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Abstract

In 1990, J.L. Krivine introduced the notion of storage operator to simulate, in

λ-calculus, the ”call by value” in a context of a ”call by name”. J.L. Krivine has

shown that, using Gődel translation from classical into intuitionistic logic, we can

find a simple type for storage operators in AF2 type system.

In this present paper, we give a general type for storage operators in a slight exten-

sion of AF2. We give at the end (without proof) a generalization of this result to

other types.

1 Introduction

In 1990, J.L. Krivine introduced the notion of storage operators (see [3]). They are closed

λ-terms which allow, for a given data type (the type of integers, for example), to simu-

late in λ-calculus the ”call by value” in a context of a ”call by name” (the head reduction).

J.L. Krivine has shown that the formula ∀x{N*[x] → ¬¬N [x]} is a specification for stor-

age operators for Church integers : where N [x] is the type of integers in second order

logic, and the operation ∗ is the simple Gődel translation from classical into intuitionistic

logic which associates to every formula F the formula F* obtained by replacing in F each

atomic formula with its negation (see [3]).

Some authors have been interested in the research of a most general type for storage op-

erators. For example, V. Danos and L. Regnier have given as type for storage operators

the formula ∀x{N e[x] → ¬¬N [x]} where the operation e is an elaborate Gődel transla-

tion which associates to every formula F the formula F e obtained by replacing in F each
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atomic formula X(t) by X1(t), ..., Xr(t) →⊥ (see [1]). J.L. Krivine and the author have

given a more general type for storage operators : the formula ∀x{Ng[x] → ¬¬N [x]} where

the operation g is the general Gődel translation which associates to every formula F the

formula F g obtained by replacing in F each atomic formula X(t) by a formula GX [t/x]

ending with ⊥ (see [4] and [5]).

With the types cited before, we cannot type the following simple storage operators :

T = λνλf((ν)(Ti)νf)λxx and T ′ = λνλf((ν)(Ti)νf)λd(Tj)νf where Ti (i = 1 or 2) are

the standard storage operators for integers (see [3]). This is due to the fact that the

normal form of T (and T ′) contains a variable ν applied to two arguments and another ν

applied to three arguments. Therefore, we cannot type T and T ′ because the variable ν

is assigned by N*[x] (for example) and thus the number of the ν-arguments is fixed once

for all.

To solve the problem, we will replace N*[x] in the type of storage operators by another

type N⊥[x] which does not limit the number of ν-arguments and only enables to generate

formulas ending with ⊥ in order to find a general specification for storage operators.

The specifications of storage operators that we have obtained up to now do not explain

that these operators only accept integers (for example λnλfλz(x)z is a normal λ-term of

type N*[0]). We will see that the type N⊥[x] is also a specification for the integers.

In this paper, we give a general type for the storage operators for integers in a slight ex-

tension of AF2 (the storage operators T and T ′ are typable of this type). We give at the

end (without proof) a generalization of this result to the ∀-positive types (the universal

second order quantifier appears positively in these types).

Acknowledgement. We wish to thank J.L. Krivine for helpful discussions. He found

independently the principal result of this paper which he proved by a semantical method.
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2 Definitions and notations

2.1 The pure λ-calculus

Let t, u, u1, ..., un be λ-terms, the application of t to u is denoted by (t)u. In the same

way we write (t)u1...un instead of (...((t)u1)...)un.

The β-equivalence relation is denoted by u ≃β v.

The notation σ(t) represents the result of the simultaneous substitution σ to the free

variables of t after a suitable renaming of the bounded variables of t.

We denote by (u)nv the λ-term (u)...(u)v where u occurs n times, and u the sequence of

λ-terms u1, ..., un. If u = u1, ..., un, we denote by (t)u the λ-term (t)u1...un.

Let us recall that a λ-term t either has a head redex [i.e. t = λx1...λxn(λxu)vv1...vm, the

head redex being (λxu)v], or is in head normal form [i.e. t = λx1...λxn(x)v1...vm].

The notation u ≻ v means that v is obtained from u by some head reductions.

