method, we prefer to use the last one in further optimization
problems.
Finally, with regard to the low sample number , the non-
linear FM (ie the cubic phase) and especially the nonlinear
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Fig. 1. (a) Example of closely spaced frequency trajectories,(b)
Example of crossing frequency trajectories: The reconstructed
curves of IA and IF via the optimal algorithm(−−) and the sub-
optimal one (-.) versus the original (-) IA and IF curves for an SNR
equal to 20 dB .
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Fig. 2. (a) Example of closely spaced frequency trajectories,(b)
Example of crossing frequency trajectories: The reconstructed
curves of IA and IF via the optimal algorithm(−−) and the sub-
optimal one (-.) versus the original (-) IA and IF curves for an SNR
equal to 10 dB .
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Fig. 3. The component Reconstruction in the case I: The signal
component estimates via the optimal algorithm(−−) and the sub-
optimal one (-.) versus the original (-) curves for an SNR equal to
10 dB .

AM, the accuracy of the IF estimation is sufficiently high
and estimated curves are close to the original ones. The IA
estimation is also acceptable. The two proposed algorithms
are able to estimate crossing or close frequency trajectories
which was a challenge.

5.2. Comparison with the CRB

In the following, we consider case I for a statistical param-
eter study. The performance estimation of the frequency and
the amplitude parameters{a1,0, a1,2, a2,1, f1,0, f2,0, θ1,0} a-
re reported in Fig.6. In Fig.7, the bias of the parameter es-
timates are plotted. The solid line denotes the CRB, which
are given by the main diagonal of the matrixFIM−1. As
the proposed estimators are biased, the direct comparison is
not evident. We can see the MSE of the amplitude param-
eters very close to the corresponding CRB. Similar results
are obtained for the other parameters. This highlights the
performance of the two proposed methods in a noisy envi-
ronment. Works are in progress for evaluating the influence
of the correlation between estimates.

6. CONCLUSION

In this paper, two methods based on the maximum likeli-
hood procedure and Simulated Annealing technique, have
been proposed in order to estimate short-time multicompo-
nent signals with nonlinear amplitude and frequency mod-
ulation. By considering all component parameters at the
same time in the estimation process, the first method al-
lows us to keep optimality. In the second method, the use
of the iterative technique as a tool to estimate multicompo-
nent signals loses the optimality but provides a simple way
to estimate the number of components with a reduced com-
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Fig. 4. The MSE of the IF and IA estimates presented for only
one component of case I using the optimal algorithm(−−) and
the suboptimal one (-.) versus the appropriate CRB.
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Fig. 5. The MSE of the IF and IA estimates presented for only
one component of the case I using the optimal algorithm(−−)
and the suboptimal one (-.) versus the appropriate CRB.

putation time. It is shown that closely spaced or crossed
frequency trajectories on short time duration are well esti-
mated in the presence of nonlinear amplitude modulation
and multicomponent signals. This was a great challenge.
In future, we intend to study highly non stationary signals
on long duration. We will estimate signals over contiguous
short-time segments. Then we will merge all estimated sig-
nal parts to reconstruct the entire signal as we did for one
component [9, 11].
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