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ABSTRACT
In previous published works [8, 3], we have studied the es-
timation of nonstationary monocomponent signals on short
time-windows. Both of the instantaneous amplitude and fre-
quency (IA/ IF) were modeled by polynomial functions. The
maximization of the likelihood function was achieved by us-
ing a stochastic optimization technique: the Simulated An-
nealing (SA). The proposed algorithm was superior to the
existing methods in terms of estimation accuracy and robust-
ness in the presence of low Signal to Noise Ratio (SNR).
Motivated by its efficiency and optimality in the monocom-
ponent case, this paper is an extension for multicomponent
signals. The synthesis algorithm iteratively reconstructs the
signal, one component per iteration. During each iteration,
the IA and IF of each component are synthesized by using
the Maximum Likelihood (ML) estimators and the SA tech-
nique. Monte Carlo simulations are presented and compared
to the appropriate Cramer-Rao Bounds (CRB). This proves
the efficiency and the performance of the algorithm. More-
over it underscores the superiority on previous methods to
estimate the crossing frequency trajectories which is a great
challenge related to the low sample number.

1. INTRODUCTION

In this work, we consider multicomponent signals with time-
varying amplitude and frequency defined as:

s[n] =
K

∑
i=1

Ai[n]exp( j Φi[n]) . (1)

We assume the presence ofK components.Φi[n] is the phase
of the ith component. Its amplitudeAi[n] is assumed to be
positive. We noteFi[n] its instantaneous frequency. Such
signals arise in many real life applications such as mechan-
ics, radar, sonar and wireless communications.

In [1, 2, 7, 8, 9], polynomial phase and amplitude mod-
els were assumed. In [2] ML estimators were derived. The
optimization problem was solved using the Higher Ambigu-
ity Function (HAF) which is a suboptimal technique. Then it
was followed by an iterative minimization algorithm: BFGS
quasi-Newton technique. It is well-known that this does not
ensure global optimality. Not only this method needs high
SNR, but its efficiency is limited due to the cross terms in
presence of multiple components. Thus, it is adapted to lin-
ear Frequency Modulation and fails to estimate higher non-
linear modulation.

As we are interested in modeling any kind of nonstation-
arity, we propose to locally track modulation changes. The
analysis proposed in this paper extends some previously pub-
lished works [4, 5, 6], where only monocomponent signals

were processed. We considered the signal on short contigu-
ous segments. Then, on each one, we approximated both
the IA and IF by second order polynomials. The model pa-
rameter estimation was carried out using a ML principle, op-
timized via the SA technique. The algorithm presented in
[4, 5, 6] was robust in the presence of low SNR and more
efficient than the HAF.

Now, we extend the study to multicomponent signals on
local segments. We give the IA and IF polynomial models
for each component in Section 2. The ML procedure and the
SA concept, useful for the estimation process, are briefly de-
scribed too. In Section 3, the signal reconstruction is accom-
plished by an iterative algorithm, we perform a component-
by-component estimation. At each iteration, the IA and IF
estimates of one component are provided. The algorithm
ending is controlled by a whiteness test on the residual signal.
In Section 4, the CRBs are established for parameter models.
In section 5, some numerical examples illustrate the perfor-
mance in estimating frequency crossing-trajectories. Section
6 concludes on the efficiency of the proposed algorithm in
presence of low SNR, quadratic Amplitude and Frequency
Modulation (AM/FM).

2. PROBLEM FORMULATION

Let us considery[n] a discrete time process consisting in
the sum of deterministic multicomponent signals with AM
and FM modulation embedded in an additive white Gaussian
noisee[n] with zero mean and unknown variance.

y[n] = s[n]+ e[n], f or
−N
2

≤ n ≤ N
2

(2)

whereN + 1 is the samples number, assumed to be odd for
simplicity. s[n] is given by (1). We propose to locally follow
highly modulations. We consider the IA and IF over short
time segments whose lengths are about three time periods.

2.1 Parametric model

According to Weierstrass theorem and thanks to the shortness
of the segment, we assumed in [6], second order polynomial
functions are sufficient to approximate the IA and IF over
[−N

2 , N
2 ]. More specifically, let us considerg0[n],g1[n] and

g2[n] a second order polynomial base, defined on[ −N
2 , N

2 ],
with order equal to 0,1 and 2 respectively. The parametric
description of the IA, the IF and the continuous phase of the



ith component are given by the following:

Ai[n] = ∑2
k=0 ai,k gk[n]

Fi[n] = ∑2
k=0 fi,k gk[n]

Φi[n] = θi,0 +2π
(

∑n
k=−N

2
Fi[k]−∑0

k=−N
2

Fi[k]
) (3)

The initial phaseθi,0 is referenced to the center window
in order to minimize estimation errors [3]. All model pa-
rameters are real valued. Actually, we have to estimate
θ = {θ1, ....,θK} whereθi = {ai,0,ai,1,ai,2,θi,0, fi,0, fi,1, fi,2}
is a set of seven parameters of theith component.

