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Abstract: The small displacement torsors are generally used for the representation of
the geometrical deviations. The standardised tolerances can then be translated by a set
of inequalities between the components of a deviation torsor. In the case of cylindrical
tolerance zones, and surfaces of revolution, the inequalities are quadratic and the stack
up tolerances are more difficult to calculate. But the axi-symmetric case makes it
possible to reduce the space to three dimensions at the maximum instead of six in the
general case. Topological operations like the Minkowski sum to carry out the domains
for stack up analyse of tolerances are then reduced to operations on polyhedrons.
Moreover, we propose a way of taking into account the size tolerances. The first
presented application relates to metro-logic inspection for a specification with
maximum material condition on both the toleranced surface and the datum. The second
example makes it possible to determine the deviation between two surfaces belonging to
two different parts after mating them by two contact features.

Keywords: tolerance analysis, tolerance synthesis, axi-symmetry, domains.

1. INTRODUCTION

The small displacement torsor is used for the modelisation of the geometrical
deviation of mechanical parts [Bourdet et al., 1996], [Desrochers et al., 2003].
The components of a small displacement torsor can also be seen as differential
parameters for orientation and location. First, it is necessary to precise what is the
deviation torsor.

1.1. Deviation torsor
A position or orientation tolerance can be translated by the limitations on the
components of the deviation torsor. The precise definition of the deviation torsor can be
achieved on the following form: a theoretical element is associated to the real toleranced
feature (surface or axis). A frame is attached to this theoretical feature. We call it
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toleranced frame. A datum frame is built from one or more other features. The
displacement from the datum frame to the toleranced frame can be seen as the sum of a
displacement that define the position and orientation of the toleranced feature compared
to the datum frame, and an other displacement that characterise the deviation. The
deviation torsor is the first order approximation of this deviation displacement.

The datum frame can be built from only one elementary feature like a plane or the
axis of a cylinder, but it is also possible to build a datum frame from different features:
common datum or ordered datum system. More generally, the different possibilities
allowed by the standard can be modelised by the deviation torsor model.

The datum frame and the frame attached to the toleranced feature can have some
degrees of freedom. The components of the deviation torsor corresponding to these
degrees of freedom cannot be measured and are indefinite values. They can also be
considered as zero because there is no deviation for this degrees of freedom. In the same
way a size tolerance between two parallel planes in the nominal configuration can be
modelised thank to a deviation torsor.

The deviation torsor can be expressed by two vectors for a given point O. The
vectorial expression of the torsor is noted E = (80, 80) where 80 is the vector for the
infinitesimal rotation and 8O for the linear displacement of the point O.

For a given frame (i) constituted by a point O; and a vectorial base X, yi, z;, the
torsor can be written under a scalar form E;=( rx;, ryi, 1zi, tXi, tyi, tz;) where the three first
terms are the components of the rotation vector and the others are the components of the
displacement of the point O;.

The great advantage of the torsors for the displacement modelisation is due to the
fact that the set of torsors is a vectorial space (dimension 6). The composition of small
displacements is obtained by a sum of torsors. This operation is commutative and
simple to compute, while the composition of two displacements in the general case
(great displacements) is a non commutative operation. For the operations of tolerance
transfer or stack up tolerances of assembled parts, the deviations have to be composed.
The sum of torsors allows to modelise these operations.

1.2. Deviation and clearance domain
A dimensional or geometrical tolerance compatible with the ISO or ANSI standard
make it possible to limit the deviation torsor. Considering that any point of the
theoretical feature must be inside the tolerance zone, we obtain inequalities on the
components of the deviation torsor.

In the configuration space of dimension 6, a point corresponds to a particular value
of the torsor. Therefore, the set of the deviation torsor components according to the
tolerance is a domain in this configuration space. The boundary of this domain is a
hyper-surface. The equation of these hyper-surfaces on an implicit form are obtained by
replacing the inequalities by equalities.

