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Nicole El Karoui† Monique Jeanblanc‡ Ying Jiao§

May 5, 2009

Abstract

We present a general model for default time, making precise the role of the intensity

process, and showing that this process allows for a knowledge of the conditional distribution

of the default only “before the default”. This lack of information is crucial while working in

a multi-default setting. In a single default case, the knowledge of the intensity process does

not allow to compute the price of defaultable claims, except in the case where immersion

property is satisfied. We propose in this paper the density approach for default time. The

density process will give a full characterization of the links between the default time and the

reference filtration, in particular “after the default time”. We also investigate the description

of martingales in the full filtration in terms of martingales in the reference filtration, and the

impact of Girsanov transformation on the density and intensity processes, and also on the

immersion property.

1 Introduction

Modelling default time for a single credit event has been largely studied in the literature, the

main approaches being the structural, the reduced-form and the intensity ones. In this context,

most works are concentrated (for pricing purpose) on the computation of conditional expectation

of payoffs, given that the default has not occurred, in the case where immersion property is

satisfied. In this paper, we are also interested in what happens after a default occurs: we find it
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important to investigate the impact of a default event on the rest of the market and what goes

on afterwards.

Furthermore, in a multi-default setting, it will be important to compute the prices of a

portfolio derivative on the disjoint sets before the first default, after the first and before the

second and so on. Our work will allow us to use a recurrence procedure to provide these

computations, which will be presented in a companion paper [5].

We start with the knowledge of the conditional distribution of the default time τ , with

respect to a reference filtration F = (Ft)t≥0 and we assume that this conditional distribution

admits a density (see the first section below for a precise definition). We firstly reformulate

the classical computation result of conditional expectations with respect to the observation σ-

algebra Gt := Ft ∨ σ(τ ∧ t) before the default time τ , i.e., on the set {t < τ}. The main purpose

is then to deduce what happens after the default occurs, i.e., on the set {τ ≤ t}. We shall

emphasize that the density approach is suitable in this after-default study and explain why the

intensity approach is inadequate for this case. We present computation results of G = (Gt)t≥0

conditional expectations on the set {τ ≤ t} by using the conditional density of τ and point out

that the whole term structure of the density is needed. By establishing an explicit link between

(part of) density and intensity, which correspond respectively to the additive and multiplicative

decomposition related to the survival process (Azéma supermartingale of τ), we make clear that

the intensity can be deduced from the density, but that the reverse does not hold, except when

certain strong assumption, as the H-hypothesis, holds.

Note that, even if the “density” point of view is inspired by the enlargement of filtration

theory, we shall not use classical results on the progressive enlargement of filtration. In fact, we

take the opposite point of view: we are interested in G-martingales and their characterization in

terms of F-(local) martingales. Moreover, these characterization results allow us to give a proof

of a decomposition of F-(local) martingales in terms of G-semimartingales.

We study how the parameters of the default (i.e., the survival process, the intensity, the

density) are modified by a change of probability in a general setting (we do not assume that we

are working in a Brownian filtration, except for some examples), and we characterize changes of

probability that do not affect the intensity process. We pay attention to the specific case where

the dynamics of underlying default-free processes are changed only after the default.

The paper is organized as follows. We first introduce in Section 2 the different types of

information we are dealing with and the key hypothesis of density. In Section 3, we establish

results on computation of conditional expectations, on the “before default” and “after default”

sets. The H-hypothesis is then discussed. The dynamic properties of the density process are
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presented in Section 4 where we make precise the links between this density process and the

intensity process. In the last section, we present the characterization of G-martingales in terms

of F-local martingales. We give a Girsanov type property and discuss the stability of immersion

property and invariance of intensity.

2 The Different Sources of Information

In this section, we specify the link between the two filtrations F and G, and make some hypothe-

ses on the default time. Our aim is to measure the consequence of a default event in terms of

pricing various contingent claims.

We start as usual with a filtered probability space (Ω,A,F,P). Before the default time τ , i.e., on

the set {t < τ}, the σ-algebra Ft represents the information accessible to the investors at time

t. When the default occurs, the investors will add this new information (i.e., the knowledge of

τ) to the σ-algebra Ft.

More precisely, a strictly positive and finite random variable τ (the default time) is given on the

probability space (Ω,A,P). This space is supposed to be endowed with a filtration F = (Ft)t≥0

which satisfies the usual conditions, that is, the filtration F is right-continuous and F0 contains

all P-null sets of A.

One of our goals is to show how the information contained in the reference filtration F can be

used to obtain information on the distribution of τ . We assume that, for any t, the conditional

distribution of τ with respect to Ft is smooth, i.e., that the Ft-conditional distribution of τ

admits a density with respect to some positive σ-finite measure η on R+. As an immediate

consequence, the unconditional distribution of τ is absolutely continuous w.r.t. η. Another

consequence is that τ can not be an F-stopping time.

In other terms, we introduce the following hypothesis1, that we call density hypothesis. This

hypothesis will be in force in the paper.

Hypothesis 2.1 (Density hypothesis.) We assume that η is a non-negative non-atomic

measure on R+ such that, for any time t ≥ 0, there exists an Ft ⊗ B(R+)-measurable function

(ω, θ) → αt(ω, θ) which satisfies

P(τ ∈ dθ|Ft) =: αt(θ)η(dθ), P − a.s. (1)

1This hypothesis has been discussed by Jacod [9] in the initial enlargement of filtration framework. The same

assumption also appears in the dynamic Bayesian framework [7]. We do not assume that η is finite, allowing for

the specific case of the Lebesgue measure.
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The family αt(.) is called the conditional density of τ with respect to η given Ft (in short the

density of τ if no ambiguity). Then, the distribution of τ is given by P(τ > θ) =
∫ ∞
θ
α0(u)η(du).

Note that, from the definition and the hypothesis that τ is finite, for any t,
∫ ∞
0 αt(θ)η(dθ) =

1 (a.s.). By definition of the conditional expectation, for any (bounded) Borel function f ,

E[f(τ)|Ft] =
∫ ∞
0 f(u)αt(u)η(du)(a.s.). The conditional distribution of τ is also characterized

by the survival probability function

St(θ) := P(τ > θ|Ft) =

∫ ∞

θ

αt(u)η(du) (2)

The family of random variables

St := St(t) = P(τ > t|Ft) =

∫ ∞

t

αt(u)η(du)

plays a key role in what follows. Observe that one has

{τ > t} ⊂ {St > 0} =: At (3)

(where the inclusion is up to a negligible set) since P(Ac
t ∩ {τ > t}) = 0. Note also that

St(θ) = E(Sθ|Ft) for any θ ≥ t.

More generally, if an Ft ⊗ B(R+)-measurable function (ω, θ) → Yt(ω, θ) is given, the Ft-

conditional expectation of the r.v. Yt(τ) := Yt(ω, τ(ω)), assumed to be integrable, is given

by

E[Yt(τ)|Ft] =

∫ ∞

0
Yt(u)αt(u)η(du) . (4)

Notation: In what follows, we shall simply say that Yt(θ) is an Ft ⊗ B(R+)-random variable

and even that Yt(τ) is an Ft ⊗ σ(τ)-random variable as a short cut for Yt(θ) is an Ft ⊗ B(R+)-

measurable function.

