Storage operators and forall-positive types of system TTR

Karim Nour

To cite this version:

Karim Nour. Storage operators and forall-positive types of system TTR. Mathematical Logic Quarterly, 1996, 42, pp.349-368. hal-00381043

HAL Id: hal-00381043

https://hal.science/hal-00381043

Submitted on 5 May 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STORAGE OPERATORS and \forall-POSITIVE TYPES in $T T R$ TYPE SYSTEM

Karim NOUR ${ }^{1}$

LAMA - Equipe de Logique, Université de Chambéry - 73376 Le Bourget du Lac cedex 2

Abstract

In 1990, J.L. Krivine introduced the notion of storage operator to simulate "call by value" in the "call by name" strategy. J.L. Krivine has shown that, using Gődel translation of classical into intuitionitic logic, we can find a simple type for the storage operators in $A F 2$ type system. This paper studies the \forall-positive types (the universal second order quantifier appears positively in these types), and the Gődel transformations (a generalization of classical Gődel translation) of $T T R$ type system. We generalize, by using syntaxical methods, the J.L. Krivine's Theorem about these types and for these transformations. We give a proof of this result in the case of the type of recursive integers.

Mathematics Subject Classification : 03B40, 68Q60
Keywords : Storage operator, Head normal form, Head reduction, AF2 type system, Least fixed point, $T T R$ type system, Arrow type, Without-arrow type, \forall-positive type, \perp-type, Gődel transformation.

1 Introduction

The strategy of left reduction (iteration of head reduction denoted by \succ) has the following advantages :

- It has good mathematical properties stated by the normalisation Theorem : if a λ-term is normalizable, then we obtain the normal form by left reduction.
- It seems more economic since we compute a λ-term only when we need it.

Now, a drawback of the strategy of left reduction (call by name) is the fact that the argument of a function is computed as many times as it is used. The purpose of storage operators is precisely to correct this drawback.

Let F be a λ-term (a function), and \underline{N} the set of normal Church integers. During the computation, by left reduction, of $(F) \theta_{n}$ (where $\theta_{n} \simeq_{\beta} \underline{n}$), θ_{n} may be computed several times (as many times as F uses it). We would like to transform $(F) \theta_{n}$ to $(F) \underline{n}$. We also want this transformation depends only on θ_{n} (and not F). In other words we look for some closed λ-terms T with the following properties :

[^0]- For every $F, n \in \mathbb{N}$, and $\theta_{n} \simeq_{\beta} \underline{n}$, we have $(T) \theta_{n} F \succ(F) \underline{n}$;
- The computation time of the head reduction $(T) \theta_{n} F \succ(F) \underline{n}$ depends only on θ_{n}.

Therefore the first definition : A closed λ-term T is called storage operator for \underline{N} if and only if for every $n \in \mathbb{N}$, and for every $\theta_{n} \simeq_{\beta} \underline{n},(T) \theta_{n} f \succ(f) \underline{n}$ (where f is a new variable).
It is clear that a storage operator satisfies the required properties. Indeed,

- Since we have $(T) \theta_{n} f \succ(f) \underline{n}$, then the variable f never comes in head position during the reduction, and we may then replace f by any λ-term.
- The computation time of the head reduction $(T) \theta_{n} F \succ(F) \underline{n}$ depends only on θ_{n}.

We showed (see [12]) that it is not possible to get the normal form of θ_{n}. We then change the definition : A closed λ-term T is called storage operator for \underline{N} if and only if for every $n \in \mathbb{N}$, there is a closed λ-term $\tau_{n} \simeq_{\beta} \underline{n}$ (for example $\tau_{n}=(\underline{s})^{n} \underline{n}$, where \underline{s} is a λ-term for the successor), such that for every $\theta_{n} \simeq_{\beta} \underline{n},(T) \theta_{n} f \succ(f) \tau_{n}$ (where f is a new variable).
If we take $T_{1}=\lambda n((n) \lambda x \lambda y(x) \lambda z(y)(\underline{s}) z) \lambda f(f) \underline{0}$, and $T_{2}=\lambda n \lambda f(((n) \lambda x \lambda y(x)(\underline{s}) y) f) \underline{0}$, then it is easy to check that : for every $\theta_{n} \simeq_{\beta} \underline{n},\left(T_{1}\right) \theta_{n} f \succ(f)(\underline{s})^{n} \underline{0}$, and $\left(T_{2}\right) \theta_{n} f \succ(f)(\underline{s})^{n} \underline{n}$. Therefore T_{1} and T_{2} are storage operators for \underline{N}.

The $A F 2$ type system is a way of interpreting the proof rules for the second order intuitionistic logic plus equational reasoning as construction rules for terms. In this system we have the possibility to define the data types, the representation in λ-calculus being automaticaly extracted from the logical definition of the data type. At the logical level the data type are defined by second order formulas expressing the usual iterative definition of the corresponding algebras of terms and the data receive the corresponding iterative definition in λ-calulus. For example, the type of integers is the formula : $N[x]=\forall X\{\forall y[X(y) \rightarrow X(s y)] \rightarrow[X(0) \rightarrow X(x)]\}(X$ is a unary predicate variable, 0 is a constant symbol for zero, and s is a unary function symbol for successor).
If we try to type a storage operator T in $A F 2$ type system, we naturally find the type $\forall x\{N[x] \rightarrow$ $[(N[x] \rightarrow O) \rightarrow O]\}$ (where O is a particular 0-ary predicate symbol which represents an arbitrary type). Indeed, if $\vdash_{A F 2} \tau_{n}: N\left[s^{n}(0)\right]$, and f is of type $N\left[s^{n}(0)\right] \rightarrow O$, then $f:$ $N\left[s^{n}(0)\right] \rightarrow O \vdash_{A F 2}(f) \tau_{n}: O$. It is natural to have $(T) \theta_{n} f$ of type O. If $\vdash_{A F 2} \theta_{n}: N\left[s^{n}(0)\right]$, then the type for T must be $\forall x\{N[x] \rightarrow[(N[x] \rightarrow O) \rightarrow O]\}$.
It is easy to check that $\vdash_{A F 2} T_{1}, T_{2}: \forall x\{N[x] \rightarrow[(N[x] \rightarrow O) \rightarrow O]\}$.
The type $\forall x\{N[x] \rightarrow[(N[x] \rightarrow O) \rightarrow O]\}$ does not characterize the storage operators. Indeed, if we take $T=\lambda n \lambda f(f) n$, we obtain :

- $n: N[x], f: N[x] \rightarrow O \vdash_{A F 2}(f) n: O$, then, $\vdash_{A F 2} T: \forall x\{N[x] \rightarrow[(N[x] \rightarrow O) \rightarrow O]\}$.
- For every $\theta_{n} \simeq_{\beta} \underline{n},(T) \theta_{n} f \succ(f) \theta_{n}$, therefore T is not a storage operator for \underline{N}.

This comes from the fact that the type $\forall x\{N[x] \rightarrow[(N[x] \rightarrow O) \rightarrow O]\}$ does not take into account the independance of τ_{n} with θ_{n}. To solve this problem, we must prevent the use of the first $N[x]$ in $\forall x\{N[x] \rightarrow[(N[x] \rightarrow O) \rightarrow O]\}$ as well as his subtypes to prove the second. Therefore, we will replace the first $N[x]$ by a new type $N^{*}[x]$ with the following properties :

- $\vdash_{A F 2} \underline{n}: N^{*}\left[s^{n}(0)\right]$ (for example, take $N^{*}[x]=\forall X\{\forall y[F(X, y) \rightarrow F(X, s y)] \rightarrow[F(X, 0) \rightarrow$ $F(X, x)]\})$;
- If $\nu: N^{*}[x], x_{i}: \forall y[F(G, y) \rightarrow F(G, s y)], y_{j}: F(H, a) \vdash_{A F 2} t: N\left[s^{n}(0)\right]$, then $\vdash_{A F 2} t^{\prime}:$ $N\left[s^{n}(0)\right]$, where t^{\prime} is the normal form of t;
- There is a closed λ-term T, such that $\vdash_{A F 2} T: \forall x\left\{N^{*}[x] \rightarrow[(N[x] \rightarrow O) \rightarrow O]\right\}$.

A simple solution for the second property is to take a formula $F(X, a)$ ending with a new constant symbol. Indeed, since $N[x]$ does not contain this symbol, we cannot use the variables ν, x_{i}, y_{j} in the typing of t^{\prime}. We suggest the following proposition:

$$
N^{*}[x]=\forall X\{\forall y[(X(y) \rightarrow O) \rightarrow(X(s y) \rightarrow O)] \rightarrow[(X(0) \rightarrow O) \rightarrow(X(x) \rightarrow O)]\}
$$

It is easy to chech that $\vdash_{A F 2} T_{1}, T_{2}: \forall x\left\{N^{*}[x] \rightarrow[(N[x] \rightarrow O) \rightarrow O]\right\}$ (see [6] and [12]).
For each formula F of $A F 2$, we indicate by F^{*} the formula obtained by putting \neg in front of each atomic formulas of $F\left(F^{*}\right.$ is called the Gődel translation of F).
J.L. Krivine has shown that the type $\forall x\left\{N^{*}[x] \rightarrow \neg \neg N[x]\right\}$ characterize the storage operators for \underline{N} (see [6]). But the λ-term τ_{n} obtained may contain variables substituted by λ-terms u_{1}, \ldots, u_{m} depending on θ_{n}. Since the λ-term τ_{n} is $\beta \eta$-equivalent to \underline{n}, therefore, the left reduction of the $\tau_{n}\left[u_{1} / x_{1}, \ldots, u_{m} / x_{m}\right]$ is equivalent to the left reduction of τ_{n} and the λ-terms u_{1}, \ldots, u_{m} will therefore never be evaluated during the reduction.
Taking into account the above remarks, we modify again the definition : A closed λ-term T is called a storage operator for \underline{N} if and only if for every $n \in \mathbb{N}$, there is a λ-term $\tau_{n} \simeq_{\beta} \underline{n}$, such that for every $\theta_{n} \simeq_{\beta} \underline{n}$, there is a substitution σ, such that $(T) \theta_{n} f \succ(f) \sigma\left(\tau_{n}\right)$ (where f is a new variable).

The $A F 2$ type system is satisfactory from an extensional point of view : one can construct programs for all the functions whose termination is provable in the second order Peano arithmetic. But from an intensional point of view the situation is very different : we cannot always obtain the simple (in term of time complexity, for instance) programs we need. For example we cannot find a λ-term of type $\forall x \forall y\{N[x], N[y] \rightarrow N[\min (x, y)]\}$ (min is a binary function symbol defined by equations) in $A F 2$ type system that computes the minimum of two Church integers in time $O(\min)^{3}$

[^1]The $T T R$ type system is an extension of $A F 2$ based on recursive definitions of types, which is intented to solve the basic problems of efficiency mentioned before. In $T T R$ we have a logical operator μ of least fixed point. If A is a formula, C an n-ary predicate symbol which appears and occurs positively in A, x_{1}, \ldots, x_{n} first order variables, and t_{1}, \ldots, t_{n} terms, then $\mu C x_{1} \ldots x_{n} A<t_{1}, . ., t_{n}>$ is a formula called the least fixed point of A in C calculated over the terms t_{1}, \ldots, t_{n}. The interded logical meaning of the formula $\mu C x_{1} \ldots x_{n} A<t_{1}, . ., t_{n}>$ is $K\left(t_{1}, \ldots, t_{n}\right)$, where K is the least X, such that $X\left(x_{1}, \ldots, x_{n}\right) \longleftrightarrow A$. TTR allows to define the multisorted term algebras as least fixed points. For example the type of recursive integers is the formula : $N^{r}[x]=\mu C z[\forall X\{\forall y[C(y) \rightarrow X(s y)] \rightarrow[X(0) \rightarrow X(z)]\}]<x>(X$ is a unary predicate variable, 0 is a constant symbol for zero, and s is a unary function symbol for successor).