If u ≻ v, we denote by h(u, v) the length of the head reduction between u and v.

A λ-term t is said solvable iff the head reduction of t terminates.

Lemma 2.1 (see [3]) If u ≻ v, then :

1) for every substitution σ, σ(u) ≻ σ(v) and h(σ(u), σ(v)) = h(u, v).

2) for every sequence of λ-terms w, there is a w such that (u)w ≻ w, (v)w ≻ w, and

h((u)w, w) = h((v)w, w) + h(u, v).

2.2 The AF2 type system

The types will be formulas of second order predicate logic over a given language.

The logical connectives are ⊥ (for absurd), →, and ∀.

There are individual (or first order) variables denoted by x, y, z, ..., and predicate (or

second order) variables denoted by X, Y, Z, ....

We do not suppose that the language has a special constant for equality. Instead, we

define the formula u = v (where u, v are terms) to be ∀Y (Y (u) → Y (v)) where Y is a

unary predicate variable. Such a formula will be called an equation.

The formula F1 → (F2 → (... → (Fn → G)...)) is also denoted by F1, F2, ..., Fn → G.

For every formula A, we denoted by ¬A the formula A →⊥.

If v = v1, ..., vn is a sequence of variables, we denoted by ∀vA the formula ∀v1...∀vnA.

Let t be a λ-term, A a type, and Γ = x1 : A1, ..., xn : An a context. We define by the

mean of this following rules the notion ” t is of type A in the context Γ ”. This notion is

denoted by Γ ⊢ t : A.
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(1) Γ ⊢ xi : Ai 1 ≤ i ≤ n.

(2) If Γ, x : A ⊢ t : B, then Γ ⊢ λxt : A → B.

(3) If Γ ⊢ u : A → B, and Γ ⊢ v : A, then Γ ⊢ (u)v : B.

(4) If Γ ⊢ t : A, then Γ ⊢ t : ∀xA. (*)

(5) If Γ ⊢ t : ∀xA, then Γ ⊢ t : A[u/x]. (**)

(6) If Γ ⊢ t : A, then Γ ⊢ t : ∀XA. (*)

(7) If Γ ⊢ t : ∀XA, then Γ ⊢ t : A[G/X]. (**)

(8) If Γ ⊢ t : A[u/x], then Γ ⊢ t : A[v/x]. (***)

The previous rules are subject to the following restrictions :

(*) The variable x (resp. X) has no free occurence in Γ.

(**) u is a term and G is a formula of the language.

(***) u and v are terms such that u = v is a consequence of a given set of equations.

This type λ-calculus system is called AF2 (for arithmétique fonctionnelle du second ordre).

Theorem 2.1 (see [2]) The AF2 type system has the following properties :

1) Type is preserved during reduction.

2) Typable λ-terms are strongly normalizable.

We define on the set of types the two binary relations � and ≈ as the least reflexive and

transitive binary relations such that :

- ∀xA � A[u/x], if u is a term of language ;

- ∀XA � A[F/X], if F is a formula of language ;

- A ≈ B iff A = C[u/x], B = C[v/x], and u = v is a consequence of a given set of

equations.

Theorem 2.2 (see [5] and [7])

1) Let A be an atomic formula. If Γ ⊢ t : A, then t does not begin by λ.

2) If Γ, x : A ⊢ (x)u1...un : B, then :

n = 0, A � C, C ≈ C ′, B = ∀vC ′, and v have no free occurence in Γ and A,

or
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n ≥ 1, A � C1 → B1, B′
i � Ci+1 → Bi+1 1 ≤ i ≤ n − 1, B′

n � Bn+1, B = ∀vB′
n+1 where

Bi ≈ B′
i 1 ≤ i ≤ n + 1, Γ, x : A ⊢ ui : Ci 1 ≤ i ≤ n, and v have no free occurence in Γ

and A.

3 The Church integers

Each data type can be defined by a second order formula. For example, the type of

integers is the formula :

N [x] = ∀X{X(0), ∀y(X(y) → X(sy)) → X(x)}

where X is a unary predicate variable, 0 is a constant symbol for zero, and s is a unary

function symbol for successor.

