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SYSTEM
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Abstract In 1990, J.L. Krivine introduced the notion of storage operator to simulate ”call by

value” in the ”call by name” strategy. J.L. Krivine has shown that, using Gődel translation of

classical into intuitionitic logic, we can find a simple type for the storage operators in AF2 type

system. This paper studies the ∀-positive types (the universal second order quantifier appears

positively in these types), and the Gődel transformations (a generalization of classical Gődel

translation) of TTR type system. We generalize, by using syntaxical methods, the J.L. Kriv-

ine’s Theorem about these types and for these transformations. We give a proof of this result

in the case of the type of recursive integers.
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1 Introduction

The strategy of left reduction (iteration of head reduction denoted by ≻) has the following

advantages :

• It has good mathematical properties stated by the normalisation Theorem : if a λ-term is

normalizable, then we obtain the normal form by left reduction.

• It seems more economic since we compute a λ-term only when we need it.

Now, a drawback of the strategy of left reduction (call by name) is the fact that the argument of

a function is computed as many times as it is used. The purpose of storage operators is precisely

to correct this drawback.

Let F be a λ-term (a function), and N the set of normal Church integers. During the computa-

tion, by left reduction, of (F )θn (where θn ≃β n), θn may be computed several times (as many

times as F uses it). We would like to transform (F )θn to (F )n. We also want this transformation

depends only on θn (and not F ). In other words we look for some closed λ-terms T with the

following properties :

1 We thank R. David, J.L. Krivine, and M. Parigot for helpful discussions.
2e-mail nour@univ-savoie.fr
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• For every F , n ∈ IN, and θn ≃β n, we have (T )θnF ≻ (F )n;

• The computation time of the head reduction (T )θnF ≻ (F )n depends only on θn.

Therefore the first definition : A closed λ-term T is called storage operator for N if and only if

for every n ∈ IN, and for every θn ≃β n, (T )θnf ≻ (f)n (where f is a new variable).

It is clear that a storage operator satisfies the required properties. Indeed,

• Since we have (T )θnf ≻ (f)n, then the variable f never comes in head position during the

reduction, and we may then replace f by any λ-term.

• The computation time of the head reduction (T )θnF ≻ (F )n depends only on θn.

We showed (see [12]) that it is not possible to get the normal form of θn. We then change the

definition : A closed λ-term T is called storage operator for N if and only if for every n ∈ IN,

there is a closed λ-term τn ≃β n (for example τn = (s)n0, where s is a λ-term for the successor),

such that for every θn ≃β n, (T )θnf ≻ (f)τn (where f is a new variable).

If we take T1 = λn((n)λxλy(x)λz(y)(s)z)λf(f)0, and T2 = λnλf(((n)λxλy(x)(s)y)f)0, then it

is easy to check that : for every θn ≃β n, (T1)θnf ≻ (f)(s)n0, and (T2)θnf ≻ (f)(s)n0. Therefore

T1 and T2 are storage operators for N .

The AF2 type system is a way of interpreting the proof rules for the second order intuitionistic

logic plus equational reasoning as construction rules for terms. In this system we have the

possibility to define the data types, the representation in λ-calculus being automaticaly extracted

from the logical definition of the data type. At the logical level the data type are defined by

second order formulas expressing the usual iterative definition of the corresponding algebras of

terms and the data receive the corresponding iterative definition in λ-calulus. For example, the

type of integers is the formula : N [x] = ∀X{∀y[X(y) → X(sy)] → [X(0) → X(x)]} (X is a

unary predicate variable, 0 is a constant symbol for zero, and s is a unary function symbol for

successor).

If we try to type a storage operator T in AF2 type system, we naturally find the type ∀x{N [x]→

[(N [x] → O) → O]} (where O is a particular 0-ary predicate symbol which represents an

arbitrary type). Indeed, if ⊢AF2 τn : N [sn(0)], and f is of type N [sn(0)] → O, then f :

N [sn(0)] → O ⊢AF2 (f)τn : O. It is natural to have (T )θnf of type O. If ⊢AF2 θn : N [sn(0)],

then the type for T must be ∀x{N [x]→ [(N [x]→ O)→ O]}.

It is easy to check that ⊢AF2 T1, T2 : ∀x{N [x]→ [(N [x]→ O)→ O]}.

The type ∀x{N [x] → [(N [x] → O) → O]} does not characterize the storage operators. Indeed,

if we take T = λnλf(f)n, we obtain :

• n : N [x], f : N [x]→ O ⊢AF2 (f)n : O, then, ⊢AF2 T : ∀x{N [x]→ [(N [x]→ O)→ O]}.

• For every θn ≃β n, (T )θnf ≻ (f)θn, therefore T is not a storage operator for N .
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This comes from the fact that the type ∀x{N [x] → [(N [x] → O) → O]} does not take into

account the independance of τn with θn. To solve this problem, we must prevent the use of

the first N [x] in ∀x{N [x] → [(N [x] → O) → O]} as well as his subtypes to prove the second.

Therefore, we will replace the first N [x] by a new type N*[x] with the following properties :

• ⊢AF2 n : N*[sn(0)] (for example, take N*[x] = ∀X{∀y[F (X, y)→ F (X, sy)]→ [F (X, 0) →

F (X,x)]}) ;

• If ν : N*[x], xi : ∀y[F (G, y) → F (G, sy)], yj : F (H,a) ⊢AF2 t : N [sn(0)], then ⊢AF2 t′ :

N [sn(0)], where t′ is the normal form of t ;

• There is a closed λ-term T , such that ⊢AF2 T : ∀x{N*[x]→ [(N [x]→ O)→ O]}.

A simple solution for the second property is to take a formula F (X,a) ending with a new

constant symbol. Indeed, since N [x] does not contain this symbol, we cannot use the variables

ν, xi, yj in the typing of t′. We suggest the following proposition :

N*[x] = ∀X{∀y[(X(y)→ O)→ (X(sy)→ O)]→ [(X(0)→ O)→ (X(x)→ O)]}.

It is easy to chech that ⊢AF2 T1, T2 : ∀x{N*[x]→ [(N [x]→ O)→ O]} (see [6] and [12]).

For each formula F of AF2, we indicate by F* the formula obtained by putting ¬ in front of

each atomic formulas of F (F* is called the Gődel translation of F ).

J.L. Krivine has shown that the type ∀x{N*[x] → ¬¬N [x]} characterize the storage opera-

tors for N (see [6]). But the λ-term τn obtained may contain variables substituted by λ-terms

u1, ..., um depending on θn. Since the λ-term τn is βη-equivalent to n, therefore, the left re-

duction of the τn[u1/x1, ..., um/xm] is equivalent to the left reduction of τn and the λ-terms

u1, ..., um will therefore never be evaluated during the reduction.

Taking into account the above remarks, we modify again the definition : A closed λ-term T is

called a storage operator for N if and only if for every n ∈ IN, there is a λ-term τn ≃β n, such

that for every θn ≃β n, there is a substitution σ, such that (T )θnf ≻ (f)σ(τn) (where f is a new

variable).

The AF2 type system is satisfactory from an extensional point of view : one can construct

programs for all the functions whose termination is provable in the second order Peano arith-

metic. But from an intensional point of view the situation is very different : we cannot always

obtain the simple (in term of time complexity, for instance) programs we need. For example

we cannot find a λ-term of type ∀x∀y{N [x], N [y] → N [min(x, y)]} (min is a binary function

symbol defined by equations) in AF2 type system that computes the minimum of two Church

integers in time O(min) 3

3 R. David gives a λ-term of type N, N → N (N = ∀X{[X → X] → [X → X]}) in F type system that

computes the minimum of two Church integers in time O(min.Log(min)). The notion of storage operators plays

an important tool in this constraction (see [2]).
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The TTR type system is an extension of AF2 based on recursive definitions of types, which

is intented to solve the basic problems of efficiency mentioned before. In TTR we have a log-

ical operator µ of least fixed point. If A is a formula, C an n-ary predicate symbol which

appears and occurs positively in A, x1, ..., xn first order variables, and t1, ..., tn terms, then

µCx1...xnA < t1, .., tn > is a formula called the least fixed point of A in C calculated over

the terms t1, ..., tn. The interded logical meaning of the formula µCx1...xnA < t1, .., tn > is

K(t1, ..., tn), where K is the least X, such that X(x1, ..., xn) ←→ A. TTR allows to define the

multisorted term algebras as least fixed points. For example the type of recursive integers is

the formula : N r[x] = µCz[∀X{∀y[C(y) → X(sy)] → [X(0) → X(z)]}] < x > (X is a unary

predicate variable, 0 is a constant symbol for zero, and s is a unary function symbol for successor).

