Karim Nour
email: nour@univ-savoie.fr

Non deterministic classical logic: the λµ ++ -calculus

In this paper, we present an extension of λµ-calculus called λµ ++calculus which has the following properties: subject reduction, strong normalization, unicity of the representation of data and thus confluence only on data types. This calculus allows also to program the parallel-or.

Introduction

There are now many type systems which are based on classical logic ; among the best known are the system LC of J.-Y. Girard [START_REF] Girard | A new constructive logic: classical logic[END_REF], the λµ-calulus of M. Parigot [START_REF] Parigot | λµ-calculus : an algorithm interpretation of classical natural deduction[END_REF], the λ c -calculus of J.-L. Krivine [START_REF]Krivine Classical logic, storage operators and 2nd order lambdacalculus[END_REF] and the λ Sym -calculus of F. Barbanera and S. Berardi [START_REF] Barbanera | A symmetric lambda-calculus for classical program extraction[END_REF]. We consider here the λµ-calculus because it has very good properties: confluence, subject reduction and strong normalization. On the other hand, we lose in this system the unicity of the representation of data. Indeed, there are normal closed terms, different from Church integers, typable by integer type (they are called classical integers). The solutions which were proposed to solve this problem consisted in giving algorithms to find the value of classical integers ([START_REF] Nour | La valeur d'un entier classique en λµ-calcul[END_REF], [START_REF]Parigot Classical proofs as programs[END_REF]). Moreover the presentation of typed λµ-calculus is not very natural. For example, we do not find a closed λµ-term of type ¬¬A → A.

In this paper, we present an extension of λµ-calculus called λµ ++ -calculus which codes exactly the second order classical natural deduction. The system we propose contains a non deterministic simplification rule which allows a program to be reduced to one of its subroutines. This rule can be seen as a complicated garbage collector. This calculus which we obtain has the following properties: subject reduction, strong normalization, unicity of the representation of data and thus confluence only on data types. This calculus allows also to program the parallel-or.

λµ-calculus

2.1 Pure λµ-calculus λµ-calculus has two distinct alphabets of variables: the set of λ-variables x, y, z, ..., and the set of µ-variables α, β, γ,.... Terms (also called λµ-terms) are defined by the following grammar:

t := x | λx t | (t t) | µα [β]t
The reduction relation of λµ-calculus is induced by fives different notions of reduction :

The computation rules

(λx u v) → u[x := v] (c λ) (µα u v) → µα u[α := * v] (c µ)
where u[α := * v] is obtained from u by replacing inductively each subterm of the form [α]w by [α](w v)

The simplification rules We have the following result ([START_REF] Parigot | λµ-calculus : an algorithm interpretation of classical natural deduction[END_REF], [START_REF] Py | Confluence en λµ-calcul[END_REF]):

[α]µβ u → u[β := α] (s 1) µα [α]u → u (*) (s 2) µα u → λx µα u[α := * x] (* *) (s 3) (*) if
Theorem 2.1 In λµ-calculus, the reduction → µ is confluent.

Typed λµ-calculus

Proofs are written in a second order natural deduction system with several conclusions, presented with sequents. The connectives we use are ⊥, → and ∀. We denote by A 1 , A 2 , ..., A n → A the formula A 1 → (A 2 → (...(A n → A)...)). We do not suppose that the language has a special constant for equality. Instead, we define the formula a = b (where a, b are terms) to be ∀X (X(a) → X(b))

where X is a unary predicate variable. Let E be a set of equations. We denote by a ≈ E b the equivalence binary relation such that : if

a = b is an equation of E, then a[x 1 := t 1 , ..., x n := t n] ≈ E b[x 1 := t 1 , ..., x n := t n].
Let t be a λµ-term, A a type, Γ = x 1 : A 1 , ..., x n : A n , ∆ = α 1 : B 1 , ..., α m : B m are two contexts and E a set of equations. The notion "t is of type A in Γ and ∆ with respect to E" (denoted by Γ ⊢ t : A, △) is defined by the following rules:

(1

) Γ ⊢ x i : A i , △ (1 ≤ i ≤ n) (2) If Γ, x : A ⊢ t : B, △, then Γ ⊢ λx t : A → B, △ (3) If Γ 1 ⊢ u : A → B, △ 1 , and Γ 2 ⊢ v : A, △ 2 , then Γ 1 , Γ 2 ⊢ (u v) : B, △ 1 , △ 2 (4) If Γ ⊢ t : A, △, and x not free in Γ and △, then Γ ⊢ t : ∀x A, △ (5) If Γ ⊢ t : ∀x A, △, then, for every term a, Γ ⊢ t : A[x := a], △ (6) If Γ ⊢ t : A, △, and X is not free in Γ and △, then Γ ⊢ t : ∀X A, △ (7) If Γ ⊢ t : ∀X A, △, then, for every formula G, Γ ⊢ t : A[X := G], △ (8) If Γ ⊢ t : A[x := a], △, and a ≈ E b, then Γ ⊢ t : A[x := b], △ (9) If Γ ⊢ t : A, β : B, △, then : -Γ ⊢ µβ [α]t : B, α : A, △ if α = β -Γ ⊢ µα [α]t : B, △ if α = β
The typed λµ-calculus has the following properties ([START_REF] Parigot | λµ-calculus : an algorithm interpretation of classical natural deduction[END_REF], [START_REF] Parigot | Strong normalization for second order classical natural deduction[END_REF]):

Theorem 2.2 1) Subject reduction: Type is preserved during reduction.