The use of the configuration space to modelise the tolerances has been used by
different authors although they are often introduced with different forms.
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Desrochers use the screw parameters or torsor components of small displacements.
The position and orientation of a feature is describe by these parameters [Desrochers et
al., 2003].

Sacks and Jokowicz, [Sacks and Joskowicz, 1998] describe a tolerance analysis
method that computes tolerance zones of parts in configuration space. But the method is
limited to planar kinematical systems.

Mujezinovic and Davidson use Tolerance maps, a convex volume of points
corresponding to different possible positions of toleranced feature. The study is limited
to plane faces [Mujezinovic et al., 2004] and to line or axis [Davidson and Shah, 2002].
The areal coordinate are introduce to describe any configuration of the feature in its
tolerance zone as a linear combination of particular configurations. But in fact areal
coordinate for position and orientation are the components of small displacement torsor.

The proposed model allows to translate the tolerance zone into a domain in the
configuration space those mathematic representation is a set of inequalities on
differential parameters. This model enables stack up analysis in an assembly in the
worst case. It is the only model in my knowledge that permits to do this on a systematic
method even if the computation are complex in the general case [Petit, 2004].

The clearance in a joint between two parts, can also be modelised by a small
displacement torsor called clearance torsor. A frame is attached to each part of the joint
so that the frames coincide for a particular configuration. For example for a cylindrical
joint the particular configuration is obtained when the two axes are in coincidence. The
clearance torsor represent the relative displacement of the frames permitted by the
clearance in the joint. The clearance domain is also defined in the configuration space.
The contact conditions give the inequalities associated to this domain.

The torsor components depends on the frame chosen to express the torsor on a
scalar form. We call it the projection frame. It must not be confused with the datum
frame used to define the torsor itself. Therefore, the domain depends also of the
projection frame. In particular cases, the domain has some characteristics of symmetry,
so that the domain is invariant for particular changes of the projection frame. The case
of a symmetry of revolution for the geometry and the tolerances is investigated in detail
in this paper. But previously, the general case of change the projection frame is
considered.

1.3. Change the projection frame for a torsor
The frame (0) is constituted by the point Oy and a vectorial base Xo, yo, Zo. The scalar
representation of a torsor E in this frame is noted Eg =( Ry, T¢), where Ry=(rXo, 1yo, rzo)T
is the colon matrix of the co-ordinate of the small rotation vector in the vectorial base
(0).

The frame (1) is constituted by the point O; and a vectorial base x;, yi, z;. The
transfer matrix from the base (0) to (1) is noted Py;, and Uy, is the colon matrix of the
co-ordinates of the point O; in the frame (0).

We note E; =( Ry, T;) the components of the same torsor E but defined in the
projection base (1). Then the following matrix expressions give the new components of
the torsor:
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Ri=PioRo and_ Ty=P;yTo+ Ui Ry (D
With Py = Pm'l = P01T and Uy is the anti-symmetric matrices of the cross-product,
associated to the colon matrix: U= - P1oUo;.

0 -z y
If Uy =(x,y,2) then 010= z 0 =x
sy X 0

2. AXI-SYMMETRIC CASES

A toleranced system is considered as axi-symmetric when:
- all the functional surfaces taken into account in the tolerances are surfaces of
revolution around the same axis z,
- the tolerance zones corresponding to the given tolerances are volumes of
revolution around the same axis z.

In consequence, the datum frames are centred on the axis of revolution, and the
components of the deviation torsors for the rotation around the axis are always zero.
Figure (1a) shows some examples of axi-symmetric geometric tolerances.

The deviation torsors have the following form: E=(rx, ry, 0, tx, ty, tz). Different
parts can be assembled. The contact surfaces are surfaces of revolution. The clearance
torsor is in the form : J=( rx, ry, wz, tx, ty, tz). The component wz is the rotation around
the axis and is not limited because it is a degree of freedom of the mechanism. The other
components are limited by the contact conditions.