In this paper we study the types D of TTR, and the transformations *, for which we have the

following result : if ⊢TTR T : D*→ ¬¬D, then for every λ-term t with ⊢TTR t : D, there are

λ-terms τt and τ ′
t such that τt ≃β τ ′

t, ⊢TTR τ ′
t : D, and for every θt ≃β t, there is a substitution

σ, such that (T )θtf ≻ (f)σ(τt) (where f is a new variable).

We prove 4 that, to obtain this result, it suffies to assume that :

• The universal second order quantifier appears positively in D (∀-positive type) 5.

• The transformation * satisfies the following properties :

- If A = C(t1, ..., tn), then A*= A ;

- If A = X(t1, ..., tn), then A*= FX [t1/x1, ..., tn/xn] < X1, ...,Xr > where FX is a

formula ending with ⊥ and having x1, ..., xn,X1, ...,Xr as free variables ;

- (A→ B)*= A*→ B* ;

- (∀xA)*= ∀xA*.

- (∀XA)*= ∀X1...XrA*.

- (µCx1...xnA < t1, .., tn >)*= µCx1...xnA*< t1, .., tn >.

We give the proof of this result in the case of the type of recurcive integers.

2 Basic notions of pure λ-calculus

Our notation is standard (see [1] and [5]).

We denote by Λ the set of terms of pure λ-calculus, also called λ-terms.

Let t, u, u1, ..., un ∈ Λ, the application of t to u is denoted by (t)u. In the same way we write

4J.L. Krivine and the author proved independely the same result for AF2 type system (see [7] and [12]).
5 This types were studied by some authors (in particular R. Labib-Sami), and have remarkable properties (see

[8]).
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(t)u1...un instead of (...((t)u1)...)un.

The β-reduction (resp. β-equivalence) is denoted by t→β u (resp. t ≃β u).

The set of free variables of a λ-term t is denoted by Fv(t).

The notation t[u1/x1, ..., un/xn] represents the result of the simultaneous substitution of λ-terms

u1, ..., un to the free variables x1, ..., xn of t (after a suitable renaming of the bounded variables

of t).

With each normal λ-term, we associate a set of λ-terms STE(t) by induction :

if t = λx1...λxn(y)t1...tm, then STE(t) = {t}
⋃ ⋃

1≤i≤m

STE(ti).

Let us recall that a λ-term t either has a head redex [i.e. t = λx1...λxn(λxu)vv1...vm, the head

redex being (λxu)v], or is in head normal form [i.e. t = λx1...λxn(x)vv1...vm].

The notation t ≻ t′ means that t′ is obtained from t by some head reductions, and we denote

by n(t, t′), the number of steps to go from t to t′.

A λ-term t is said to be solvable if and only if the head reduction of t terminates.

We define an equivalence relation ∼ on Λ by : u ∼ v if and only if there is a t, such that u ≻ t,

and v ≻ t. In particular, if v is in head normal form, then u ∼ v means that v is the head

normal form of u.

Theorem 2.1 ([6]). If t ≻ t′, then for every u1, ..., un ∈ Λ :

1) there is a v ∈ Λ, such that (t)u1...un ≻ v, (t′)u1...un ≻ v, and n((t)u1...un, v) = n((t′)u1....un, v)+

n(t, t′).

2) t[u1/x1, ..., un/xn] ≻ t′[u1/x1, ..., un/xn], and n(t[u1/x1, ..., un/xn], t′[u1/x1, ..., un/xn]) =

n(t, t′).

Remark. Theorem 2.1 shows that to make the head reduction of (t)u1...un (resp. t[u1/x1, ..., un/xn]),

it is equivalent (same result, and same number of steps) to make some steps in the head reduction

of t, and then make the head reduction of (t′)u1...un (resp. t′[u1/x1, ..., un/xn]).

3 Basic notions of typed λ-calculus

3.1 The AF2 type system

The types will be formulas of second order predicate logic over a given language.

The logical symbols are ⊥ (for absurd), → and ∀ (and no other ones).

There are individual variables : x, y, ... (also called first order variables) and n-ary predicate

variables (n = 0, 1, ...) : X,Y, ... (also called second order variables).

The terms and the formulas are up in the usual way.

The formula F1 → (F2 → (... → (Fn → G)...)) is denoted by F1, F2, ..., Fn → G, and F →⊥ is

denoted by ¬F . The formula ∀v1...∀vnF is denoted by ∀vF , and the sentence ”v is not free in

A” means that for all 1 ≤ i ≤ n, vi is not free in A.
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If X is a unary predicate variable, t and t′ two terms, then the formula ∀X[Xt → Xt′] is

denoted by t = t′, and is said to be equation. A particular case of t = t′ is a formula of

the forme t[u1/x1, ..., un/xn] = t′[u1/x1, ..., un/xn] or t′[u1/x1, ..., un/xn] = t[u1/x1, ..., un/xn],

u1, ..., un being terms of the language.

After, we denote by E a system of function equations.

A context Γ is a set of the form x1 : A1, ..., xn : An where x1, ..., xn are distinct variables and

A1, ..., An are formulas.

We are going to describe a system of typed λ-calculus called second order functional arithmetic

(shortened in AF2 for Arithmétique Fonctionnelle du seconde ordre). The rules of typing are

the following :

(1) Γ, x : A ⊢AF2 x : A.

(2) If Γ, x : B ⊢AF2 t : C, then Γ ⊢AF2 λxt : B → C.

(3) If Γ ⊢AF2 u : B → C, and Γ ⊢AF2 v : B, then Γ ⊢AF2 (u)v : C.

(4) If Γ ⊢AF2 t : A, and x does not appear in Γ, then Γ ⊢AF2 t : ∀xA.

(5) If Γ ⊢AF2 t : ∀xA, then, for every term u, Γ ⊢AF2 t : A[u/x].

(6) If Γ ⊢AF2 t : A, and X does not appear in Γ, then Γ ⊢AF2 t : ∀XA.

(7) If Γ ⊢AF2 t : ∀XA, then, for every formula G, Γ ⊢AF2 t : A[G/X(x1, ..., xn)] (*)

(8) If Γ ⊢AF2 t : A[u/x], then Γ ⊢AF2 t : A[v/x], u = v being a particular case of an

equation of E .

(*) A[G/X(x1, ..., xn)] is obtained by replacing in A each atomic formula X(t1, ..., tn) by

G[t1/x1, ..., tn/xn]. To simplify, we write sometimes A[G/X] instead of A[G/X(x1, ..., xn)].

Whenever we obtain the typing Γ ⊢AF2 t : A by means of these rules, we say that ”the λ-term

t is of type A in the context Γ, with respect to the equation of E ”.

Theorem 3.1 ([5],[9]).

1) Conservation Theorem: If Γ ⊢AF2 t : A, and t→β t′, then Γ ⊢AF2 t′ : A.

2) Strong normalization: If Γ ⊢AF2 t : A, then t is strongly normalizable.

3.2 The TTR type system

Let X be a predicate variable or predicate symbol, and A a type of AF2.

We define the notions ”X is positive in A” and ”X is negative in A” by induction :

- If X does not appears in A, then X is positive and negative in A ;
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- If A = X(t1, ..., tn), then X is positive in A, and X is not negative in A ;

- If A = B → C, then X is positive (resp. negative) in A if and only if X is negative (resp.

positive) in B, and X is positive (resp. negative) in C ;

- If A = ∀vB, and v 6= X, then X is positive (resp. negative) in A if and only if X is

positive (resp. negative) in B.