The formula N [x] means semantically that x is an integer iff x belongs to each set X

containing 0 and closed under the successor function s.

The λ-term 0 = λxλfx is of type N [0] and represents zero.

The λ-term s = λnλxλf(f)((n)x)f is of type ∀y(N [y] → N [s(y)]) and represents the

successor function.

A set of equations E is said adequate with the type of integers iff :

- s(a) = 0 is not an equational consequence of E ;

- If s(a) = s(b) is an equational consequence of E, then so is a = b.

In the rest of the paper, we assume that all the set of equations are adequate with the

type of integers.

For each integer n, we define the Church integer n by n = λxλf(f)nx.

Theorem 3.1 (see [2]) For each integer n, n is the unique normal λ-term of type N [sn(0)].

The propositional trace

N = ∀X{X, (X → X) → X}

of N [x] also defines the integers.

Theorem 3.2 (see [2]) A normal λ-term is of type N iff it is of the form n, for a certain

integer n.

5



Remark A very important property of data type is the following (we express it for the

type of integers) : in order to get a program for a function f : N → N it is sufficient to

prove ⊢ ∀x(N [x] → N [f(x)]). For example a proof of ⊢ ∀x(N [x] → N [p(x)]) from the

equations p(0) = 0, p(s(x)) = x gives a λ-term for the predecessor in Church intergers

(see [2]). 2

4 The storage operators

Let T be a closed λ-term. We say that T is a storage operator for the integers iff for every

n ≥ 0, there is τn ≃β n, such that for every θn ≃β n, there is a substitution σ, such that

(T )θnf ≻ (f)σ(τn).

Remark Let F be any λ-term (for a function), and θn a λ-term β-equivalent to n. Dur-

ing the computation of (F )θn, θn may be computed each time it comes in head position.

Instead of computing (F )θn, let us look at the head reduction of (T )θnF . Since it is

{(T )θnf}[F/f ], by Lemma 2.1, we shall first reduce (T )θnf to its head normal form,

which is (f)σ(τn), and then compute (F )σ′(τn). The computation has been decomposed

into two parts, the first being independent of F . This first part is essentially a computa-

tion of θn, the result being τn, which is a kind of normal form of θn. The substitutions

made in τn have no computational significance, since n is closed. So, in the computation

of (T )θnF , θn is computed first, and the result is given to F as an argument, T has stored

the result, before giving it, as many times as needed, to any function. 2

Examples If we take :

T1 = λn((n)δ)G where G = λxλy(x)λz(y)(s)z and δ = λf(f)0

T2 = λnλf(((n)f)F )0 where F = λxλy(x)(s)y,

then it is easy to check that : for every θn ≃β n, (Ti)θnf ≻ (f)(s)n0 (i = 1 or 2).

Therefore T1 and T2 are two storage operators for the integers. 2

It is a remarkable fact that we can give simple types to storage operators for integers. We

first define the simple Gődel translation F* of a formula F : it is obtained by replacing

in the formula F , each atomic formula A by ¬A. For example :

N*[x] = ∀X{¬X(0), ∀y(¬X(y) → ¬X(sy)) → ¬X(x)}

It is well know that, if F is provable in classical logic, then F* is provable in intuitionistic

logic.
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We can check that ⊢ T1, T2 : ∀x{N*[x] → ¬¬N [x]}. And, in general, we have the following

Theorem :

Theorem 4.1 (see [3] and [6]) If ⊢ T : ∀x{N*[x] → ¬¬N [x]}, then T is a storage

operator for the integers.

Remark Let θ0 = λxλfλz(x)(λdz)λxx.

It is easy to check that ⊢ θ0 : N*[0], and (T2)θ0f ≻ (f)(λd0)λxx.

Therefore T2 is not a storage operator for the set {t / ⊢ t : N*[sn(0)] n ≥ 0}. 2

The previous definition is not well adapted to study the storage operators. Indeed, it

is, a priori, a Π0
4 statement (∀n∃τn∀θn∃σA(T, n, τn, θn, σ)). We will show (Theorem 4.2)

that it is in fact equivalent to a Π0
1 statement (τn can be computed from n, and σ from θn).