When the projection frame is changed, by a rotation of an angle 0, around the z
axis, and a translation z along the same axis, the matrices that define the change of
frame are:

Cos0 -Sin® 0
Uy = (0,0,2) et Py=| Sin® Cos6 O
0 0 1

Then the components of a torsor in the frame (1) can be expressed from the
components in the frame (0).
rx; = CosO 1x0 + SinO ry, tx; =Cos0 txo + Sinb ty, + z ry;
ry; =-Sin® rxg+ CosO ryp, ty; =-Sin0 txo + CosO tyy - z rx; (2)
tZl = tZO

2.1 Case of a cylindrical tolerance zone around the axis of revolution Oz
We find this case for example for a coaxiality of a cylinder or of any surface of
revolution when the datum is an axis built from one or more surfaces of revolution
around the same axis.
The deviation torsor is in the form E=(rx,ry,0,tx,ty,0) in a frame O, x, y, z. The
displacement vector of the points P, et P, at the extremity of the axis:
OP; = (tx+ry h/2) x + (ty —rx h/2) y
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OP, = (tx-ry h/2) x + (ty + rx h/2) y
For the model, the interpretation of the coaxiality tolerance leads these two points
to be inside the circles C; and C, respectively, at the extremity of the cylindrical
tolerance zone. The diameter of this cylinder is t and is length is h. (Fig.1b) So the
tolerance is translated by the inequalities:
(2 tx /h+ry )’ + (2 ty/h—1x )> < (t/h)?
and (2tx/h—ry)’+ (2 ty/h+rx )’ < (t/h)? 3)

2.2 Case of toleranced plane perpendicular to the axis in the nominal

configuration
The tolerance zone is also a cylinder but the value t of the tolerance is the thickness of
the cylinder while the diameter D is the one of the circle that delimits the face. It can be
an orientation tolerance, the datum is then an axis, or a position tolerance. In that case
the datum defines an axis and a point on this axis. Let P be a point on the plane face,
belonging to the circle (fig. 1¢). The polar co-ordinates of this point are (D/2, 6). The
projection frame is centred on the z axis. The co-ordinates of the deviation torsor in this
frame is (rx, ry, 0, tx, ty, tz).

The displacement of the point P is 8P = (0, 0, tz+rx Sin® — ry Cos60 ). This point
must be inside the tolerance zone so that :

(rx Sin6 — ry Cos0)< t/D — 2tz/D and (- rx Sin® + ry Cos0)< t/D + 2tz/D

These inequalities must be satisfied for all the possible values of 6.

For any value of tz, each inequality is satisfied for all the points of a half space
limited by a straight line at the constant distance from the origin. The intersection of all
these half spaces is limited by the envelope of all the straight lines. Therefore, it is a
circle. Its diameter is equal to (t/D — 2tz/D) if tz is positive and (t/D + 2tz/D) if tz is
negative. In all the cases, tz is in the interval [-t/2, t/2].

The deviation domain is then defined by the following quadratic inequalities:

(ry)’ + (1x)* < (/D - 2tz/D)*> and  (ry)* + (rx)’ < (/D + 2tz/D)’ “4)
For an orientation tolerance, only the angular components are limited:
(ry)’ + (1x)" < (D)’ (5)
1B o] o@mAl
1Tt[A ©| otM| A
ot |AlB
4| t|AlBl ¢
2 t|A]
e 24l | z
(a)

Figure 1; Axi-symmetric cases and two examples of tolerance zones

The general case of the different inequalities can be written on the form:
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(atx +ry)’ + (aty —rx)> < (t/b - ctz) > 6)
The three previous cases correspond to the following values of the coefficient a, b
and D:

1.) a=2/h; b=h;c=0 and =-2/h; b=h;c=0
2)a=0; b=D;c=2/D and a=0; b=D;c=-2/D
3) a=0; b=D;c=0

2.3 Axi-symetric domain properties
The domain remains unchanged if the projection frame rotates around the z axis and
translate on the z axis.

Let us consider the general inequality:

(atx; +1y;)* + (aty; — rx;) % < (t/b — ctz;)?

