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ABSTRACT 

Low bit rate parametric audio coding for multichannel audio is mainly based on Binaural Cue Coding (BCC). In this 
paper we show that the Unified Domain Representation of multichannel audio, recently introduced, is equivalent to 
BCC scheme in stereo coding context. We also discuss another method, called multichannel audio upmix, which 
classically converts existing two-channel stereo to five-channel audio. More precisely, we focus on existing PCA-
based upmix method. Starting from PCA approach, we propose a general model that may be applied both to 
parametric representation of multichannel audio signals and upmix methods. Moreover, we apply the analysis results 
to propose a new parametric audio coding method based on frequency subbands PCA processing. 

 

1. INTRODUCTION 

With the introduction of multichannel audio playback 
systems for consumer use with 5.1 playback system or 
above, multichannel audio content has become 
necessary for low data rate application such as HD-
Radio, Audio on Demand, etc. Therefore, two close 
audio processing methods are currently considered to 
deliver multichannel audio for low bit rate applications. 

The first method is denoted as multichannel audio 
coding. Matrix surround coding schemes and parametric 
audio coding schemes are the two main multichannel 
audio coding techniques currently used. Matrix 
surround coding scheme such as Dolby Pro Logic [1] 
consists in matrixing the channels of the original 
multichannel signal in order to reduce the number of 
signals to be transmitted. Passive or active decoding 
could be achieved to build a multichannel signal 
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perceptually as close as possible to the original 
multichannel signal. Nevertheless, this multichannel 
audio coding method cannot deliver multichannel audio 
with a data rate acceptable for most networks. That is 
made possible with low bit rate parametric audio coding 
mainly based on Binaural Cue Coding [2] (BCC). This 
coding scheme represents multichannel audio signals by 
one or several downmixed audio channels plus spatial 
cues extracted from the original channels. Recently, the 
Unified Domain (UD) representation of multichannel 
audio has been introduced [5]. This lossless and 
invertible transformation (UDT) is equivalent to a 
rotation in a multidimensional complex space with basis 
defined by the frequency domain channels of the 
multichannel signal. In this paper we show how the 
UDT could be equivalent to BCC scheme in a stereo 
coding context. 

A second multichannel audio processing method, called 
upmix, classically converts the existing stereo audio 
contents into five-channel audio. The spatial 
characteristics and the coherence of the stereo signal are 
used to synthesize a multichannel audio signal 
compatible with home cinema setup. More precisely, we 
focus on existing PCA-based upmix method [6]-[7]. The 
rear channels are considered as ambience channels 
defined as diffuse surround sounds and the center front 
channel corresponds to the sources panned across the 
original stereo channels. The first step of the upmix 
algorithm in [6] consists in a Principal Component 
Analysis (PCA) of the stereo signal. The PCA is 
equivalent to a rotation of the stereo signal coordinate 
system and results in one principal component signal 
and a remaining signal. The principal component signal 
corresponds to the dominant source present in the 
original stereo. Then, the center channel results from the 
weighting of this principal component by a coefficient 
derived from the rotation angle of the coordinate 
system. The rear channels result from the weighting of 
the remaining signal by a coefficient derived from the 
correlation coefficient of the stereo signal. A time-
domain subband processing of this upmix method has 
recently been proposed in [7].  

Starting from PCA approach, we propose a general 
model that may be applied both to parametric 
representation of multichannel audio signals and upmix 
methods. Moreover, we apply the analysis results to 
propose a new parametric audio coding method based 
on frequency subbands PCA processing. This paper is 
organized as follows. In section 2 the equivalence of 
UDT to BCC scheme in stereo coding context is 

underlined. A general model of multichannel audio 
signals is exposed in section 3 to outline the repartition 
of stereo signals eigenvalues and then derive a 
parametric representation of multichannel audio based 
on PCA. Finally, a new parametric audio coding method 
is exposed in section 4. 

2. BCC AND UDT EQUIVALENCE 

The equivalence of UDT and BCC scheme is considered 
here in a stereo signals coding context. The BCC 
approach [2] is based on the extraction and coding of 
auditory localization cues. Actually, during the auditory 
localization process, the signals arriving at the eardrums 
present inter-aural time and level differences (ITD and 
ILD) also called binaural cues. The human auditory 
system could be then considered as a time-frequency 
analyzer. The spectral resolution of the auditory system 
can be described by a filter bank with filter bandwidths 
that follow the ERB (Equivalent Rectangular 
Bandwidth) scale considered as an approximation of the 
critical bands [3]. Under these auditory perception 
considerations, binaural cue coding scheme realizes the 
extraction and coding of spatial parameters and 
perceptual audio coding of the downmix mono signal 
(in case of stereo input). The downmix signal is 
generated by adding the input channels in the subband 
domain and multiplying the sum with a factor in order 
to preserve signal power (see [2] for more details).  

 

Figure 1: Binaural Cue Coding scheme applied to ste reo. 