In this paper we study the types D of $T T R$, and the transformations ${ }^{*}$, for which we have the following result : if $\vdash_{T T R} T: D^{*} \rightarrow \neg \neg D$, then for every λ-term t with $\vdash_{T T R} t: D$, there are λ-terms τ_{t} and τ_{t}^{\prime} such that $\tau_{t} \simeq_{\beta} \tau_{t}^{\prime}, \vdash_{T T R} \tau_{t}^{\prime}: D$, and for every $\theta_{t} \simeq_{\beta} t$, there is a substitution σ, such that $(T) \theta_{t} f \succ(f) \sigma\left(\tau_{t}\right)$ (where f is a new variable).
We prove 4^{4} that, to obtain this result, it suffies to assume that :

- The universal second order quantifier appears positively in D (\forall-positive type) 5 .
- The transformation * satisfies the following properties :
- If $A=C\left(t_{1}, \ldots, t_{n}\right)$, then $A^{*}=A$;
- If $A=X\left(t_{1}, \ldots, t_{n}\right)$, then $A^{*}=F_{X}\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]<X_{1}, \ldots, X_{r}>$ where F_{X} is a formula ending with \perp and having $x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{r}$ as free variables ;
- $(A \rightarrow B)^{*}=A^{*} \rightarrow B^{*} ;$
- $(\forall x A)^{*}=\forall x A^{*}$.
- $(\forall X A)^{*}=\forall X_{1} \ldots X_{r} A^{*}$.
- $\left(\mu C x_{1} \ldots x_{n} A<t_{1}, . ., t_{n}>\right)^{*}=\mu C x_{1} \ldots x_{n} A^{*}<t_{1}, . ., t_{n}>$.

We give the proof of this result in the case of the type of recurcive integers.

2 Basic notions of pure λ-calculus

Our notation is standard (see [1] and [5]).
We denote by Λ the set of terms of pure λ-calculus, also called λ-terms.
Let $t, u, u_{1}, \ldots, u_{n} \in \Lambda$, the application of t to u is denoted by $(t) u$. In the same way we write

[^2]$(t) u_{1} \ldots u_{n}$ instead of $\left(\ldots\left((t) u_{1}\right) \ldots\right) u_{n}$.
The β-reduction (resp. β-equivalence) is denoted by $t \rightarrow_{\beta} u$ (resp. $t \simeq_{\beta} u$).
The set of free variables of a λ-term t is denoted by $F v(t)$.
The notation $t\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right]$ represents the result of the simultaneous substitution of λ-terms u_{1}, \ldots, u_{n} to the free variables x_{1}, \ldots, x_{n} of t (after a suitable renaming of the bounded variables of t).
With each normal λ-term, we associate a set of λ-terms $S T E(t)$ by induction :
if $t=\lambda x_{1} \ldots \lambda x_{n}(y) t_{1} \ldots t_{m}$, then $S T E(t)=\{t\} \cup \bigcup_{1 \leq i \leq m} S T E\left(t_{i}\right)$.
Let us recall that a λ-term t either has a head redex [i.e. $t=\lambda x_{1} \ldots \lambda x_{n}(\lambda x u) v v_{1} \ldots v_{m}$, the head redex being $(\lambda x u) v$], or is in head normal form [i.e. $t=\lambda x_{1} \ldots \lambda x_{n}(x) v v_{1} \ldots v_{m}$].
The notation $t \succ t^{\prime}$ means that t^{\prime} is obtained from t by some head reductions, and we denote by $n\left(t, t^{\prime}\right)$, the number of steps to go from t to t^{\prime}.
A λ-term t is said to be solvable if and only if the head reduction of t terminates.
We define an equivalence relation \sim on Λ by : $u \sim v$ if and only if there is a t, such that $u \succ t$, and $v \succ t$. In particular, if v is in head normal form, then $u \sim v$ means that v is the head normal form of u.

Theorem 2.1 ([6]). If $t \succ t^{\prime}$, then for every $u_{1}, \ldots, u_{n} \in \Lambda$:

1) there is a $v \in \Lambda$, such that $(t) u_{1} \ldots u_{n} \succ v,\left(t^{\prime}\right) u_{1} \ldots u_{n} \succ v$, and $n\left((t) u_{1} \ldots u_{n}, v\right)=n\left(\left(t^{\prime}\right) u_{1} \ldots u_{n}, v\right)+$ $n\left(t, t^{\prime}\right)$.
2) $t\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right] \succ t^{\prime}\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right]$, and $n\left(t\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right], t^{\prime}\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right]\right)=$ $n\left(t, t^{\prime}\right)$.

Remark. Theorem 2.1 shows that to make the head reduction of $(t) u_{1} \ldots u_{n}$ (resp. $\left.t\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right]\right)$, it is equivalent (same result, and same number of steps) to make some steps in the head reduction of t, and then make the head reduction of $\left(t^{\prime}\right) u_{1} \ldots u_{n}$ (resp. $t^{\prime}\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right]$).

3 Basic notions of typed λ-calculus

3.1 The $A F 2$ type system

The types will be formulas of second order predicate logic over a given language.
The logical symbols are \perp (for absurd), \rightarrow and \forall (and no other ones).
There are individual variables : x, y, \ldots (also called first order variables) and n-ary predicate variables $(n=0,1, \ldots): X, Y, \ldots$ (also called second order variables).
The terms and the formulas are up in the usual way.
The formula $F_{1} \rightarrow\left(F_{2} \rightarrow\left(\ldots \rightarrow\left(F_{n} \rightarrow G\right) \ldots\right)\right)$ is denoted by $F_{1}, F_{2}, \ldots, F_{n} \rightarrow G$, and $F \rightarrow \perp$ is denoted by $\neg F$. The formula $\forall v_{1} \ldots \forall v_{n} F$ is denoted by $\forall \mathbf{v} F$, and the sentence " \mathbf{v} is not free in A " means that for all $1 \leq i \leq n, v_{i}$ is not free in A.

If X is a unary predicate variable, t and t^{\prime} two terms, then the formula $\forall X\left[X t \rightarrow X t^{\prime}\right]$ is denoted by $t=t^{\prime}$, and is said to be equation. A particular case of $t=t^{\prime}$ is a formula of the forme $t\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right]=t^{\prime}\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right]$ or $t^{\prime}\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right]=t\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right]$, u_{1}, \ldots, u_{n} being terms of the language.
After, we denote by \mathbf{E} a system of function equations.
A context Γ is a set of the form $x_{1}: A_{1}, \ldots, x_{n}: A_{n}$ where x_{1}, \ldots, x_{n} are distinct variables and A_{1}, \ldots, A_{n} are formulas.
We are going to describe a system of typed λ-calculus called second order functional arithmetic (shortened in $A F 2$ for Arithmétique Fonctionnelle du seconde ordre). The rules of typing are the following :
(1) $\Gamma, x: A \vdash_{A F 2} x: A$.
(2) If $\Gamma, x: B \vdash_{A F 2} t: C$, then $\Gamma \vdash_{A F 2} \lambda x t: B \rightarrow C$.
(3) If $\Gamma \vdash_{A F 2} u: B \rightarrow C$, and $\Gamma \vdash_{A F 2} v: B$, then $\Gamma \vdash_{A F 2}(u) v: C$.
(4) If $\Gamma \vdash_{A F 2} t: A$, and x does not appear in Γ, then $\Gamma \vdash_{A F 2} t: \forall x A$.
(5) If $\Gamma \vdash_{A F 2} t: \forall x A$, then, for every term $u, \Gamma \vdash_{A F 2} t: A[u / x]$.
(6) If $\Gamma \vdash_{A F 2} t: A$, and X does not appear in Γ, then $\Gamma \vdash_{A F 2} t: \forall X A$.
(7) If $\Gamma \vdash_{A F 2} t: \forall X A$, then, for every formula $G, \Gamma \vdash_{A F 2} t: A\left[G / X\left(x_{1}, \ldots, x_{n}\right)\right]\left({ }^{*}\right)$
(8) If $\Gamma \vdash_{A F 2} t: A[u / x]$, then $\Gamma \vdash_{A F 2} t: A[v / x], u=v$ being a particular case of an equation of \mathbf{E}.
$\left(^{*}\right) A\left[G / X\left(x_{1}, \ldots, x_{n}\right)\right]$ is obtained by replacing in A each atomic formula $X\left(t_{1}, \ldots, t_{n}\right)$ by $G\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$. To simplify, we write sometimes $A[G / X]$ instead of $A\left[G / X\left(x_{1}, \ldots, x_{n}\right)\right]$.

Whenever we obtain the typing $\Gamma \vdash_{A F 2} t: A$ by means of these rules, we say that "the λ-term t is of type A in the context Γ, with respect to the equation of \mathbf{E}.

Theorem 3.1 ([5],[9]).

1) Conservation Theorem: If $\Gamma \vdash_{A F 2} t: A$, and $t \rightarrow_{\beta} t^{\prime}$, then $\Gamma \vdash_{A F 2} t^{\prime}: A$.
2) Strong normalization: If $\Gamma \vdash_{A F 2} t$: A, then t is strongly normalizable.

3.2 The TTR type system

Let X be a predicate variable or predicate symbol, and A a type of $A F 2$.
We define the notions " X is positive in A " and " X is negative in A " by induction :

- If X does not appears in A, then X is positive and negative in A;
- If $A=X\left(t_{1}, \ldots, t_{n}\right)$, then X is positive in A, and X is not negative in A;
- If $A=B \rightarrow C$, then X is positive (resp. negative) in A if and only if X is negative (resp. positive) in B, and X is positive (resp. negative) in C;
- If $A=\forall v B$, and $v \neq X$, then X is positive (resp. negative) in A if and only if X is positive (resp. negative) in B.

We add to the second order predicate calculus a new logic symbol μ, and we allow a new construction for formulas: if A is a formula, C an n-ary predicate symbol which appears positively in A, x_{1}, \ldots, x_{n} first order variables, and t_{1}, \ldots, t_{n} terms, then $\mu C x_{1} \ldots x_{n} A<t_{1}, \ldots, t_{n}>$ is a formula called the least fixed point of A in C calculated over the terms t_{1}, \ldots, t_{n}.
We extend the notions " X is positive in a type" and " X is negative in a type" by the following way : X is positive (resp. negative) in $\mu C x_{1} \ldots x_{n} A<t_{1}, \ldots, t_{n}>$ if and only if X is positive (resp. negative) in A.
We extend the definition of the substitution by assuming that C, x_{1}, \ldots, x_{n} are bounded in the formula $\mu C x_{1} \ldots x_{n} A<t_{1}, \ldots, t_{n}>$.
We define on these formulas a binary relation \subseteq by : $A \subseteq B$ if and only if it is obtained by using the following rules :
$(a x) A \subseteq A$
$(\rightarrow) \frac{A \subseteq A^{\prime} \quad B \subseteq B^{\prime}}{A^{\prime} \rightarrow B \subseteq A \rightarrow B^{\prime}}$
$\left(\forall i_{g}\right) \frac{A[G / v] \subseteq B}{\forall v A \subseteq B}$

$$
\begin{equation*}
\left(\forall i_{d}\right) \frac{A \subseteq B}{A \subseteq \forall v B}(2) \tag{1}
\end{equation*}
$$

(e) $\frac{A \subseteq B[v / y]}{A \subseteq B[w / y]}(3)$
$(t r) \frac{A \subseteq D \quad D \subseteq B}{A \subseteq B}$
$\left(\mu_{d}\right) D\left[\mu C x_{1} \ldots x_{m} D<z_{1}, \ldots, z_{m}>/ C\left(z_{1}, \ldots, z_{m}\right)\right]\left[t_{1} / x_{1}, \ldots, t_{m} / x_{m}\right] \subseteq \mu C x_{1} \ldots x_{m} D<t_{1}, \ldots, t_{m}>$
$\left(\mu_{g}^{\prime}\right) \mu C x_{1} \ldots x_{m} D<t_{1}, \ldots, t_{m}>\subseteq D\left[\mu C x_{1} \ldots x_{m} D<z_{1}, \ldots, z_{m}>/ C\left(z_{1}, \ldots, z_{m}\right)\right]\left[t_{1} / x_{1}, \ldots, t_{m} / x_{m}\right]$

$$
\left(\mu_{g}\right) \frac{D\left[E / C\left(x_{1}, \ldots, x_{m}\right)\right] \subseteq E}{\mu C x_{1} \ldots x_{m} D<t_{1}, \ldots, t_{m}>\subseteq E\left[t_{1} / x_{1}, \ldots, t_{m} / x_{m}\right]}
$$

(1) G is a formula if v is a second order variable, and a term if v is a first order variable.
(2) v is not free in A.
(3) $v=w$ is a particular case of an equation of \mathbf{E}.
$\left(\mu_{d}\right)$ and $\left(\mu_{g}^{\prime}\right)$ are the rules of factorisation and development of a fixed point.
$\left(\mu_{g}\right)$ expresses the fact that $\mu C x_{1} \ldots x_{m} D<t_{1}, \ldots, t_{m}>$ is a least fixed point.