In [4, 5, 6], we employ an orthonormal polynomial base.
It allows uncoupled estimation of amplitude parameters for
a monocomponent signal. This is no longer true for parame-
ters that belong to distinct components. Nevertheless, a good
estimation accuracy is still obtained by applying this base.

2.2 Maximum Likelihood estimator

Since the noise is assumed to be a white Gaussian process,
the ML procedure is equivalent to the least squares (LS). So,
we have to minimized the following equation

θ̂ = argmin︸ ︷︷ ︸
θ∈ℜ 7K

N
2

∑
n=−N

2

|y[n]− ŝ[n]|2 (4)

y[n] is the noisy observations. ˆs[n] is the signal model, com-
puted by substituting (3) into (1) for a givenθ. K is the com-
ponent number. Due to the nonlinearity of equation (4), this
cannot be solved analytically. In [4, 5, 6], the SA technique
was used because of its significant efficiency, when a desired
global extremum was hidden in many local extrema [10]. Its
implementation was relatively simple too. In addition, it has
provided accuracy in estimating parameters for monocompo-
nent signals using ML estimators. Hence, it had advantages
on suboptimal techniques. For more details, see [6]. Aiming
to use it in further sections, the main steps, involved in the
SA technique, are summarized as follows. For simplicity, we
here note byθ the set of parameters to estimate.

Given the initialization ofθ, we runI iterations of three
first steps.I is a fixed iteration number, which is asymptoti-
cally determinate in order to accelerate the convergence.
1. We generate new candidatesθC from a Gaussian proba-

bility law, centered onθ and with varianceδ. δ is an
agitation value and this avoids converging to local mini-
mum.

2. If θC minimizes the LS, then we setθ = θC, otherwiseθ
value is not modified.

3. Then, generateu from a uniform law on[0,1], if u ≤ 2
3,

then δ = 0.97∗ δ . This step linearly reduces the ag-
itation value in a random way in order to increase the
convergence rate.

4. Since theIth iteration is achieved, we compare the mean
square errors (MSE) of the parameter estimates with an
asymptotic MSE threshold. We restart the estimation if
the evaluated MSE is not the lowest.

3. ITERATIVE RECONSTRUCTION SIGNAL

Instead of simultaneously considering all the component
parameters, which induces a high computational time, we

develop an iterative algorithm. We operate on the signal
component-by-component. During each iteration, the esti-
mation ofAi[n] andFi[n] for the ith component are carried
out by using the SA technique and equation (4). Thus, we
avoid to estimate 7 K parameters at the same time and we
reduce the computational time. The algorithm main steps are
as follows.
1. Seti = 1,
2. Initialize the parameter values of theith component from

the Fast Fourier Transform (FFT) of the noisy signaly[n].
θi = {aFFT ,0,0,θFFT , fFFT ,0,0},

3. Apply the SA algorithm in order to estimateθi.
4. Once the frequency and the amplitude of thei th compo-

nent are evaluated using (3), we reconstruct the compo-
nentsi[n] = Ai[n].e jΦi[n]. We remove it from the noisy
signal to generate a new noisy signaly[n].

5. Check if the remained signaly[n] is a white process. In
this case, component estimation is finished. If the answer
is negative, seti = i + 1 and restart step 2 in order to
estimate the next component.

Since the estimation algorithm is iterative, the success of es-
timating one component depends on all the previous com-
ponent estimates. So, we are optimal for a monocomponent
case only. Nevertheless, as we show in Section 5, the ac-
curacy on the estimation is sufficiently high. Moreover this
synthesis algorithm provides an estimation of the component
number K. Here, we note that the resolution on the Time-
Frequency plan is critical due to the low sample number. So
estimating K from ridges in the spectrogram or in the MCE-
TFD representation (minimum cross entropy time frequency
distribution) [1] is difficult. Furthermore the estimation of K
is conditional to the SNR level.

4. CRAMER RAO BOUNDS

In [2], the Fisher Information Matrix (FIM) was given for
amplitude and phase parameters for multicomponent signals.
So, we derive it for amplitude and frequency parameters. The
FIM for θ is then given by

FIM(θ) =
2

σ2 Re




[
AH

i A j AH
i φj

φH
i A j φH

i φj

]
1≤ i ≤ K
1≤ j ≤ K


 (5)

whereAi = [g0(n).e jΦi(n), g1(n).e jΦi(n), g2(n).e jΦi(n)], and
φi = j [η−1(n). si(n), η0(n).si(n), η1(n).si(n), η2(n).si(n)].