Corollary 2.2 The default time τ avoids F-stopping times, i.e., P(τ = ξ) = 0 for every F-

stopping time ξ.

Proof: Let ξ be an F-stopping time bounded by a constant T . Then, the random variable

Hξ(t) = 11{ξ=t} is FT ⊗ B(R+)-measurable, and, η being non-atomic

E[Hξ(τ)|Ft] = E[ E[Hξ(τ)|FT ] |Ft] = E[

∫ ∞

0
Hξ(u)αT (u)η(du)|Ft] = 0 .

Hence, E[Hξ(τ)] = P(ξ = τ) = 0. �

Remark 2.3 By using density, we adopt an additive point of view to represent the conditional

probability of τ : the conditional survival function St(θ) = P(τ > θ | Ft) is written on the
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form St(θ) =
∫ ∞
θ
αt(u)η(du). In the default framework, the “intensity” point of view is often

preferred, and one uses the multiplicative representation St(θ) = exp(−
∫ θ

0 λt(u)η(du)). The

family of Ft-measurable random variables λt(u) = −∂u lnSt(u) is called the “forward hazard

rate”. We shall discuss and compare these two points of view further on.

3 Computation of conditional expectations in a default setting

The specific information related to the default time is the knowledge of this time when it occurs.

It is defined in mathematical terms as follows: let D = (Dt)t≥0 be the smallest right-continuous

filtration such that τ is a D-stopping time; in other words, Dt is given by Dt = D0
t+ where

D0
t = σ(τ ∧ t). This filtration D represents the default information, that will be “added”

to the reference filtration; the filtration G := F ∨ D is the smallest filtration containing F

and making τ a stopping time. Moreover, any Gt-measurable r.v. HG
t may be represented as

HG
t = HF

t 11{τ>t} + Ht(τ)11{τ≤t} where HF
t is an Ft-measurable random variable and Ht(τ) is

Ft ⊗ σ(τ)-measurable. In particular,

HG
t 11{τ>t} = HF

t 11{τ>t} a.s. , (5)

where the random variable HF
t is the Ft-conditional expectation of HG

t given the event {τ > t},

i.e.,

HF
t =

E[HG
t 11{τ>t}|Ft]

P(τ > t|Ft)
=

E[HG
t 11{τ>t}|Ft]

St
a.s. on At; HF

t = 0 on the complementary set .

(6)

3.1 Conditional expectations

The definition of G allows us to compute conditional expectations with respect to Gt in terms of

conditional expectations with respect to Ft. This will be done in two steps, depending whether

or not the default has occurred: as we explained above, before the default, the only information

contained in Gt is Ft, after the default, the information contained in Gt is, roughly speaking,

Ft ∨ σ(τ).

The Gt-conditional expectation of an integrable σ(τ)-measurable r.v. (of the form f(τ)) is

given by

αG
t (f) := E[f(τ)|Gt] = αbd

t (f) 11{τ>t} + f(τ) 11{τ≤t}

where αbd
t is the value of the Gt-conditional distribution before the default, given by

αbd
t (f) :=

E[f(τ)11{τ>t}|Ft]

P(τ > t|Ft)
a.s. on At; αbd

t (f) := 0 on the complementary set.

5



Recall the notation St = P(τ > t|Ft). On the set At, the “before the default” conditional

distribution αbd
t admits a density αbd

t (u) with respect to η, given by

αbd
t (u) =

1

St
1[t,∞)(u)αt(u)η(du) a.s. .

The same calculation as in (4) can be performed in this new framework and extended to the

computation of Gt-conditional expectations for a bounded FT ⊗ σ(τ)-r.v..

Theorem 3.1 Let YT (τ) be a bounded FT ⊗ σ(τ)-random variable. Then, for t ≤ T

E[YT (τ)|Gt] = Y bd
t 11{t<τ} + Y ad

t (T, τ)11{τ≤t} dP − a.s.

where

Y bd
t =

E
[ ∫ ∞

t
YT (u)αT (u)η(du)|Ft]

St

dP − a.s. on At,

Y ad
t (T, θ) =

E
[
YT (θ)αT (θ)

∣∣Ft

]

αt(θ)
11{αt(θ)>0} dP − a.s.. (7)

Proof: The computation on the set {t < τ} (the pre-default case) is obtained following (5), (6)

and using (4). For the after-default case, we note that, by definition of G, any Gt-measurable r.v.

can be written on the set {τ ≤ t} as Ht(τ)11{τ≤t}. Assuming that Ht(τ) is positive or bounded,

and using the density αt(θ), we obtain

E[Ht(τ)11{τ≤t}YT (τ)] =

∫ ∞

0
dθ E[Ht(θ)11{θ≤t}YT (θ)αT (θ)] =

∫ ∞

0
dθ E

[
Ht(θ)11{θ≤t}E[YT (θ)αT (θ)|Ft]

]

=

∫ ∞

0
dθ E

[
Ht(θ)11{θ≤t}Y

ad
t (T, θ)αt(θ)

]
= E

[
Ht(τ)11{τ≤t}Y

ad
t (T, τ)

]
,

which implies immediately (7). �

3.2 Immersion property or H-hypothesis

In the form of the density αt(θ) = P(τ ∈ dθ|Ft)/η(dθ), the parameter θ plays the role of the

default time. It is hence natural to consider the particular case where

αt(θ) = αθ(θ), ∀ θ ≤ t , (8)

i.e., the case when the information contained in the reference filtration after the default time

does not give new information on the conditional distribution of the default. In that case

St = P(τ > t|Ft) = 1 −

∫ t

0
αt(u)η(du) = 1 −

∫ t

0
αu(u)η(du)
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and, in particular S is decreasing 2. Furthermore,

St = 1 −

∫ t

0
αT (u)η(du) = P(τ > t|FT ) = ST (t) a.s.

for any T ≥ t and it follows that P(τ > t|Ft) = P(τ > t|F∞). This last equality is known to be

equivalent to the immersion property ([3]), also known as the H-hypothesis, stated as: for any

fixed t and any bounded Gt-measurable r.v. Y G
t ,

E[Y G
t |F∞] = E[Y G

t |Ft] a.s.. (9)

Conversely, if immersion property holds, then (8) holds. In that case, the conditional survival

functions St(θ) are constant in time on [θ,∞), i.e., St(θ) = Sθ(θ) for t > θ. Then the previous

result (7) takes a simpler form: Y ad
t (T, θ) = E[YT (θ)|Ft], a.s. for θ ≤ t ≤ T , on the set {αθ(θ) >

0}.

Under immersion property, the knowledge of S implies that of the conditional distribution of

τ for all positive t and θ: indeed, one has St(θ) = E[Sθ|Ft] (note that, for θ < t, this equality

reduces to St(θ) = Sθ(θ) = Sθ).

Remarks 3.2

1) The decreasing property of S (equivalent to the fact that τ is a pseudo-stopping time (see

[13])) does not imply the H-hypothesis, but only that F-bounded martingales stopped at τ are

G-martingales (see also [6]). We shall revisit this property in Remarks 4.2 and 4.9 and Corollary

5.4.