We are going to describe a system of typed λ-calculus called theory of recursive types (shortened in $T T R$ for Théorie des Types Récursifs) where the types are formulas of language. The rules of typing are the following :

- The typing rules $(1), \ldots,(8)$ of $A F 2$ type system.
$-(\subseteq) \frac{\Gamma \vdash_{T T R} t: A \quad A \subseteq B}{\Gamma \vdash_{T T R} t: B}$
$-(Y) \frac{\Gamma \vdash_{T T R} t: \forall x_{1} \ldots \forall x_{m}\left[C\left(x_{1}, \ldots, x_{m}\right) \rightarrow E\right] \rightarrow \forall x_{1} \ldots \forall x_{m}[D \rightarrow E]}{\Gamma \vdash_{T T R}(Y) t: \forall x_{1} \ldots \forall x_{m}\left[\mu C x_{1} \ldots x_{m} D<x_{1}, \ldots, x_{m}>\rightarrow E\right]}$
where C is not free in E and G, and Y is the Turing's fixed point.
The rule (Y) expresses also the fact that $\mu C x_{1} \ldots x_{m} D<t_{1}, \ldots, t_{m}>$ is a least fixed point.

Theorem 3.2 ([12],[18]).

1) Conservation Theorem If $\Gamma \vdash_{T T R} t: A$, and $t \rightarrow_{\beta} t^{\prime}$, then $\Gamma \vdash_{T T R} t^{\prime}: A$.
2) Strong normalization If $\Gamma \vdash_{T T R} t$: A without using the rule (Y), then t is strongly normalizable.
3) Weak normalization If $\Gamma \vdash_{T T R} t: A$, and if all least fixed points of A are positives, then t is normalizable.

The $T T R^{\diamond}$ type system is the subsystem of $T T R$ where we only have propositional variables and constants (predicate variables or predicate symbols are of arity 0). So, first order variables, function symbols, and finite sets of equations are useless. With each predicate variable (resp. predicate symbol) X, we associate a predicate variable (resp. a predicate symbol) X^{\diamond} of $T T R^{\diamond}$ type system. For every formula A of $T T R$, we define the formula A^{\diamond} of $T T R^{\diamond}$ obtained by forgetting in A the first order part. If $\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}$ is a context of $T T R$, then we denote by Γ^{\diamond}, the context $x_{1}: A_{1}^{\diamond}, \ldots, x_{n}: A_{n}^{\diamond}$ of $T T R^{\diamond}$. We write $\Gamma \vdash_{T T R^{\diamond}} t: A$ if t is tyable in $T T R^{\diamond}$ of type A in the context Γ.

Theorem 3.3 If $\Gamma \vdash_{T T R} t: A$, then $\Gamma^{\diamond} \vdash_{T T R} \diamond$: A^{\diamond}.
Proof By induction on the length of the derivation $\Gamma \vdash_{T T R} t: A$.

Theorem 3.4

1) Conservation Theorem If $\Gamma \vdash_{T T R^{\diamond}} t: A$, and $t \rightarrow_{\beta} t^{\prime}$, then $\Gamma \vdash_{T T R^{\diamond}} t^{\prime}: A$.
2) Strong normalization If $\Gamma \vdash_{T T R^{\diamond}} t$: A without using the rule (Y), then t is strongly normalizable.
3) Weak normalization If $\Gamma \vdash_{T T R^{\diamond}} t: A$, and if all least fixed points of A are positives, then t is normalizable.

Proof We use Theorems 3.2 and 3.3.

Remark We cannot if the reverse of 2)-Theorem 3.2 is true, but the λ-term $t=\lambda x(\lambda y((x)(y) \lambda x x)(y) \lambda x \lambda y x) \lambda x(x) x$ (which is strongly normalizable, and untypable in AF2 type system (see [3])) is typable in $T T R$ type system. Indeed, if we take $B=\mu C(\forall X X \rightarrow C)$, we check easily that $\vdash_{T T R^{\circ}} t:[B \rightarrow(B \rightarrow B)] \rightarrow B$.

4 Properties of $T T R$ type system

4.1 Permutations Lemmas

Lemma 4.1 1) The typing rules (5), (7), and (8) are admissible.
2) In the typing, we may replace the succession of n times (\subseteq) and m times (4) (resp. (6)), by the succession of m times (4) (resp. (6)) and n times (\subseteq).
3) If $\Gamma \vdash_{T T R} t: B$ is derived from $\Gamma \vdash_{T T R} t$: A, then we may assume that we begin by the applications of (4), (6), and next by (С).

Proof Easy.

Lemma 4.2 1) If $A \subseteq B$, then, for every sequence of terms and/or formulas $\mathbf{G}, A[\mathbf{G} / \mathbf{v}] \subseteq$ $B[\mathbf{G} / \mathbf{v}]$, and we use the same proof rules.
2) If $\Gamma \vdash_{T T R} t$: A, then, for every sequence of terms and/or formulas $\mathbf{G}, \Gamma[\mathbf{G} / \mathbf{v}] \vdash_{T T R} t$: $A[\mathbf{G} / \mathbf{v}]$, and we use the same typing rules.

Proof By induction on the length of the derivation $A \subseteq B\left(\right.$ resp. $\left.\Gamma \vdash_{T T R} t: A\right)$.
Corollary 4.1 If $\Gamma, x: A \vdash_{T T R}(x) u_{1} \ldots u_{n}: B$, then :
$n=0$, and there is $\mathbf{v}_{\mathbf{0}}$ not free in A and Γ, such that $\forall \mathbf{v}_{\mathbf{0}} A \subseteq B$,
or
$n \geq 1$, and there are types $C_{i}, B_{i}(i=1, \ldots, n)$ and $\mathbf{v}_{\mathbf{i}}(i=1, n)$ not free in A and Γ, such that $\forall \mathbf{v}_{\mathbf{0}} A \subseteq C_{1} \rightarrow B_{1}, \forall \mathbf{v}_{\mathbf{i}} B_{i} \subseteq C_{i+1} \rightarrow B_{i+1} 1 \leq i \leq n-1, \forall \mathbf{v}_{\mathbf{n}} B_{n} \subseteq B$, and $\Gamma, x: A \vdash_{T T R} u_{i}: C_{i}$ $1 \leq i \leq n$.

Proof By induction on n.
Lemma 4.3 1) If X is positive (resp. negative) in D, and $A \subseteq B$, then $D[A / X] \subseteq D[B / X]$ (resp. $D[B / X] \subseteq D[A / X]$).
2) We may eliminate the rule $\left(\mu_{g}^{\prime}\right)$.

Proof 1) By induction on D.
2) By rule (μ_{d}), we have $A\left[\mu C x_{1} \ldots x_{n} A<y_{1}, \ldots, y_{n}>/ C\left(y_{1}, \ldots, y_{n}\right)\right] \subseteq \mu C x_{1} \ldots x_{n} A<x_{1}, \ldots, x_{n}>$,
then, by 1), $A\left[A\left[\mu C x_{1} \ldots x_{n} A<y_{1}, \ldots, y_{n}>/ C\left(y_{1}, \ldots, y_{n}\right)\right] / C\left(x_{1}, \ldots, x_{n}\right)\right] \subseteq A\left[\mu C x_{1} \ldots x_{n} A<\right.$ $\left.x_{1}, \ldots, x_{n}>/ C\left(x_{1}, \ldots, x_{n}\right)\right]$, and, by using the rule $\left(\mu_{g}\right)$, we obtain $\mu C x_{1} \ldots x_{n} A<t_{1}, \ldots, t_{n}>\subseteq$ $A\left[\mu C x_{1} \ldots x_{n} A<y_{1}, \ldots, y_{n}>/ C\left(y_{1}, \ldots, y_{n}\right)\right]\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$.

4.2 Without-arrow types and arrow types

Definitions

1) A type A is said to be without-arrow type if and only if A does not contain any arrow.
2) Each without-arrow type A contains a unique atomic formula $X\left(t_{1}, \ldots, t_{n}\right)$. We denote X by $A t(A)$. We distinguish between two kinds of without-arrow types :

- A without-arrow type A is said to be of kind 1 if and only if $\operatorname{At}(A)$ is free in A.
- A without-arrow type A is said to be of kind 2 if and only if $\operatorname{At}(A)$ is bounded in A.

Lemma 4.4 1) If A is a without-arrow type of kind 1 , and $A \subseteq B$, then B is a without-arrow type of kind 1, and $A t(A)=A t(B)$.
2) If A is a without-arrow type of kind 2, then, for every type B, we have $A \subseteq B$.

Proof 1) By induction on the length of the derivation $A \subseteq B$.
2) Easy.

Definition A type A is said to be arrow type if and only if A contains at least an arrow.
Lemma 4.5 If A is an arrow type, and $A \subseteq B$, then B is an arrow type.
Proof By induction on the length of the derivation $A \subseteq B$.
Corollary 4.2 Let A be an atomic formula. If $\Gamma \vdash_{T T R} t: A$, then t does not begin by λ. Other words, if $\Gamma \vdash_{T T R} \lambda x u: B$, then B is an arrow type.

Proof If t begins by λ, then there are E, F, and \mathbf{v}, such that $\forall \mathbf{v}(E \rightarrow F) \subseteq A$, therefore, by Lemma 4.5, A is an arrow type.

Definition For every arrow type A, we define the type $\operatorname{Rep}(A)$ as follows, by induction on A:

$$
\begin{aligned}
& -\operatorname{Rep}(E \rightarrow F)=E \rightarrow F \\
& -\operatorname{Rep}(\forall v B)=\forall v \operatorname{Rep}(B) \\
& -\operatorname{Rep}\left(\mu C x_{1} \ldots x_{n} B<t_{1}, \ldots, t_{n}>\right)= \\
& \operatorname{Rep}(B)\left[\mu C x_{1} \ldots x_{n} B<y_{1}, \ldots, y_{n}>/ C\left(y_{1}, . ., y_{n}\right)\right]\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right] .
\end{aligned}
$$

Lemma 4.6 If A is an arrow type, then:

1) there are G, D and \mathbf{v} such that $\operatorname{Rep}(A)=\forall \mathbf{v}(G \rightarrow D)$.
2) $A \subseteq \operatorname{Rep}(A)$, and $\operatorname{Rep}(A) \subseteq A$.

Proof By induction on A.

Remark. The Lemma 4.6 means that if A is an arrow type, then $\operatorname{Rep}(A)$ is an "equivalent" type to A of the form $\forall \mathbf{v}(G \rightarrow D)$. In the rest of the paper, we denoted G by A_{g} and D by A_{d}.

Lemma 4.7 Let A, B be two types, and X, X^{\prime} two predicate variables or predicate symbols, such that X^{\prime} is not free in A.

1) If X is positive in A, and X^{\prime} is positive in B, then X^{\prime} is positive in $A[B / X]$.
2) If X is positive in A, and X^{\prime} is negative in B, then X^{\prime} is negative in $A[B / X]$.
3) If X is negative in A, and X^{\prime} is positive in B, then X^{\prime} is negative in $A[B / X]$.
4) If X is negative in A, and X^{\prime} is negative in B, then X^{\prime} is positive in $A[B / X]$.

Proof By induction on A.
Lemma 4.8 Let A be an arrow type.

1) If X is positive (resp. negative) in A, then X is positive (resp. negative) in $\operatorname{Rep}(A)$.
2) If \mathbf{G} is a sequence of terms and/or formulas, then $\operatorname{Rep}(A[\mathbf{G} / \mathbf{v}])=\operatorname{Rep}(A)[\mathbf{G} / \mathbf{v}]$.

Proof 1) We argue by induction on A. The only non-trivial case is the one where $A=$ $\mu C x_{1} \ldots x_{n} B<t_{1}, \ldots, t_{n}>$. If X is positive (resp. negative) in A, then X is positive (resp. negative) in B. By the induction hypothesis, we have X is positive (resp. negative) in $\operatorname{Rep}(B)$, therefore, by Lemma 4.7, X is positive (resp. negative) in $\operatorname{Rep}(A)$.
2) By induction on A.

