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ABSTRACT were processed. We considered the signal on short contigu-
In previous published works [8, 3], we have studied the esous segments. Then, on each one, we approximated both
timation of nonstationary monocomponent signals on shorthe 1A and IF by second order polynomials. The model pa-
time-windows. Both of the instantaneous amplitude and frefameter estimation was carried out using a ML principle, op-
quency (IA/ IF) were modeled by polynomial functions. The timized via the SA technique. The algorithm presented in
maximization of the likelihood function was achieved by us-[4, 5, 6] was robust in the presence of low SNR and more
ing a stochastic optimization technique: the Simulated An-€fficient than the HAF.
nealing (SA). The proposed algorithm was superior to the ~Now, we extend the study to multicomponent signals on
existing methods in terms of estimation accuracy and robusiocal segments. We give the 1A and IF polynomial models
ness in the presence of low Signal to Noise Ratio (SNR)for each componentin Section 2. The ML procedure and the
Motivated by its efficiency and optimality in the monocom- SA concept, useful for the estimation process, are briefly de-
ponent case, this paper is an extension for multicomponergcribed too. In Section 3, the signal reconstruction is accom-
signals. The synthesis algorithm iteratively reconstructs th@lished by an iterative algorithm, we perform a component-
signal, one component per iteration. During each iterationpy-component estimation. At each iteration, the IA and IF
the 1A and IF of each component are synthesized by usingstimates of one component are provided. The algorithm
the Maximum Likelihood (ML) estimators and the SA tech- ending is controlled by a whiteness test on the residual signal.
nique. Monte Carlo simulations are presented and compard# Section 4, the CRBs are established for parameter models.
to the appropriate Cramer-Rao Bounds (CRB). This prove$n section 5, some numerical examples illustrate the perfor-
the efficiency and the performance of the algorithm. More-mance in estimating frequency crossing-trajectories. Section
over it underscores the superiority on previous methods t& concludes on the efficiency of the proposed algorithm in
estimate the crossing frequency trajectories which is a gredtresence of low SNR, quadratic Amplitude and Frequency
challenge related to the low sample number. Modulation (AM/FM).

1. INTRODUCTION

In this work, we consider multicomponent signals with time- 2. PROBLEM FORMULATION
varying amplitude and frequency defined as:
K Lhet us cor;s(;dely[n] a discreTe time process colnsistirr]lg in
: the sum of deterministic multicomponent signals with AM
sln| = i;A‘ [(n]exp(j ®i[n]). (1) and FM modulation embedded in aﬁ additivegwhite Gaussian
- noisee[n| with zero mean and unknown variance.
We assume the presencekotomponents®; [n] is the phase
of theit" component. Its amplituda; [n] is assumed to be y[n] = sin] + e[n], for —N <n< N 2)
positive. We noteF[n] its instantaneous frequency. Such 2 - ~2
signals arise in many real life applications such as mechan-

ics, radar, sonar and wireless communications. whereN + 1 is the samples number, assumed to be odd for
In 1,2, 7,8, 9], polynomial phase and amplitude mod- gimpjicity. sn] is given by (1). We propose to locally follow
els were assumed. In [2] ML estimators were derived. The,ighly modulations. We consider the IA and IF over short

optimization problem was solved using the Higher Ambigu-time segments whose lengths are about three time periods.
ity Function (HAF) which is a suboptimal technique. Then it

was followed by an iterative minimization algorithm: BFGS

guasi-Newton technique. It is well-known that this does not :

ensure global optimality. Not only this method needs high?1 Parametric model

SNR, but its efficiency is limited due to the cross terms in . ,

presence of multiple components. Thus, it is adapted to linAccording to Weierstrass theorem and thanks to the shortness

ear Frequency Modulation and fails to estimate higher non®f the segment, we assumed in [6], second order polynomial
linear modulation. functions are sufficient to approximate the IA and IF over
As we are interested in modeling any kind of nonstation-[ 2", %]. More specifically, let us consideo[n],g1[n] and
arity, we propose to locally track modulation changes. Thegy[n] a second order polynomial base, defined[é#, %],
analysis proposed in this paper extends some previously pubvith order equal to QL and 2 respectively. The parametric
lished works [4, 5, 6], where only monocomponent signalsdescription of the IA, the IF and the continuous phase of the



it" component are given by the following: develop an iterative algorithm. We operate on the signal
component-by-component. During each iteration, the esti-