We add to the second order predicate calculus a new logic symbol µ, and we allow a new con-

struction for formulas : if A is a formula, C an n-ary predicate symbol which appears positively

in A, x1, ..., xn first order variables, and t1, ..., tn terms, then µCx1...xnA < t1, ..., tn > is a

formula called the least fixed point of A in C calculated over the terms t1, ..., tn.

We extend the notions ”X is positive in a type” and ”X is negative in a type” by the following

way : X is positive (resp. negative) in µCx1...xnA < t1, ..., tn > if and only if X is positive

(resp. negative) in A.

We extend the definition of the substitution by assuming that C, x1, ..., xn are bounded in the

formula µCx1...xnA < t1, ..., tn >.

We define on these formulas a binary relation ⊆ by : A ⊆ B if and only if it is obtained by using

the following rules :

(ax)A ⊆ A (→)
A ⊆ A′ B ⊆ B′

A′ → B ⊆ A→ B′

(∀ig)
A[G/v] ⊆ B

∀vA ⊆ B
(1) (∀id)

A ⊆ B

A ⊆ ∀vB
(2)

(e)
A ⊆ B[v/y]

A ⊆ B[w/y]
(3) (tr)

A ⊆ D D ⊆ B

A ⊆ B

(µd) D[µCx1...xmD < z1, ..., zm > /C(z1, ..., zm)][t1/x1, ..., tm/xm] ⊆ µCx1...xmD < t1, ..., tm >

(µ′
g) µCx1...xmD < t1, ..., tm >⊆ D[µCx1...xmD < z1, ..., zm > /C(z1, ..., zm)][t1/x1, ..., tm/xm]

(µg)
D[E/C(x1, ..., xm)] ⊆ E

µCx1...xmD < t1, ..., tm >⊆ E[t1/x1, ..., tm/xm]

(1) G is a formula if v is a second order variable, and a term if v is a first order variable.

(2) v is not free in A.

(3) v = w is a particular case of an equation of E .

(µd) and (µ′
g) are the rules of factorisation and development of a fixed point.

(µg) expresses the fact that µCx1...xmD < t1, ..., tm > is a least fixed point.
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We are going to describe a system of typed λ-calculus called theory of recursive types (shortened

in TTR for Théorie des Types Récursifs) where the types are formulas of language. The rules

of typing are the following :

- The typing rules (1),...,(8) of AF2 type system.

- (⊆)
Γ ⊢TTR t : A A ⊆ B

Γ ⊢TTR t : B

- (Y )
Γ ⊢TTR t : ∀x1...∀xm[C(x1, ..., xm)→ E]→ ∀x1...∀xm[D → E]

Γ ⊢TTR (Y )t : ∀x1...∀xm[µCx1...xmD < x1, ..., xm >→ E]
where C is not free in E and G, and Y is the Turing’s fixed point.

The rule (Y ) expresses also the fact that µCx1...xmD < t1, ..., tm > is a least fixed point.

Theorem 3.2 ([12],[18]).

1) Conservation Theorem If Γ ⊢TTR t : A, and t→β t′, then Γ ⊢TTR t′ : A.

2) Strong normalization If Γ ⊢TTR t : A without using the rule (Y ), then t is strongly normaliz-

able.

3) Weak normalization If Γ ⊢TTR t : A, and if all least fixed points of A are positives, then t is

normalizable.

The TTR⋄ type system is the subsystem of TTR where we only have propositional variables

and constants (predicate variables or predicate symbols are of arity 0). So, first order variables,

function symbols, and finite sets of equations are useless. With each predicate variable (resp.

predicate symbol) X, we associate a predicate variable (resp. a predicate symbol) X⋄ of TTR⋄

type system. For every formula A of TTR, we define the formula A⋄ of TTR⋄ obtained by

forgetting in A the first order part. If Γ = x1 : A1, ..., xn : An is a context of TTR, then we

denote by Γ⋄, the context x1 : A⋄
1, ..., xn : A⋄

n of TTR⋄. We write Γ ⊢TTR⋄ t : A if t is tyable in

TTR⋄ of type A in the context Γ.

Theorem 3.3 If Γ ⊢TTR t : A, then Γ⋄ ⊢TTR⋄ t : A⋄.

Proof By induction on the length of the derivation Γ ⊢TTR t : A. 2

Theorem 3.4

1) Conservation Theorem If Γ ⊢TTR⋄ t : A, and t→β t′, then Γ ⊢TTR⋄ t′ : A.

2) Strong normalization If Γ ⊢TTR⋄ t : A without using the rule (Y ), then t is strongly normal-

izable.

3) Weak normalization If Γ ⊢TTR⋄ t : A, and if all least fixed points of A are positives, then t is

normalizable.
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Proof We use Theorems 3.2 and 3.3. 2

Remark We cannot if the reverse of 2)-Theorem 3.2 is true, but the λ-term

t = λx(λy((x)(y)λxx)(y)λxλyx)λx(x)x (which is strongly normalizable, and untypable in AF2

type system (see [3])) is typable in TTR type system. Indeed, if we take B = µC(∀XX → C),

we check easily that ⊢TTR⋄ t : [B → (B → B)]→ B.

4 Properties of TTR type system

4.1 Permutations Lemmas

Lemma 4.1 1) The typing rules (5), (7), and (8) are admissible.

2) In the typing, we may replace the succession of n times (⊆) and m times (4) (resp. (6)), by

the succession of m times (4) (resp. (6)) and n times (⊆).

3) If Γ ⊢TTR t : B is derived from Γ ⊢TTR t : A, then we may assume that we begin by the

applications of (4), (6), and next by (⊆).

Proof Easy. 2

Lemma 4.2 1) If A ⊆ B, then, for every sequence of terms and/or formulas G, A[G/v] ⊆

B [G/v], and we use the same proof rules.

2) If Γ ⊢TTR t : A, then, for every sequence of terms and/or formulas G, Γ[G/v] ⊢TTR t :

A[G/v], and we use the same typing rules.

Proof By induction on the length of the derivation A ⊆ B (resp. Γ ⊢TTR t : A). 2

Corollary 4.1 If Γ, x : A ⊢TTR (x)u1...un : B, then :

n = 0, and there is v0 not free in A and Γ, such that ∀v0A ⊆ B,

or

n ≥ 1, and there are types Ci,Bi (i = 1, ..., n) and vi(i = 1, n) not free in A and Γ, such that

∀v0A ⊆ C1 → B1, ∀viBi ⊆ Ci+1 → Bi+1 1 ≤ i ≤ n− 1, ∀vnBn ⊆ B, and Γ, x : A ⊢TTR ui : Ci

1 ≤ i ≤ n.

Proof By induction on n. 2

Lemma 4.3 1) If X is positive (resp. negative) in D, and A ⊆ B, then D[A/X] ⊆ D[B/X]

(resp. D[B/X] ⊆ D[A/X]).

2) We may eliminate the rule (µ′
g).

Proof 1) By induction on D.

2) By rule (µd), we have A[µCx1...xnA < y1, ..., yn > /C(y1, ..., yn)] ⊆ µCx1...xnA < x1, ..., xn >,

9



then, by 1), A[A[µCx1...xnA < y1, ..., yn > /C(y1, ..., yn)]/C(x1, ..., xn)] ⊆ A[µCx1...xnA <

x1, ..., xn > /C(x1, ..., xn)], and, by using the rule (µg), we obtain µCx1...xnA < t1, ..., tn >⊆

A[µCx1...xnA < y1, ..., yn > /C(y1, ..., yn)][t1/x1, ..., tn/xn]. 2

4.2 Without-arrow types and arrow types

Definitions

1) A type A is said to be without-arrow type if and only if A does not contain any arrow.

2) Each without-arrow type A contains a unique atomic formula X(t1, ..., tn). We denote X by

At(A). We distinguish between two kinds of without-arrow types :

- A without-arrow type A is said to be of kind 1 if and only if At(A) is free in A.

- A without-arrow type A is said to be of kind 2 if and only if At(A) is bounded in A.