Theorem 4.1 Let A, B be two arrow types, such that $\operatorname{Rep}(A)=\forall \mathbf{v}\left(A_{g} \rightarrow A_{d}\right)$ and $\operatorname{Rep}(B)=$ $\forall \mathbf{v}^{\prime}\left(B_{g} \rightarrow B_{d}\right)$. If $A \subseteq B$, then there is a sequence of terms and/or formulas \mathbf{G}, such that $B_{g} \subseteq A_{g}[\mathbf{G} / \mathbf{v}]$, and $A_{d}[\mathbf{G} / \mathbf{v}] \subseteq B_{d}$.

Proof We argue by induction on the length of the derivation $A \subseteq B$. Let us look at the rule used in the last step. The only non-trivial cases are :

- (tr) : then $A \subseteq D$, and $D \subseteq B$. If $\operatorname{Rep}(D)=\forall \mathbf{v} "\left(D_{g} \rightarrow D_{d}\right)$, by the induction hypothesis, there are sequences \mathbf{G} and \mathbf{G} " such that $D_{g} \subseteq A_{g}[\mathbf{G} / \mathbf{v}], A_{d}[\mathbf{G} / \mathbf{v}] \subseteq D_{d}, B_{g} \subseteq D_{g}[\mathbf{G} " / \mathbf{v} "]$, and $D_{d}[\mathbf{G} " / \mathbf{v} "] \subseteq B_{d}$. It is clear that we may assume that \mathbf{v} " is not free in A_{g} and A_{d}, therefore, by Lemma 4.2, we have $B_{g} \subseteq A_{g}[\mathbf{G} / \mathbf{v}][\mathbf{G} " / \mathbf{v} "]$, and $A_{d}[\mathbf{G} / \mathbf{v}][\mathbf{G} " / \mathbf{v} "] \subseteq B_{d}$. Let $\mathbf{G}^{\prime}=\mathbf{G}[\mathbf{G} " / \mathbf{v} "]$, then $B_{g} \subseteq A_{g}\left[\mathbf{G}^{\prime} / \mathbf{v}\right]$, and $A_{d}\left[\mathbf{G}^{\prime} / \mathbf{v}\right] \subseteq B_{d}$.
- $\left(\mu_{d}\right)$: then $A=D\left[\mu C x_{1} \ldots x_{k} D<y_{1}, \ldots, y_{k}>/ C\left(y_{1}, \ldots, y_{k}\right)\right]\left[t_{1} / x_{1}, . ., t_{k} / x_{k}\right]$, and $B=$ $\mu C x_{1} \ldots x_{k} D<t_{1}, \ldots, t_{k}>$. Therefore, by Lemma 4.8, $\operatorname{Rep}(A)=\operatorname{Rep}(B), A_{g}=B_{g}$, and $B_{d}=A_{d}$, and so $B_{g} \subseteq A_{g}$, and $A_{d} \subseteq B_{d}$.
$-\left(\mu_{g}\right)$: then $A=\mu C x_{1} \ldots x_{k} D<t_{1}, \ldots, t_{k}>, B=E\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right]$, and $D\left[E / C\left(x_{1}, \ldots, x_{k}\right)\right] \subseteq$ E. Therefore $\operatorname{Rep}(D)=\forall \mathbf{v}\left(D_{g} \rightarrow D_{d}\right)$ with
$D_{g}\left[\mu C x_{1} \ldots x_{k} D<y_{1}, \ldots, y_{k}>/ C\left(y_{1}, \ldots, y_{k}\right)\right]\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right]=A_{g}$,
$D_{d}\left[\mu C x_{1} \ldots x_{k} D<y_{1}, \ldots, y_{k}>/ C\left(y_{1}, \ldots, y_{k}\right)\right]\left[t_{1} / x_{1}, . ., t_{k} / x_{k}\right]=A_{d}$, and
$\operatorname{Rep}(E)=\forall \mathbf{v}^{\prime}\left(E_{g} \rightarrow E_{d}\right)$ with $E_{g}\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right]=B g, E_{d}\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right]=B_{d}$.
By the induction hypothesis, there is a sequence \mathbf{G}, such that $E_{g} \subseteq D_{g}\left[E / C\left(x_{1}, \ldots, x_{k}\right)\right][\mathbf{G} / \mathbf{v}]$, and $D_{d}\left[E / C\left(x_{1}, \ldots, x_{k}\right)\right][\mathbf{G} / \mathbf{v}] \subseteq E_{d} . C$ is positive in D, therefore, by Lemma $4.8, C$ is negative in D_{g}, and C is positive in D_{d}.
$D\left[E / C\left(x_{1}, \ldots, x_{k}\right)\right] \subseteq E$, then $\mu C x_{1} \ldots x_{k} D<y_{1}, \ldots, y_{k}>\subseteq E\left[y_{1} / x_{1}, \ldots, y_{k} / x_{k}\right]$, and, by 1$)$ -
Lemma 4.3, $E g \subseteq D g\left[\mu C x_{1} \ldots x_{k} D<y_{1}, \ldots, y_{k}>/ C\left(y_{1}, \ldots, y_{k}\right)\right][\mathbf{G} / \mathbf{v}]$, and $D_{d}\left[\mu C x_{1} \ldots x_{k} D<y_{1}, \ldots, y_{k}>/ C\left(y_{1}, \ldots, y_{k}\right)\right][\mathbf{G} / \mathbf{v}] \subseteq E_{d}$, and so, by Lemma 4.2, $E_{g}\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right] \subseteq D_{g}\left[\mu C x_{1} \ldots x_{k} D<y_{1}, \ldots, y_{k}>/ C\left(y_{1}, \ldots, y_{k}\right)\right][\mathbf{G} / \mathbf{v}]\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right]$, and $D_{d}\left[\mu C x_{1} \ldots x_{k} D<y_{1}, \ldots, y_{k}>/ C\left(y_{1}, \ldots, y_{k}\right)\right][\mathbf{G} / \mathbf{v}]\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right] \subseteq E_{d}\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right]$. Let $\mathbf{G}^{\prime}=\mathbf{G}\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right]$, then $B_{g} \subseteq A_{g}\left[\mathbf{G}^{\prime} / \mathbf{v}\right]$, and $A_{d}\left[\mathbf{G}^{\prime} / \mathbf{v}\right] \subseteq B_{d}$.

Corollary 4.3 Let B be an atomic formula. If $\Gamma, x: A \rightarrow B \vdash_{T T R}(x) u_{1} \ldots u_{n}: C$, then $n=1$, and $\Gamma, x: A \rightarrow B \vdash_{T T R} u_{1}: A$.

Proof By Corollary 4.1, we have $\forall \mathbf{v}(A \rightarrow B) \subseteq F \rightarrow G, \Gamma, x: A \rightarrow B \vdash_{T T R} u_{1}: F$, and \mathbf{v} is not free in Γ and $A \rightarrow B$. Therefore, by Theorem 4.1, $F \subseteq A$, and $B \subseteq G$, then $\Gamma, x: A \rightarrow$ $B \vdash_{T T R} u_{1}: A$. If $n>1$, then $\forall \mathbf{v}^{\prime} G \subseteq H \rightarrow J$, and \mathbf{v}^{\prime} is not free in Γ and $A \rightarrow B$. Therefore $\forall \mathbf{v}^{\prime} B \subseteq H \rightarrow J$, and $\forall \mathbf{v}^{\prime} B$ is a without-arrow type of kind 1. A contradiction.

Lemma 4.9 If $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash_{T T R} t: A, B_{i} \subseteq A_{i} 1 \leq i \leq n$, and $A \subseteq B$, then $x_{1}: B_{1}, \ldots, x_{n}: B_{n} \vdash_{T T R} t: B$.

Proof We argue by induction on t. The only non-trivial cases are :

- If $t=\lambda x u$, then $x_{1}: A_{1}, \ldots, x_{n}: A_{n}, x: E \vdash_{T T R} u: F, \forall \mathbf{v}(E \rightarrow F) \subseteq A$, and \mathbf{v} is not free in E and $A_{j} 1 \leq j \leq n$. We may assume that \mathbf{v} is not free in E and $B_{j} 1 \leq j \leq n$. By the induction hypothesis, we have $x_{1}: B_{1}, \ldots, x_{n}: B_{n}, x: E \vdash_{T T R} u: F$, and so $x_{1}: B_{1}, \ldots, x_{n}: B_{n} \vdash_{T T R} t: B$.
- If $t=(Y) u$, then $\left.\forall \mathbf{v} \forall y_{1} \ldots \forall y_{m}\left[\mu C y_{1} \ldots y_{m} E<y_{1}, \ldots, y_{m}>\rightarrow D\right]\right) \subseteq A, x_{1}: A_{1}, \ldots, x_{n}:$ $A_{n} \vdash_{T T R} u: \forall y_{1} \ldots \forall y_{m}\left[C\left(y_{1}, \ldots, y_{m}\right) \rightarrow D\right] \rightarrow \forall y_{1} \ldots \forall y_{m}[E \rightarrow D], C$ is positive in E, C is not free in D, and \mathbf{v} is not free in $A_{j} 1 \leq j \leq n$. We may assume that \mathbf{v}, C are not free in $B_{j} 1 \leq j \leq n$. By the induction hypothesis, we have $x_{1}: B_{1}, \ldots, x_{n}: B_{n} \vdash_{T T R} u$: $\forall y_{1} . . \forall y_{m}\left[C\left(y_{1}, \ldots, y_{m}\right) \rightarrow D\right] \rightarrow \forall y_{1} \ldots \forall y_{m}[E \rightarrow D]$, and so $x_{1}: B_{1}, \ldots, x_{n}: B_{n} \vdash_{T T R}(Y) u:$ A.

$5 \quad \forall$-positive types

5.1 Properties of \forall-positive types

Definition We define two sets of types, the set Ω^{+}of \forall-positive types, and the set Ω^{-}of \forall-negative types in the following way :

- If A is an atomic type, then $A \in \Omega^{+}$, and $A \in \Omega^{-}$;
- If $T^{+} \in \Omega^{+}$, and $T^{-} \in \Omega^{-}$, then, $T^{-} \rightarrow T^{+} \in \Omega^{+}$, and $T^{+} \rightarrow T^{-} \in \Omega^{-}$;
- If $T^{+} \in \Omega^{+}$, then $\forall x T^{+} \in \Omega^{+}$;
- If $T^{+} \in \Omega^{+}$, then $\forall X T^{+} \in \Omega^{+}$;
- If $T^{-} \in \Omega^{-}$, then $\forall x T^{-} \in \Omega^{-}$;
- If $T^{-} \in \Omega^{-}$, and X is not free in T^{-}, then $\forall X T^{-} \in \Omega^{-}$;
- If $T^{+} \in \Omega^{+}, x_{1}, \ldots, x_{n}$ first order variables, t_{1}, \ldots, t_{n} terms, C an n-ary predicate symbol which appears and is positive in T^{+}, then $\mu C x_{1} \ldots x_{n} T^{+}<t_{1}, \ldots, t_{n}>\in \Omega^{+}$.

Remarks

1) A least fixed point is not a \forall-negative type.
2) If $T^{+} \in \Omega^{+}$, then all least fixed points of T^{+}are positives. Therefore, by 3)-Theorem 3.2, if $\Gamma \vdash_{T T R} t: T^{+}$, then t is normalizable.

Lemma 5.1 Let $T^{-}, T^{\prime-} \in \Omega^{-}, T^{+}, T^{\prime+} \in \Omega^{+}$, and X a predicate variable or predicate symbol. 1) If X is positive (resp. negative) in T^{-}, then $T^{-}\left[T^{\prime-} / X\right] \in \Omega^{-}$(resp. $T^{-}\left[T^{\prime+} / X\right] \in \Omega^{-}$).
2) If X is positive (resp. negative) in T^{+}, then $T^{+}\left[T^{\prime+} / X\right] \in \Omega^{+}$(resp. $T^{+}\left[T^{\prime-} / X\right] \in \Omega^{+}$).
3) If $T[F / X] \in \Omega^{+}$(resp. $T[F / X] \in \Omega^{-}$), then $T \in \Omega^{+}$(resp. $T \in \Omega^{-}$).

Proof 1), 2) By induction on T^{-}and T^{+}.
3) By induction on T.