2) The most important example where immersion holds is the widely studied Cox-process model

introduced by Lando [12].

4 Dynamic point of view and density process

Our aim is here to give a dynamic study of the previous results. We shall call (St, t ≥ 0) the

survival process, which is an F-supermartingale. We have obtained equalities for fixed t, we

would like to study the conditional expectations as processes. One of the goals is to recover the

value of the intensity of the random time, and the decompositions of S. Another one is to study

the link between G and F martingales: this is of main interest for pricing.

In this section, we present the dynamic version of the previous results in terms of F or G

martingales or supermartingales. To be more precise, we need some “universal” regularity on

the paths of the density process. We shall treat some technical problems in Subsection 4.1 which

can be skipped for the first reading.

2and continuous, this last property will be useful later.
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4.1 Regular Version of Martingales

One of the major difficulties is to prove the existence of a universal càdlàg martingale version

of this family of densities. Fortunately, results of Jacod [9] or Stricker and Yor [15] help us to

solve this technical problem.

Jacod ([9], Lemme 1.8) establishes the existence of a universal càdlàg version of the density

process in the following sense: there exists a non negative function αt(ω, θ) càdlàg in t, optional

w.r.t. the filtration F̂ on Ω̂ = Ω × R+, generated by Ft ⊗ B(R+), such that

• for any θ, α.(θ) is an F-martingale; moreover, denoting ζθ = inf{t : αt−(θ) = 0}, then

α.(θ) > 0, and α−(θ) > 0 on [0, ζθ), and α.(θ) = 0 on [ζθ,∞).

• For any bounded family (Yt(ω, θ), t ≥ 0) measurable w.r.t. P(F) ⊗ B(R+), (where P(F)

is the F-predictable σ-field), the F-predictable projection of the process Yt(ω, τ) is the

process Y
(p)
t =

∫
αt−(θ)Yt(θ)η(dθ).

In particular, for any t, P(ζτ < t) = E[
∫ ∞
0 αt−(θ)11{ζθ<t}η(dθ)] = 0. So, ζτ is infinite a.s.

We are also concerned with the càdlàg version of the martingale (St(u), t ≥ 0) for any u ∈ R+.

By the previous result, we have a universal version of their predictable projections,

St−(u) = S
(p)
t (u) =

∫ ∞

u

αt−(θ)η(dθ).

It remains to define St(u) = lim
q∈Q+, q↓t

S(p)
q (u) to obtain a universal càdlàg version of the martin-

gales S.(u).

Remark that to show directly that
∫ ∞
u
αt(θ)η(dθ) is a càdlàg process, we need stronger assump-

tion on the process αt(θ) which allows us to apply the Lebesgue theorem w.r.t. η(dθ).

We say that the process (Yt(ω, θ), t ≥ 0) is F-optional if it is O(F) ⊗ B(R+)-measurable,

where O(F) is the optional σ-field of F. In particular, the process (Yt(ω, t), t ≥ 0) is optional.

4.2 Density and intensity processes

We are now interested in the relationship between the density and the intensity process of τ .

As we shall see, this is closely related to the (additive and multiplicative) decompositions of the

supermartingale S.
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4.2.1 F-decompositions of the survival process S

In this section, we characterize the martingale and the predictable increasing part of the additive

and multiplicative Doob-Meyer decomposition of the supermartingale S in terms of the density.

Proposition 4.1

1) The Doob-Meyer decomposition of the survival process S is given by St = 1 + MF
t −

∫ t

0 αu(u)η(du) where MF is the càdlàg square-integrable F-martingale defined by

MF
t = −

∫ t

0

(
αt(u) − αu(u)

)
η(du) = E[

∫ ∞

0
αu(u)η(du)|Ft] − 1, a.s.

2) Let ζF := inf{t : St− = 0} and define λF
t := αt(t)

St−
for any t < ζF and λF

t := λF
t∧ζF for any

t ≥ ζF. The multiplicative decomposition of S is given by

St = LF
t e

−
R t

0
λF

sη(ds) (10)

where LF is the F-local martingale solution of dLF
t = e

R t

0
λF

sη(ds)dMF
t , L

F
0 = 1.

Proof: 1) First notice that (
∫ t

0 αu(u)η(du), t ≥ 0) is an F-adapted continuous increasing process

(the measure η does not have any atom). By the martingale property of (αt(θ), t ≥ 0), for any

fixed t,

St = P(τ > t|Ft) =

∫ ∞

t

αt(u)η(du) = E[

∫ ∞

t

αu(u)η(du)|Ft], a.s..

Therefore, the non-negative process St +
∫ t

0 αu(u)η(du) = E[
∫ ∞
0 αu(u)η(du)|Ft] is a square-

integrable martingale since

E

[( ∫ ∞

0
αu(u)η(du)

)2
]

= 2E

[ ∫ ∞

0

∫ ∞

u

αs(s)η(ds)αu(u)η(du)
]

= 2E

[ ∫ ∞

0
Suαu(u)η(du)

]
≤ 2.

We shall choose its càdlàg version if needed. Using the fact that
∫ ∞
0 αt(u)η(du) = 1, we obtain

∀t, E[

∫ ∞

0
αu(u)η(du)|Ft] = 1 −

∫ t

0
(αt(θ) − αθ(θ))η(dθ), a.s.

and the result follows.

2) Setting LF
t = Ste

R t

0
λF

sη(ds), integration by parts formula and 1) yield to

dLF
t = e

R t

0
λF

sη(ds)dSt + e
R t

0
λF

sη(ds)λF
t Stη(dt) = e

R t

0
λF

sη(ds)dMF
t ,

which implies the result. �
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Remarks 4.2

1) Note that, from (3), P(ζF ≥ τ) = 1.

2) The survival process S is a decreasing process if and only if the martingale MF is constant

(MF ≡ 0) or equivalently if and only if the martingale LF is constant (LF ≡ 1). In that case,

by Proposition 4.1, S is the continuous decreasing process St = e−
R t

0
λF

sη(ds). Moreover, for any

pair (t, θ), t ≤ θ, the conditional distribution is given by St(θ) = E[e−
R θ

0
λF

sη(ds)|Ft].

3) The condition MF ≡ 0 can be written as
∫ t

0 (αt(u) − αu(u))η(du) = 0 and is satisfied if, for

t ≥ u, αt(u)−αu(u) = 0 (immersion property), but the converse is obviously not true (Remark

3.2).

4.2.2 Relationship with the G-intensity

The intensity approach has been largely studied in the credit literature. We study now in more

details the relationship between the density and the intensity, and notably between the F-density

process of τ and its intensity process with respect to G. We first recall some definitions.

Definition 4.3 Let τ be a G-stopping time. The G-compensator of τ is the G-predictable

increasing process ΛG such that the process (NG
t = 11{τ≤t} − ΛG

t , t ≥ 0) is a G-martingale. If

ΛG is absolutely continuous with respect to the measure η, the G-adapted process λG such that

ΛG
t =

∫ t

0 λ
G
s η(ds) is called the (G, η)-intensity process or the G-intensity if there is no ambiguity.

The G-compensator is stopped at τ , i.e., ΛG
t = ΛG

t∧τ . Hence, λG
t = 0 when t > τ .