Lemma 4.4 1) If A is a without-arrow type of kind 1, and A ⊆ B, then B is a without-arrow

type of kind 1, and At(A) = At(B).

2) If A is a without-arrow type of kind 2, then, for every type B, we have A ⊆ B.

Proof 1) By induction on the length of the derivation A ⊆ B.

2) Easy. 2

Definition A type A is said to be arrow type if and only if A contains at least an arrow.

Lemma 4.5 If A is an arrow type, and A ⊆ B, then B is an arrow type.

Proof By induction on the length of the derivation A ⊆ B. 2

Corollary 4.2 Let A be an atomic formula. If Γ ⊢TTR t : A, then t does not begin by λ. Other

words, if Γ ⊢TTR λxu : B, then B is an arrow type.

Proof If t begins by λ, then there are E,F , and v, such that ∀v(E → F ) ⊆ A, therefore, by

Lemma 4.5, A is an arrow type. 2

Definition For every arrow type A, we define the type Rep(A) as follows, by induction on A :

- Rep(E → F ) = E → F ;

- Rep(∀vB) = ∀vRep(B) ;

- Rep(µCx1...xnB < t1, ..., tn >) =

Rep(B)[µCx1...xnB < y1, ..., yn > /C(y1, .., yn)][t1/x1, ..., tn/xn].

Lemma 4.6 If A is an arrow type, then :

1) there are G,D and v such that Rep(A) = ∀v(G → D).

2) A ⊆ Rep(A), and Rep(A) ⊆ A.

10



Proof By induction on A. 2

Remark. The Lemma 4.6 means that if A is an arrow type, then Rep(A) is an ”equivalent”

type to A of the form ∀v(G→ D). In the rest of the paper, we denoted G by Ag and D by Ad.

Lemma 4.7 Let A,B be two types, and X,X ′ two predicate variables or predicate symbols, such

that X ′ is not free in A.

1) If X is positive in A, and X ′ is positive in B, then X ′ is positive in A[B/X].

2) If X is positive in A, and X ′ is negative in B, then X ′ is negative in A[B/X].

3) If X is negative in A, and X ′ is positive in B, then X ′ is negative in A[B/X].

4) If X is negative in A, and X ′ is negative in B, then X ′ is positive in A[B/X].

Proof By induction on A. 2

Lemma 4.8 Let A be an arrow type.

1) If X is positive (resp. negative) in A, then X is positive (resp. negative) in Rep(A).

2) If G is a sequence of terms and/or formulas, then Rep(A[G/v]) = Rep(A)[G/v].

Proof 1) We argue by induction on A. The only non-trivial case is the one where A =

µCx1...xnB < t1, ..., tn >. If X is positive (resp. negative) in A, then X is positive (resp.

negative) in B. By the induction hypothesis, we have X is positive (resp. negative) in Rep(B),

therefore, by Lemma 4.7, X is positive (resp. negative) in Rep(A).

2) By induction on A. 2

Theorem 4.1 Let A,B be two arrow types, such that Rep(A) = ∀v(Ag → Ad) and Rep(B) =

∀v′(Bg → Bd). If A ⊆ B, then there is a sequence of terms and/or formulas G, such that

Bg ⊆ Ag[G/v], and Ad[G/v] ⊆ Bd .

Proof We argue by induction on the length of the derivation A ⊆ B. Let us look at the rule

used in the last step. The only non-trivial cases are :

- (tr) : then A ⊆ D, and D ⊆ B. If Rep(D) = ∀v”(Dg → Dd), by the induction hypothesis,

there are sequences G and G” such that Dg ⊆ Ag[G/v], Ad[G/v]⊆ Dd, Bg ⊆ Dg[G”/v”],

and Dd[G”/v”]⊆ Bd. It is clear that we may assume that v” is not free in Ag and Ad,

therefore, by Lemma 4.2, we have Bg ⊆ Ag[G/v][G”/v”], and Ad[G/v][G”/v”]⊆ Bd. Let

G′ = G[G”/v”], then Bg ⊆ Ag[G
′/v], and Ad[G

′/v]⊆ Bd.

- (µd) : then A = D[µCx1...xkD < y1, ..., yk > /C(y1, ..., yk)][t1/x1, .., tk/xk], and B =

µCx1...xkD < t1, ..., tk >. Therefore, by Lemma 4.8, Rep(A) = Rep(B), Ag = Bg, and

Bd = Ad, and so Bg ⊆ Ag, and Ad ⊆ Bd.
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- (µg) : then A = µCx1...xkD < t1, ..., tk >, B = E[t1/x1, ..., tk/xk], and D[E/C(x1, ..., xk)] ⊆

E. Therefore Rep(D) = ∀v(Dg → Dd) with

Dg[µCx1...xkD < y1, ..., yk > /C(y1, ..., yk)][t1/x1, .., tk/xk] = Ag,

Dd[µCx1...xkD < y1, ..., yk > /C(y1, ..., yk)][t1/x1, .., tk/xk] = Ad, and

Rep(E) = ∀v′(Eg → Ed) with Eg[t1/x1, ..., tk/xk] = Bg, Ed[t1/x1, ..., tk/xk] = Bd.

By the induction hypothesis, there is a sequence G, such that Eg ⊆ Dg[E/C(x1, ..., xk)][G/v]

, and Dd[E/C(x1, ..., xk)][G/v]⊆ Ed. C is positive in D, therefore, by Lemma 4.8, C is

negative in Dg, and C is positive in Dd.

D[E/C(x1, ..., xk)] ⊆ E, then µCx1...xkD < y1, ..., yk >⊆ E[y1/x1, ..., yk/xk], and, by 1)-

Lemma 4.3, Eg ⊆ Dg[µCx1...xkD < y1, ..., yk > /C(y1, ..., yk)][G/v] , and

Dd[µCx1...xkD < y1, ..., yk > /C(y1, ..., yk)][G/v]⊆ Ed, and so, by Lemma 4.2,

Eg[t1/x1, ..., tk/xk] ⊆ Dg[µCx1...xkD < y1, ..., yk > /C(y1, ..., yk)][G/v][t1/x1, ..., tk/xk],

and Dd[µCx1...xkD < y1, ..., yk > /C(y1, ..., yk)][G/v][t1/x1, ..., tn/xn] ⊆ Ed[t1/x1, ..., tk/xk].

Let G′ = G[t1/x1, ..., tk/xk], then Bg ⊆ Ag[G
′/v],and Ad[G

′/v]⊆ Bd. 2

Corollary 4.3 Let B be an atomic formula. If Γ, x : A → B ⊢TTR (x)u1...un : C, then n = 1,

and Γ, x : A→ B ⊢TTR u1 : A.

Proof By Corollary 4.1, we have ∀v(A → B) ⊆ F → G, Γ, x : A → B ⊢TTR u1 : F , and v is

not free in Γ and A → B. Therefore, by Theorem 4.1, F ⊆ A, and B ⊆ G, then Γ, x : A →

B ⊢TTR u1 : A. If n > 1, then ∀v′G ⊆ H → J , and v′ is not free in Γ and A → B. Therefore

∀v′B ⊆ H → J , and ∀v′B is a without-arrow type of kind 1. A contradiction. 2

Lemma 4.9 If x1 : A1, ..., xn : An ⊢TTR t : A, Bi ⊆ Ai 1 ≤ i ≤ n, and A ⊆ B, then

x1 : B1, ..., xn : Bn ⊢TTR t : B.

Proof We argue by induction on t. The only non-trivial cases are :

- If t = λxu, then x1 : A1, ..., xn : An, x : E ⊢TTR u : F , ∀v(E → F ) ⊆ A, and v is not

free in E and Aj 1 ≤ j ≤ n. We may assume that v is not free in E and Bj 1 ≤ j ≤ n.

By the induction hypothesis, we have x1 : B1, ..., xn : Bn, x : E ⊢TTR u : F , and so

x1 : B1, ..., xn : Bn ⊢TTR t : B.