Φi(n) and si(n) are vectors of the phase and signal
values of theith component at each time n.si(n) is equal to
Ai(n).e jΦi(n). We noten = [−N

2 , −N
2 + 1, ..., N

2 ] , η−1[n] = 1
and ηi[n] = 2π(∑n

k=−N
2

gi[k] − ∑0
k=−N

2
gi[k] ) for i = 0,1,2

andn ∈ [−N
2 , N

2 ] . (.) denotes the multiplication element by
element of the vector entries.
The CRB forθ is the inverse of the FIM matrix given by (5).
For a monocomponent signal,AH

i φj is purely imaginary.
So amplitude and frequency parameters are decoupled.
An orthonormal base makesAH

i Ai a diagonal matrix and
amplitude parameters become uncoupled. It is not yet the
case in presence of multiple components. Moreover, we note
from (5) that the FIM for the frequency and the amplitude
parameters are functions of the signal componentss i[n], the



phasesΦi[n] and the basis functionsgi[n]. It depends on the
frequency and the amplitude parameters only through the
phase and the amplitude waveform. We note also that the
FIM is a badly conditioned matrix, when crossing frequency
trajectories occur. Moreover it tends to a singular matrix
when the difference in the IF of components approaches
zero.

5. EXAMPLES

In this section, we give some numerical examples demon-
strating the synthesis algorithm. We also evaluate the CRB
that was given in Section 4. All the considered signals are of
33 samples. The sampling frequency is 1 Hz. The SNR is de-
fined as the ratio of the energy of a constant amplitude signal,
whose energy equals that of the time-varying signal, to noise
variance. Two-component of quadratic AM/FM signals, em-
bedded in Gaussian noise, are used. The experimental plots
are based on 50 independent noise realizations. The IA and
IF are depicted in Figure 1. Two cases are discussed.
• Case I: The Frequency trajectories are well separated

Fig.1(a). The bottom left figure shows the IA of this case.
• Case II: The Frequency trajectories are crossing one the

other Fig.1(b). The corresponding IA are shown in the
bottom right figure.
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Figure 1: IF and IA of the two-component signal: Left figures
illustrate the case I. Right figures illustrate the case II.

It is shown in Fig.2(a) and (b) the reconstruction of the fre-
quency, the amplitude and the signal of the case I, using the
iterative algorithm. Estimated curves are plotted versus the
original ones for SNR equal to 20 dB and 10 dB. Fig.3, dis-
plays the IF and IA estimates versus the original ones in the
case II for SNR equal to 20 dB and 10 dB too.

The estimated curves of the IF are close to the original
ones. In the opposite, the IA estimation is less accurate. This
effect is due, as we say before, to the estimation dependence
on the ability to estimate the individual IA and IF of the
two signal components. We also have to take into account
the low number samples, the nonlinear FM which means cu-
bic phase, and especially the nonlinear AM. However, the
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Figure 2:Case I: (a) AM/FM Estimation and (b) signal reconstruc-
tion: (dashed line) and (dashed-dotted line) for SNR equal to 20 dB
and 10 dB respectively, versus the original curves (solid line)
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Figure 3:Case II: AM/FM Estimation: (dashed line) and (dashed-
dotted line) for SNR equal to 20 dB and 10 dB respectively versus
the original AM/FM modulation( solid line)



proposed algorithm is able to estimate crossing or close fre-
quency trajectories which was a challenge.

In the following, we consider the case I for a statistical
parameter study. The solid line denotes the CRB. In Fig.4,
the performance estimation of the the frequency parameter
fi,0 and the amplitude parameterai,0 are reported. It shows
that the MSE on the variance of parameter estimation is close
to the CRB. Similar results are obtained for the other pa-
rameters. This highlights the performances of the proposed
method in noisy environnement.
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Figure 4:Estimation performance of amplitude and frequency pa-
rameters. The MSE of parameter estimation ( dashed line) versus
the CRB (solid line)

6. CONCLUSION

In this paper, the estimation of nonstationary multicompo-
nent signals is adressed. The frequency and the amplitude
are both nonlinear time-varying functions. Based on a pre-
vious published technique, whose efficiency was proved for
monocomponent signals, we present an iterative algorithm
to estimate multicomponent signals. Each component is re-
constructed using a Maximum Likelihood procedure solved
by a Simulated Annealing technique. This technique is a
compromise between optimality and computation complex-
ity. Monte Carlo simulations are compared to the appropriate
CRB. It is shown that the estimation is closed to the CRB,
even if crossing frequency trajectories occur. After studying
signals in contiguous short segments, we aim now to merge
all processed segments in order to reconstruct the entire mod-
ulations. This will provides a robust way to estimate any
class of nonstationary signals.
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