The following results give the G-intensity of τ in terms of F-density, and conversely the F-density

αt(θ) in terms of the G-intensity, but only for θ ≥ t.

Proposition 4.4

1) The random time τ admits a (G, η)-intensity given by

λG
t = 11{τ>t}λ

F
t = 11{τ>t}

αt(t)

St
, η(dt) a.s.. (11)

The processes (NG
t := 11{τ≤t}−

∫ t

0 λ
G
s η(ds), t ≥ 0), and (LG

t := 11{τ>t}e
R t

0
λG

s η(ds), t ≥ 0) are G-local

martingales.

2) For any t < ζF and θ ≥ t, we have: αt(θ) = E[λG
θ |Ft].

Then, the F-optional projections of the local martingales NG and LG are the F-local martingales

−MF and LF.
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Proof: 1) The G-local martingale property of NG is equivalent to the G-local martingale

property of LG
t = 11{τ>t}e

R t

0
λG

s η(ds) = 11{τ>t}e
R t

0
λF

sη(ds), since

dLG
t = −LG

t−d1{τ≤t} + 1{τ>t}e
R t

0
λF

sη(ds)λF
t η(dt) = −LG

t−dN
G
t

Since the process
∫ t

0 λ
F
sη(ds) is continuous, we can proceed by localization introducing the G-

stopping times τn = τ11{τ≤Tn} + ∞11{τ>Tn} where Tn = inf{t :
∫ t

0 λ
F
sη(ds) > n}. Then, the

martingale property of the stopped process LG
t∧τn = LG,n

t follows from the F-martingale property

of LF
t∧T n = LF,n

t , since for any s ≤ t,

E[LG,n
t |Gs] = E[11{τ>t∧T n}e

R t∧Tn

0
λF

uη(du)|Gs] = 11{τ>s∧T n}

E[11{τ>t∧T n}e
R t∧Tn

0
λF

uη(du)|Fs]

Ss

= 11{τ>s}
E[St∧T ne

R t∧Tn

0
λF

uη(du)|Fs]

Ss

= 11{τ>s∧T n}
LF,n

s

Ss

where the last equality follows from the F-martingale property of LF,n.

Then, the form of the intensities follows from the definition.

2) By the martingale property of density, for any θ ≥ t, αt(θ) = E[αθ(θ)|Ft]. Using the definition

of S, and the value of λG given in 1), we obtain

αt(θ) = E
[
αθ(θ)

11{τ>θ}

Sθ

|Ft

]
= E[λG

θ |Ft], ∀t < ζF, a.s.

Hence, the value of the density can be partially deduced from the intensity.

The F-projection of the local martingale LG
t = 11{τ>t}e

R t

0
λG

s η(ds) is the local martingale

Ste
R t

0
λF

sη(ds) = LF
t by definition of the survival process S. Similarly, since αt(θ) = E[λG

θ |Ft],

the F-projection of the martingale NG
t = 11{τ≤t} −

∫ t

0 λ
G
s η(ds) is 1 − St −

∫ t

0 αs(s)η(ds) = −MF
t .

�

Remarks 4.5

1) Since the intensity process is continuous, τ is a totally inaccessible G-stopping time.

2) The density hypothesis, and the fact that η is non-atomic allow us to choose αs(s)/Ss as an

intensity, instead of αs(s)/Ss− as it is usually done (see [6] in the case where the numerator

αs(s) represents the derivative of the compensator of S).

3) Proposition 4.1 shows that density and intensity approaches correspond respectively to the

additive and the multiplicative decomposition point of view of the survival process S.

We now use the density-intensity relationship to characterize the pure jump G-martingales

having only one jump at τ .

11



Corollary 4.6

1) For any locally bounded G-optional process HG, the process

NH,G
t := HG

τ 11{τ≤t} −

∫ t∧τ

0

αs(s)

Ss

HG
s η(ds) =

∫ t

0
HG

s dN
G
s , t ≥ 0 (12)

is a G-local martingale.

2) Conversely, any pure jump G-martingale MG which has only one locally bounded jump at τ

can be written on the form (12), with HG
τ = MG

τ −MG
τ−

.

3) Any nonnegative pure jump G-martingale UG such that UG
0 = 1, with only one jump at time

τ has the following representation

UG
t =

(
uτ1{τ≤t} + 1{t<τ}

)
e−

R t∧τ

0
(us−1)λF

sη(ds)

where u is a positive F-optional process associated with the relative jump such that uτ = UG
τ /U

G
τ−.

Proof: 1) The G-martingale property ofNG implies thatNH,G defined in (12) is a G-martingale

for any bounded predictable process HG. From a reinforcement of (5), if HG is a G-predictable

process (typically HG
t0

11]t0,∞]), there exists an F-predictable process HF such that HG
τ = HF

τ , a.s..

Then the process HG may be replaced by its representative HF in the previous relations.

Let Y G
s be a bounded Gs-random variable, expressed in terms of F-random variables as Y G

s =

Y F
s 1{s<τ} + Y F

s (τ)1{τ≤s} where Y F
s ∈ Fs and Y F

s (θ) ∈ Fs ⊗ B([0, s]), (typically Y F
s (θ) = Y F

s ×

g(θ)1[0,s]). Then, the G-martingale property still holds for the process NH,G where HG is the

G-optional process HG
s = Y G

s 1[s,∞). The optional σ-field being generated by such processes, the

assertion holds for any G-optional process.

2) For the converse, observe that the locally bounded jump HG
τ of the martingale MG at time

τ is the value at time τ of some locally bounded F-optional process HF. Then the difference

MG −NH,G is a finite variation local martingale without jump, that is a constant process.

3) It is easy to calculate the differential of the finite variation process UG as

dUG
t = −UG

t (ut − 1)λG
t η(dt) + UG

t−((ut − 1)(dNG
t + λG

t η(dt)) = UG
t−(ut − 1)dNG

t .

Then UG is the exponential martingale of the purely jump martingale (ut − 1)dNG
t . �

4.3 An example of HJM type

We now give some examples, where we point out similarities with Heath-Jarrow-Morton models.

Here, our aim is not to present a general framework, therefore, we reduce our attention to the case

where the reference filtration F is generated by a multidimensional standard Brownian motion W .

12



The following two propositions, which model the dynamics of the conditional probability S(θ),

correspond respectively to the additive and multiplicative points of view. From the predictable

representation theorem in the Brownian filtration, applied to the family of bounded martingales

(St(θ), t ≥ 0), θ ≥ 0, there exists a family of F-predictable processes (Zt(θ), t ≥ 0) such that

dSt(θ) = Zt(θ)dWt, a.s. (13)

Proposition 4.7 Let dSt(θ) = Zt(θ)dWt be the martingale representation of (St(θ), t ≥ 0)

and assume that the processes (Zt(θ); t ≥ 0) are differentiable in the following sense: there

exists a family of processes (zt(θ), t ≥ 0), bounded by an integrable process, such that Zt(θ) =
∫ θ

0 zt(u)η(du). Then,

1) The density martingales have the following dynamics dαt(θ) = −zt(θ)dWt.

2) The survival process S evolves as dSt = −αt(t)η(dt) + Zt(t)dWt.