- If t = (Y )u, then ∀v∀y1...∀ym[µCy1...ymE < y1, ..., ym >→ D]) ⊆ A, x1 : A1, ..., xn :

An ⊢TTR u : ∀y1...∀ym[C(y1, ..., ym) → D] → ∀y1...∀ym[E → D], C is positive in E, C

is not free in D, and v is not free in Aj 1 ≤ j ≤ n. We may assume that v, C are not

free in Bj 1 ≤ j ≤ n. By the induction hypothesis, we have x1 : B1, ..., xn : Bn ⊢TTR u :

∀y1..∀ym[C(y1, ..., ym)→ D]→ ∀y1...∀ym[E → D], and so x1 : B1, ..., xn : Bn ⊢TTR (Y )u :

A. 2
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5 ∀-positive types

5.1 Properties of ∀-positive types

Definition We define two sets of types, the set Ω+ of ∀-positive types, and the set Ω− of

∀-negative types in the following way :

- If A is an atomic type, then A ∈ Ω+, and A ∈ Ω− ;

- If T+ ∈ Ω+, and T− ∈ Ω−, then, T− → T+ ∈ Ω+, and T+ → T− ∈ Ω− ;

- If T+ ∈ Ω+, then ∀xT+ ∈ Ω+ ;

- If T+ ∈ Ω+, then ∀XT+ ∈ Ω+ ;

- If T− ∈ Ω−, then ∀xT− ∈ Ω− ;

- If T− ∈ Ω−, and X is not free in T−, then ∀XT− ∈ Ω−- ;

- If T+ ∈ Ω+, x1, ..., xn first order variables, t1, ..., tn terms, C an n-ary predicate symbol

which appears and is positive in T+, then µCx1...xnT+ < t1, ..., tn >∈ Ω+.

Remarks

1) A least fixed point is not a ∀-negative type.

2) If T+ ∈ Ω+, then all least fixed points of T+ are positives. Therefore, by 3)-Theorem 3.2, if

Γ ⊢TTR t : T+, then t is normalizable.

Lemma 5.1 Let T−, T ′− ∈ Ω−, T+, T ′+ ∈ Ω+, and X a predicate variable or predicate symbol.

1) If X is positive (resp. negative) in T−, then T−[T ′−/X] ∈ Ω− (resp. T−[T ′+/X] ∈ Ω−).

2) If X is positive (resp. negative) in T+, then T+[T ′+/X] ∈ Ω+ (resp. T+[T ′−/X] ∈ Ω+).

3) If T [F/X] ∈ Ω+ (resp. T [F/X] ∈ Ω−), then T ∈ Ω+ (resp. T ∈ Ω−).

Proof 1), 2) By induction on T− and T+.

3) By induction on T . 2

Definition With each type T of TTR, we associte the set Fv2(T ) of free predicate variables

and free predicate symbols of T .

Theorem 5.1 Let T− ∈ Ω−, and T+ ∈ Ω+.

1) If T− ⊆ A, then A ∈ Ω−, and Fv2(A) ⊆ Fv2(T
−).

2) If B ⊆ T+, then B ∈ Ω+, and Fv2(B) ⊆ Fv2(T
+).

Proof We argue by induction on the length of the derivations T− ⊆ A, and B ⊆ T+. Let us

look at the rule used in the last step.
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1) The only non-trivial case is (µd).

Then T− = T ′[µCx1...xnT ′ < y1, ..., yn > /C(y1, ..., yn)][t1/x1, ..., tn/xn], and

A = µCx1...xnT ′ < t1, .., tn >. Since T− ∈ Ω−, then, by Lemma 5.1, µCx1...xnT ′ < y1, ..., yn >∈

Ω−, which is impossible.

2) The only non-trivial cases are :

- (µd) : then B = D[µCx1...xnD < y1, ..., yn > /C(y1, ..., yn)][t1/x1, ..., tn/xn], and T+ =

µCx1...xnD < t1, ..., tn >. Since T ∈ Ω+, then D ∈ Ω+, and so, by Lemma 5.1, B ∈ Ω+,

and Fv2(B) = Fv2(D)− {C} = Fv2(T
+).

- (µg) : then B = µCx1...xnD < t1, ..., tn >, T+ = E[t1/x1, ..., tn/xn], and D[E/C(x1, ..., xn)] ⊆

E. Since T+ ∈ Ω+, then E ∈ Ω+, and, by the induction hypothesis, D[E/C(x1, ..., xn)] ∈

Ω+, and Fv2(D[E/C(x1, ..., xn)]) ⊆ Fv2(E). By Lemma 5.1, we have D ∈ Ω+, and

Fv2(D) − {C} ⊆ Fv2(D[E/C(x1, ..., xn)]) ⊆ Fv2(E), and so B ∈ Ω+, and Fv2(B) =

Fv2(D)− {C} ⊆ Fv2(D[E/C(x1, ..., xn)]) ⊆ Fv2(E) = Fv2(T
+). 2

5.2 The TTR0 type system

We define on the types of TTR a binary relation ⊆0 by the following way :

A ⊆0 B if and only if A ⊆ B, and in the proof we use only the weak version of (∀ig) :

(∀ig0
)

A[G/v] ⊆0 B

∀vA ⊆0 B

where G is a term if v is an individual variable, and G is a predicate variable or a predicate

symbol having the same arity of v if v is a predicate variable.

Lemma 5.2 If A ⊆0 B, then, for every sequence of terms and/or formulas G , A[G/v] ⊆0

B [G/v], and we use the same proof rules.

Proof Same proof as 1)-Lemma 4.2. 2

Lemma 5.3 Let A be an arrow type, and Rep(A) = ∀v(Ag → Ad).

1) If A ∈ Ω− (resp. A ∈ Ω+), then Ag ∈ Ω+, and Ad ∈ Ω− (resp. Ag ∈ Ω−, and Ad ∈ Ω+).

2) A ⊆0 Rep(A), and Rep(A) ⊆0 A.

Proof By induction on A. 2

Lemma 5.4 If T− ∈ Ω−, T+ ∈ Ω+, and T− ⊆ T+, then T− ⊆0 T+.

Proof By induction on the length of the derivation T− ⊆ T+. 2

Definition We denote by TTR0, the TTR type system whithout the rules (5), (7), (8) and by

replacing the rule (⊆) by :
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(⊆0)
Γ ⊢TTR0

t : A A ⊆0 B

Γ ⊢TTR0
t : B

Theorem 5.2 Let A1, ..., An ∈ Ω−, Γ = x1 : A1, ..., xn : An, A ∈ Ω+, and t a normal λ-term.

If Γ ⊢TTR t : A, then Γ ⊢TTR0
t : A, and in this typing each variable is assigned of a ∀-negative

type, and each u ∈ STE(t) is typable of a ∀-positive type.

Proof We argue by induction on t.

- If t = xi 1 ≤ i ≤ n , then ∀vAi ⊆ A, and v is not free in Γ. Since Ai ∈ Ω−, then

∀vAi ∈ Ω−, and, by Lemma 5.4, ∀vAi ⊆0 A. Therefore Γ ⊢TTR0
t : A.

- If t = λxu, then Γ, x : B ⊢TTR u : C, ∀v(B → C) ⊆ A, and v is not free in Γ. Since

∀v(B → C) is an arrow type, then, by Lemma 4.5, A is an arrow type. If Rep(A) =

∀v′(Ag → Ad), then, by 1)-Lemma 5.3, Ag ∈ Ω−, and Ad ∈ Ω+. By Theorem 4.1,

there is a sequence G, such that Ag ⊆ B[G/v] , and C[G/v]⊆ Ad. By 2)-Lemma 4.2,

we have Γ, x : B[G/v]⊢TTR u : C[G/c] , and, by Lemma 4.9, Γ, x : Ag ⊢TTR u : Ad.

By the induction hypothesis, we have Γ, x : Ag ⊢TTR0
u : Ad,and so, by 2)-Lemma 5.3,

Γ ⊢TTR0
t : A.

- If t = (xi)u1...uk 1 ≤ i ≤ n and k 6= 0, then ∀v0Ai ⊆ C1 → B1, ∀vjBi ⊆ Cj+1 → Bj+1

1 ≤ j ≤ k−1, ∀vkBk ⊆ A where v0, ...,vk are not free in Γ, and Γ ⊢TTR uj : Cj 1 ≤ j ≤ k.