Definition With each type T of $T T R$, we associte the set $F v_{2}(T)$ of free predicate variables and free predicate symbols of T.

Theorem 5.1 Let $T^{-} \in \Omega^{-}$, and $T^{+} \in \Omega^{+}$.

1) If $T^{-} \subseteq A$, then $A \in \Omega^{-}$, and $F v_{2}(A) \subseteq F v_{2}\left(T^{-}\right)$.
2) If $B \subseteq T^{+}$, then $B \in \Omega^{+}$, and $F v_{2}(B) \subseteq F v_{2}\left(T^{+}\right)$.

Proof We argue by induction on the length of the derivations $T^{-} \subseteq A$, and $B \subseteq T^{+}$. Let us look at the rule used in the last step.

1) The only non-trivial case is $\left(\mu_{d}\right)$.

Then $T^{-}=T^{\prime}\left[\mu C x_{1} \ldots x_{n} T^{\prime}<y_{1}, \ldots, y_{n}>/ C\left(y_{1}, \ldots, y_{n}\right)\right]\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$, and
$A=\mu C x_{1} \ldots x_{n} T^{\prime}<t_{1}, . ., t_{n}>$. Since $T^{-} \in \Omega^{-}$, then, by Lemma 5.1, $\mu C x_{1} \ldots x_{n} T^{\prime}<y_{1}, \ldots, y_{n}>\in$ Ω^{-}, which is impossible.
2) The only non-trivial cases are :

- $\left(\mu_{d}\right)$: then $B=D\left[\mu C x_{1} \ldots x_{n} D<y_{1}, \ldots, y_{n}>/ C\left(y_{1}, \ldots, y_{n}\right)\right]\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$, and $T^{+}=$ $\mu C x_{1} \ldots x_{n} D<t_{1}, \ldots, t_{n}>$. Since $T \in \Omega^{+}$, then $D \in \Omega^{+}$, and so, by Lemma 5.1, $B \in \Omega^{+}$, and $F v_{2}(B)=F v_{2}(D)-\{C\}=F v_{2}\left(T^{+}\right)$.
- $\left(\mu_{g}\right)$: then $B=\mu C x_{1} \ldots x_{n} D<t_{1}, \ldots, t_{n}>, T^{+}=E\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$, and $D\left[E / C\left(x_{1}, \ldots, x_{n}\right)\right] \subseteq$ E. Since $T^{+} \in \Omega^{+}$, then $E \in \Omega^{+}$, and, by the induction hypothesis, $D\left[E / C\left(x_{1}, \ldots, x_{n}\right)\right] \in$ Ω^{+}, and $F v_{2}\left(D\left[E / C\left(x_{1}, \ldots, x_{n}\right)\right]\right) \subseteq F v_{2}(E)$. By Lemma 5.1, we have $D \in \Omega^{+}$, and $F v_{2}(D)-\{C\} \subseteq F v_{2}\left(D\left[E / C\left(x_{1}, \ldots, x_{n}\right)\right]\right) \subseteq F v_{2}(E)$, and so $B \in \Omega^{+}$, and $F v_{2}(B)=$ $F v_{2}(D)-\{C\} \subseteq F v_{2}\left(D\left[E / C\left(x_{1}, \ldots, x_{n}\right)\right]\right) \subseteq F v_{2}(E)=F v_{2}\left(T^{+}\right)$.

5.2 The $T T R_{0}$ type system

We define on the types of $T T R$ a binary relation \subseteq_{0} by the following way :
$A \subseteq_{0}$ B if and only if $A \subseteq B$, and in the proof we use only the weak version of $\left(\forall i_{g}\right)$:

$$
\left(\forall i_{g_{0}}\right) \frac{A[G / v] \subseteq_{0} B}{\forall v A \subseteq_{0} B}
$$

where G is a term if v is an individual variable, and G is a predicate variable or a predicate symbol having the same arity of v if v is a predicate variable.

Lemma 5.2 If $A \subseteq_{0} B$, then, for every sequence of terms and/or formulas $\mathbf{G}, A[\mathbf{G} / \mathbf{v}] \subseteq_{0}$ $B[\mathbf{G} / \mathbf{v}]$, and we use the same proof rules.

Proof Same proof as 1)-Lemma 4.2.

Lemma 5.3 Let A be an arrow type, and $\operatorname{Rep}(A)=\forall \mathbf{v}\left(A_{g} \rightarrow A_{d}\right)$.

1) If $A \in \Omega^{-}$(resp. $A \in \Omega^{+}$), then $A_{g} \in \Omega^{+}$, and $A_{d} \in \Omega^{-}$(resp. $A_{g} \in \Omega^{-}$, and $A_{d} \in \Omega^{+}$).
2) $A \subseteq_{0} \operatorname{Rep}(A)$, and $\operatorname{Rep}(A) \subseteq_{0} A$.

Proof By induction on A.

Lemma 5.4 If $T^{-} \in \Omega^{-}, T^{+} \in \Omega^{+}$, and $T^{-} \subseteq T^{+}$, then $T^{-} \subseteq_{0} T^{+}$.
Proof By induction on the length of the derivation $T^{-} \subseteq T^{+}$.

Definition We denote by $T T R_{0}$, the $T T R$ type system whithout the rules (5), (7), (8) and by replacing the rule (\subseteq) by :

$$
\left(\subseteq_{0}\right) \frac{\Gamma \vdash_{T T R_{0}} t: A \quad A \subseteq_{0} B}{\Gamma \vdash_{T T R_{0}} t: B}
$$

Theorem 5.2 Let $A_{1}, \ldots, A_{n} \in \Omega^{-}, \Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}, A \in \Omega^{+}$, and t a normal λ-term. If $\Gamma \vdash_{T T R} t: A$, then $\Gamma \vdash_{T T R_{0}} t: A$, and in this typing each variable is assigned of $a \forall$-negative type, and each $u \in S T E(t)$ is typable of $a \forall$-positive type.

Proof We argue by induction on t.

- If $t=x_{i} 1 \leq i \leq n$, then $\forall \mathbf{v} A_{i} \subseteq A$, and \mathbf{v} is not free in Γ. Since $A_{i} \in \Omega^{-}$, then $\forall \mathbf{v} A_{i} \in \Omega^{-}$, and, by Lemma 5.4, $\forall \mathbf{v} A_{i} \subseteq_{0} A$. Therefore $\Gamma \vdash_{T T R_{0}} t: A$.
- If $t=\lambda x u$, then $\Gamma, x: B \vdash_{T T R} u: C, \forall \mathbf{v}(B \rightarrow C) \subseteq A$, and \mathbf{v} is not free in Γ. Since $\forall \mathbf{v}(B \rightarrow C)$ is an arrow type, then, by Lemma 4.5, A is an arrow type. If $\operatorname{Rep}(A)=$ $\forall \mathbf{v}^{\prime}\left(A_{g} \rightarrow A_{d}\right)$, then, by 1)-Lemma 5.3, $A_{g} \in \Omega^{-}$, and $A_{d} \in \Omega^{+}$. By Theorem 4.1, there is a sequence \mathbf{G}, such that $A_{g} \subseteq B[\mathbf{G} / \mathbf{v}]$, and $C[\mathbf{G} / \mathbf{v}] \subseteq A_{d}$. By 2)-Lemma 4.2, we have $\Gamma, x: B[\mathbf{G} / \mathbf{v}] \vdash_{T T R} u: C[\mathbf{G} / \mathbf{c}]$, and, by Lemma $4.9, \Gamma, x: A_{g} \vdash_{T T R} u: A_{d}$. By the induction hypothesis, we have $\Gamma, x: A_{g} \vdash_{T T R_{0}} u: A_{d}$, and so, by 2)-Lemma 5.3, $\Gamma \vdash_{T T R_{0}} t: A$.
- If $t=\left(x_{i}\right) u_{1} \ldots u_{k} 1 \leq i \leq n$ and $k \neq 0$, then $\forall \mathbf{v}_{\mathbf{0}} A_{i} \subseteq C_{1} \rightarrow B_{1}, \forall \mathbf{v}_{\mathbf{j}} B_{i} \subseteq C_{j+1} \rightarrow B_{j+1}$ $1 \leq j \leq k-1, \forall \mathbf{v}_{\mathbf{k}} B_{k} \subseteq A$ where $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ are not free in Γ, and $\Gamma \vdash_{T T R} u_{j}: C_{j} 1 \leq j \leq k$. By Theorems 4.1, 5.1, and Lemmas 4.4, 5.4, we have

$$
-A_{i}=\forall \mathbf{v}_{\mathbf{0}}^{\prime} A_{i}^{\prime}, A_{i}^{\prime}=C_{1}^{\prime} \rightarrow \forall \mathbf{v}_{\mathbf{1}}^{\prime} B_{1}^{\prime}, B_{j}=C_{j+1}^{\prime} \rightarrow \forall \mathbf{v}_{\mathbf{j}+\mathbf{1}}^{\prime} B_{j+1}^{\prime} 1 \leq j \leq k-1, C_{j}^{\prime} \in \Omega^{+}
$$

$$
\text { and } \forall \mathbf{v}_{\mathbf{j}}^{\prime} B_{j}^{\prime} \in \Omega^{-} 1 \leq j \leq k
$$

$-C_{j} \subseteq C_{j}^{\prime}\left[\mathbf{G}_{\mathbf{0}} / \mathbf{v}_{\mathbf{0}}^{\prime}\right] \ldots\left[\mathbf{G}_{\mathbf{j}-\mathbf{1}} / \mathbf{v}_{\mathbf{j}-\mathbf{1}}^{\prime}\right], \forall \mathbf{c}_{\mathbf{j}}^{\prime} B_{j}^{\prime}\left[\mathbf{G}_{\mathbf{0}} / \mathbf{v}_{\mathbf{0}}^{\prime}\right] \ldots\left[\mathbf{G}_{\mathbf{j}-\mathbf{1}} / \mathbf{v}_{\mathbf{j}-\mathbf{1}}^{\prime}\right] \subseteq \mathbf{B}_{\mathbf{j}} 1 \leq j \leq k$, and $\forall \mathbf{v}_{\mathbf{k}} \forall \mathbf{v}_{\mathbf{k}}^{\prime} B_{k}^{\prime}\left[\mathbf{G}_{\mathbf{0}} / \mathbf{v}_{\mathbf{0}}^{\prime}\right] \ldots\left[\mathbf{G}_{\mathbf{k}-\mathbf{1}} / \mathbf{v}_{\mathbf{k}-\mathbf{1}}^{\prime}\right] \subseteq_{0} A$.

Since $\Gamma \vdash_{T T R} u_{j}: C_{j} 1 \leq j \leq k$, then $\Gamma \vdash_{T T R} u_{j}: C_{j}^{\prime}\left[\mathbf{G}_{\mathbf{0}} / \mathbf{v}_{\mathbf{0}}^{\prime}\right] \ldots\left[\mathbf{G}_{\mathbf{j}-\mathbf{1}} / \mathbf{v}_{\mathbf{j}-\mathbf{1}}^{\prime}\right]$, and, by the induction hypothesis, $\Gamma \vdash_{T T R_{0}} u_{j}: C_{j}^{\prime}\left[\mathbf{G}_{\mathbf{0}} / \mathbf{v}_{\mathbf{0}}^{\prime}\right] \ldots\left[\mathbf{G}_{\mathbf{j}-\mathbf{1}} / \mathbf{v}_{\mathbf{j}-\mathbf{1}}^{\prime}\right]$. It is easy to check that $\Gamma \vdash_{T T R_{0}} t: B_{k}^{\prime}\left[\mathbf{G}_{\mathbf{0}} / \mathbf{v}_{\mathbf{0}}^{\prime}\right] \ldots\left[\mathbf{G}_{\mathbf{k}-\mathbf{1}} / \mathbf{v}_{\mathbf{k}-\mathbf{1}}^{\prime}\right]$, then
$\Gamma \vdash \vdash_{T T R_{0}} t: \forall \mathbf{v}_{\mathbf{k}} \forall \mathbf{v}_{\mathbf{k}}^{\prime} B_{k}^{\prime}\left[\mathbf{G}_{\mathbf{0}} / \mathbf{v}_{\mathbf{0}}^{\prime}\right] \ldots\left[\mathbf{G}_{\mathbf{k}-\mathbf{1}} / \mathbf{v}_{\mathbf{k}-\mathbf{1}}^{\prime}\right]$, and $\Gamma \vdash_{T T R_{0}} t: A$.