2) Strong normalization: Typable λµ-terms are strongly normalizable.

Representation of data types

Each data type generated by free algebras can be defined by a second order formula. The type of boolean is the formula Bool[x] = ∀X {X(1), X(0) → X(x)} where 0 and 1 are constants. The type of integers is the formula Ent[x] = ∀X {X(0), ∀y (X(y) → X(sy)) → X(x)} where 0 is a constant symbol for zero, and s is a unary function symbol for successor.

In the rest of this paper, we suppose that every set of equations E satisfies the following properties:

0 ≈ E 1 and if n = m, then s n (0) ≈ E s m (0)
We denote by id = λx x, 1 = λxλy x, 0 = λxλy y and, for every n ∈ IN, n = λxλy (y n x) (where (y 0 x) = x and (y k+1 x) = (y (y k x))). It is easy to see that:

Lemma 2.1 1) ⊢ 1 : Bool[1] and ⊢ 0 : Bool[0]. 2) For every n ∈ IN, ⊢ n : Ent[s n (0)].
The converse of (1) lemma 2.1 is true.

Lemma 2.2 If b ∈ {0, 1} and ⊢ t : Bool[b], then t → µ b.
But the converse of (2) lemma 2.1 is not true. Indeed, if we take the closed

normal term θ = λxλf µα [α](f µβ [α](f x)), we have ⊢ θ : Ent[s(0)].
3 λµ ++ -calculus

3.1 Pure λµ ++ -calculus
The set of λµ ++ -terms is given by the following grammar:

t := x | α | λx t | µα t | (t t)
where x ranges over a set V λ of λ-variables and α ranges over a set V µ of µvariables disjoint from V λ . The reduction relation of λµ ++ -calculus is induced by eight notions of reduction:

The computation rules

(λx u v) ⇀ u[x := v] (C λ) (µα u v) ⇀ µβu [α := λy (β (y v))] (C µ)
The local simplification rules

((α u) v) ⇀ (α u) (S 1) µαµβ u ⇀ µα u[β := id] (S 2) (α (β u)) ⇀ (β u) (S 3) (β µα u) ⇀ u[α := λy (β y)] (S 4)
The global simplification rules

µα u ⇀ λz µβ u[α := λy (β (y z))] (*) (S 5) µα u[y := (α v)] ⇀ v (* *) (S 6) (*) if u contains a subterm of the form (α λx v) (**) if y is free in u and α is not free in v
For any λµ ++ -terms t, t ′ , we shall write

-t ⇀ n µ ++ t ′ if t ′ is obtained from t by applying n times these rules. -t ⇀ µ ++ t ′ if there is n ∈ IN such that t ⇀ n µ ++ t ′ .
Let us claim first that λµ ++ -calculus is not confluent. Indeed, if we take u = λx µα ((x (α 0)) (α 1)), we have (using rule S 6) u ⇀ µ ++ λx 0 and u ⇀ µ ++ λx 1. The non confluence of λµ ++ -calculus does not come only from rule S 6 . Indeed, if we take v = µα ((α µβ β)0), we have v ⇀ µ ++ µαλy (α y) and v ⇀ µ ++ 0.

The rules which are really new compared to λµ-calculus are S 1 and S 6 . The rule S 1 means that the µ-variables are applied to more than one term. We will see that typing will ensure this condition. The rule S 6 means that if µα t has a subterm (α v) where v does not contain free variables which are bounded in µα t, then we can return v as result. This results in the possibility of making a parallel computation. It is clear that this rule is very difficult to implement. But for the examples and the properties we will present, the condition "not active binders between µα and α" will be enough. Let us explain how we can implement the weak version of this rule. We suppose that the syntax of the terms has two λ-abstractions: λ and λ ′ and two µ-abstractions: µ and µ ′ . We write λ ′ x u and µ ′ α u only if the variables x and α do not appear in u. We suppose also that for each µ-variable α we have a special symbol ξ α . We can thus simulate the weak version of rule S 6 by the following non deterministic rules:

µα u ⇀ (ξ α u) (ξ α λ ′ x u) ⇀ (ξ α u) (ξ α µ ′ β u) ⇀ (ξ α u) ((ξ α (α v)) ⇀ v ((ξ α (u v)) ⇀ (ξ α u) (*) ((ξ α (u v)) ⇀ (ξ α v) (*) (*) u = α
A result of a computation is a term which does not contain symbols ξ α .