Inter-channel time and level differences (ICLD and 
ICTD) are extracted from each analyzed signal block 
and each frequency subband. ICTD cue could also be 
considered as phase difference (ICPD) between the 
analyzed channels as J. Breebaart and al. have suggested 
in [4]. Moreover, inter-channel coherence (ICC) is also 
extracted in order to measure the spatial diffuseness of 
the sound sources. Considering the Short Time Fourier  
Transform (STFT) of stereo channels blocks n, the 
frequency-domain signals FL(n) and FR(n) are divided 
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into nonoverlapping subbands by frequency windowing 
(bins grouping) according to ERB scale (cf. Figure 1). 
The spatial cues expressions can be written as: 
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where * denotes the complex conjugation. The ICC 
parameter is defined as the normalized cross-correlation 
coefficient, derived from the cross-spectrum of the 
stereo channels, after phase alignment of the analyzed 
stereo blocks according to the ICPD.  

Another multichannel audio processing method has 
been introduced by K.M. Short and al. in [5] which 
propose a unified domain representation of multichannel 
audio signals. As for low-complexity BCC scheme, the 
first step of the transformation to the Unified Domain 
consists in the transformation of each channel to the 
frequency domain with Discrete Fourier Transform. 
Then, a complex rotation of the left and right spectra 

( ) ( ) ( )Cj k
C CF k F k eφ=  with channel C = L or R is 

performed for each frequency bin k: 
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The Unified Magnitude and the rotation angle are 
defined according to:  
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Benefit of UDT is that it unifies components of a source 
signal that may be distributed over many channels. The 
UDT rotation angle could be seen as a spatial parameter 
equivalent to the ICLD cue of BCC extracted for each 
frequency bins of the stereo channels spectra. Indeed, 
we can derive from equation (4): 

( ) ( )
( )

tan
R

L

F k
k

F k
σ =  (5 ) 

So we can define a relation between the rotation angle 
of the UD transformation and the ICLD cue of BCC as: 

( ) 10tan 10
ICLD

kσ =  (6 ) 

 

Figure 2: Unified Domain rotation angle (in degrees ) 
function of the ICLD cue (in decibels). 

The UDT could be seen as an equivalent of the BCC 
scheme in a stereo coding context. Actually, the Unified 

Magnitude ( )M k  could be considered as a downmix 

signal of the stereo input. Then, this encoded signal by a 
traditional mono coder could be transmitted plus 

rotation angle ( )kσ  in order to distribute the 

magnitude over the decoded channels. Moreover, inter-

channel phase difference ( ( )
L

kφ - ( )
R

kφ ) of the left 

and right channels could be also transmitted as ICPD for 
BCC scheme. 

In this section, we show how the rotation angle used in 
the UDT could be seen as a function of the ICLD cue 
used in BCC scheme. Moreover, the rotation angles use 
in the UDT correspond to the spatial positions of the 
spectral components while magnitude is related to the 
amplitude of these components [5]. This approach is 
very close to Principal Component Analysis (PCA) 
which is the main process of upmix method in [6]-[7]. 
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Based on PCA approach, next section presents a general 
model for multichannel audio signals which results in a 
parametric representation of multichannel audio. 

3. PARAMETRIC REPRESENTATION OF 
MULTICHANNEL AUDIO BASED ON PCA 

Multichannel audio signals could be considered as 
studio (artificial) or live (natural) recorded signals [8]. 
Live recording involves many different setups and 
microphones types which determine the amount of 
interferences and reverberation on each channel. 
Moreover, because real spaces are decorrelated, 
decorrelated signals yield a sense of realistic ambience. 
Ambience is complex audio content, perceptually 
background and very heterogeneous that could be 
defined as "the sound of the place in which sources are". 
Such audio content includes acoustic effects of 
reverberant volumes and reflective features plus the 
background i.e. the acoustic accumulation of many 
small sources that are not the identified sources of 
interest; for example, audience noise. In studio 
recording, sound sources (instruments) are individually 
recorded and then processed. The processing of 
recorded sound sources consists in applying panning 
functions to the sound sources and then mixing them 
with synthetic reverberation. In order to increase the 
perception of spaciousness, weakly correlated 
reverberation impulse responses are used. Under these 
assumptions, we define a general model for 
multichannel audio signals. 

3.1. Multichannel audio model defined as 
directional sources and ambiences  

The multichannel audio model is defined according to 
next suggestions. We assume the presence of D 
directional sources, easily localisable, panned - 
distributed - into M channels. Moreover, we consider M 
ambience signals i.e. one by channel, which are weakly 
correlated with directional sources. The model of each 
channel is defined as the sum of direct sources, 
weighted according to their spatial perceived positions, 
and one ambience signal. Signal channels following this 
model are strongly correlated with the presence of 
directional sources among several channels whereas 
ambience signals, defined as diffuse sounds, are 
decorrelated from one channel to another. So, the time 

domain multichannel signal ( )1, ,M MS S S= ⋯ can be 

written as: 
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where: [ ]1, ,m M∈ ⋯  and ( ),m dg t  are the panning 
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of the mth channel. By using equation (7) and the vector/ 
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matrix of such a centred ( C ) multichannel signal: 
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where T denotes the matricial transposition. So, the 

multichannel signal covariance matrix 
MSR  is function 

of the directional sources covariance matrix 
DSR  and 

the ambience signals covariance matrix AR .  