6 Gődel transformation

6.1 \perp-types of $T T R$

Definition Let A be a type of $T T R$. We say that A is an \perp-type if and only if A is obtained by the following rules :

- \perp is an \perp-type.
- If A is an \perp-type, then $B \rightarrow A$ is an \perp-type for every type B.
- If A is an \perp-type, then $\forall v A$ is an \perp-type for every variable v.
- If A is an \perp-type, C an n-ary predicate symbol which appears and is positive in A, x_{1}, \ldots, x_{n} first order variables, and t_{1}, \ldots, t_{n} terms, then $\mu C x_{1} \ldots x_{n} A<t_{1}, \ldots, t_{n}>$ is an \perp-type.

Lemma 6.1 If A is an \perp-type, and $A \subseteq B$, then B is an \perp-type.
Proof By induction on the length of the derivation $A \subseteq B$.
Lemma 6.2 Let t be a normal λ-term, $A_{1}, \ldots, A_{n} \in \Omega^{-}, A \in \Omega^{+}, \perp$ does not appear in the types A_{1}, \ldots, A_{n}, A, and B_{1}, \ldots, B_{m} are \perp-types. If $\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}, y_{1}: B_{1}, \ldots, y_{m}: B_{m} \vdash_{T T R}$ $t: A$, then $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash_{T T R} t: A$.

Proof We argue by induction on t.

- If t is a variable, then $t=x_{i} 1 \leq i \leq n$ or $t=y_{i} 1 \leq i \leq m$.
- The case $t=x_{i}$ is trivial.
- If $t=y_{i}$, then $\forall \mathbf{v} B_{i} \subseteq A$ and \mathbf{v} is not free in Γ. Since B_{i} is an \perp-type, then, by Lemma 6.1, A is an \perp-type, and \perp appears in A. A contradictoire.
- If $t=\lambda x_{n+1} t^{\prime}$, then $\Gamma, x_{n+1}: A_{n+1} \vdash_{T T R} t^{\prime}: D, \forall \mathbf{v}\left(A_{n+1} \rightarrow D\right) \subseteq A$, \mathbf{v} is not free in Γ. Since $A \in \Omega^{+}$, then, by Theorem 5.1, we have $A_{n+1} \in \Omega^{-}, D \in \Omega^{+}$, and $F v_{2}\left(\forall \mathbf{v}\left(A_{n+1} \rightarrow D\right)\right) \subseteq F v_{2}(A)$. Therefore \perp does not appear in A_{n+1} and D. By the induction hypothesis, we have $x_{1}: A_{1}, \ldots, x_{n}: A_{n}, x_{n+1}: A_{n+1} \vdash_{T T R} t: D$, and so $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash_{T T R} t: A$.
- If $t=(x) u_{1} \ldots u_{k} k \geq 1$, then two case can be see :
- If $x=y_{i} 1 \leq i \leq m$, then, by Corollary 4.1, we have $\forall \mathbf{v}_{\mathbf{0}} B_{i} \subseteq C_{1} \rightarrow D_{1}, \forall \mathbf{v}_{\mathbf{j}} D_{j} \subseteq$ $C_{j+1} \rightarrow D_{j+1} 1 \leq i \leq k-1, \forall \mathbf{v}_{\mathbf{k}} D_{k} \subseteq A$, where $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ are not free in A and Γ, and $\Gamma \vdash_{T T R} u_{j}: C_{j} 1 \leq j \leq k$. Since B_{i} is an \perp-type, then, by Lemma 6.1, D_{j} $1 \leq j \leq k$ and A are \perp-types, and \perp appears in A. A contradictoire.
- If $x=x_{i} 1 \leq i \leq n$, then, by Corollary 4.1, we have $\forall \mathbf{v}_{\mathbf{0}} A_{i} \subseteq C_{1} \rightarrow D_{1}, \forall \mathbf{v}_{\mathbf{j}} D_{j} \subseteq$ $C_{j+1} \rightarrow D_{j+1} 1 \leq j \leq k-1, \forall \mathbf{v}_{\mathbf{k}} D_{k} \subseteq A$, where $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ are not free in A and Γ, and $\Gamma \vdash_{T T R} u_{j}: C_{j} 1 \leq j \leq k$. Since $A_{i} \in \Omega^{-}$, then, by Theorem 5.1, we have $C_{j} \in \Omega^{+}, D_{i} \in \Omega^{-} 1 \leq j \leq k$, and $F v_{2}\left(C_{j}\right) \cup F v_{2}\left(D_{j}\right) \subseteq F v_{2}\left(A_{i}\right) 1 \leq j \leq k$. Therefore \perp does not appear in $C_{j} 1 \leq j \leq k$. By the inductive hypothesis, we have $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash_{T T R} u_{j}: C_{j} 1 \leq j \leq k$, and so $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash_{T T R} t: A$.

6.2 Gődel transformations

Definition With each predicate variable X, we associate a finite no empty set of predicate variables $V_{X}=\left\{X_{1}, \ldots, X_{r}\right\}$ having the same arity of X, such that : if $X \neq Y$, then $V_{X} \cap V_{Y}=\emptyset$. With each n-ary predicate variable X, and with each sequence of individual variables x_{1}, \ldots, x_{n}, we assosiate a formula F_{X} such that:

- F_{X} is an \perp-type ;
- F_{X} does not contain any predicate symbol ;
- the free variables of F_{X} are among x_{1}, \ldots, x_{n} and the elements of V_{X}.

For each formula A, we define the formula A^{*} by the following induction way :

- If $A=C\left(t_{1}, \ldots, t_{n}\right)$, and C is a predicate symbol, then $A^{*}=A$.
- If $A=X\left(t_{1}, \ldots, t_{n}\right)$, and X is a predicate variable, then $A^{*}=F_{X}\left[t_{1} / x_{1}, \ldots, t_{n} / x_{1}\right]$.
- If $A=B \rightarrow C$, then $A^{*}=B^{*} \rightarrow C^{*}$.
- If $A=\forall x B$, then $A^{*}=\forall x B^{*}$.
- If $A=\forall X B$, then $A^{*}=\forall X_{1} \ldots \forall X_{r} B^{*}$, where $V_{X}=\left\{X_{1}, \ldots, X_{r}\right\}$.
- If $A=\mu C x_{1} \ldots x_{n} D<t_{1}, \ldots, t_{n}>$, then $A^{*}=\mu C x_{1} \ldots x_{n} D^{*}<t_{1}, \ldots, t_{n}>$.
A^{*} is called the Gődel transformation of A.

Remark. In order to show that the above transformation is well defined, we need to prove the following Lemma:

Lemma 6.3 Let C be a predicate variable or a predicate symbol, and A a type of TTR. If C is positive in A (resp. negative in A), then C is positive in A^{*} (resp. negative in A^{*}).

Proof By induction on A.

Lemma 6.4 1) If $A \subseteq_{0} B$, then $A^{*} \subseteq_{0} B^{*}$, and we use the same proof rules.
2) If $\Gamma \vdash_{T T R_{0}} t: A$, then $\Gamma^{*} \vdash_{T T R_{0}} t: A^{*}$, and we use the same typing rules.

Proof By induction on the length of the derivation $A \subseteq_{0} B\left(\operatorname{resp} . \Gamma \vdash \vdash_{T T R_{0}} t: A\right)$.
Corollary 6.1 Let $D \in \Omega^{+}$, and t a normal λ-term. If $\vdash_{T T R} t: D$, then $\vdash_{T T R} t: D^{*}$.

Proof By induction on the length of the derivation $\vdash_{T T R} t: D$, and we use Theorem 5.2 and Lemma 6.4.

$7 \quad$ Storage operators

7.1 Definition of storage operators

Definitions

1) Let T be a closed λ-term, and D, E two closed types of $T T R$ (resp. $T T R^{\diamond}$). We say that T is a storage operator for the pair of types (D, E) if and only if for every λ-term t with $\vdash_{T T R} t: D$ (resp. $\left.\vdash_{T T R} \diamond t: D\right)$, there are λ-terms τ_{t} and τ_{t}^{\prime} such that $\tau_{t} \simeq_{\beta} \tau_{t}^{\prime}$, $\vdash_{T T R} \tau_{t}^{\prime}: E\left(\right.$ resp. $\left.\vdash_{T T R} \diamond \tau_{t}^{\prime}: E\right)$, and for every $\theta_{t} \simeq_{\beta} t,(T) \theta_{t} f \succ(f) \tau_{t}\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$, where $F v\left(\tau_{t}\right)=\left\{f, x_{1}, \ldots, x_{n}\right\}$ and t_{1}, \ldots, t_{n} are λ-terms which depend on θ_{t}.
2) If $D=E$, we say that T is a storage operator for the type D.

Examples The type of recursive integers is the formula :

$$
N^{r}[x]=\mu N x \Phi(N, x)<x>
$$

where

$$
\Phi(N, x)=\forall X\{\forall y(N y \rightarrow X s y), X 0 \rightarrow X x\}
$$

(s is a unary function symbol for successor and 0 is a constant symbol for zero).
For each integer n, we define the recursive integer \bar{n} by induction : $\overline{0}=\lambda f \lambda x x$ and $\overline{n+1}=$ $\lambda f \lambda x(f) \bar{n}$. Let \bar{N} be the set of recursive integers.
We have $\bar{N}=\left\{t / t\right.$ is a closed normal λ-term $\left./ \vdash_{T T R} t: N^{r}\left[s^{n}(0)\right], n \geq 0\right\}$ (see [19]).
Let $\bar{s}=\lambda n \lambda f \lambda x(f) n$. It is easy to check that \bar{s} is a λ-term for successor, and $\vdash_{T T R} \bar{s}$: $\forall y\left(N^{r}[y] \rightarrow N^{r}[s y]\right)$.
Define
$T_{1}=(Y) H$ where $H=\lambda x \lambda y((y) \lambda z(G)(x) z) \delta, G=\lambda x \lambda y(x) \lambda z(y)(\bar{s}) z$, and $\delta=\lambda f(f) \overline{0} ;$
$T_{2}=\lambda \nu(\nu) \rho \tau \rho$ where $\tau=\lambda d \lambda f(f) \overline{0}$, and $\rho=\lambda y \lambda z(G)(y) z \tau z$,
then, for every $\theta_{n} \simeq_{\beta} \bar{n},\left(T_{i}\right) \theta_{n} f \succ(f)(\bar{s})^{n} \overline{0}(i=1,2)$.
Therefore, for every $n \geq 0, T_{1}$ and T_{2} are storage operators for $N^{r}\left[s^{n}(0)\right]$.

Typing of T_{1}

We use in the typing the Gödel transformation with $V_{X}=\{X\}$, and $F_{X}=\neg X\left(x_{1}, \ldots, x_{n}\right)$ for every second order variable X of arity n.

- We have $\vdash_{T T R} \overline{0}: N^{r}[0]$, then $\vdash_{T T R} \delta: \neg \neg N^{r}[0]$.
- We have $\vdash_{T T R} \bar{s}: \forall y\left(N^{r}[y] \rightarrow N^{r}[s y]\right)$, then

$$
\begin{aligned}
& x: \neg \neg N^{r}[y], y: \neg N^{r}[s y], z: N^{r}[y] \vdash_{T T R}(y)(\bar{s}) z: \perp ; \text { hence : } \\
& x: \neg \neg N^{r}[y], y: \neg N^{r}[s y] \vdash_{T T R}(x) \lambda z(y)(\bar{s}) z: \perp ; \text { therefore : } \\
& \vdash_{T T R} G: \forall y\left(\neg \neg N^{r}[y] \rightarrow \neg \neg N^{r}[s y]\right) .
\end{aligned}
$$

- We have $y: \Phi^{*}(N, x) \vdash_{T T R} y: \forall y\left(N y \rightarrow \neg \neg N^{r}[s y]\right), \neg \neg N^{r}[0] \rightarrow \neg \neg N^{r}[x]$; thus :
$x: \forall x\left(N x \rightarrow \neg \neg N^{r}[x]\right), y: \Phi^{*}(N, x), z: N y \vdash_{T T R}(G)(x) z: \neg \neg N^{r}[s y]$; therefore :
$x: \forall x\left(N x \rightarrow \neg \neg N^{r}[x]\right), y: \Phi^{*}(N, x) \vdash_{T T R} \lambda z(G)(x) z: \forall y\left(N y \rightarrow \neg \neg N^{r}[s y]\right)$; hence
$x: \forall x\left(N x \rightarrow \neg \neg N^{r}[x]\right) \vdash_{T T R} \lambda y((y) \lambda z(G)(x) z) \delta: \forall x\left(\Phi^{*}(N, x) \rightarrow \neg \neg N^{r}[x]\right)$; therefore :
$\vdash_{T T R} H: \forall x\left(N x \rightarrow \neg \neg N^{r}[x]\right) \rightarrow \forall x\left(\Phi^{*}(N, x) \rightarrow \neg \neg N^{r}[x]\right)$.
And finally $\vdash_{T T R} T_{1}: \forall x\left\{N^{r *}[x] \rightarrow \neg \neg N^{r}[x]\right\}$.