. _ 2 o
Al = S k=0 2k Gk[N mation of A;[n] and F;[n] for thei" component are carried
2 out by using the SA technique and equation (4). Thus, we
Rl = o fik O[N] (3) avoid to estimat 7 K parameters at the same time and we
reduce the computational time. The algorithm main steps are
on = 9|,o+2rr<z'll_ WFlk-30 F.[k]) as follows.
7 ~ 7 1. Seti=1,
The initial phasef, o is referenced to the center window 3 |pjtialize the parameter values of tH& component from
in order to minimize estimation errors [3]. All model pa-  the Fast Fourier Transform (FFT) of the noisy sigyfal.

rameters are real valued. Actually, we have to estimate g _ { 0.0.6, f 0.0
i = {arFT,0,0, 6rFT, frrT, 0,0},
0 ={61,..... 6} whered = {a0,81,82. 6.0, fio. fia. iz} 3 Apply the SA algorithm in order to estimate

is a set of seven parameters of tffecomponent. 4. Once the frequency and the amplitude of itlecompo-
In[4, 5, 6], we employ an orthonormal polynomial base. ™ o 5 re evaluated using (3), we reconstruct the compo-

It allows uncoupled estimation of amplitude parameters for PN Jo W ' it h :

a monocomponent signal. This is no longer true for parame- NeNtsin = Ailn].el™™. We remove it from the noisy

ters that belong to distinct components. Nevertheless, agood Signal to generate a new noisy sigyai].

estimation accuracy is still obtained by applying this base. °- Check if the remained signgin] is a white process. In
this case, component estimation is finished. If the answer

2.2 Maximum Likelihood estimator is negative, set =i+ 1 and restart step 2 in order to

. . . . estimate the next component.
Since the noise is assumed to be a white Gaussian process, P

the ML procedure is equivalent to the least squares (LS). Sdince the estimation algorithm is iterative, the success of es-
we have to minimized the following equation timating one component depends on all the previous com-

N ponent estimates. So, we are optimal for a monocomponent

~ .2 D case only. Nevertheless, as we show in Section 5, the ac-
6 = argmin Z |y[n] —&n| (4) curacy on the estimation is sufficiently high. Moreover this
6K == synthesis algorithm provides an estimation of the component

. . . . , number K. Here, we note that the resolution on the Time-
yln] is the noisy observations|nT is the signal model, com-  grequency plan is critical due to the low sample number. So
puted by substituting (3) into (1) for a givéh K is the com- egtimating K from ridges in the spectrogram or in the MCE-
ponent number. Due to the nonlinearity of equation (4), thistep yepresentation (minimum cross entropy time frequency

cannot be solved analytically. In [4, 5, 6], the SA techniqueg;syrinytion) [1] is difficult. Furthermore the estimation of K
was used because of its significant efficiency, when a desired -qnditional to the SNR level.

global extremum was hidden in many local extrema [10]. Its

implementation was relatively simple too. In addition, it has 4. CRAMER RAO BOUNDS

provided accuracy in estimating parameters for monocompo-

nent signals using ML estimators. Hence, it had advantagds [2], the Fisher Information Matrix (FIM) was given for

on suboptimal techniques. For more details, see [6]. Aimingamplitude and phase parameters for multicomponent signals.
to use it in further sections, the main steps, involved in theSo, we derive it for amplitude and frequency parameters. The
SA technique, are summarized as follows. For simplicity, weFIM for 6 is then given by

here note byd the set of parameters to estimate.

Given the initialization o9, we runl iterations of three 2 AMA AMg
first steps.| is a fixed iteration number, which is asymptoti- ~ FIM(6) = — Re hal q,_' 1<i<K ()
cally determinate in order to accelerate the convergence. R I 1<j<K

1. We generate new candidat@s from a Gaussian proba- , ) )
bility law, centered orf and with varianced. 5 is an  whereA; = [go(n).e/® ™, g;(n).el ® (™ g,(n).el ], and
agitation value and this avoids converging to local mini- @ = j [n-1(n).s(n), no(n).s(n), N1(n).s(n), n2(n).s(n)].
mum.

2. If Bc minimizes the LS, then we sét= 6¢, otherwised ~ ®i(n) and si(n) are vectors of the phase and signal

value is not modified. values of theé!" component at each time s;(n) is equal to
3. Then, generate from a uniform law on0,1], f u< 5, Ai(n).el®®™. We noten=[=N,=N +1,... %], n_4n =1

Fhe_n o= 0.97x 0 . This step Ii_nearly redupes the ag- and niln = 2;1(227 NGOk~ sz)i nGiK) fori =012
itation value in a random way in order to increase the NN —2 -2
convergence rate. andne [-, 3] . () denotes the multiplication element by

element to the vector entries.
he CRB for@ is the inverse of the FIM matrix given by (5).
or a monocomponent signah @ is purely imaginary.
So amplitude and frequencx parameters are decoupled.
An orthonormal base makeA" A; a diagonal matrix and
3 ITERATIVE RECONSTRUCTION SIGNAL ampli_tude parameters become uncoupled. It is not yet the
case in presence of multiple components. Moreover, we note
Instead of simultaneously considering all the componenfrom (5) that the FIM for the frequency and the amplitude
parameters, which induces a high computational time, wgarameters are functions of the signal componsiiitg, the