Let ν and f two fixed variables.

We denoted by xn,a,b,c (where n is an integer, a, b two λ-terms, and c a finite sequence of

λ-terms) a variable which does not appear in a, b, c.

Theorem 4.2 (see [5] and [8]) A closed λ-term T is a storage operators for the integers

iff for every n ≥ 0, there is a finite sequence of head reduction {Ui ≻ Vi}1≤i≤r such that :

1) U1 = (T )νf and Vr = (f)τn where τn ≃β n ;

2) Vi = (ν)abc or Vi = (xl,a,b,c)d 0 ≤ l ≤ n − 1;

3) If Vi = (ν)abc, then Ui+1 = (a)c if n = 0 and Ui+1 = ((b)xn−1,a,b,c)c if n 6= 0 ;

4) If Vi = (xl,a,b,c)d 0 ≤ l ≤ n − 1, then Ui+1 = (a)d if l = 0 and Ui+1 = ((b)xl−1,a,b,d)d if

l 6= 0.

5 General type for storage operators

5.1 The AF2⊥ type system

In this section, we present a slight extension of the AF2 type system denoted by AF2⊥.

We assume that for every integer n, there is a countable set of special n-ary second order

variables denoted by X⊥, Y⊥, Z⊥...., and called ⊥-variables.

A type A is called an ⊥-type iff A is obtained by the following rules :

7



- ⊥ is an ⊥-type ;

- X⊥(t1, ..., tn) is an ⊥-type ;

- If B is an ⊥-type, then A → B is an ⊥-type for every type A ;

- If A is an ⊥-type, then ∀vA is an ⊥-type for every variable v.

Therefore, A is an ⊥-type iff : A = ∀v1(E1 → F1), Fi = ∀vi+1(Ei+1 → Fi+1) 1 ≤ i ≤ r−1,

and Fr = ∀vr+1X⊥(t1, ..., tn) or Fr = ∀vr1 ⊥.

We add to the AF2 type system the new following rules :

(6′) If Γ ⊢ t : A, and X⊥ has no free occurence in Γ, then Γ ⊢ t : ∀X⊥A.

(7′) If Γ ⊢ t : ∀X⊥A, and G is an ⊥-type, then Γ ⊢ t : A[G/X⊥].

We call AF2⊥ the new type system, and we write Γ ⊢⊥ t : A if t is typable in AF2⊥ of

type A in the context Γ.

Remark We can also see the system AF2⊥ as a restriction of the system AF2. Therefore,

AF2⊥ satisfies the same properties of AF2 (strongly normalization and preservation of

types). 2

5.2 The general Theorem

Let

N⊥[x] = ∀X⊥{X⊥(0), ∀y(X⊥(y) → X⊥(sy)) → X⊥(x)}

where X⊥ is a unary ⊥-variable.

By the previous remark, we have : if Γ ⊢⊥ t : N⊥[sn(0)], then t ≃β n.

Lemma 5.1 If T is a closed normal λ-term such that ⊢ T : ∀x{N*[x] → ¬¬N [x]}, then

⊢⊥ T : ∀x{N⊥[x] → ¬¬N [x]}.

Proof T is a closed normal λ-term, then T = λνT ′, and ν : N*[x] ⊢ T ′ : ¬¬N [x]. Since

ν : N⊥[x] ⊢⊥ ν : N*[x], then ν : N⊥[x] ⊢⊥ T ′ : ¬¬N [x]. Therefore ⊢⊥ T : ∀x{N⊥[x] →

¬¬N [x]}. 2

Remarks

1) We have ⊢ T1, T2 : ∀x{N⊥[x] → ¬¬N [x]}.