3) With more regularity assumptions, if (∂θαt(θ))θ=t is simply denoted by ∂θαt(t), then the

process αt(t) is driven by :

dαt(t) = ∂θαt(t)η(dt) − zt(t)dWt

Proof: Observe that Z(0) = 0 since S(0) = 1, hence the existence of z is related with some

smoothness conditions. Then

St(θ) = S0(θ) +

∫ t

0
Zu(θ)dWu = S0(θ) +

∫ θ

0
η(dv)

∫ t

0
zu(v)dWu

and 1) follows. Furthermore, by using Proposition 4.1 and integration by parts,

MF
t =

∫ t

0
(αt(u) − αu(u))η(du) =

∫ t

0
η(du)

∫ t

u

zs(u)dWs =

∫ t

0
dWs

( ∫ s

0
zs(u)η(du)

)

which implies 2).

3) Let us use the short notation introduced above. We follow the same way as for the decom-

position of S, by studying the process

αt(t) −

∫ t

0
(∂θαs)(s)η(dθ) = αt(0) +

∫ t

0
(∂θαt)(s)η(ds) −

∫ t

0
(∂θαs)(s)η(ds)

Using martingale representation of αt(θ) and integration by parts, (assuming that smoothness

hypothesis allows these operations) the integral in the RHS is a stochastic integral,

∫ t

0

(
(∂θαt)(s) − (∂θαs)(s)

)
η(ds) = −

∫ t

0
η(ds)∂θ(

∫ t

s

zu(θ)dWu)

= −

∫ t

0
η(ds)

∫ t

s

∂θzu(s)dWu = −

∫ t

0
dWu

∫ u

0
η(ds)∂θzu(s) = −

∫ t

0
dWu(zu(u) − zu(0))

13



The stochastic integral
∫ t

0 dWuzu(0) is the stochastic part of the martingale αt(0), and so the

property 3) holds true. �

We now consider (St(θ), t ≥ 0) in the classical HJM models (see [14]) where its dynamics

is given in multiplicative form. By definition, the forward hazard rate λt(θ) of τ is given by

λt(θ) = −∂θ lnSt(θ) and the density can then be calculated as αt(θ) = λt(θ)St(θ). As noted in

Remark 2.3, λ(θ) plays the same role as the spot forward rate in the interest rate models.

Classically, HJM framework is studied for time smaller than maturity, i.e. t ≤ T . Here we

consider all positive pairs (t, θ).

Proposition 4.8 For any t, θ ≥ 0, let Ψt(θ) = Zt(θ)
St(θ) with the notation of Proposition 4.7. We

assume that ψt(θ) defined by Ψt(θ) =
∫ θ

0 ψt(u)η(du) is bounded by some integrable process. Then

1) St(θ) = S0(θ) exp
(∫ t

0 Ψs(θ)dWs −
1
2

∫ t

0 |Ψs(θ)|
2ds

)
;

2) The forward hazard rate λ(θ) has the dynamics: λt(θ) = λ0(θ) −
∫ t

0 ψs(θ)dWs +
∫ t

0 ψs(θ)Ψs(θ)
∗ds;

3) St = exp
(
−

∫ t

0 λ
F
sη(ds) +

∫ t

0 Ψs(s)dWs −
1
2

∫ t

0 |Ψs(s)|
2ds

)
;

Proof: By choice of notation, the process St(θ) is the solution of the equation

dSt(θ)

St(θ)
= Ψt(θ)dWt, ∀ t, θ ≥ 0. (14)

Hence 1), from which we deduce immediately 2) by differentiation w.r.t. θ.

3) This representation is the multiplicative version of the additive decomposition of S. There is

not technical difficulties because S is continuous. �

Remarks 4.9 If Ψs(s) = 0, then St = exp(−
∫ t

0 λ
F
sη(ds)), which is decreasing. For the (H)-

hypothesis to hold, it needs Ψs(θ) = 0 for any s ≥ θ.

As a conditional survival probability, St(θ) is decreasing on θ, which is equivalent to that λt(θ)

is positive. When θ > t, this property is implied by the weaker condition λt(t) ≥ 0. That is

similar as for the zero coupon bond prices. But when θ < t, additional assumption is necessary.

We do not characterize this condition.

Remark 4.10 The above results are not restricted to the Brownian filtration and can be easily

extended to more general filtrations under similar representation dSt(θ) = Zt(θ)dMt where M

is a martingale which can include jumps. In this case, Proposition 4.7 can be generalized in a

similar form; for Proposition 4.8, more attention should be payed to Doléans-Dade exponential

martingales with jumps.
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Example: We now give a particular example which provides a large class of forward rate

processes. The non-negativity of λ is satisfied, by 2) of Proposition 4.8, if

• for any θ, the process ψ(θ)Ψ(θ) is non negative, or if ψ(θ) is non negative;

• for any θ, the local martingale ζt(θ) = λ0(θ)−
∫ t

0 ψs(θ)dWs is a Doléans-Dade exponential

of some martingale, i.e., is solution of

ζt(θ) = λ0(θ) +

∫ t

0
ζs(θ)bs(θ)dWs ,

that is, if −
∫ t

0 ψs(θ)dWs =
∫ t

0 bs(θ)ζs(θ)dWs. Here the initial condition is a positive constant

λ0(θ). Hence, we set

ψt(θ) = −bt(θ)ζt(θ) = −bt(θ)λ0(θ) exp

(∫ t

0
bs(θ)dWs −

1

2

∫ t

0
b2s(θ)ds

)

where λ0 is a positive intensity function and b(θ) is a non-positive F-adapted process. Then, the

family

αt(θ) = λt(θ) exp

(
−

∫ θ

0
λt(v) dv

)
,

where

λt(θ) = λ0(θ) −

∫ t

0
ψs(θ) dWs +

∫ t

0
ψs(θ)Ψs(θ) ds

satisfies the required assumptions.

5 Characterization of G-martingales in terms of F-martingales

In the theory of pricing and hedging, martingale properties play a very important role. In

this section, we study the martingale characterization when taking into account information of

the default occurrence. The classical question in the enlargement of filtration theory is to give

decomposition of F-martingales in terms of G-semimartingales. For the credit problems, we are

concerned with the problem in a converse sense, that is, with the links between G-martingales

and F-(local) martingales. In the literature, G-martingales which are stopped at τ have been

investigated, particularly in the credit context. For our analysis of after-default events, we are

furthermore interested in the martingales which start at the default time τ and in martingales

having one jump at τ , as the ones introduced in Corollary 4.6. We shall give characterization

results for these types of G-martingales in the following, by using a coherent formulation in the

density framework.
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5.1 G-martingale characterization

Any G-martingale may be split into two martingales, the first one stopped at time τ and the

second one starting at time τ , that is

Y G
t = Y bd,G

t + Y ad,G
t

where Y bd,G
t := Y G

t∧τ and Y ad,G
t := (Y G

t −Y G
τ )11{τ≤t}. We now study the two types of martingales

respectively.

The density hypothesis allows us to provide easily a characterization3 of G-martingales stopped

at time τ .