4. Since thd ! iteration is achieved, we compare the mean
square errors (MSE) of the parameter estimates with a
asymptotic MSE threshold. We restart the estimation if
the evaluated MSE is not the lowest.



phasesb;[n] and the basis functiorg[n]. It depends on the (a)
frequency and the amplitude parameters only through the os— ‘
phase and the amplitude waveform. We note also that the

FIM is a badly conditioned matrix, when crossing frequency i
trajectories occur. Moreover it tends to a singular matrix
when the difference in the IF of components approaches
zero.

Frequency

5. EXAMPLES

In this section, we give some numerical examples demon-
strating the synthesis algorithm. We also evaluate the CRB
that was given in Section 4. All the considered signals are of 4
33 samples. The sampling frequencyis 1 Hz. The SNR is de- i
fined as the ratio of the energy of a constant amplitude signal, ™
whose energy equals that of the time-varying signal, to noise
variance. Two-component of quadratic AM/FM signals, em-
bedded in Gaussian noise, are used. The experimental plots €
are based on 50 independent noise realizations. The IA and <
IF are depicted in Figure 1. Two cases are discussed.

3

plitude

25

e Case I: The Frequency trajectories are well separated 17 0 & o . m "
Fig.1(a). The bottom left figure shows the IA of this case. Time
e Case II: The Frequency trajectories are crossing one the (b)

other Fig.1(b). The corresponding IA are shown in the
bottom right figure.
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. A g 08 Figure 2:Case I: (a) AM/FM Estimation and (b) signal reconstruc-
tion: (dashed line) and (dashed-dotted line) for SNR equal to 20 dB
and 10 dB respectively, versus the original curves (solid line)
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Figure 1: IF and IA of the two-component signal: Left figures ) .
illustrate the case I. Right figures illustrate the case II. Time

It is shown in Fig.2(a) and (b) the reconstruction of the fre-
guency, the amplitude and the signal of the case I, using the
iterative algorithm. Estimated curves are plotted versus the
original ones for SNR equal to 20 dB and 10 dB. Fig.3, dis-
plays the IF and IA estimates versus the original ones in the
case Il for SNR equal to 20 dB and 10 dB too.

The estimated curves of the IF are close to the original ‘
ones. In the opposite, the IA estimation is less accurate. This -15 -10 -5 0
effect is due, as we say before, to the estimation dependence Time
on the ability to estimate the individual IA and IF of the
two signal components. We also have to take into accourftigure 3:Case Il: AM/FM Estimation: (dashed line) and (dashed-
the low number samples, the nonlinear FM which means cydotted line) for SNR equal to 20 dB and 10 dB respectively versus

bic phase, and especially the nonlinear AM. However, theée original AM/FM modulation( solid line)

Amplitude
- N w s o o N ®
A




proposed algorithm is able to estimate crossing or close fre-

guency trajectories which was a challenge.

In the following, we consider the case | for a statistical
parameter study. The solid line denotes the CRB. In Fig.4,
the performance estimation of the the frequency parameter
fi o and the amplitude parametay, are reported. It shows
that the MSE on the variance of parameter estimation is close
to the CRB. Similar results are obtained for the other pa-
rameters. This highlights the performances of the proposed ¢

method in noisy environnement.
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Figure 4:Estimation performance of amplitude and frequency pa-
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ure 5:Estimation performance of amplitude and frequency pa-

rameters. The Bias of parameter estimation

(2]

(3]

(4]

rameters. The MSE of parameter estimation ( dashed line) versus

the CRB (solid line)

6. CONCLUSION

In this paper, the estimation of nonstationary multicompo-

(5]

nent signals is adressed. The frequency and the amplitude
are both nonlinear time-varying functions. Based on a pre<q]
vious published technique, whose efficiency was proved for
monocomponent signals, we present an iterative algorithm
to estimate multicomponent signals. Each component is re ]

constructed using a Maximum Likelihood procedure solved

by a Simulated Annealing technique. This technique is a

compromise between optimality and computation complexg] s Barbarossa, A. Scaglione and G. B Giannakis, “ Product
ity. Monte Carlo simulations are compared to the appropriate

CRB. It is shown that the estimation is closed to the CRB,
even if crossing frequency trajectories occur. After studying
signals in contiguous short segments, we aim now to merg
all processed segments in order to reconstruct the entire mo
ulations. This will provides a robust way to estimate any

class of nonstationary signals.
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