Then, using the equations (2) and after development and simplifications, the
inequality becomes:

(a txo + ryo)’ + (a typ — rx¢) > < (t/b — ctzp)

This property proves that the deviation domain remains without change. The
deviation domains have a symmetry of revolution in their own configuration space. But
it is not the usual symmetry of revolution for figures in the 3D space. The deviation
domains defined by a set of inequalities like in (6) can be represented in a five
dimension space because they have only five components or less. The intersection of
these domains by an hyper-plane defined by the equations tx=constant, ry=constant and
tz=constant is a domain in the 2D space. It can be represented in a plane by the domain
inside two parallel lines, symmetrical around the origin. The cartesian inequalities for
this domain are:

aty —rx < f(tx, ry, tz) and aty-—rx>- f(tx, ry, tz) @)

The slope between the “ty” axis and these lines is the coefficient a.

The cross section of an axi-symmetric domain defined by one inequality (6) with
an hyper-plane, where tx, ty and tz are constant, is the disk inside the circle of radius
(t/b — ctzp). If the domain is defined by several inequalities, the cross section of the
domain is the intersection of all the disks built from each inequality. The cross section
with an hyper-plane defined by constant rx, ry and tz is also a disk if “a” is different
from zero. These properties characterise the axi-symmetric domains.

When different parts are assembled, the geometrical deviations stack up. The
functional requirements concern generally features not belonging to the same part. In
the “worst case” approach, the deviation domain that characterise the functional
requirement must be inside the Minkowski sum of the different domains of the stack up.
See the references [Teissandier et al., 1999], [Giordano et al., 2001], [Petit, 2004] about
the applications of Minkowski sum in tolerancing. It can be proved that the Minkowski
sum of two axi-symmetric domains is also an axi-symmetric domain. So, it is sufficient
to compute the Minkowski sum only in a three dimensional space. Three components
are considered: rx, ty, tz or tx, ry, tz. The quadratic inequality (6) is then replaced by the
two linear inequalities (7).
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3. APPLICATION TO THE INSPECTION OF SPECIFICATIONS

The example concerns a coaxiality tolerance for the axis of a cylinder. The datum is the
axis of an other cylinder. The maximal material modifier is used both for the toleranced
feature and the datum (fig.2). The proposed method is quite different from those
presented in the literature [Davidson and Shah, 2003].

x4
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Figure 2; coaxiality tolerance and interpretation

The problem is to determine the relations between the deviation parameters that
can be measured (components of the deviation torsors) so that the part is in accordance
with the tolerance.

It is assumed that after the measurement, the following parameters are known :

- the diameters of the associated cylinders : (Da + ea) and (Db + eb),

- the deviation components for the rotation and the position of the cylinder B with
respect to the cylinder A : rx,ry, tx and ty.

We suppose that the dimensional tolerances are defined :

ia <ea <sa, and ib <eb < sb,

and the coaxiality tolerance specified value is tb.

The part is in conformity with the specifications if the tolerances of size are
checked and if the part can be assembled in its theoretical gauge. For the gauge, the
dimension of the diameter of the cylinder B is the maximum value added to the
geometric tolerance Db + sb + tb, while the diameter of A is the maximum value Da +
sa. We consider the mechanism constituted by the part assembled in the gauge. The
subscript (0) is for the gauge and (1) for the part.

Since the two cylindric joints A and B and the two parts constitute a single loop
mechanism, the clearance and deviation torsors are linked by the relation:

Joar + Eaig + Jigo + Egoa=0

Where Joa; and Jipo are the clearance torsors for the two joints and Exjg and Epga
are the deviation torsors of the parts. The geometry of the gauge is perfect, therefore
Egoa= 0.