Described model assumptions differ from traditional 
blind source separation (BSS) model (model expression 
in [9]) in which sources are convolved with FIR filters 
that model the room transfer function between the mth 
sensor and the dth source. Actually, BSS wishes to 
estimate dry sources from sources mix. Subspace 
methods, such as describe in [10], whish to reduce 
incoherent reflections in rooms or more generally 
reduce incoherent noise present in the observed audio 
mix. In a general audio coding context, the separation of 
dominant sources (even mixed with ambience) from 
background ambiences could be seen as a pre-
processing step before applying a dedicated coding 
scheme. Indeed, the transmission of encoded dominant 
sources already provides a basic audio scene of the 
original input. 

Considering such multichannel audio signals, next 
sections are addressing PCA of stereo signals. From the 
multichannel audio model definition, multichannel 
audio signal could be naturally considered as multiple 
stereo signals. Moreover, the multichannel audio model 
considers time domain signals. Nevertheless, next 
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sections expose a comparison between time-domain and 
frequency-domain PCA of stereo signals. 

3.2. Time domain PCA of stereo signals 

Principal Component Analysis of a stereo signal 
following the previously described model consists in 
diagonalizing its channels covariance matrix. The 
eigenvalue decomposition of the covariance matrix is 
the first step to be accomplished. From the eigenvalues 
repartition, PCA consists in projecting stereo channels 
on the covariance matrix eigenvectors basis. 
Components resulting from PCA are decorrelated with 
an energy level proportional to the estimated 
eigenvalues. Indeed, PCA is known as the optimal 
decorrelation method which also achieves power 
concentration. 

3.2.1. Repartition of stereo signals eigenvalues 

The repartition of stereo signals eigenvalues is an 
indicative measurement of the input components i.e. 
directional sources and ambiences, distribution into the 
output signals resulting from PCA. Stereo signals 
eigenvalues are estimated from the stereo channels 
covariance matrix. Using equations (7) and (8), the 
covariance matrix of stereophonic signals (M=2) 
following the model can be written as: 

( )
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is obtained under the assumption that the directional 
sources are decorrelated: 0   and 0< ,
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Eigenvalues can be then computed from the covariance 
matrix which can be simply written as:  
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So, eigenvalues expressions depend on panning gains, 
variances of directional sources and ambience signals, 
and the correlation coefficient of ambience signals. λ1 
has been arbitrary chosen as the highest eigenvalue. 

The repartition of stereo signals eigenvalues can now be 
analyzed. Indeed, from real speech and music 
(instruments) samples, directional sources have been 
spatialized using conventional amplitude panning 
technique. Moreover, weakly correlated ambient audio 
contents, from originals stereo recordings, have been 
summed with these directional sources. For instance, we 
have generated a synthetic stereo signal (M=2) 
constituted of two directional sources (D=2): one speech 
signal S1 with perceived azimuth varying from left to 
right speaker and a glockenspiel signal S2 with 
perceived azimuth varying from right to left speaker 
(see Figure 3).  

 

Figure 3: synthetic stereo signal constituted of di rectional 
sources (S 1= speech, S 2= glockenspiel), weighted by 

panning gains (g L and g R) and then, summed with weakly 
correlated stereo ambience signal (A 1, A2). 
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Directional sources S1 (glockenspiel) and S2 (speech) are 
weighted by panning gains gL and gR following 
stereophonic law of sines, and then summed with 
weakly correlated ambience signals A1 and A2 coming 
from a real airport background stereo recording.  

1 2 1

1 2 2

L R

R L

L g S g S A

R g S g S A

= × + × +
 = × + × +

 (12 ) 

These signals mixing method gives an a priori 
knowledge of panning gains gm,d, correlation coefficient 

of the ambience signals 
1 2A Aρ  and powers of directional 

sources 2

dSσ  and ambience signals 
1

2
Aσ  and 

2

2
Aσ . 

Original directional sources and ambience signals 
powers are plotted on Figure 4-(a)-(b). Moreover, we 
define the directional sources to ambience ratio (DSAR) 
as the power ratio of the mean power of the directional 
sources and the mean power of the ambience signals. 
Actually, we consider ambience signals with equivalent 

mean power (
1 2

2 2
A Aσ σ≈ ). DSAR can be written as: 
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∑

∑
 (13 ) 

Considering the original signals used to generate the 
stereo signal, the DSAR estimated from the mean power 
of directional sources and ambience signals is equal to 
30 dB. The mean power of directional sources is equal 
to -50 dB (see Figure 4-(a)) and the mean power of 
ambience signals is equal to -80 dB (see Figure 4-(b)). 
Then, eigenvalues of this stereo signal are estimated 
according to equation (11) and plotted on Figure 4-(c)-
(d).  