By Theorems 4.1, 5.1, and Lemmas 4.4, 5.4, we have

– Ai = ∀v′
0A′

i, A′
i = C ′

1 → ∀v
′
1B′

1, Bj = C ′
j+1 → ∀v

′
j+1B′

j+1 1 ≤ j ≤ k − 1, C ′
j ∈ Ω+,

and ∀v′
jB

′
j ∈ Ω− 1 ≤ j ≤ k.

– Cj ⊆ C ′
j[G0/v′

0]...[Gj−1/v′
j−1] , ∀c′jB

′
j [G0/v′

0]...[Gj−1/v′
j−1] ⊆ Bj 1 ≤ j ≤ k, and

∀vk∀v
′
kB′

k[G0/v′
0]...[Gk−1/v′

k−1]⊆0 A.

Since Γ ⊢TTR uj : Cj 1 ≤ j ≤ k, then Γ ⊢TTR uj : C ′
j[G0/v′

0]...[Gj−1/v′
j−1], and, by

the induction hypothesis, Γ ⊢TTR0
uj : C ′

j [G0/v′
0]...[Gj−1/v′

j−1]. It is easy to check that

Γ ⊢TTR0
t : B′

k[G0/v′
0]...[Gk−1/v′

k−1], then

Γ ⊢TTR0
t : ∀vk∀v

′
kB′

k[G0/v′
0]...[Gk−1/v′

k−1], and Γ ⊢TTR0
t : A. 2

6 Gődel transformation

6.1 ⊥-types of TTR

Definition Let A be a type of TTR. We say that A is an ⊥-type if and only if A is obtained

by the following rules :

- ⊥ is an ⊥-type.

15



- If A is an ⊥-type, then B → A is an ⊥-type for every type B.

- If A is an ⊥-type, then ∀vA is an ⊥-type for every variable v.

- If A is an ⊥-type, C an n-ary predicate symbol which appears and is positive in A,

x1, ..., xn first order variables, and t1, ..., tn terms, then µCx1...xnA < t1, ..., tn > is an

⊥-type.

Lemma 6.1 If A is an ⊥-type, and A ⊆ B, then B is an ⊥-type.

Proof By induction on the length of the derivation A ⊆ B. 2

Lemma 6.2 Let t be a normal λ-term, A1, ..., An ∈ Ω−, A ∈ Ω+, ⊥ does not appear in the types

A1, ..., An, A, and B1, ..., Bm are ⊥-types. If Γ = x1 : A1, ..., xn : An, y1 : B1, ..., ym : Bm ⊢TTR

t : A, then x1 : A1, ..., xn : An ⊢TTR t : A.

Proof We argue by induction on t.

- If t is a variable, then t = xi 1 ≤ i ≤ n or t = yi 1 ≤ i ≤ m.

– The case t = xi is trivial.

– If t = yi, then ∀vBi ⊆ A and v is not free in Γ. Since Bi is an ⊥-type, then, by

Lemma 6.1, A is an ⊥-type, and ⊥ appears in A. A contradictoire.

- If t = λxn+1t
′, then Γ, xn+1 : An+1 ⊢TTR t′ : D, ∀v(An+1 → D) ⊆ A, v is not

free in Γ. Since A ∈ Ω+, then, by Theorem 5.1, we have An+1 ∈ Ω−, D ∈ Ω+, and

Fv2(∀v(An+1 → D)) ⊆ Fv2(A). Therefore ⊥ does not appear in An+1 and D. By

the induction hypothesis, we have x1 : A1, ..., xn : An, xn+1 : An+1 ⊢TTR t : D, and so

x1 : A1, ..., xn : An ⊢TTR t : A.

- If t = (x)u1...uk k ≥ 1, then two case can be see :

– If x = yi 1 ≤ i ≤ m, then, by Corollary 4.1, we have ∀v0Bi ⊆ C1 → D1, ∀vjDj ⊆

Cj+1 → Dj+1 1 ≤ i ≤ k − 1, ∀vkDk ⊆ A, where v0, ...,vk are not free in A and

Γ, and Γ ⊢TTR uj : Cj 1 ≤ j ≤ k. Since Bi is an ⊥-type, then, by Lemma 6.1, Dj

1 ≤ j ≤ k and A are ⊥-types, and ⊥ appears in A. A contradictoire.

– If x = xi 1 ≤ i ≤ n, then, by Corollary 4.1, we have ∀v0Ai ⊆ C1 → D1, ∀vjDj ⊆

Cj+1 → Dj+1 1 ≤ j ≤ k − 1, ∀vkDk ⊆ A, where v0, ...,vk are not free in A and

Γ, and Γ ⊢TTR uj : Cj 1 ≤ j ≤ k. Since Ai ∈ Ω−, then, by Theorem 5.1, we have

Cj ∈ Ω+, Di ∈ Ω− 1 ≤ j ≤ k, and Fv2(Cj)
⋃

Fv2(Dj) ⊆ Fv2(Ai) 1 ≤ j ≤ k.

Therefore ⊥ does not appear in Cj 1 ≤ j ≤ k. By the inductive hypothesis, we have

x1 : A1, ..., xn : An ⊢TTR uj : Cj 1 ≤ j ≤ k, and so x1 : A1, ..., xn : An ⊢TTR t : A. 2
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6.2 Gődel transformations

Definition With each predicate variable X, we associate a finite no empty set of predicate

variables VX = {X1, ...,Xr} having the same arity of X, such that : if X 6= Y , then VX

⋂
VY = ∅.

With each n-ary predicate variable X, and with each sequence of individual variables x1, ..., xn,

we assosiate a formula FX such that :

- FX is an ⊥-type ;

- FX does not contain any predicate symbol ;

- the free variables of FX are among x1, ..., xn and the elements of VX .

For each formula A, we define the formula A* by the following induction way :

- If A = C(t1, ..., tn), and C is a predicate symbol, then A*=A.

- If A = X(t1, ..., tn), and X is a predicate variable, then A*=FX [t1/x1, ..., tn/x1].

- If A = B → C, then A*=B*→ C*.

- If A = ∀xB, then A*=∀xB*.

- If A = ∀XB, then A*=∀X1...∀XrB*, where VX = {X1, ...,Xr}.

- If A = µCx1...xnD < t1, ..., tn >, then A*=µCx1...xnD*< t1, ..., tn >.

A* is called the Gődel transformation of A.

Remark. In order to show that the above transformation is well defined, we need to prove the

following Lemma :

Lemma 6.3 Let C be a predicate variable or a predicate symbol, and A a type of TTR. If C is

positive in A (resp. negative in A), then C is positive in A* (resp. negative in A*).

Proof By induction on A. 2

Lemma 6.4 1) If A ⊆0 B, then A* ⊆0 B*, and we use the same proof rules.

2) If Γ ⊢TTR0
t : A, then Γ*⊢TTR0

t : A*, and we use the same typing rules.

Proof By induction on the length of the derivation A ⊆0 B (resp. Γ ⊢TTR0
t : A). 2

Corollary 6.1 Let D ∈ Ω+, and t a normal λ-term. If ⊢TTR t : D, then ⊢TTR t : D*.

Proof By induction on the length of the derivation ⊢TTR t : D, and we use Theorem 5.2 and

Lemma 6.4. 2
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7 Storage operators

7.1 Definition of storage operators

Definitions

1) Let T be a closed λ-term, and D,E two closed types of TTR (resp. TTR⋄). We say

that T is a storage operator for the pair of types (D,E) if and only if for every λ-term t

with ⊢TTR t : D (resp. ⊢TTR⋄ t : D), there are λ-terms τt and τ ′
t such that τt ≃β τ ′

t,

⊢TTR τ ′
t : E (resp. ⊢TTR⋄ τ ′

t : E), and for every θt ≃β t, (T )θtf ≻ (f)τt[t1/x1, ..., tn/xn],

where Fv(τt) = {f, x1, ..., xn} and t1, ..., tn are λ-terms which depend on θt.

