
HAL Id: hal-00381072
https://hal.science/hal-00381072

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing Web Services for Robustness: A Tool Demo
Nuno Laranjeiro, Marco Vieira

To cite this version:
Nuno Laranjeiro, Marco Vieira. Testing Web Services for Robustness: A Tool Demo. 12th European
Workshop on Dependable Computing, EWDC 2009, May 2009, France. 4 p. �hal-00381072�

https://hal.science/hal-00381072
https://hal.archives-ouvertes.fr

Testing Web Services for Robustness: A Tool Demo

Nuno Laranjeiro, Marco Vieira

CISUC, Department of Informatics Engineering

University of Coimbra – Portugal

cnl@dei.uc.pt, mvieira@dei.uc.pt

Abstract

Web services represent a powerful interface for

back-end systems that must provide a robust interface

to client applications, even in the presence of invalid

inputs. However, developing robust services is a diffi-

cult task. In this paper we demonstrate wsrbench, an

online tool that facilitates web services robustness test-

ing. Additionally, we present two scenarios to motivate

robustness testing and to demonstrate the power of

robustness testing in web services environments.

1. Introduction

Web services are supported by an infrastructure that

typically includes an application server, the operating

system and a set of external systems (e.g., databases,

payment gateways, etc). The Simple Object Access

Protocol (SOAP) [1] is used for exchanging XML-

based messages between the consumer and the pro-

vider over the network. A web service may include

several operations (in practice, each operation is a

method with one or several input parameters) and is

described using WSDL (Web Services Definition Lan-

guage) [1], which is a XML format used to generate

server and client code, and for configuration.

Robustness testing is an effective technique to char-

acterize the behavior of a system in presence of erro-

neous input conditions. It has been successfully used to

assess the robustness of operating systems [3], [6] and

recently has been extended to the evaluation of web

services [4], [9]. Robustness tests stimulate the system

under testing through its interfaces (“black-box” test-

ing) by submitting erroneous input conditions that may

trigger internal errors.

wsrbench [4], an online tool based on the work pre-

sented in [9], is a powerful instrument in three key

scenarios: 1) help providers in evaluating and improv-

ing the robustness of their web services implementa-

tions before deployment; 2) help consumers to select

the web services that best fit their requirements by test-

ing different alternatives; and 3) help providers and

consumers to identify the need for wrappers to perform

the required validations before execution.

The goal of this paper is to demonstrate how

wsrbench can be used in practice. The goal is not to

present technical details (those are available in [4],

[9]), but to demonstrate the tool and present scenarios

on how to use it to develop robust web services. This

way, we discuss two hypothetical scenarios and two

real case studies on the usage of wsrbench. The hypo-

thetical scenarios serve as motivation to apply robust-

ness testing in web services environments and the real

case studies show that robustness testing can be ap-

plied in practice to test and compare real web services.

The structure of the paper is as follows. Next sec-

tion presents motivation scenarios. Section 3 summa-

rizes the robustness testing approach and introduces

wsrbench. Section 4 presents two case studies. Section

5 briefly describes the demo to be performed during

the workshop and concludes the paper.

2. Motivation scenarios

In this section we present two hypothetical scenar-

ios of the usage of robustness testing.

2.1. Scenario #1: Selecting a web service

SurveyMe is a medium size company that performs

customer satisfaction surveys for large companies. As

surveys are typically conducted by phone, it is of ut-

most importance to guarantee the correctness of the

phone numbers registered in the database. A frequent

situation is to find phone numbers in the database with

incorrect country codes, area codes, or prefixes, due to

mistakes during data collection or storage.

Mr. Simms, the head of the division in charge of

analyzing the results of the surveys, is concerned with

the number of surveys that are not conducted, or are

delayed, due to incorrect phone numbers.

Mr. Simms decided to meet with Mr. Pinto, the

head of the division in charge of managing and im-

proving the software used by the company, to discuss

this situation and understand if the phone number veri-

fication rules used by the application could be im-

proved. While surfing in the Internet for potential solu-

tions, Mr. Pinto browsed through a web page that

called his attention. WebX, the owner of that web

page, announces a web service that can be used to ver-

ify phone numbers around the world. Amazingly, the

use of this web service is free of charge. “This is very

good and it can be easily integrated in our application”

thought Mr. Pinto, while searching for other services

providing similar functionality. After some minutes,

Mr. Pinto found two other options, both free of charge.