A comparison of estimated eigenvalues and the a priori 
knowledge of directional sources and ambience signals 
powers is addressed on Figure 4. The estimated highest 
eigenvalue λ1 is equivalent to the power of the dominant 

directional source: ( )( )max 1 2

2 2
1020 log max ,S S SP σ σ= × . 

The small power overhead corresponds to the power of 
the ambience which spatially coincides with this 
dominant source. The smallest eigenvalue λ2 is 
comparable with the mean power of ambience signals:  

1 2

2 2

1020 log
2mean

A A
AP

σ σ +
= ×   

 

, when directional sources 

are spatially coincident (180 < frame number < 280). 
Moreover, λ2 is higher than the mean power of ambience 
signals when directional sources are not spatially 
coincident (frame number < 180 and frame number > 
280). Indeed, λ2 is comparable with the power of 
secondary directional source plus the power of 
ambience which spatially coincides with this secondary 
source. 

 

Figure 4 - (a): original directional sources (S 1=speech and 
S2=glockenspiel) powers. (b): original ambience signa ls 

(stereo airport recording) powers. (c): 1 st eigenvalue 
estimated from the model is slightly higher than th e power 

of the dominant directional source. (d): 2 nd eigenvalue 
estimated from the model is generally higher than t he mean 

power of ambience signals. This power overhead 
corresponds to the power of the secondary direction al 

source. 

We synthesized several stereo signals with the same 
signals (sources and ambience) but with different DSAR 
varying from 5 to 50 dB. Indeed, the ambience signals 
are weighted by a coefficient which results in the 
desired DSAR. Actually, DSAR decreases, with 5 dB 
step, when the mean power of ambience signals 
increases (see Figure 5). Estimated eigenvalues for all 
stereo signals with different DSAR are plotted on Figure 
5 which addresses a comparison between these 
estimated eigenvalues and the power of the dominant 

directional source (
maxSP ) - see Figure 5-(a)) - and the 

mean power of the ambience signals (
meanAP ) - see 

Figure 5-(b). 

(a) 

(c) (d) 

(b) 
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Figure 5: the four draws corresponds to signals pow ers 
which are function of time (frame number) and DSAR (from 
5 to 50 dB). (a): power of the original dominant di rectional 

source – (b): mean power of the originals ambience signals 
– (c): power of the 1 st estimated eigenvalue – (d): power of 

the 2 nd  estimated eigenvalue. 

The estimated highest eigenvalue λ1 is equivalent to the 
power of the dominant directional source plus the power 
of the ambience which spatially coincides with this 
dominant source. Moreover, Figure 4-(c) shows that this 
ambience power increases when the DSAR decreases. 
The smallest eigenvalue λ2 is comparable with the mean 
power of ambience signals plus the power of secondary 
sources. Naturally, lower is the DSAR and more the 
ambience power recovers these secondary sources 
powers. 

Starting from stereo signals eigenvalues repartition, next 
section addresses the PCA transformation based on 
eigenvalues repartition also known as Karhunen-Loève 
Transform (KLT). 

3.2.2. Time domain PCA by rotating 
stereophonic signals 

Time domain PCA consists in projecting the data on the 
basis of stereo signal covariance eigenvectors. The 
computation of eigenvectors matrix V, of dimension 2x2 
(in case of 2 channels signal), is performed according to 
the eigenvalues estimation and the covariance matrix 

2SR  diagonalization: 

2 2

1

2

0
, where 

0
T

S S
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V R V R

B C

λ
λ

   
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  

 (14 ) 

where: [ ], 1;2i iλ ∈  are the stereo signal eigenvalues 

such as λ1 > λ2. Orthogonal eigenvectors allow the use of 
a rotation matrix which can be written as: 

( ) cos sin

sin cos
V

θ θ
θ

θ θ
 

= ℜ =  − 

 (15 ) 

where the rotation angle expression is derived from the 
diagonalization of the covariance matrix (equation 14):   

 1
1 arctan ,   ;

2 2

A

B

λ π πθ θ−   = ∈ −     
 (16 ) 

Moreover, λ1 can be written as a function of the 
covariance matrix elements (A, B and C), see equation 
(10). Then, from equations (16) and (10), another 
expression of θ which only needs the estimation of the 
covariance matrix is: 

2

1 2
arctan ,   ;

2 4 4

B

A C

π πθ θ×   = ∈ −   −   
 (17 ) 

Therefore, PCA transformation also known as KLT is 
achieved by rotating the stereophonic data. From the 
original correlated stereo signal, this rotation results in 
one principal component PC and one remaining signal A 
for each block n (windowed stereo data).  