Proposition 5.1 A G-adapted càdlàg process Y G is a closed G-martingale stopped at time τ

if and only if there exist an F-adapted càdlàg process Y defined on [0, ζF) and an F-optional

process Z such that Y G
t = Yt11{τ>t} + Zτ11{τ≤t} a.s. and that

(Ut := YtSt +

∫ t

0
Zsαs(s)η(ds), t ≥ 0) is an F-martingale on [0, ζF). (15)

Equivalently, using the multiplicative decomposition of S as St = LF
t e

−
R t

0
λF

sη(ds) on [0, ζF), the

above condition (15) is equivalent to

(LF
t [Yt +

∫ t

0
(Zs − Ys)λ

F
sη(ds)], t ≥ 0) is an F-local martingale on [0, ζF). (16)

Proof: The conditional expectation of Y G
t given Ft is the F-martingale defined on [0, ζF) as

Y F
t = E[Y G

t |Ft] = YtSt +
∫ t

0 Zsαt(s)η(ds) by using the Ft-density of τ . Notice that Y F
t differs

from Ut by (
∫ t

0 Zs(αt(s)− αs(s))η(ds), t ≥ 0), which is an F-local martingale (this can be easily

checked using that Z is locally bounded and (αt(s), t ≥ 0) is F-martingale). So U is also an

F-local martingale. Moreover, since E[|Y G
t |] < ∞, for any F-stopping time ϑ, the quantity

Yϑ11{τ>ϑ} is integrable, hence YϑSϑ is also integrable, and

E[

∫ ζF

0
|Zs|αs(s)η(ds)] = E[|Y G

τ |] <∞,

which establishes that U is a martingale.

Conversely, if U is an F-local martingale, it is easy to verify by Theorem 3.1 that E[Y G
T −Y G

t |Gt] =

0, a.s..

The second formulation is based on the multiplicative representation St = LF
t e

−ΛF
t where ΛF

t =
∫ t

0 λ
F
sη(ds) is a continuous increasing process. Since eΛ

F
tYtSt = YtL

F
t and αt(t) = λF

t St, we have

d(YtL
F
t ) = eΛ

F
t d(YtSt) + eΛ

F
tYtStλ

F
t η(dt) = eΛ

F
t dUt + (Yt − Zt)λ

F
t L

F
t η(dt).

3The following proposition was established in [2, Lemma 4.1.3] in a hazard process setting.
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The local martingale property of the process U is then equivalent to that of (YtL
F
t −

∫ t

0 (Ys −

Zs)λ
F
sL

F
sη(ds), t ≥ 0), and then to the condition (16). �

Remark 5.2 A G-martingale stopped at time τ and equal to 1 on [0, τ) is constant on [0, τ ].

Indeed, integration by parts formula proves that (LF
t

∫ t

0 (1−Zs)λ
F
sη(ds), t ≥ 0) is a local martin-

gale if and only if the continuous bounded variation process (
∫ t

0 L
F
s (1 − Zs)λ

F
sη(ds), t ≥ 0) is a

local-martingale, that is if LF
s (1 − Zs)λ

F
s = 0, which implies that Zs = 1 on [0, ζF).

The before-default G-martingale Y bd,G can always be separated into two parts: a martingale

which is stopped at τ and is continuous at τ ; and a martingale which has a jump at τ .

Lemma 5.3 Let Y bd,G be a G-martingale stopped at τ of the form Y bd,G
t = Yt11{τ>t}+Zτ11{τ≤t}.

Then there exist two G-martingales Y c,bd and Y d,bd such that Y bd,G = Y c,bd+Y d,bd which satisfy

the following conditions:

1) (Y d,bd
t = (Zτ −Yτ )11{τ≤t}−

∫ t∧τ

0 (Zs −Ys)λ
F
sη(ds), t ≥ 0) is a G-martingale with a single jump

at τ ;

2) (Y c,bd
t = Ỹτ∧t, t ≥ 0) is continuous at τ , where Ỹt = Yt +

∫ t

0 (Zs − Ys)λ
F
sη(ds).

Proof: From Corollary 4.6, Y d,bd is a martingale. The result follows. �

Corollary 5.4 With the above notation, a martingale Y G which is stopped and continuous at τ

is characterized by: (LF
t Yt, t ≥ 0) is an F-local martingale. Furthermore, if LF is a martingale,

then this condition is equivalent to that Y is an F-local martingale w.r.t. the probability measure

PL = LF
T P. In particular, under the immersion assumption, the G-martingales stopped at time

τ and continuous at τ are F-martingales stopped at τ .

Remark 5.5 Under immersion, LF
t = 1. So a process Y G stopped at τ and continuous at time

τ is a G-martingale if and only if Y is an F-local martingale.

We now concentrate on the G-martingales starting at τ , which, as we can see below, are

easier to characterize. The following proposition is a direct consequence of Theorem 3.1.

Proposition 5.6 Any càdlàg integrable process Y G is a G-martingale starting at τ with Yτ = 0

if and only if there exists an O(F) ⊗ B(R+)-optional process (Yt(.), t ≥ 0) such that Yt(t) = 0

and Y G
t = Yt(τ)11{τ≤t} and that, for any θ > 0, (Yt(θ)αt(θ), t ≥ θ ≥ 0) are F-martingales on

[θ, ζθ), where ζθ is defined as in Section 4.1.

Combining the previous results, we give the characterization of general G-martingale.
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Theorem 5.7 A càdlàg process Y G is a G-martingale if and only if there exist an F-adapted

càdlàg process Y and an O(F) ⊗ B(R+)-optional process Yt(.) such that Y G
t = Yt11{τ>t} +

Yt(τ)11{τ≤t} and

1) the process (YtSt +
∫ t

0 Ys(s)αs(s)η(ds), t ≥ 0) or equivalently (LF
t [Yt +

∫ t

0 (Ys(s) −

Ys)λ
F
sη(ds)], t ≥ 0) is an F-local martingale;

2) for any θ ≥ 0, (Yt(θ)αt(θ), t ≥ θ) is an F-martingale on [θ, ζθ).

Proof: Notice that Y ad,G
t = (Yt(τ) − Yτ (τ))11{τ≤t}. Then the theorem follows directly by

applying Propositions 5.1 and 5.6 on Y bd,G and Y ad,G respectively. �

Remark 5.8 We observe again the fact that to characterize what goes on before the default,

it suffices to know the survival process S or the intensity λF. However, for the after-default

studies, we need the whole conditional distribution of τ , i.e., αt(θ) where θ ≤ t.

5.2 Decomposition of F-(local) martingale

An important result in the enlargement of filtration theory is the decomposition of F-(local)

martingales as G-semimartingales. Using the above results, we provide an alternative proof for

a result established in [10], simplified by using the fact that any F-martingale is continuous at

time τ . Our method is interesting, since it gives the intuition of the decomposition without

using any result on enlargement of filtrations.