2) The λ-terms T and T ′ (given in the introduction) are of type ∀x{N⊥[x] → ¬¬N [x]}.
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- We have ν : N⊥[x] ⊢⊥ ν :⊥, (⊥→⊥) →⊥. Since ν : N⊥[x], f : ¬N [x] ⊢⊥ (Ti)νf :⊥

and ⊢⊥ λxx :⊥→⊥, then ν : N⊥[x], f : ¬N [x] ⊢⊥ ((ν)(Ti)νf)λxx :⊥. Therefore

⊢⊥ T : ∀x{N⊥[x] → ¬¬N [x]}.

- We have ν : N⊥[x] ⊢⊥ ν :⊥, (⊥→⊥) →⊥. Since ν : N⊥[x], f : ¬N [x] ⊢⊥ (Ti)νf :⊥

and ν : N⊥[x], f : ¬N [x] ⊢⊥ λd(Ti)νf :⊥→⊥, then ν : N⊥[x], f : ¬N [x] ⊢⊥

((ν)(Ti)νf)λd(Ti)νf :⊥. Therefore ⊢⊥ T ′ : ∀x{N⊥[x] → ¬¬N [x]}. 2

We give now a general type for storage operators for integers.

Theorem 5.1 If ⊢⊥ T : ∀x{N⊥[x] → ¬¬N [x]}, then T is a storage operator for the

integers.

The type system F⊥ is the subsystem of AF2⊥ where we only have propositional vari-

ables and constants (predicate variables or predicate symbols of arity 0). So, first order

variable, function symbols, and finite sets of equations are useless. The rules for typed

are 1), 2), 3), and 6), 7) restricted to propositional variables. For each predicate variable

(resp. predicate symbol) X, we associate a predicate variable (resp. a predicate symbol)

X⋄ of F⊥ type system. For each formula A of AF2⊥, we associate the formula A⋄ of F⊥

obtained by forgetting in A the first order part. If Γ = x1 : A1, ..., xn : An is a context of

AF2⊥, then we denote by Γ⋄ the context x1 : A⋄
1, ..., xn : A⋄

n of F⊥.

We write Γ ⊢⋄
⊥ t : A if t is typable in F⊥ of type A in the context Γ.

We have obviously the following property : if Γ ⊢⊥ t : A, then Γ⋄ ⊢⋄
⊥ t : A⋄.

Theorem 5.1 is a consequence of the following Theorem.

Theorem 5.2 If ⊢⋄
⊥ T : N⊥ → ¬¬N , then for every n ≥ 0, there is an m ≥ 0 and τm ≃β

m, such that for every θn ≃β n, there is a substitution σ, such that (T )θnf ≻ (f)σ(τm).

Indeed, if ⊢⊥ T : ∀x{N⊥[x] → ¬¬N [x]}, then ⊢⋄
⊥ T : N⊥ → ¬¬N . Therefore for

every n ≥ 0, there is an m ≥ 0 and τm ≃β m, such that for every θn ≃β n, there

is a substitution σ, such that (T )θnf ≻ (f)σ(τm). We have ⊢⊥ n : N [sn(0)], then

f : ¬N [sn(0)] ⊢⊥ (T )nf :⊥, therefore f : ¬N [sn(0)] ⊢⊥ (f)m :⊥. By Theorem 2.2, we

have ⊢⊥ m : N [sn(0)] and thus n = m. Therefore T is a storage operator for the integers.

2

In order to prove Theorem 5.2, we shall need some Lemmas.
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Lemma 5.2 If Γ, ν : N⊥ ⊢⋄
⊥ (ν)d :⊥, then d = a, b, d1, ..., dr and there is an ⊥-type F ,

such that : Γ, ν : N⊥ ⊢⋄
⊥ a : F ; Γ, ν : N⊥ ⊢⋄

⊥ b : F → F ; F �E1 → F1, Fi �Ei+1 → Fi+1

1 ≤ i ≤ r − 1 ; Fr� ⊥ ; and Γ, ν : N⊥ ⊢⋄
⊥ ci : Ei 1 ≤ i ≤ r.