Mr. Pinto decided use an external web service to

perform phone numbers validation. However, in order

to maintain the robustness of the application they

needed to select a robust web service. The problem

was then how to choose the web service to be used.

Some time ago, Mr. Pinto read a research paper on a

tool for web services robustness testing [4]. He recalled

that the tool (wsrbench) was online and free to use, and

decided to try the tool to test the web services.

The results were impressive. With a simple configu-

ration procedure the tool was able to automatically test

the services and detect potential robustness problems.

In fact, Mr. Pinto only provided the tool with the URL

of each service and configured the expected domain for

each input parameter. Table 1 summarizes the results.

From the robustness point-of-view, TelefX should

be the selected service, as it presents no robustness

problems. However, this was the first step in the selec-

tion process as Mr. Pinto decided then to test the serv-

ices for performance. In any case, the information

gathered about these services was of utmost impor-

tance. In fact, even if one of the services with robust-

ness issues is selected due to performance reasons the

development team knows its robustness problems in

detail. This information can be used to implement

wrappers that perform parameter validation before web

service invocation.

2.2. Scenario #2: Developing a web service

Electrics.com is a large company specialized in

producing electrical components that recently decided

to develop a new database application to manage daily

operations. A service-oriented approach in which a set

of web services provides functionalities that can be

invoked by client applications in a transparent manner.

The plan was to follow an interactive lifecycle dur-

ing the project. The web services would be developed

first and the different user interfaces implemented af-

terwards. The web services would be tested immedi-

ately after their development phase.

During the development of the interface to register

new customers, Sanders, a junior programmer, was

struggling with a problem. When inputting some val-

ues in this web page, the application returns an unex-

pected exception. After several hours analyzing his

code Sanders was not able to find any problem and

decided to perform some tests in the web services us-

ing wsrbench, an online tool he had recently found

while surfing in the web [4].

After reading some documentation about the tool,

Sanders started the tests by configuring some parame-

ters. The result obtained was not a surprise for Sanders:

the newCustomer web service had a problem. When a

long contactEmail was provided the web service re-

turned a StackOverflowException exception. This way,

Sanders decided to analyze the web service code in

order to identify the source of the problem. However,

after some hours, he was not able to identify any prob-

lem, not even with help of some other developers.

Sanders then decided to ask for the help of a senior

developer – John, not involved in the project, but an

expert in web services development. After some min-

utes analyzing the code, John identified the source of

the problem: although the code targeting the validation

of the contactEmail parameter was in place, too large

email addresses caused the web service to throw a

StackOverflowException. After some analysis of the

code they concluded that the problem resided in the

external API that was being used to validate email ad-

dresses (Jakarta Commons Validator 1.3.0). This

shows that robustness problems may occur even when

programmers pay great attention to the code correct-

ness. In fact, the use of third party software can raise

problems that are not obvious for programmers.

3. wsrbench: A web services robustness

testing tool

Web services robustness testing is based on errone-

ous call parameters [9]. The robustness tests consist of

exceptional and acceptable input values of parameters

of web services operations that can be generated by

applying a set of predefined rules according to the data

types of each parameter.

The robustness benchmark includes the following

key components: workload (represents the work that

the service must perform during the benchmark run);

robustness tests (set of invalid call parameters that is

applied to expose robustness problems); and failure

modes classification (characterize the behavior of the

web service while executing the workload in the pres-

ence of the robustness tests). The testing procedure is

based on the following generic set of steps:

1. Tests preparation

1.1 Analysis of the WSDL of the web service under

testing in order to gather information about the

Table 1 – Robustness-testing results for Scenario #1.
Service Name Operation Parameter # Abort

Failures

Hindering

Failures

PhoneNumbers ValidatePhone PhoneNumber 3 0

PhonesWS CheckPhone Phone 0 1

TelefX CheckNumber PhoneNumber 0 0

relevant operations, parameters, and data types.

1.2 Workload generation.

2. Tests execution

2.1 Execution of the workload generated in step

1.2. The goal is to understand the expected cor-

rect behavior for the service.

2.2 Execution of the robustness tests in order to

trigger faulty behaviors, and in that way dis-

close robustness problems.