Proposition 5.9 Any F-martingale Y F is a G-semimartingale can be written as Y F
t = MY,G

t +

AY,G
t where MY,G is a G-martingale and (AY,G

t := At11{τ>t} +At(τ)11{τ≤t}, t ≥ 0) is an optional

process with finite variation. Here

At =

∫ t

0

d[Y F, S]s
Ss

and At(θ) =

∫ t

θ

d[Y F, α(θ)]s
αs(θ)

. (17)

Proof: On the one hand, assuming that Y F is a G-semimartingale, it can be decomposed as

the sum of a G-(local)martingale and a G-optional process AY,G with finite variation which can

be written as At11{τ>t} +At(τ)11{τ≤t} where A and A(θ) are still unknown. Note that, since Y F

has no jump at τ (indeed, τ avoids F-stopping times - see Corollary 2.2), we can choose MY,G

such that MY,G and hence AY,G have no jump at τ . Applying the martingale characterization

result obtained in Theorem 5.7 to the G-local martingale

Y F
t −AY,G

t = (Y F
t −At)11{τ>t} + (Y F

t −At(τ))11{τ≤t}
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leads to the fact that the two processes

((Y F
t −At)L

F
t , t ≥ 0) and (αt(θ)(Y

F
t −At(θ)), t ≥ θ) (18)

are F-(local) martingales. Since

d
(
(Y F

t −At)L
F
t

)
= (Y F

t− −At−)dLF
t + LF

t−d(Y
F
t −At) + d〈Y F, LF〉ct + ∆(Y F

t −At)∆L
F
t

and

−LF
t−dAt − ∆At∆L

F
t = −LF

t dAt,

based on the intuition given by the Girsanov theorem, natural candidate for the finite variation

processes A is dAt = d[Y F, LF]t/L
F
t where [ , ] denotes the co-variation process. Similarly,

dAt(θ) = d[Y F, α(θ)]t/αt(θ). Then, using the fact that Y F, LF, α(θ) are F-local martingales, we

obtain that A = (1/LF) ⋆ [Y F, LF] where ⋆ denotes the integration of 1/LF w.r.t. [Y F, LF], and

A(θ) = (1/α(θ)) ⋆ [Y F, α(θ)] similarly. Then, since S is the product of the martingale LF and

an continuous increasing process eΛ
F

, we have d[Y F, LF]t/L
F
t = d[Y F, S]t/St and obtain the first

equality in (17).

On the other hand, define the optional process AY,G by using (17). It is not difficult to verify

by Theorem 5.7 that Y F − AY,G is a G-local martingale. It follows that Y F is indeed a G-

semimartingale. �

Remark 5.10 Note that our decomposition differs from the usual one, since our process A is

optional (and not predictable) and that we are using the co-variation process, instead of the

predictable co-variation process. As a consequence our decomposition is not unique.

5.3 Girsanov theorem

Change of probability measure is a key tool in derivative pricing as in martingale theory. In

credit risk framework, we are also able to calculate parameters of the conditional distribution

of the default time w.r.t. a new probability measure. The links between change of probability

measure and the initial enlargement have been established, in particular, in [9] and [1]. In

statistics, it is motivated by the Bayesian approach [7].

We present a Girsanov type result, where the Radon-Nikodým density is given in an additive

form instead of in a multiplicative one as in the classical literature. This makes the density of

τ having simple form under the new probability measure.

Theorem 5.11 (Girsanov’s theorem) Let QG
t = qt11{τ>t} + qt(τ)11{τ≤t} be a càdlàg positive

G-martingale with QG
0 = q0 = 1. Let Q be the probability measure defined on Gt by dQ = QG

t dP
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for any t ∈ R+ and QF be the restriction of Q to F, which has Radon-Nikodým density QF, given

by the projection of QG on F, that is QF
t = qtSt +

∫ t

0 qt(u)αt(u)η(du).

Then (Ω,Q,G,F, τ) satisfies the density hypothesis with the (F,Q)-density of τ given in closed

form after the default, that is for θ ≤ t by

αQ
t (θ) = αt(θ)

qt(θ)

QF
t

, η(dθ)- a.s.;

and, only via a conditional expectation before the default, that is for t ≤ θ, by

αQ
t (θ) =

1

QF
t

EP[αθ(θ)qθ(θ)|Ft].

Furthermore:

1) the Q-conditional survival process is defined on [0, ζF) by SQ
t = St

qt

QF
t

, and is null after ζF;

2) the (F,Q)-local martingale LF,Q is (LF,Q
t = LF

t

qt

QF
t

exp

∫ t

0
(λF,Q

s − λF
s )η(ds), t ∈ [0, ζF));

3) the (F,Q)-intensity process is λF,Q
t = λF

t

qt(t)

qt
, η(dt)-a.s.

Proof: The expression of the density process after the default (αQ
t (θ), θ ≤ t) is an immediate

consequence of definition. Before the default, the density may be only obtained via a conditional

expectation form given by

αQ
t (θ) = EQ

[
αθ(θ)

qθ(θ)

QF
θ

|Ft

]
=

1

QF
t

EP
[
QF

θαθ(θ)
qθ(θ)

QF
θ

|Ft

]

=
1

QF
t

EP[αθ(θ)qθ(θ)|Ft].

For any t ∈ [0, ζF), the Q-conditional survival probability can be calculated by

SQ
t = Q(τ > t|Ft) =

EP[11{τ>t}Q
G
t |Ft]

QF
t

= qt
St

QF
t

and finally, we use λF,Q
t = αQ

t (t)/SQ
t and LF,Q

t = SQ
t e

R t

0
λ

F,Q
s η(ds) to complete the proof. �

It is known, from [8], that under density hypothesis, there exists at least a change of prob-

ability, such that immersion property holds under this change of probability. Theorem 5.11

provides a full characterization of such changes of probability.

Corollary 5.12 We keep the notation of Theorem 5.11. The change of probability measure

generated by the two processes

qt = (LF
t )−1, qt(θ) =

αθ(θ)

αt(θ)
(19)
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provides a model where the immersion property holds true under Q, and where the intensity

processes does not change, i.e., remains λF.

More generally, the only changes of probability measure for which the immersion property holds

with the same intensity process are generated by a process q such that (qtL
F
t , t ≥ 0) is a uniformly

integrable martingale.

Proof: : Any change of probability measure with immersion property and the same intensity

processes is characterized by the martingale property of the product QF = q. LF. Moreover,

given q, the immersion property determines in a unique way the process (qt(θ); t ≥ θ) via the

boundary condition qθ(θ) = qθ and the equalities

αQ
t (θ) = αt(θ)

qt(θ)

qtLF
t

= αθ(θ)
qθ(θ)

qθ L
F
θ

= αθ(θ)(1/L
F
θ ).

The martingale QF = q. LF has to satisfy the compatibility condition

QF
t = qtL

F
t = qtSt +QF

t

∫ t

0
αu(u)(1/LF

u)η(du)

= QF
t

(
e−

R t

0
λ

F,P
s η(ds) +

∫ t

0
e−

R u

0
λ

F,P
s η(ds)λF,P

u η(du)
)

(20)

where the last equality comes from the identities (10) and (11). The term in the bracket in (20)

is of finite variation and is hence equal to 1. Then the QF-compatibility condition is always

satisfied. So the only constraint on the process q is the martingale property of q. LF. �

It is well known, from Kusuoka [11], that immersion property is not stable by a change of

probability. In the following, we shall in a first step characterize, under density hypothesis,

changes of probability which preserve this immersion property, that is, H-hypothesis is satisfied

under both P and Q. (See also [4] for a different study of changes of probabilities preserving

immersion property.) In a second step, we shall study changes of probability which preserve the

information before the default, and give the impact of a change of probability after the default.