( )
( )

( )
( )

cos sin

sin cos
n n

n n

L n PC n

R n A n

θ θ
θ θ

    
⋅ =    −    

 (18 ) 

PCA drastically reduce the correlation of the original 
stereo signal i.e. PC and A components are de-
correlated - see the covariance matrix of the rotated 
signals on equation (19): 

( ) ( )

( ) ( )

( ) ( )
2

,

1

2

0

0

T

PC A

T

T

T
S

L L
R

R R

L L

R R

R

θ θ

θ θ

θ θ

λ
λ

       
 = Ε ⋅ ℜ ⋅ ⋅ ℜ      
        

    
= ℜ ⋅ Ε ⋅ ⋅ ℜ    

     

= ℜ ⋅ ⋅ ℜ

 
=  
 

 (19 ) 

(a) (b) 

(d) (c) 
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Moreover, PCA achieves an energy concentration to the 
principal component according to the value of λ1. From 
the eigenvalues repartition analysis, the remaining 
signal could be denoted as ambience signal with low 
energy according to the value of λ2. 

The overlap-and-add (OLA) method is used to generate 
the final signals PC and A. As a result, the estimation of 
θ is the main operation to realize the PCA of any stereo 
signal. Besides, this estimation should provide a 
constant sign of the rotation matrix. Indeed, if rotation 
matrices of adjacent blocks have opposite sign then the 
OLA synthesis would results in losses of information. 
Then, to achieve a robust analysis /synthesis scheme, 
the rotation angle should belong to the interval [0;π/2] 
and then provide a constant positive sign of the rotation 
matrices. The expressions (16) and (17) provide 
estimations of the rotation angle which could be 
negative. These negatives values of θ should be avoided 
without modifying its the real physical sense i.e. the 
dominant source azimuth in the stereo image [-π/6;π/6]. 
Actually if we consider an estimation of the rotation 
angle belonging to [0;π/2], this interval may be put in 
correspondence with the real stereo image interval. 
Then, a dominant source with a real azimuth equal to -
30° (respectively +30°) should results in rotation angle 
estimation equal to 0° and then provide PC(n) = L(n) 
(respectively +90° and then provide PC(n) = R(n)). 

Several modifications of the estimated rotation angle are 
possible to avoid losses of information during the OLA 
synthesis. The first one, may be the most natural, could 
be written as: 

[ ]
,        if 0

,      i 1;2
,  else

2

i i

i

i

θ θ
θ πθ

≥
= ∈

+

ɶ  (20 ) 

Therefore, iθ ∈ɶ [0; π/2] and 1 2θ θ=ɶ ɶ . But this operation 

does not conserve the real azimuth of the dominant 
source. Indeed, a dominant source with a real azimuth 
equal to 29° (on the right of the stereo image [-
30°;+30°]) should be equivalent to an ideal estimate of 
the rotation angle equal to 88.5°. Actually, such a stereo 
signal with weakly correlated ambiences summed with 
this one-sided (right side) dominant source could have 
close to zero and also negative cross-correlation (B). 
Then, equation (16) could provide an estimated rotation 
angle θ1 equal to +/-88.5° depending on the sign of the 

channels cross-correlation. Indeed, (1 Aλ − ) in 

equation (16) is always positive. So, close to zero and 
negative cross-correlation provides estimated value of 
θ1 equal to -88.5°. The corrected estimation is then 

1 1.5θ = + °ɶ  which does not yield a correct estimation of 

the rotation angle. If we consider the equation (17) with 
the same example i.e. with a close to zero and negative 
cross-correlation (B) and the negative difference (A-C) – 
the dominant source is one-sided on the right channel 
then: A<C – the estimated θ2 is equal to +1.5° and then 
will not be corrected. 

This analysis shows how negative cross-correlation can 
alter the estimated values of θ. Another approach 
consists in limiting the cross-correlation values to a 
minimum equal to zero i.e. negatives values of cross-
correlation are set to zero. Unfortunately, this leads to 
only use the equation (17) which would provide some 
false estimated values of θ2 equal to 0° although the 
dominant source could be located at many azimuths 
corresponding to the difference A-C. 

As a result, the only solution which satisfies our goal is 
to consider the absolute value of the cross-correlation. 
Then, the rotation angle estimated from equation (16) 
i.e. θ1, could be directly put in correspondence with real 
azimuth of the dominant source. The rotation angle 
estimated from equation (17) i.e. θ2, needs to correct the 
estimated negatives values (when A<C) even with 
absolute values of cross-correlation. Then the estimated 

rotation angle expressions of 1 2
ˆ ˆθ θ=  can be 

summarized as: 

1
1 1

2 2

ˆ arctan ,                                    

21
arctan ,         if  0

2
ˆ ,   

21
arctan ,  else

 0

2 2

;
2

0;
2

B
A C

A C

B

A C

A

B

λ πθ θ

πθθ
π

  ×
− ≥  −

  −  = ∈         



  ∈  

  = 
 × +  −  




   (21 ) 

From the stereo signal exposed at section 3.2.1 (see 
Figures 3 and 4), the estimated rotation angles referring 
to equations (20) and (21) are plotted on Figure 6. 
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Figure 6: estimated rotation angles from sine windo wed 
and 50% overlap blocks analysis. The plotted solid line 

corresponds to the estimate 
1 2θ θ θ= =ɶ ɶ ɶ  and the plotted 

dotted line corresponds to the estimate 
1 2

ˆ ˆ ˆθ θ θ= = . 