Typing of T_{2}

We use in the typing the Gődel transformation with $V_{X}=\left\{X, X^{\prime}\right\}$, and $F_{X}=X\left(x_{1}, \ldots, x_{n}\right), X^{\prime}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \perp$ for every second order variable X of arity n. Let $R=\forall X \forall y\left\{\left(X, X \rightarrow \neg \neg N^{r}[0], X \rightarrow \neg \neg N^{r}[y]\right), X \rightarrow \neg \neg N^{r}[s y]\right\}, D=R \rightarrow \neg \neg N^{r}[0]$, and $F[x]=R, D, R \rightarrow \neg \neg N^{r}[x]$.

- $\vdash_{T T R} \lambda f(f) \overline{0}: \neg \neg N^{r}[0]$; therefore $: \vdash_{T T R} \tau: X \rightarrow \neg \neg N^{r}[0]$, and $\vdash_{T T R} \tau: R \rightarrow \neg \neg N^{r}[0]$.
- By the previous typing, we have $\vdash_{T T R} G: \forall y\left(\neg \neg N^{r}[y] \rightarrow \neg \neg N^{r}[s y]\right)$; hence : $y: X, X \rightarrow \neg \neg N^{r}[0], X \rightarrow \neg \neg N^{r}[y], z: X \vdash_{T T R}(G)(y) z \tau z: \neg \neg N^{r}[s y]$; therefore $\vdash_{T T R} \rho: R$.
- Check that $\Phi^{*}(\lambda x F[x] / N, x) \subseteq F[x]$.
$\Phi^{*}(\lambda x F[x] / N, x)=$
$\forall X \forall X^{\prime}\left\{\forall y\left(F[y], X s y, X^{\prime} s y \rightarrow \perp\right),\left(X 0, X^{\prime} 0 \rightarrow \perp\right) \rightarrow\left(X x, X^{\prime} x \rightarrow \perp\right)\right\} ;$
therefore by specifying $X x$ by R, and $X^{\prime} x$ by $\neg N^{r}[x]$; we obtain :
$\Phi^{*}(\lambda x F[x] / N, x) \subseteq \forall y\left(F[y], R, \neg N^{r}[s y] \rightarrow \perp\right),\left(R, \neg N^{r}[0] \rightarrow \perp\right) \rightarrow\left(R, \neg N^{r}[x] \rightarrow \perp\right)$. We need to check that $R \subseteq \forall y\left(F[y], R, \neg N^{r}[s y] \rightarrow \perp\right.$), this is absolutely true.

Therefore $N^{r *}[x] \subseteq F[x]$ and $\nu: N^{r *}[x] \vdash_{T T R} \nu: R, D, R \rightarrow \neg \neg N^{r}[x]$; then : $\nu: N^{r *}[x] \vdash_{T T R}(\nu) \rho \tau \rho: \neg \neg N^{r}[x]$; and finally $\vdash_{T T R} T_{2}: \forall x\left\{N^{r *}[x] \rightarrow \neg \neg N^{r}[x]\right\}$.

7.2 General Theorem

Theorem 7.1 Let D, E be two \forall-positive closed types of TTR, such that \perp does not appear in E. If $\vdash_{T T R} T: D^{*} \rightarrow \neg \neg E$, then T is a storage operator for the pair (D, E).

Proof It is a consequence from the following Theorem :
Theorem 7.2 Let D, E be two \forall-positive closed types of $T T R^{\diamond}$, such that \perp does not appear in E. If $\vdash_{T T R} T: D^{*} \rightarrow \neg \neg E$, then T is a storage operator for the pair (D, E).

Indeed:

Lemma 7.1 1) If $T \in \Omega^{+}$(resp. $T \in \Omega^{-}$) then $T^{\diamond} \in \Omega^{+}$(resp. $T^{\diamond} \in \Omega^{-}$).
2) For each Gödel transformation * of $T T R$, there is a Gödel transformation * of $T T R^{\diamond}$ such that : for every type D of $T T R, D^{* \diamond}=D^{\diamond *}$.

Proof 1) By induction on T.
2) ${ }^{* \prime}$ is the restiction of ${ }^{*}$ on the types of $T T R^{\diamond}$.

Let t be a normal λ-term, such that $\vdash_{T T R} t: D$. If $\vdash_{T T R} T: D^{*} \rightarrow \neg \neg E$, then, by Theorem 3.3, $\vdash_{T T R^{\circ}} T: D^{* \diamond} \rightarrow \neg \neg E^{\diamond}$. By 2)-Lemma 7.1, there is a Gődel transformation ${ }^{* \prime}$, such that $\vdash_{T T R^{\diamond}} T: D^{\diamond * \prime} \rightarrow \neg \neg E^{\diamond}$. Therefore, there are λ-terms τ_{t} and τ_{t}^{\prime}, such that $\tau_{t} \simeq_{\beta} \tau_{t}^{\prime}, \vdash_{T T R^{\diamond}} \tau_{t}^{\prime}: E^{\diamond}$, and $(T) t f \succ(f) \tau_{t}\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$. By 2)-Corollary 6.1, we have $\vdash_{T T R} t: D^{*}$, then $f: \neg E \vdash_{T T R}(T) t f: \perp$, and $f: \neg E \vdash_{T T R}(f) \tau_{t}\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]: \perp$. Therefore $f: \neg E \vdash_{T T R}(f) \tau_{t}^{\prime}: \perp$, and, by Corollary 4.1, $\vdash_{T T R} \tau_{t}^{\prime}: E$.

We give the proof of Theorem 7.2 in a particular case.

Let $N^{r}=\mu N[\forall X\{N \rightarrow X, X \rightarrow X\}]$, and ${ }^{*}$ the Gődel transformation with $V_{X}=\{X\}$, and $F_{X}=\neg X\left(x_{1}, \ldots, x_{n}\right)$ for every second order variable X of arity n.
We will prove that: If $\vdash_{T T R^{\diamond}} T: N^{r *} \rightarrow \neg \neg N^{r}$, then T is a storage operator for N^{r}.
Because of : if t is a closed normal λ-term with $\vdash_{T T R^{\diamond}} t: N^{r}$, then $t=\bar{n}$ for a certain integer n, and it is suffies to prove that: If $\vdash_{T T R^{\circ}} T: N^{r *} \rightarrow \neg \neg N^{r}$, then, for every $n \geq 0$, there is an $m \geq 0$ and $\tau \simeq_{\beta} \bar{m}$, such that, for every λ-term $\theta_{n} \simeq_{\beta} \bar{n}$, there is a substitution σ, such that $(T) \theta_{n} f \sim(f) \sigma(\tau)$.

Lemma 7.2 If $\Gamma^{\prime}=\Gamma, x: N^{r} \psi_{T T R^{\diamond}}(x) u_{1} \ldots u_{n}: \perp$, then $n=3$, and there is a type G, such that $\Gamma^{\prime} \vdash_{T T R^{\diamond}} u_{1}: N^{r}{ }^{*} \rightarrow \neg G, \Gamma^{\prime} \vdash_{T T R^{\diamond}} u_{2}: \neg G$, and $\Gamma^{\prime} \vdash_{T T R^{\diamond}} u_{3}: G$.

Proof By Corollary 4.1, we have $\forall \mathbf{v}_{\mathbf{0}} N^{r *} \subseteq A_{1} \rightarrow B_{1}, \forall \mathbf{v}_{\mathbf{i}} B_{i} \subseteq A_{i+1} \rightarrow B_{i+1} 1 \leq i \leq n-1$, $\forall \mathbf{v}_{\mathbf{n}} B_{n} \subseteq \perp, \mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{n}}$ are not free in $N^{r *}$ and Γ, and $\Gamma^{\prime} \vdash_{T T R^{\triangleright}} u_{i}: A_{i} 1 \leq i \leq n$. Since $\forall \mathrm{v}_{\mathbf{0}} N^{r *} \subseteq A_{1} \rightarrow B_{1}$, then, by Theorem 4.1, there is a formula F, such that $A_{1} \subseteq N^{r *} \rightarrow \neg F$ and $\neg F \rightarrow \neg F \subseteq B_{1}$. We have also $\forall \mathbf{v}_{\mathbf{1}} B_{1} \subseteq A_{2} \rightarrow B_{2}$, then $\forall \mathbf{v}_{\mathbf{1}}(\neg F \rightarrow \neg F) \subseteq A_{2} \rightarrow B_{2}$, and, by Theorem 4.1, there is a sequence of formulas $\mathbf{F}_{\mathbf{1}}$, such that $A_{2} \subseteq \neg F\left[\mathbf{F}_{\mathbf{1}} / \mathbf{v}_{\mathbf{1}}\right]$ and $\neg F\left[\mathbf{F}_{\mathbf{1}} / \mathbf{v}_{\mathbf{1}}\right] \subseteq B_{2}$. Now, since $\forall \mathbf{v}_{\mathbf{2}} B_{2} \subseteq A_{3} \rightarrow B_{3}$, we have $\forall \mathbf{v}_{\mathbf{2}}\left(\neg F\left[\mathbf{F}_{\mathbf{1}} / \mathbf{v}_{\mathbf{1}}\right]\right) \subseteq A_{3} \rightarrow B_{3}$, and, by Theorem 4.1, there is a sequence of formulas $\mathbf{F}_{\mathbf{2}}$, such that $A_{3} \subseteq F\left[\mathbf{F}_{\mathbf{1}} / \mathbf{v}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} / \mathbf{v}_{\mathbf{2}}\right]$ and $\perp \subseteq B_{3}$. By Corollary 4.1, we have $n=3$. Let $G=F\left[\mathbf{F}_{\mathbf{1}} / \mathbf{v}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} / \mathbf{v}_{\mathbf{2}}\right]$. Since $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ are not free in $N^{r *}$ and Γ, we deduce $\Gamma^{\prime} \vdash_{T T R^{\diamond}} u_{1}: N^{r *} \rightarrow \neg G$, $\Gamma^{\prime} \vdash_{T T R^{\diamond}} u_{2}: \neg G$, and $\Gamma^{\prime} \vdash_{T T R^{\diamond}} u_{3}: G$.

Let $n \geq 0$.

Definition An n-special application θ is a function from $\{0,1, \ldots, n\}$ to Λ with the following properties : $\theta(0) \succ \overline{0}$ and $\theta(m+1) \succ \lambda f_{m} \lambda x_{m}\left(f_{m}\right) \theta(m) 0 \leq m \leq n-1$.

Lemma 7.3 For every $\theta_{n} \simeq_{\beta} \bar{n}$, there is an n-special application θ, such that $\theta(n)=\theta_{n}$.

Proof Easy.