2) If D = E, we say that T is a storage operator for the type D.

Examples The type of recursive integers is the formula :

N r[x] = µNxΦ(N,x) < x >

where

Φ(N,x) = ∀X{∀y(Ny → Xsy),X0→ Xx}

(s is a unary function symbol for successor and 0 is a constant symbol for zero).

For each integer n, we define the recursive integer n by induction : 0 = λfλxx and n + 1 =

λfλx(f)n. Let N be the set of recursive integers.

We have N = {t / t is a closed normal λ-term / ⊢TTR t : N r[sn(0)], n ≥ 0} (see [19]).

Let s = λnλfλx(f)n. It is easy to check that s is a λ-term for successor, and ⊢TTR s :

∀y(N r[y]→ N r[sy]).

Define

T1 = (Y )H where H = λxλy((y)λz(G)(x)z)δ, G = λxλy(x)λz(y)(s)z, and δ = λf(f)0 ;

T2 = λν(ν)ρτρ where τ = λdλf(f)0, and ρ = λyλz(G)(y)zτz,

then, for every θn ≃β n, (Ti)θnf ≻ (f)(s)n0 (i = 1, 2).

Therefore, for every n ≥ 0, T1 and T2 are storage operators for N r[sn(0)].

Typing of T1

We use in the typing the Gődel transformation with VX = {X}, and FX = ¬X(x1, ..., xn) for

every second order variable X of arity n.

• We have ⊢TTR 0 : N r[0], then ⊢TTR δ : ¬¬N r[0].

• We have ⊢TTR s : ∀y(N r[y]→ N r[sy]), then

x : ¬¬N r[y], y : ¬N r[sy], z : N r[y] ⊢TTR (y)(s)z :⊥ ; hence :

x : ¬¬N r[y], y : ¬N r[sy] ⊢TTR (x)λz(y)(s)z :⊥ ; therefore :

⊢TTR G : ∀y(¬¬N r[y]→ ¬¬N r[sy]).
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• We have y : Φ*(N,x) ⊢TTR y : ∀y(Ny → ¬¬N r[sy]),¬¬N r[0]→ ¬¬N r[x] ; thus :

x : ∀x(Nx→ ¬¬N r[x]), y : Φ*(N,x), z : Ny ⊢TTR (G)(x)z : ¬¬N r[sy] ; therefore :

x : ∀x(Nx→ ¬¬N r[x]), y : Φ*(N,x) ⊢TTR λz(G)(x)z : ∀y(Ny → ¬¬N r[sy]) ; hence

x : ∀x(Nx→ ¬¬N r[x]) ⊢TTR λy((y)λz(G)(x)z)δ : ∀x(Φ*(N,x)→ ¬¬N r[x]) ; therefore :

⊢TTR H : ∀x(Nx→ ¬¬N r[x])→ ∀x(Φ*(N,x)→ ¬¬N r[x]).

And finally ⊢TTR T1 : ∀x{N r*[x]→ ¬¬N r[x]}.

Typing of T2

We use in the typing the Gődel transformation with VX = {X,X ′}, and

FX = X(x1, ..., xn),X ′(x1, ..., xn)→⊥ for every second order variable X of arity n.

Let R = ∀X∀y{(X,X → ¬¬N r[0],X → ¬¬N r[y]),X → ¬¬N r[sy]}, D = R → ¬¬N r[0], and

F [x] = R,D,R→ ¬¬N r[x].

• ⊢TTR λf(f)0 : ¬¬N r[0] ; therefore : ⊢TTR τ : X → ¬¬N r[0], and ⊢TTR τ : R→ ¬¬N r[0].

• By the previous typing, we have ⊢TTR G : ∀y(¬¬N r[y]→ ¬¬N r[sy]) ; hence :

y : X,X → ¬¬N r[0],X → ¬¬N r[y], z : X ⊢TTR (G)(y)zτz : ¬¬N r[sy] ; therefore

⊢TTR ρ : R.

• Check that Φ*(λxF [x]/N, x) ⊆ F [x].

Φ*(λxF [x]/N, x) =

∀X∀X ′{∀y(F [y],Xsy,X ′sy →⊥), (X0,X ′0→⊥)→ (Xx,X ′x→⊥)} ;

therefore by specifying Xx by R, and X ′x by ¬N r[x] ; we obtain :

Φ*(λxF [x]/N, x) ⊆ ∀y(F [y], R,¬N r[sy] →⊥), (R,¬N r[0] →⊥) → (R,¬N r[x] →⊥). We

need to check that R ⊆ ∀y(F [y], R,¬N r[sy]→⊥), this is absolutely true.

Therefore N r*[x] ⊆ F [x] and ν : N r*[x] ⊢TTR ν : R,D,R→ ¬¬N r[x] ; then :

ν : N r*[x] ⊢TTR (ν)ρτρ : ¬¬N r[x] ; and finally ⊢TTR T2 : ∀x{N r*[x]→ ¬¬N r[x]}.

7.2 General Theorem

Theorem 7.1 Let D,E be two ∀-positive closed types of TTR, such that ⊥ does not appear in

E. If ⊢TTR T : D* → ¬¬E, then T is a storage operator for the pair (D,E).

Proof It is a consequence from the following Theorem :

Theorem 7.2 Let D,E be two ∀-positive closed types of TTR⋄, such that ⊥ does not appear in

E. If ⊢TTR T : D* → ¬¬E, then T is a storage operator for the pair (D,E).

Indeed:
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Lemma 7.1 1) If T ∈ Ω+ (resp. T ∈ Ω−) then T ⋄ ∈ Ω+ (resp. T ⋄ ∈ Ω−).

2) For each Gődel transformation * of TTR, there is a Gődel transformation *′ of TTR⋄ such

that : for every type D of TTR, D*⋄ = D⋄*′.

Proof 1) By induction on T .

2) *′ is the restiction of * on the types of TTR⋄. 2

Let t be a normal λ-term, such that ⊢TTR t : D. If ⊢TTR T : D*→ ¬¬E, then, by The-

orem 3.3, ⊢TTR⋄ T : D*⋄ → ¬¬E⋄. By 2)-Lemma 7.1, there is a Gődel transformation

*′, such that ⊢TTR⋄ T : D⋄*′ → ¬¬E⋄. Therefore, there are λ-terms τt and τ ′
t , such that

τt ≃β τ ′
t, ⊢TTR⋄ τ ′

t : E⋄, and (T )tf ≻ (f)τt[t1/x1, ..., tn/xn]. By 2)-Corollary 6.1, we have

⊢TTR t : D*, then f : ¬E ⊢TTR (T )tf :⊥, and f : ¬E ⊢TTR (f)τt[t1/x1, ..., tn/xn] :⊥. Therefore

f : ¬E ⊢TTR (f)τ ′
t :⊥, and, by Corollary 4.1, ⊢TTR τ ′

t : E. 2

We give the proof of Theorem 7.2 in a particular case.

Let N r = µN [∀X{N → X,X → X}], and * the Gődel transformation with VX = {X}, and

FX = ¬X(x1, ..., xn) for every second order variable X of arity n.

We will prove that : If ⊢TTR⋄ T : N r*→ ¬¬N r, then T is a storage operator for N r.

Because of : if t is a closed normal λ-term with ⊢TTR⋄ t : N r, then t = n for a certain integer

n, and it is suffies to prove that : If ⊢TTR⋄ T : N r*→ ¬¬N r, then, for every n ≥ 0, there is an

m ≥ 0 and τ ≃β m, such that, for every λ-term θn ≃β n, there is a substitution σ, such that

(T )θnf ∼ (f)σ(τ).

Lemma 7.2 If Γ′ = Γ, x : N r*⊢TTR⋄ (x)u1...un :⊥, then n = 3, and there is a type G, such

that Γ′ ⊢TTR⋄ u1 : N r*→ ¬G, Γ′ ⊢TTR⋄ u2 : ¬G, and Γ′ ⊢TTR⋄ u3 : G.