Proof We use Theorem 2.2. 2

Lemma 5.3 If F is an ⊥-type and Γ, x : F ⊢⋄
⊥ (x)d :⊥, then d = d1, ..., dr ; F �E1 → F1

; Fi � Ei+1 → Fi+1 1 ≤ i ≤ r − 1 ; Fr� ⊥ ; and Γ, x : F ⊢⋄
⊥ ci : Ei 1 ≤ i ≤ r.

Proof We use Theorem 2.2. 2

Lemma 5.4 Let t be a normal λ-term, and A1, ..., An a sequence of ⊥-types.

If x1 : A1, ..., xn : An ⊢⋄
⊥ t : N , then there is an m ≥ 0 such that t = m.

Proof We prove by induction on u that if u is a normal λ-term, X a propositionnal

variable, and x1 : A1, ..., xn : An, x : X, f : X → X ⊢⋄
⊥ u : X, then there is an m ≥ 0 such

that u = (f)mx. 2

We can now give the proof of Theorem 5.2.

Proof of Theorem 5.2

Let ν and f two fixed variables, and ⊢⋄
⊥ T : N⊥ → ¬¬N .

A good context Γ is a context of the form Γ = ν : N⊥, f : ¬N, xn1,a1,b1,c1 : F1, ..., xnp,ap,bp,cp
:

Fp where Fi is an ⊥-type, and Γ ⊢⋄
⊥ ai : Fi, Γ ⊢⋄

⊥ bi : Fi → Fi, 0 ≤ ni ≤ n − 1, and

1 ≤ i ≤ p .

We will prove that for every n ≥ 0, there is a finite sequence of head reduction {Ui ≻

Vi}1≤i≤r such that :

1) U1 = (T )νf and Vr = (f)τ where τ ≃β m for some m ≥ 0 ;

2) Vi = (ν)abc or Vi = (xl,a,b,c)d 0 ≤ l ≤ n − 1;

3) If Vi = (ν)abc, then Ui+1 = (a)c if n = 0 and Ui+1 = ((b)xn−1,a,b,c)c if n 6= 0

4) If Vi = (xl,a,b,c)d 0 ≤ l ≤ n − 1, then Ui+1 = (a)d if l = 0 and Ui+1 = ((b)xl−1,a,b,d)d if

l 6= 0.

5) There is a good context Γ such that Γ ⊢⋄
⊥ Vi :⊥ 1 ≤ i ≤ r.

We have ⊢⋄
⊥ T : N⊥ → ¬¬N , then ν : N⊥, f : ¬N ⊢⋄

⊥ (T )νf :⊥, and by Lemmas 5.2 and

5.3, (T )νf ≻ V1 where V1 = (f)τ or V1 = (ν)abc.

Assume that we have the head reduction Uk ≻ Vk and Vk 6= (f)τ .
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- If Vk = (ν)abc, then, by induction hypothesis, there is a good context Γ such

that Γ ⊢⋄
⊥ (ν)abc :⊥. By Lemma 5.2, there is an ⊥-type, such that Γ ⊢⋄

⊥ a : F ;

Γ ⊢⋄
⊥ b : F → F ; c = c1, ..., cs ; F � E1 → F1 ; Fi � Ei+1 → Fi+1 1 ≤ i ≤ s − 1 ;

Fs� ⊥ ; and Γ ⊢⋄
⊥ ci : Ei 1 ≤ i ≤ s.

- If n = 0, let Uk+1 = (a)c. We have Γ ⊢⋄
⊥ Uk+1 :⊥.

- If n 6= 0, let Uk+1 = ((b)xn−1,a,b,c)c. The variable xn−1,a,b,c is not used before.

Indeed, if it is, we check easly that the λ-term (T )nf is not solvable. But that

is impossible because f : ¬N ⊢⋄
⊥ (T )nf :⊥. Let Γ′ = Γ, xn−1,a,b,c : F . Γ′ is a

good context and Γ′ ⊢⋄
⊥ Uk+1 :⊥.