Definitions

1) Let $0 \leq m \leq n$ and $\mathbf{u}=u_{m, 1}, u_{m, 2}, u_{m, 3}, \ldots, u_{n-1,1}, u_{n-1,2}, u_{n-1,3}$ a sequence of λ-terms. We denoted by $x_{m, \mathbf{u}}$ a constant which does not appear in \mathbf{u}.
2) Let θ be an n-special application. The n-special substitution S_{θ} is the function on the set Λ defined by induction :

- If $u=x$, then $S_{\theta}(x)=x ;$
- If $u=\lambda x v$, then $S_{\theta}(u)=\lambda y S_{\theta}(v[y / x])$ where $y \notin F v(\theta(n))$;
- If $u=(v) w$, then $S_{\theta}(u)=\left(S_{\theta}(v)\right) S_{\theta}(w)$;
- If $u=x_{m, \mathbf{u}}$,then
$S_{\theta}(u)=\theta(m)\left[S_{\theta}\left(u_{m, 1}\right) / f_{m}, S_{\theta}\left(u_{m, 2}\right) / x_{m}, \ldots, S_{\theta}\left(u_{n-1,1}\right) / f_{n-1}, S_{\theta}\left(u_{n-1,2}\right) / x_{n-1}\right]$.
An n-special substitution is the application S_{θ} associated to a some n-special application θ.
Lemma 7.4 Let $\left\{U_{i} \succ V_{i}\right\}_{1 \leq i \leq r}$ be a sequence of head reductions such that:
$V_{i}=\left(x_{m, \mathbf{u}}\right) u_{1} u_{2} u_{3} 0 \leq m \leq n,\left[U_{i+1}=\left(u_{1}\right) x_{m-1, u_{1}, u_{2}, u_{3}, \mathbf{u}} u_{3}\right.$ if $m \neq 0$, and $U_{i+1}=\left(u_{2}\right) u_{3}$ if $m=0]$, and S_{θ} an n-special substitution. For every $1 \leq i \leq r, S_{\theta}\left(U_{1}\right) \sim S_{\theta}\left(V_{i}\right)$.

Proof We argue by induction on i.
The case $i=0$ is a consequence of Theorem 2.1.
Assume that is true for i, and prove it for $i+1$.
If $V_{i}=\left(x_{m, \mathbf{u}}\right) u_{1} u_{2} u_{3} 0 \leq m \leq n$, then
$S_{\theta}\left(V_{i}\right)=\left(\theta(m)\left[S_{\theta}\left(u_{m, 1}\right) / f_{m}, S_{\theta}\left(u_{m, 2} /\right) x_{m}, \ldots, S_{\theta}\left(u_{n-1,1}\right) / f_{n-1}, S_{\theta}\left(u_{n-1,2}\right) / x_{n-1}\right]\right)$
$S_{\theta}\left(u_{1}\right) S_{\theta}\left(u_{2}\right) S_{\theta}\left(u_{3}\right)$.

- If $m \neq 0$, then $\theta(m) \succ \lambda f_{m-1} \lambda x_{m-1}\left(f_{m-1}\right) \theta(m-1)$,
and $S_{\theta}\left(V_{i}\right) \sim\left(S_{\theta}\left(u_{1}\right)\right) \theta(m-1)\left[S_{\theta}\left(u_{m-1,1}\right) / f_{m-1}, S_{\theta}\left(u_{m-1,2}\right) / x_{m-1}, \ldots\right.$,
$\left.\left.S_{\theta}\left(u_{n-1,1}\right) / f_{n-1}, S_{\theta}\left(u_{n-1,2}\right) / x_{n-1}\right]\right) S_{\theta}\left(u_{3}\right)=S_{\theta}\left(U_{i+1}\right)$.
- If $m=0$, then $\theta(m) \succ \lambda f \lambda x x$, and $S_{\theta}\left(V_{i}\right) \sim(\lambda f \lambda x x) S_{\theta}\left(u_{1}\right) S_{\theta}\left(u_{2}\right) S_{\theta}\left(u_{3}\right) \sim\left(S_{\theta}\left(u_{2}\right)\right) S_{\theta}\left(u_{3}\right)=$ $S_{\theta}\left(U_{i+1}\right)$.

By the induction hypothesis we have $S_{\theta}\left(U_{1}\right) \sim S_{\theta}\left(V_{i}\right)$, then $S_{\theta}\left(U_{1}\right) \sim S_{\theta}\left(U_{i+1}\right)$, and, by Theo$\operatorname{rem} 2.1, S_{\theta}\left(U_{1}\right) \sim S_{\theta}\left(V_{i+1}\right)$.

Definition A context $\Gamma=f: \neg N, x_{n, \mathbf{u}_{0}}: N^{r *}, x_{m_{1}, \mathbf{u}_{1}}: N^{r *}, \ldots, x_{m_{s}, \mathbf{u}_{\mathbf{s}}}: N^{r *}$ where $0 \leq m_{j} \leq n$, $1 \leq j \leq s$, is called n-good.

Lemma 7.5 There is a sequence of head reductions $\left\{U_{i} \succ V_{i}\right\}_{1 \leq i \leq r}$ such that :

- $U_{1}=(T) x_{n} f$ and $V_{r}=(f) \tau$ where $\tau \simeq_{\beta} \bar{l}$ for some $l \geq 0$;
- $V_{i}=\left(x_{m, \mathbf{u}}\right) u_{1} u_{2} u_{3} 0 \leq m \leq n$, and
$U_{i+1}=\left(u_{1}\right) x_{m-1, u_{1}, u_{2}, u_{3}, \mathbf{u}} u_{3}$ if $m \neq 0$, and $U_{i+1}=\left(u_{2}\right) u_{3}$ if $m=0$;
- For every $1 \leq i \leq r$, there is an n-good context Γ_{i} such that $\Gamma_{i} \vdash_{T T R} \diamond V_{i}: \perp$.

Proof Since $\vdash_{T T R^{\diamond}} T: N^{r *} \rightarrow \neg \neg N^{r}$, then $x_{n}: N^{r *}, f: \neg N^{r} \vdash_{T T R^{\diamond}}(T) x_{n} f: \perp$, and, by Corollary 4.3 and Lemma 7.2 , we have $(T) x_{n} f \succ V_{1}$ where $V_{1}=(f) \tau$ or $V_{1}=\left(x_{n}\right) u_{1} u_{2} u_{3}$.
Assume that we have the head reduction $U_{k} \succ V_{k}$ and $V_{k} \neq(f) \tau$. Then $V_{k}=\left(x_{m, \mathbf{u}}\right) u_{1} u_{2} u_{3}$ $0 \leq m \leq n$, and, by the induction hypothesis, there is an n-good context Γ_{k} such that $\Gamma_{k} \vdash_{T T R}$ $\left(x_{m, \mathbf{u}}\right) u_{1} u_{2} u_{3}: \perp$. By Lemma 7.2 , there is a type G, such that $\Gamma_{k} \vdash_{T T R^{\diamond}} u_{1}: N^{r *} \rightarrow \neg G$, $\Gamma_{k} \vdash_{T T R}{ }^{\circ} u_{2}: \neg G$, and $\Gamma_{k} \vdash_{T T R}{ }^{\diamond} u_{3}: G$.

- If $m=0$, let $U_{k+1}=\left(u_{2}\right) u_{3}$. Let $\Gamma_{k+1}=\Gamma_{k}$. We have $\Gamma_{k+1} \vdash_{T T R^{\diamond}} U_{k}: \perp$.
- If $m \neq 0$, let $U_{k+1}=\left(u_{1}\right) x_{m-1, u_{1}, u_{2}, u_{3}, \mathbf{u}} u_{3}$. The variable $x_{m-1, u_{1}, u_{2}, u_{3}, \mathbf{u}}$ is not used before. Indeed, if it is, by Lemma 7.4, the λ-term $(T) \bar{n} f$ is not solvable. That is impossible because $f: \neg N^{r} \vdash_{T T R^{\diamond}}(T) \bar{n} f: \perp$. Therefore $\Gamma_{k+1}=\Gamma_{k}, x_{m-1, u_{1}, u_{2}, u_{3}, \mathbf{u}}: N^{r *}$ is an n-good context and $\Gamma_{k+1} \vdash_{T T R^{\diamond}} U_{k+1}: \perp$.

By Corollary 4.3 and Lemma 7.2 , we have $U_{k+1} \succ V_{k+1}$ where $V_{k+1}=(f) \tau$ or $V_{k+1}=$ $\left(x_{s, \mathbf{v}}\right) v_{1} v_{2} v_{3} 0 \leq s \leq n$.
This constraction always terminates. Indeed, if not, by Lemma 7.4, the λ-term $(T) \bar{n} f$ is not solvable. That is impossible because $f: \neg N^{r} \vdash_{T T R^{\diamond}}(T) \bar{n} f: \perp$.
Therefore there is $r \geq 0$ and an n-good context Γ_{r} such that $V_{r}=(f) \tau$ and $\Gamma_{r} \vdash_{T T R^{\diamond}} V_{r}: \perp$. By Lemma 6.2, we have $\tau \simeq_{\beta} \bar{l}$ for some $l \geq 0$.

Let θ_{n} be a λ-term such that $\theta_{n} \simeq_{\beta} \bar{n}$. By Lemma 7.3 , let θ be an n-special application such that $\theta(n)=\theta_{n}$. Let S_{θ} the n-special substitution associated to θ. By Lemma 7.4, we have for every $1 \leq i \leq r,(T) \theta_{n} f \sim S_{\theta}\left(V_{i}\right)$. In particular, for $i=n,(T) \theta_{n} f \sim S_{\theta}((f) \tau)=(f) S_{\theta}(\tau)$. Then T is a storage operator for N^{r}.

References

[1] H. BARENDREGT. The lambda calculus: Its Syntax and Semantics.
North Holland, 1984.
[2] R. DAVID. The Inf function in system F.
Theorical Computer Science, 135 (423-431), 1994.
[3] P. GIANNINI and S. RONCHI. Characterization of typing in polymorphic type discipline. LICS, Edinboug (61-70), 1988.
[4] J.L. KRIVINE. Lambda calcul, évaluation paresseuse et mise en mémoire. Informatique Théorique et Applications, Vol. 25,1, p. 67-84, 1991.
[5] J.L. KRIVINE. Lambda calcul, types et modèle.
Masson, Paris, 1990.
[6] J.L. KRIVINE. Opérateurs de mise en mémoire et traduction de Gődel. Archive. Math. Logic 30. (241-267), 1990.
[7] J.L. KRIVINE. Mise en mémoire (preuve générale). Manuscript,1991.
[8] R. LABIB-SAMI. Typer avec (ou sans) types auxilières. Manuscript, 1986.
[9] D. LEIVANT. Reasonning about functional programs and complexity classes associated with type disciplines.
In 24th Annual Symposium on Foundations of Computer Science, volum 44 (460-469), 1983.
[10] D. LEIVANT. Typing and computation properties of lambda expressions. Theorical Computer Science, 44 (51-68), 1986.
[11] J. MITCHELL. Polomorphic type.
Information and Computation, 76 (2/3), (211-249), 1988.
[12] K. NOUR. Opérateurs de mise en mémoire en lambda-calcul pur et typé. Thèse de doctorat, Université de Savoie, 1993.
[13] K. NOUR. Strong storage operators and data types.
Archive. Math. Logic 34. (65-78), 1995.
[14] K. NOUR. Opérateurs propres de mise en mémoire.
C.R.A.S. Paris, t. 317, Série I, p. 1-6, 1993.
[15] K. NOUR. Preuve syntaxique d'un théorème de J.L. Krivine sur les opérateurs de mise en mémoire.
C.R.A.S. Paris, t. 318, Série I, p. 201-204, 1994.
[16] K. NOUR. Opérateurs de mise en mémoire et types \forall-positifs.
Submitted to publication in Thearetical Informatics and Applications, 1993.
[17] K. NOUR and R. DAVID. Storage operators and directed lambda-calculus. Journal of Symbolic Logic (to appear).
[18] M. PARIGOT. Programming with proofs : a second order type theory. ESOP'88, LNCS 300, (145-159), 1988.
[19] M. PARIGOT. On representation of data in lambda calculus.
To appear in LNCS.
[20] M. PARIGOT. Recursive programming with proofs.
Theoritical Computer Science, 94 (335-356), 1992.

[^0]: ${ }^{1}$ We thank R. David, J.L. Krivine, and M. Parigot for helpful discussions.
 ${ }^{2}$ e-mail nour@univ-savoie.fr

[^1]: ${ }^{3}$ R. David gives a λ-term of type $N, N \rightarrow N(N=\forall X\{[X \rightarrow X] \rightarrow[X \rightarrow X]\})$ in F type system that computes the minimum of two Church integers in time $O(\min \log (\min))$. The notion of storage operators plays an important tool in this constraction (see [2]).

[^2]: ${ }^{4}$ J.L. Krivine and the author proved independely the same result for AF2 type system (see [7] and [12]).
 ${ }^{5}$ This types were studied by some authors (in particular R. Labib-Sami), and have remarkable properties (see [8]).