Proof By Corollary 4.1, we have ∀v0N r*⊆ A1 → B1, ∀viBi ⊆ Ai+1 → Bi+1 1 ≤ i ≤ n − 1,

∀vnBn ⊆⊥, v0, ...,vn are not free in N r* and Γ, and Γ′ ⊢TTR⋄ ui : Ai 1 ≤ i ≤ n. Since

∀v0N r*⊆ A1 → B1, then, by Theorem 4.1, there is a formula F , such that A1 ⊆ N r*→ ¬F

and ¬F → ¬F ⊆ B1. We have also ∀v1B1 ⊆ A2 → B2, then ∀v1(¬F → ¬F ) ⊆ A2 → B2,

and, by Theorem 4.1, there is a sequence of formulas F1, such that A2 ⊆ ¬F [F1/v1] and

¬F [F1/v1]⊆ B2. Now, since ∀v2B2 ⊆ A3 → B3, we have ∀v2(¬F [F1/v1]) ⊆ A3 → B3, and, by

Theorem 4.1, there is a sequence of formulas F2, such that A3 ⊆ F [F1/v1,F2/v2] and ⊥⊆ B3.

By Corollary 4.1, we have n = 3. Let G = F [F1/v1,F2/v2]. Since v1,v2 are not free in N r*

and Γ, we deduce Γ′ ⊢TTR⋄ u1 : N r*→ ¬G, Γ′ ⊢TTR⋄ u2 : ¬G, and Γ′ ⊢TTR⋄ u3 : G. 2

Let n ≥ 0.
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Definition An n-special application θ is a function from {0, 1, ..., n} to Λ with the following

properties : θ(0) ≻ 0 and θ(m + 1) ≻ λfmλxm(fm)θ(m) 0 ≤ m ≤ n− 1.

Lemma 7.3 For every θn ≃β n, there is an n-special application θ, such that θ(n) = θn.

Proof Easy. 2

Definitions

1) Let 0 ≤ m ≤ n and u= um,1, um,2, um,3, ..., un−1,1, un−1,2, un−1,3 a sequence of λ-terms. We

denoted by xm,u a constant which does not appear in u.

2) Let θ be an n-special application. The n-special substitution Sθ is the function on the set Λ

defined by induction :

- If u = x, then Sθ(x) = x ;

- If u = λxv, then Sθ(u) = λySθ(v[y/x]) where y 6∈ Fv(θ(n)) ;

- If u = (v)w, then Sθ(u) = (Sθ(v))Sθ(w) ;

- If u = xm,u,then

Sθ(u) = θ(m)[Sθ(um,1)/fm, Sθ(um,2)/xm, ..., Sθ(un−1,1)/fn−1, Sθ(un−1,2)/xn−1].

An n-special substitution is the application Sθ associated to a some n-special application θ.

Lemma 7.4 Let {Ui ≻ Vi}1≤i≤r be a sequence of head reductions such that :

Vi = (xm,u)u1u2u3 0 ≤ m ≤ n, [Ui+1 = (u1)xm−1,u1,u2,u3,uu3 if m 6= 0, and Ui+1 = (u2)u3 if

m = 0], and Sθ an n-special substitution. For every 1 ≤ i ≤ r, Sθ(U1) ∼ Sθ(Vi).

Proof We argue by induction on i.

The case i = 0 is a consequence of Theorem 2.1.

Assume that is true for i, and prove it for i + 1.

If Vi = (xm,u)u1u2u3 0≤ m ≤ n, then

Sθ(Vi) = (θ(m)[Sθ(um,1)/fm, Sθ(um,2/)xm, ..., Sθ(un−1,1)/fn−1, Sθ(un−1,2)/xn−1])

Sθ(u1)Sθ(u2)Sθ(u3).

- If m 6= 0, then θ(m) ≻ λfm−1λxm−1(fm−1)θ(m− 1),

and Sθ(Vi) ∼ (Sθ(u1))θ(m− 1)[Sθ(um−1,1)/fm−1, Sθ(um−1,2)/xm−1, ...,

Sθ(un−1,1)/fn−1, Sθ(un−1,2)/xn−1])Sθ(u3) = Sθ(Ui+1).

- If m = 0, then θ(m) ≻ λfλxx, and Sθ(Vi) ∼ (λfλxx)Sθ(u1)Sθ(u2)Sθ(u3) ∼ (Sθ(u2))Sθ(u3) =

Sθ(Ui+1).
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By the induction hypothesis we have Sθ(U1) ∼ Sθ(Vi), then Sθ(U1) ∼ Sθ(Ui+1), and, by Theo-

rem 2.1, Sθ(U1) ∼ Sθ(Vi+1). 2

Definition A context Γ = f : ¬N,xn,u0
: N r*, xm1,u1

: N r*, ..., xms ,us
: N r* where 0 ≤ mj ≤ n,

1 ≤ j ≤ s, is called n-good.

Lemma 7.5 There is a sequence of head reductions {Ui ≻ Vi}1≤i≤r such that :

- U1 = (T )xnf and Vr = (f)τ where τ ≃β l for some l ≥ 0 ;

- Vi = (xm,u)u1u2u3 0 ≤ m ≤ n, and

Ui+1 = (u1)xm−1,u1,u2,u3,uu3 if m 6= 0, and Ui+1 = (u2)u3 if m = 0 ;

- For every 1 ≤ i ≤ r, there is an n-good context Γi such that Γi ⊢TTR⋄ Vi :⊥.

Proof Since ⊢TTR⋄ T : N r*→ ¬¬N r, then xn : N r*, f : ¬N r ⊢TTR⋄ (T )xnf :⊥, and, by

Corollary 4.3 and Lemma 7.2, we have (T )xnf ≻ V1 where V1 = (f)τ or V1 = (xn)u1u2u3.

Assume that we have the head reduction Uk ≻ Vk and Vk 6= (f)τ . Then Vk = (xm,u)u1u2u3

0 ≤ m ≤ n, and, by the induction hypothesis, there is an n-good context Γk such that Γk ⊢TTR⋄

(xm,u)u1u2u3 :⊥. By Lemma 7.2, there is a type G, such that Γk ⊢TTR⋄ u1 : N r*→ ¬G,

Γk ⊢TTR⋄ u2 : ¬G, and Γk ⊢TTR⋄ u3 : G.

- If m = 0, let Uk+1 = (u2)u3. Let Γk+1 = Γk. We have Γk+1 ⊢TTR⋄ Uk :⊥.

- If m 6= 0, let Uk+1 = (u1)xm−1,u1,u2,u3,uu3. The variable xm−1,u1,u2,u3,u is not used before.

Indeed, if it is, by Lemma 7.4, the λ-term (T )nf is not solvable. That is impossible because

f : ¬N r ⊢TTR⋄ (T )nf :⊥. Therefore Γk+1 = Γk, xm−1,u1,u2,u3,u: N r* is an n-good context

and Γk+1 ⊢TTR⋄ Uk+1 :⊥.

By Corollary 4.3 and Lemma 7.2, we have Uk+1 ≻ Vk+1 where Vk+1 = (f)τ or Vk+1 =

(xs,v)v1v2v3 0 ≤ s ≤ n.

This constraction always terminates. Indeed, if not, by Lemma 7.4, the λ-term (T )nf is not

solvable. That is impossible because f : ¬N r ⊢TTR⋄ (T )nf :⊥.

Therefore there is r ≥ 0 and an n-good context Γr such that Vr = (f)τ and Γr ⊢TTR⋄ Vr :⊥. By

Lemma 6.2, we have τ ≃β l for some l ≥ 0. 2

Let θn be a λ-term such that θn ≃β n. By Lemma 7.3, let θ be an n-special application such

that θ(n) = θn. Let Sθ the n-special substitution associated to θ. By Lemma 7.4, we have for

every 1 ≤ i ≤ r, (T )θnf ∼ Sθ(Vi). In particular, for i = n, (T )θnf ∼ Sθ((f)τ) = (f)Sθ(τ). Then

T is a storage operator for N r. 2
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Archive. Math. Logic 30. (241-267), 1990.

[7] J.L. KRIVINE. Mise en mémoire (preuve générale).
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