- If Vk = (xl,a,b,c)d, then, by induction hypothesis, there is a good context Γ such that

Γ ⊢⋄
⊥ (xl,a,b,c)d :⊥. xl,a,b,c : F is in the context Γ, then by Lemma 5.3, d = d1, ..., ds ;

F �E1 → F1 ; Fi �Ei+1 → Fi+1 1 ≤ i ≤ s−1 ; Fs� ⊥ ; and Γ ⊢⋄
⊥ di : Ei 1 ≤ i ≤ s.

- If l = 0, let Uk+1 = (a)d. We have Γ ⊢⋄
⊥ Uk+1 :⊥.

- If l 6= 0, let Uk+1 = ((b)xl−1,a,b,d)d. The variable xl−1,a,b,d is not used before.

Indeed, if it is, we check easly that the λ-term (T )nf is not solvable. But that

is impossible because f : ¬N ⊢⋄
⊥ (T )nf :⊥. Let Γ′ = Γ, xl−1,a,b,c : F . Γ′ is a

good context and Γ′ ⊢⋄
⊥ Uk+1 :⊥.

Therefore there is a good context Γ′ such that Γ′ ⊢⋄
⊥ Uk+1 :⊥, then, by Lemmas 5.2 and

5.3, Uk+1 ≻ Vk+1 where Vk+1 = (f)τ or Vk+1 = (ν)abc or Vk+1 = (xl,a,b,c)d 0 ≤ l ≤ n − 1.

This constraction always terminates. Indeed, if not, we check easly that the λ-term (T )nf

is not solvable. But that is impossible because f : ¬N ⊢⋄
⊥ (T )nf :⊥.

Therefore there is r ≥ 0 and a good context Γ such that Γ ⊢⋄
⊥ Vr = (f)τ :⊥, and by

Theorem 2.2, Γ ⊢⋄
⊥ τ : N . Therefore by Lemma 5.4, there is an m ≥ 0 such that τ ≃β m.

By the Theorem 4.2, we have the proof of the Theorem 5.2. 2

6 Generalization

In this section, we give (without proof) a generalization of the Theorem 5.1.

Let T be a closed λ-term, and D, E two closed types of AF2 type system. We say that

T is a storage operator for the pair of types (D, E) iff for every λ-term ⊢ t : D, there is

λ-terms τt and τ ′
t , such that τ ′

t ≃β τt, ⊢ τt : E, and for every θt ≃β t, there is a substitution
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σ, such that (T )θtf ≻ (f)σ(τt).

We define two sets of types of AF2 type system: Ω+ (set of ∀-positive types), and Ω−

(set of ∀-negative types) in the following way :

- If A is an atomic type, then A ∈ Ω+, and A ∈ Ω− ;

- If T ∈ Ω+, and T ′ ∈ Ω−, then, T ′ → T ∈ Ω+, and T → T ′ ∈ Ω− ;

- If T ∈ Ω+, then ∀xT ∈ Ω+ ;

- If T ∈ Ω−, then ∀xT ∈ Ω− ;

- If T ∈ Ω+, then ∀XT ∈ Ω+ ;

- If T ∈ Ω−, and X has no free occurence in T , then ∀XT ∈ Ω−.

Therefore, T is a ∀-positive types iff the universal second order quantifier appears posi-

tively in T .

For each predicate variable X, we associate an ⊥- variable X⊥.

For each formula A of AF2 type system, we define the formula A⊥ as follows :

- If A =⊥, then A⊥ = A ;

- If A = R(t1, ..., tn), where R is an n-ary predicate symbol, then A⊥ = A ;

- If A = X(t1, ..., tn), where X is an n-ary predicate variable, then A⊥ = X⊥(t1, ..., tn);

- If A = B → C, then A⊥ = B⊥ → C⊥ ;

- If A = ∀xB, then A⊥ = ∀xB⊥ ;

- If A = ∀XB, then A⊥ = ∀X⊥B⊥.

A⊥ is called the ⊥-transformation of A.

Theorem 6.1 Let D, E two ∀-positive closed types of AF2 type system, such that E does

not contain ⊥. If ⊢⊥ T : D⊥ → ¬¬E, then T is a storage operator for the pair (D, E).
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Manuscript, 1992

[2] J.L. Krivine Lambda-calcul, types et modèles
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