The rotation angle estimated from the original 
covariance computed for each block has values 
corresponding to the azimuth of the dominant 
directional source for each block. Indeed, the first 

values of θ̂  are close to 90° which means that the 
directional source located on the right of the stereo 
image (i.e. the glockenspiel) is considered as the 
dominant source. This observation is confirmed by the 
originals directional sources powers on Figure 4-(a). 

The next values of the estimated θ̂  are close to 0° 
(30<Frame Number<50) which means that the dominant 
source is located on the left of the stereo image as it is 
confirmed by the Figure 4-(a) i.e. the speech source at 
the left of the stereo image as a higher power than the 
glockenspiel source for these frames. Moreover, when 
the directional sources spatially coincides (200<Frame 
Number<220) at the middle of the stereo image, the 

estimated rotation angle θ̂  is naturally close to 45°. The 

first values of the estimated rotation angle θɶ  are 
discontinued and rock between the minimum and the 
maximum values of the interval [0;90]° as the previous 
analysis has predicted it. Besides, the same observation 
can be addressed for the last analyzed blocks (Frame 
Number > 370). Indeed, from these analyzed blocks (70 
> Frame Number > 370), negative cross-correlation 
occurs when the directional sources are located at 
extremes azimuths. 

Finally, a robust and effective estimation of the rotation 
angle needed to achieve PCA/KLT is expressed by the 
equation (21) which permits an estimation only based 
on the covariance matrix elements (

2̂θ  expression). 

Then, dominant directional source moving in the stereo 
image [-30,30]° can be located by an estimated rotation 
angle varying between [0,90]°. 

Actually, PCA of stereo signals following the time-
domain model previously presented could be applied to 
frequency-domain signals. Next section presents 
subbands eigenvalues repartition and corresponding 
PCA of stereo signals transformed in the frequency 
domain. Finally, a comparison of time-domain and 
frequency-domain PCA is given. 

3.3. Frequency subbands vs. time domain 
PCA of stereo signals 

The eigenvalues of stereo signals may also be estimated 
in the frequency domain. Moreover, if we consider band 
limited signals in the frequency domain, the eigenvalues 
estimation will provide several estimates i.e. two 
eigenvalues per subband, and then provide a thinner 
analysis. 

3.3.1. Frequency subbands separation 

The frequency transformation applied to stereo channels 
is the short time Fourier transform (STFT). The 
parameters of the STFT used are a sine window of 
length equal to N=1024 samples, the transform size is 
also equal to K=1024 frequency bins (no zero-padding) 
and the frames overlap is 50%. Then, a Nb=20 subbands 
rectangular frequency windowing, following the ERB 
scale, is applied to the complex spectra 

( ) ( ) ( ) ( ) ( ) ( )C nj k

C n C nF k F k e
φ= , with channel block C(n) 

and k is the frequency index such as: k≤ fs/2, where fs is 
the sampling frequency. Then, this process results in Nb 
frequency subband (with kb frequency bin start index) 

spectra ( ) ( )1, ,..., 1b bC n bF k k + −  for each frame n.  

Next section addresses the benefit of frequency 
subbands eigenvalues estimation vs. time domain 
eigenvalues estimation. More precisely, we argue this 
benefit only if no spatially coincident directional 
sources have different frequency supports. 

3.3.2. Frequency subbands eigenvalues 
repartition 

From the same stereo signal used in section 3.2.1, a 
subbands analysis of its directional sources and 
ambience signals has been achieved (see Figure 7).  
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Figure 7: stereo signal eigenvalues estimated from 
directional sources and ambience signals frequency 

subbands spectra. The covariance matrix is estimate d for 
each frame n and each subband b. 

The covariance matrix of the subband spectra is 
estimated according to equation (9). More precisely, 
there is an equivalence of centred signals powers in time 
and frequency domains which can be written as: 

( ) ( ) ( )
1 1 2

2 2
,

b

c c

b

k k

X X n
k k

n b F k
NK

σ
+= −

=

= ⋅ ∑  (22 ) 

where 
( )cX n

F  is a the STFT of block signal Xc(n) i.e. a 

vector of size K/2+1 considering the spectral hermitian 
symmetry. The cross-correlation of centered ambience 
signals is estimated from the centred ambience subband 
cross-spectrum, with frequency index k, as: 

( ) ( ) ( ) ( ) ( )
1

1 2 1 2

1
*1 2

,
b

c c c c

b

k k

A A A n A n
k k

n b F k F k
N K

ρ
+= −

=

 
= ×ℜ ⋅ ⋅ 

 
∑  (23 ) 

Then, the estimated covariance matrix from the original 
centered signals subband spectra (

( )1
cS n

F , 
( )2

cS n
F , 

( )1
cA n

F , 

( )2
cA n

F ) is used to estimate the subband eigenvalues 

according to equation (11) – see Figure 7. 