3. Service characterization, including failure modes

identification (using the data collected in step 2).

The robustness of the web services is classified ac-

cording to an adapted version of the CRASH scale [3]

(the wsCRASH scale) that distinguishes the following

failure modes: Catastrophic (the application server

used to run the web service under testing becomes cor-

rupted or the machine crashes or reboots), Restart (the

web service execution hangs and must be terminated

by force), Abort (abnormal termination of the web

service execution), Silent (no error is indicated by the

application server), and Hindering (the error code re-

turned is not correct or the response is delayed).

wsrbench, publicly available at

http://wsrbench.dei.uc.pt, implements the web services

testing approach proposed in [9] and provides a web

based interface that allows users to perform configura-

tions and visualize the results of tests. Note that, any-

one can use wsrbench as it is free and very easy to use.

Only a very simple registration and posterior authenti-

cation process is required. In the following paragraphs

we introduce the key functionalities of wsrbench (tech-

nical details can be found in [4]).

After registration and authentication three key op-

tions are available for users: Configuration; Add

WSDL; and My Tests. The Configuration option al-

lows several configuration aspects to be defined, such

as the user’s email, number of finished tests to show on

screen, etc. The Add WSDL option allows users to

add the WSDL file describing a web service to be

tested for robustness. After submitting the WSDL file

the user can visualize the set of operations and parame-

ters provided by the service.

Operations not conformant with the WS-I Basic

Profile [2] will be grayed out and not tested. This stan-

dard is an industry effort to clarify the ambiguous parts

of the WSDL specification and is accepted by the main

service providers, including Microsoft’s .NET frame-

work version 3 [5] and Sun Microsystem’s Java 6 Web

Services stack (JAX-WS) [7].

For each testable operation the user may define the

valid values for each parameter (i.e., the domain of the

parameter). When these are not defined, the tool con-

siders that the parameter domain is the domain of the

corresponding data type. After defining the domain of

the parameters the tests can start (by clicking the Start

Test button). The user will be informed by email when

the tests conclude.

The My Tests option allows the user to visualize

the tests previously performed along with information

on currently ongoing tests. For each operation of a web

service, the results for the individual faults applied to

each parameter are shown. Clicking the ‘XML’ link

opens a popup where more details are provided. These

include the list of requests sent and the service re-

sponses received.

The user can mark the service interaction as a ro-

bustness problem, a correct interaction (no problem

detected), or simply leave it unmarked. It is important

to emphasize that, after testing a given web service, the

tool performs an automatic analysis of the responses

obtained in order to distinguish regular replies from

replies that reveal robustness problems in the service

being tested. However, in some cases the tool is not

able to decide if a given response is due to a robustness

problem or not. That is why the tool also allows users

to perform this analysis manually.

4. wsrbench in practice

In this section we present two case studies on using

wsrbench to test and compare real web services.

4.1. Case Study #1: Testing public web services

More than 100 publicly available web services were

tested for robustness (most of these services are listed

at http://www.xmethods.net/, a web site that references

publicly available web services). The full list of web

services tested can be found at [4]). About 35% of the

web services tested presented robustness problems.

Some silent failures were observed for two web

services: Web-Service Documentation (owned by west-

wind.com) and Code 39 Bar Code (owned by web-

servicex.net). For the former, robustness tests consist-

ing in the replacement of any parameter by a null value

always leads to an absence of response from the server.

For the latter, an overflowed string in the Title parame-

ter led the server to report a null reference exception.

However, web service requests submitted immediately

after that abort failure remained unanswered.

A total of 61 Abort failures (not counting similar er-

rors triggered by different faults for the same parame-

ter in a given operation) were detected. 30% were

marked as null references, 30% as SQL problems, 13%

conversion problems, 7% as arithmetic problems, and

21% as others.

4.2. Case Study #2: Comparing web services

Two implementations of a subset of the TPC-App

web services [8] were submitted to robustness testing

(each web service implemented a single operation).