Corollary 5.13 We keep the notation of Theorem 5.11, and assume immersion property under

P.

1) Let the Radon-Nikodým density (QG
t , t ≥ 0) be a pure jump martingale with only one jump

at time τ . Then, the (F,P)-martingale (QF
t , t ≥ 0) is the constant martingale equal to 1. Under

Q, the intensity process is λF,Q
t = λF

t

qt(t)

qt
, η(dt)-a.s., and the immersion property still holds.

2) Conversely, the only changes of probability measure compatible with immersion property have

Radon-Nikodým densities that are the product of a pure jump positive martingale with only one

jump at time τ , and a positive F-martingale.

21



Proof: : The previous Girsanov theorem 5.11 gives immediately the intensity characterization.

From Lemma 5.3, the pure jump martingale (QG
t , t ≥ 0) is a finite variation process and (QG

t =

qt, t < τ) is a continuous process with bounded variation. Since immersion property holds,

S is a continuous decreasing process (see footnote 2), and QF
t = qtSt +

∫ t

0 qu(u)αt(u)η(du) =

qtSt +
∫ t

0 qu(u)αu(u)η(du) is a continuous martingale with finite variation. Since QF
0 = 1, then

at any time, QF
t = 1, a.s. By the other results established in Girsanov’s theorem 5.11, this key

point implies that the new density is constant after the default, so that the immersion property

still holds.

2) Thanks to the first part of this corollary, we can restrict our attention to the case when in

the both universe the intensity processes are the same. Then the Radon-Nikodým density is

continuous at time τ and the two processes (qt, t ≥ 0) and (qt(θ), t ≥ θ) are F-(local) martingales.

Assume now that the immersion property holds also under the new probability measure Q. Both

martingales LF,P and LF,Q are constant, and QF
t = qt. Moreover the Q-density process being

constant after the default (θ < t), qt(θ)/qt = qθ(θ)/qθ = 1, a.s.. The processes QG, QF and q

are undistinguishable. �

As shown in this paper, the knowledge of the intensity does not allow to give full information

on the law of the default, except if immersion property holds. Starting with a model under which

immersion property holds, taking qt(t) = qt in Theorem 5.11 will lead us to a model where the

default time admits the same intensity whereas immersion property does not hold, and then the

impact of the default changes the dynamics of the default-free assets. We present a specific case

where, under the two probability measures, the dynamics of these assets are the same before the

default but are changed after the default, a phenomenon that is observed in the actual crisis.

We impose that the new probability Q coincide with P on the σ-algebra Gτ . In particular, if m

is an (F,P)-martingale, the process (mt∧τ , t ≥ 0) will be an ((Gt∧τ , t ≥ 0),Q)-martingale (but

not necessarily an (G,Q)-martingale). From Theorems 5.7 and 5.11 and Corollary 5.13, one gets

the obvious proposition.

Proposition 5.14 Let (Ω,P,F,G, τ) be a model satisfying the immersion property.

Let (qt(θ), t ≥ θ) be a family of positive (F,P)-martingales such that qθ(θ) = 1 and let Q be the

probability measure with Radon-Nikodým density equal to the (G,P)-martingale

QG
t = 11{τ>t} + qt(τ)11{τ≤t} . (21)

Then, Q and P coincide on Gτ and the P and Q intensities of τ are the same.

Furthermore, if SQ is the Q-survival process, the processes (St/S
Q
t , t ≥ 0) and the family

(αQ
t (θ)St/S

Q
t , t ≥ θ) are (F,P)-martingales.
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Proof: The first part is a direct consequence of the previous results. It remains to note that

QF
t = St

S
Q
t

and, for t ≥ θ, αQ
t (θ) = αθ(θ)

qt(θ)

QF
t

= αθ(θ)
qt(θ)
St

SQ
t ; hence the martingale properties

follow from the ones of QF
t and qt(θ) . �

This result admits a converse. For the sake of simplicity we assume the condition S∗
t >

0,∀t ∈ R+. This assumption can be removed, using the terminal time ζ∗,F.

Proposition 5.15 Let (Ω,P,F,G, τ) be a model satisfying the H-hypothesis, with the decreasing

survival process St = exp(−
∫ t

0 λ
F
sη(ds)).

Let (α∗
t (θ), t ≥ θ) be a given family, where, for all θ > 0, α∗(θ) is a non-negative process and

define S∗
t = 1 −

∫ t

0 α
∗
t (θ)η(dθ). Assume that S∗

∞ = 0 and S∗
t > 0,∀t ∈ R+ and that





∀θ, α∗
θ(θ) = S∗

θλ
F
θ = αθ(θ)

S∗
θ

Sθ

the processes
(

St

S∗
t
, t ≥ 0

)
and

(
α∗

t (θ)
St

S∗
t
, t ≥ θ

)
are (F,P)-martingales.

(22)

Let

QG
t := 11{τ>t} +

α∗
t (τ)

ατ (τ)

St

S∗
t

11{τ≤t}, (23)

and Q be the probability measure with Radon-Nikodỳm density the (G,P)-martingale QG. Then,

Q is equal to P on Gτ and

λQ,F = λF, αQ
t (θ) = α∗

t (θ) , ∀t ≥ θ and SQ = S∗ (24)

Proof: We set

qt(θ) =
α∗

t (θ)

αθ(θ)

St

S∗
t

.

Note that qt(t) = 1 since α∗
s(s) = S∗

sλ
F
s = S∗

sαs(s)/Ss. For every θ, the processes (qt(θ), t ≥ θ)

are martingales since (α∗
t (θ)St/S

∗
t , t ≥ θ) are martingales. From Theorem 5.11, the F-projection

of the Radon-Nikodým density QG is

QF
t = St +

∫ t

0

α∗
t (s)

αt(s)

St

S∗
t

αt(s)η(ds) = St

(
1 +

∫ t

0
α∗

t (s)
1

S∗
t

η(ds)

)
,

and the survival probability is

St

QF
t

=
(
1 +

1

S∗
t

∫ t

0
α∗

t (s)η(ds)
)−1

= S∗
t

(
S∗

t +

∫ t

0
α∗

t (s)η(ds)
)−1

= S∗
t .

It remains to note that the condition α∗
s(s) = S∗

sλ
F
s is equivalent to the fact that the intensity

of τ under Q is λF. �
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6 Conclusion

Our study relies on the impact of information related to the default time on the market.

Starting from a default-free model, where some assets are traded with the knowledge of a

reference filtration F, we consider the case where the participants of the market take into account

the possibility of a default in view of trading default-sensitive asset. If we are only concerned by

what happens up to the default time, the natural assumption is to assume immersion property

with stochastic intensity process adapted to the default-free market evolution.

The final step is to anticipate that the default should have a large impact on the market, as now

after the crisis. In particular, with the non constant “after default” density, we express how the

default-free market is modified after the default. In addition, hedging strategies of default-free

contingent claims are not the same in the both universes.

In a following paper [5], we shall apply this methodology to several default times, making this

tool powerful for correlation of defaults. In another paper, we shall provide explicit examples of

density processes, and give some general construction of these processes.
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