The eigenvalues estimated from the temporal analysis 
are then compared with the sum of eigenvalues 

estimated from the subbands analysis (see Figure 7): 

( ) [ ]
1

, ,   1;2
bN

i
b

n b iλ
=

∈∑ . 

The comparison between the eigenvalues estimated in 
time and frequency domains is addressed at Figure 8. 
The lowest eigenvalue estimated from subbands 
frequency analysis does also corresponds to secondary 
directional sources plus mean ambience signals power 
as the lowest eigenvalue estimated from time domain 
analysis (see Figure 8-(b)). Moreover, some directional 
sources considered as secondary sources with the time 
domain analysis have been considered as dominant 
directional sources with the frequency subbands 
analysis. Indeed, the subband analysis provides a 
thinner analysis which results in one dominant source 
per subband. Then, when dominant and secondary 
(considering time domain approach) sources have 
different frequency support, the secondary source can be 
considered as dominant in the considered subband. 
Although the analysis complexity has increased, 
compared to time domain analysis, the lowest 
eigenvalue has a power much closer to the original 
ambience signals mean power. 

 

Figure 8: (a): 1 st eigenvalue estimated from temporal or 
subbands frequency analysis are equivalents. (b): 2 nd  

eigenvalue estimated from subbands frequency analys is is 
closer to the mean power of ambience signals than t he 

eigenvalue estimated from time domain analysis. 

The estimated eigenvalues from subbands covariance 
matrix of stereo signals following the model could be 
also estimated directly from any stereo signal. Thus, the 
subbands covariance matrix of the stereo signal is 
estimated without any knowledge of the directional 
sources and ambience signals. 

(a) 

(b) 
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3.3.3. Subbands PCA of stereophonic signals 

As we expose subbands eigenvalues estimation in 
section 3.3.2, we can derive PCA of stereo signals 
transformed in the frequency domain. Therefore, 
frequency PCA processing is based on the covariance 
matrix computed for each frequency subband: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

1

1

1

1 2

1
*

1 2

, ,
, ,  with:

, ,

2
,

2
,

2
,

b

c
L

b

b

c c
L R

b

b

c
R

b

S

k k

X n
k k

k k

X n X n
k k

k k

X n
k k

A n b B n b
R n b

B n b C n b

A n b F k
NK

B n b F k F k
NK

C n b F k
NK

+

+

+

= −

=

= −

=

= −

=

 
=  
 


= ⋅


   = ×ℜ ⋅   

 

 = ⋅


∑

∑

∑

  (24 ) 

The channels auto-covariance (A and C) correspond to 
the mean power spectral density of the subband spectra. 
The channels cross-covariance (B) is estimated from the 
cross-spectrum of the stereo channels. 

 

Figure 9 : frequency subbands PCA applied to a 
stereophonic signal (L, R). PCA is achieved by rota ting the 
stereo subbands and results in one principal compon ent 

PC and one ambience signal A. 

As for time domain PCA, the rotation angle θ̂  is 
computed for each subband according to equation (21) 
where all quantities are estimated in the frequency 
domain (per subband). From the stereo signal exposed 
at section 3.2.1 (see Figure 3 and 4), the estimated 
rotation angles (in degrees) are plotted on Figure 10 
which axes are time (x-axis) and frequency (y-axis). 

 

Figure 10: rotation angles (in degrees) estimated f rom the 
stereo signals defined at section 3.2.1. The glocke nspiel is 

considered as the dominant directional source only for 
some subbands comparing to the time domain estimati on 

of the rotation angle (see Figure 6). 

So, one dominant directional source is located by the 
estimated rotation angles for each subband. Then, for 
each analyzed signal block, as much dominant sources 
than subbands number are located by the estimated 
rotation angles. These subbands rotation angles are then 
used to rotate the subbands original input stereo data. 
Subband PCA processing results in two frequency 
components for each subband: the principal component 
PC(n,b) and the ambience component A(n,b). Time 
domain band limited signals are then obtained with 
inverse short time Fourier transform (STFT-1) applied to 
these frequency subband components (see Figure 9). 
Finally, time domain full band signals PC and A result 
from the sum of all corresponding band limited signals. 
This sum is achieved via overlap-add method. 

Therefore, a frequency subbands PCA processing 
results in the extraction of one dominant direct source 
per subband against only one dominant direct source 
with a temporal processing. We can now conduct the 
comparison between time and frequency domains PCA 
according to the energy of the transformed signals PC 
and A. A relevant measurement of the energy 
compaction into the principal component is achieved by 
computing the Principal Component to Ambience 
energy Ratio (PCAR). From eleven miscellaneous 
stereo signals with sampling frequency equal to 44100 
or 48000 Hz, time-domain and subbands frequency 
PCA has been achieved. Then, PCAR has been 
computed from the rotated signals of the eleven input 
signals. The comparison is addressed on Figure 11. 
Subbands frequency PCA results in a better energy 
concentration than time-domain PCA does. From eleven 
stereo signals rotated in time and frequency domains, 
the mean PCAR difference is about 2 dB. 
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Figure 11: mean PCAR over analyzed frames of 11 pri ncipal 
components and ambiences resulting from time-domain  

PCA and subbands frequency PCA of the original ster eos.  