As shown in Table 2, robustness problems related to

abort failures were observed for both solutions. An

interesting robustness problem was observed for the

newCustomer service in implementation A. In fact,

although the code targeting the validation of the con-

tactEmail parameter was in place, too large email ad-

dresses caused the web service to throw a StackOver-

flowException. After analyzing the source code we

concluded that the problem resided in the external API

that was being used to validate email addresses (Ja-

karta Commons Validator 1.3.0). This shows that ro-

bustness problems may occur even when programmers

pay great attention to the code correctness. Further-

more, this type of errors can easily appear or disappear

when an apparently harmless update is done to the ex-

ternal libraries commonly required by projects. How-

ever they can be easily detected with the help of ro-

bustness testing, which once more highlights the im-

portance of robustness testing.

The analysis of the results in Table 2 suggests that,

from a consumer standpoint, the best option would be

to choose the newProducts and productDetail services

from implementation A, and the changePayment-

Method and newCostumer services from implementa-

tion B. From the provider point-of-view, it is clear that

some software improvements are needed in order to

resolve the robustness problems detected.

5. Conclusion

The goal of this paper is to demonstrate a tool for

web services robustness testing. This tool builds on

solid scientific concepts proposed in previous works,

and seals the space between research and industry

practice. In fact, wsrbench fills a gap in current devel-

opment tools, providing an easy interface for robust-

ness testing of web services. The tool is available on-

line requiring no installation and little configuration

effort. Its effectiveness will be demonstrated during the

workshop and has already been proved by testing a

large number of public and custom made web services.

The results show that many services are deployed with

robustness problems that, in some cases, may also rep-

resent security issues. For example, some of the prob-

lems uncovered show that some services may be vul-

nerabl to SQL injection attacks, which highlights the

importance of testing services for robustness. This is

something that could be easily avoided if these services

were tested for robustness by wsrbench.

The wsrbench demo during the workshop will be

organized as follows. First we will discuss basic con-

cepts on robustness testing and present the two hypo-

thetical scenarios for the use of robustness testing in

web services environments. Then we will introduce the

key functionalities of the tool. Finally, we will show

the power of the tool in practice by applying it to sev-

eral web services publicly available in the Internet and

to some of the web services from the TPC-App per-

formance benchmark. In the latter case, we will dem-

onstrate how the robustness problems disclosed can be

fixed by adding appropriate input validators.

It is important to emphasize that we are planning a

hands-on demo. In fact, the tool will be effectively

demonstrated and explained during the talk. Partici-

pants will have the possibility to try the tool during or

after the workshop. Our goal is to motivate researchers

and practitioners working on web services to try it and

to foster research on this important topic.

6. References

[1] Curbera, F., et al., “Unraveling the Web services web: an

introduction to SOAP, WSDL, and UDDI,” Internet Comput-

ing, IEEE, vol. 6, 2002, pp. 86-93.

[2] Ferris, C., et al., “Basic Profile - Version 1.2,” 2007;

http:// www.ws-i.org/Profiles/BasicProfile1_2(WGAD).html.

[3] Koopman, P., DeVale, J., "Comparing the robustness of

POSIX operating systems," Twenty-Ninth Annual Interna-

tional Symposium on Fault-Tolerant Computing, 1999.

[4] Laranjeiro, N., Canelas, S., Vieira, M. , "wsrbench: An

On-Line Tool for Robustness Benchmarking", IEEE Interna-

tional Conference on Services Computing (SCC 2008),

Honolulu, Hawaii, USA, July 2008.

[5] Microsoft, “.NET Framework Developer Center,” 2008;

http://msdn2.microsoft.com/en-gb/netframework/default.aspx

[6] Rodríguez, M., et al., "MAFALDA: Microkernel As-

sessment by fault injection and design aid", 3rd European

Dependable Computing Conference, EDCC-3, 1999.

[7] Sun Microsystems, Inc., “JAX-WS Reference Imple-

mentation”; https://jax-ws.dev.java.net/.

[8] Transaction Processing Performance Council, “TPC

BenchmarkTM App (Application Server) Standard Specifica-

tion, Version 1.1”, 2005, available at:

http://www.tpc.org/tpc_app/.

[9] Vieira, M., Laranjeiro, N., Madeira, H., “Benchmarking

the Robustness of Web Services,” 13th IEEE Pacific Rim

Dependable Computing Conference (PRDC 2007), Mel-

bourne, Australia, 2007.

Table 2 – Abort failures for TPC-App services.
Web Service Impl. A Impl. B

changePayment method 3 3

newCustomer 15 6

newProducts 0 2

productDetail 0 1