The equivalence between the geometric tolerance and the assembly is translated
into the condition between the domains: [Eais] = [Jos1]+[J1a0] - The sum of Minkowski
of the domain. The domain is built in the plane rx, ty (fig.3).
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The domain [J;a0] is determined at the point B. The parameters that characterize

the domain [Ex;g] allows to write the inequalities between the deviation parameters.
A

X

A A © ®
Jy/b J/a N
ty ty

- ——p — = <
/2 J 2

[Yog1l 1 Atpoint O’ Joq T ) & . '
At t O
| [ 1A0] | point [EAIB] = [J0B1]+[J1AO] !
at point O ;

Figure 3 ; Deviation domain and their Minkowski sum

4. APPLICATION TO TOLERANCE SYNTHESIS

In the second example the problem is to compare the deviation resulting from the
assembly of two parts, with a requirement between two feature belonging to the
different parts. The parts are toleranced in a qualitative form but the values of the
tolerance zones are unknown. The qualitative tolerances are defined in figure 4. They
are justified by technological choices for the joint between the two parts. The head 2 is
in contact with the barrel 1, on the plane A maintained by tie rods and is centred in the
“short” cylinder C fitted with a clearance in the cylinder B.

| A
2 [ 5 | A=—{L]1 e
\ ot
olou[A[s]| \_

o '

v 8 J;j‘ 8

ol i z ©

: -
--Ih --r

Figure 4; Qualitative tolerances of axi-symmetric parts for tolerance synthesis

We notice :
- B:aframe attached to the cylinder B,
- (1): a frame attached to the plane A but centred on the B axis of the part (1),
- (2): a datum ordered frame attached to the part (2), so that the plane A is the
primary datum and cylinder C is the secondary datum.
- D: the datum attached to the cylinder D.
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The deviation torsors are linked by the relation: Egp =Egi1 + Ei» + Eop

Each torsor represent the small displacements to go from a frame to the other. Eg;
is the deviation of the plane with regard to the cylinder. The domain [Eg,] is built from
the perpendicularity tolerance. It is characterised by the parameter t;. The domain is
defined at the point O’ in the plane ty, rx. If the torsors are expressed at the point O, the
domain represented by a segment is changed into an other segment.

E,; is the deviation torsor of the frame (2) with regard to the frame (1). This
deviation is due to the clearance between the cylinder C and B. We notice J the
difference between the two diameters of the cylinders.

Since the planes A of the two parts are in coincidence, the relative displacement is
a translation in the plane. The domain [E,;] is independent on the point chosen to define
the torsor. [Eyp] is the deviation domain for the D toleranced feature. The datum frame
is in fact the frame (2). It is defined at the point O. The three domains are represented in
the figure 5.

Arx AX
t,/Dg | t./hj

4 o2
B A B - .
. i

[Ere] [Exol |

Figure 5; Deviation domains and stack up tolerances

The three deviation torsors have any value in their domain. When the parts are
assembled the torsor sum Epp will belong to the domain obtained by the Minkowski
sum of the three previous domains defined at the same point O.

The resulting domain does not correspond to a tolerance zone. The stack up
tolerance of geometric standardised tolerances is not in general case a standardised
tolerance. Nevertheless, if the functional requirement between the feature B and D is
given using a coaxiality tolerance, it is possible to determine the relation between the
value t, of this tolerance and the values of the intermediate tolerances. The relation is
easy to determine thanks to the domain operations in the plane rx, ty (fig.5) :

t:=t;(h+2d)/D+J + t,

Different solutions are possible. Others criteria must be given for the repartition of
the three values J, t, and t;. Since J depends of the actual size, the worst case is when J
is maximum, so the clearance has a unfavourable effect on the requirement. The least
material condition can then be used.

5. CONCLUSION

The method based on deviation and clearance domain is very efficient for the tolerance
analysis. Tolerance synthesis needs to compute Minkowski sum on the domains. In the
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general case the operation is complex but in the case of axi-symmetric systems, the
problem can be solved with simple linear operations. From qualitative tolerances, it is
possible to determine analytic relations that permits to determine the tolerances that
ensure given requirements. This synthesis tolerancing approach can be applied to
different practical systems.
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