We show how a frequency PCA processing, based on 
the covariance matrix computed for each frequency 
subband, could improve the results obtained in the time 
domain in terms energy compaction into the rotated 
signals. PCA features can then naturally be used in a 
data compression context and also for upmix stereo 
signals to multichannel audio (as described in [6]-[7]). 
Considering correlated audio inputs, the output signals 
of frequency subbands PCA constitute a compact 
representation of the original input. The principal 
component should be coded and transmitted in order to 
recover the main information of the original input. 
Then, to achieve the inverse transformation, the 
ambience component should be transmitted with a 
bitrate as high as the audio quality level is desired.  

4. PARAMETRIC STEREO CODING BASED 
ON PCA 

Starting from the analysis made in section 3, it is 
possible to encode a stereo signal with frequency 
subbands PCA pre-processing. This method has already 
been proposed in [11] where PCA is obtained by 
rotating the subbands of the stereo signal. PCA is used 
as a power concentration processing such as Mid/Side 
coding scheme which encode the sum and difference 
signals of stereo channels. Even if PCA features, such 
as power concentration and full decorrelation, are 
required for optimal bite rate reduction, traditional 
encoding of the transformed signals does not yield 
significant coding gain (see [11]).  

In order to provide a low bit rate audio coding method 
compatible with most networks, a parametric coding of 
the ambience signal(s) is achieved.  

The coding scheme consists in a traditional monophonic 
coding of the principal component PC and a parametric 
coding method of the ambience signal A (cf. Figure 12). 

 

Figure 12: parametric coding of stereo signals base d on 
subbands frequency PCA processing. 

Subbands PCA processing is achieved as described in 
section 3.3. Moreover, the frequency subbands 
ambience signal resulting from subbands PCA 
processing is analyzed. This frequency analysis allows 
the extraction of energy parameters referring to the 
ambience subbands energies EA(n,b). These energy levels 
are extracted for each frame n and each subband b and 
then quantized and transmitted. Moreover, considering 
the fact that the ambience signal has weak energy level, 
the difference between the mean energy of the ambience 
signal block and the energy subbands values should be 
even weaker and then quantized.  

So, the proposed coding method can be summarized as a 
monophonic coding of the principal component and the 
quantification and transmission of the following 
parameters: 

• PCA rotation angles θ(n,b) 

• desired subbands energy EA(n,b) (or the difference with 
the mean energy level) of the ambience signal 
resulting from PCA 

The decoding scheme is based on the generation of an 
ambience signal A', from the decoded signal PC' and the 
dequantized parameters. Therefore, the inverse PCA can 
then synthesize a stereo signal perceptually as close as 
possible from the original stereo. 

Due to the PCA property of decorrelation, the decoder 
should generate an ambience signal weakly correlated to 
the decoded principal component. However, the 
frequency synthesis of subbands signal A' from the 
principal component and the energy parameters EQ

A(n,b) 
only provide to A' its spectral envelope. To achieve 
weakly correlation between PC' and A', we propose the 
use of random phase all-pass filters as described in [12]. 
More precisely, we realize a frequency filtering (filter H 
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on Figure 13) of subbands signal A'. So, the decoder can 
then realize the inverse subbands PCA from the signals 
PC' and A'H and the dequantized rotation angles θ

Q(n,b) 
(see Figure 13). Afterwards, inverse STFT of the 
subbands signals obtained from inverse subbands PCA 
are summed to generate the stereo signal (L', R'). 

 

Figure 13: parametric decoding of stereo signals ba sed on 
inverse subbands PCA processing. 

The main advantage of this parametric stereo coding 
method is the fact that the decoding process is strictly 
the inverse transformation of the encoding process.  

5. CONCLUSION 

We have argued that the UDT could be seen as an 
equivalent of BCC scheme in a stereo coding context. 
Moreover, a deeper analysis could results in same 
conclusions considering coding of multichannel audio 
signals. We have then introduced a multichannel audio 
model defined as directional sources and ambiences. 
The eigenvalues analysis of stereo signals has showed 
that PCA of stereo signals deliver two decorrelated 
components with energy level corresponding to the 
eigenvalues repartition. Moreover, frequency subbands 
PCA yields more efficient power concentration than 
classical time domain PCA. This frequency subbands 
analysis scheme leads the possibility to realize audio 
coding at low data rate. Indeed, a parametric coding 
method of stereo signals based on PCA is exposed. Next 
investigations are directed towards the quantization of 
parameters which will deliver resulting bitrates of the 
stereo codec. Then, listening tests will determine the 
interest of such a coding method. Finally, PCA based 
extensions for parametric coding of multichannel audio 
signals need to be investigate. 
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