We will see that with the exception of rule S 6 the λµ ++ -calculus is not different from λµ-calculus. We will establish codings which make it possible to translate each one in to the other.

Relation between λµ-calculus and λµ ++ -calculus

We add to λµ-calculus the equivalent version of rule S 6 :

µα [β]u[y := [α]v] → ′ v
if y is free in u and α is not free in v.

We denote by λµ + -calculus this new calculus.

For any λµ-terms t, t ′ , we shall write : -t → n µ + t ′ if t ′ is obtained from t by applying n times these rules.

-

t → µ + t ′ if there is n ∈ IN such that t → n µ + t ′ .
For each λµ-term t we define a λµ ++ -term t * in the following way:

x * = x {λx t} * = λx t * {(u v)} * = (u * v *) {µα [β]t} * = µα (β t *)
We have the following result:

Theorem 3.1 Let u, v be λµ-terms. If u → n µ + v, then there is m ≥ n such that u * ⇀ m µ ++ v * . Proof Easy. 2
The converse of this coding is much more difficult to establish because it is necessary to include the reductions of administrative redexes. We first modify slightly the syntax of the λµ ++ -calculus. We suppose that we have a particular µ-constant δ (i.e. µδ u is not a term) and two other λ-abstractions: λ 1 and λ 2 . The only terms build with these abstractions are: λ 1 xu where u contains only one occurence of x and λ 2 xx. For the rule C µ , λ, λ 1 and λ 2 behave in the same way. We write rules C µ , S 2 , S 4 and S 5 in the following way:

(µα u v) ⇀ µβ u[α := λ 1 y (β (y v))] (C µ) µαµβ u ⇀ µα u[β := λ 2 x x] (S 2) (β µα u) ⇀ u[α := λ 1 y (β y)] (S 4) µα u ⇀ λzµβ u[α := λ 1 y (β (y z))] (S 5)
It is clear that the new λµ ++ -calculus is stable by reductions.

For each λµ ++ -term t we define a λµ-term t • in the following way :

x • = x α • = λxµγ [α]x (*) {λx t} • = λx t • {λ 1 x t} • = λx t • {λ 2 x x} • = λxµγ [δ]x {µα t} • = µα [δ]t • {(λ 1 x u v)} • = u • [x := v •] {(λ 2 x x v)} • = µγ [δ]v • (* *) {(u v)} • = (u • v •) (* * *) (*) γ = α (**) γ is not free in v • (***) u = λ i x w i ∈ {1, 2}
We have the following result:

Theorem 3.2 Let u, v be λµ ++ -terms. If u ⇀ n µ ++ v, then there is m ≥ n and a λµ-term w such that u • → m µ + w and v • → µ + w.
Proof We use the confluence of λµ-calculus and the following lemma:

Lemma 3.1 Let u, v be λµ ++ -terms. 1) {u[x := v]} • → µ + u • [x := v •]. 2) {u[α := λ 1 y (β (y v))]} • → µ + u • [α := * v •]. 2
We deduce the following corollary:

Corollary 3.1 Let u be a λµ ++ -term. If u • is strongly normalizable then u is also strongly normalizable.

Typed λµ ++ -calculus

Types are formulas of second order predicate logic constructed from ⊥, → and ∀. For every formula A, we denote by ¬A the formula A →⊥ and by ∃x A the formula ¬∀x ¬A. Proofs are written in the ordinary classical natural deduction system.

Let t be a λµ ++ -term, A a type, Γ = x 1 : A 1 , ..., x n : A n , α 1 : ¬B 1 , ..., α m : ¬B m a context, and E a set of equations. We define the notion "t is of type A in Γ with respect to E" (denoted by Γ ⊢ ′ t : A) by means of the following rules

(1) Γ ⊢ ′ x i : A i (1 ≤ i ≤ n) and Γ ⊢ ′ α j : ¬B j (1 ≤ j ≤ m). (2) If Γ, x : A ⊢ ′ u : B, then Γ ⊢ ′ λx u : A → B. (3) If Γ 1 ⊢ ′ u : A → B, and Γ 2 ⊢ ′ v : A, then Γ 1 , Γ 2 ⊢ ′ (u v) : B. (4
) If Γ ⊢ ′ u : A, and x is not free in Γ, then Γ ⊢ ′ u : ∀x A.

(5) If Γ ⊢ ′ u : ∀x A, then, for every term a, Γ ⊢ ′ u : A

[x := a]. (6) If Γ ⊢ ′ u : A, and X is not free in Γ, then Γ ⊢ ′ u : ∀X A. (7) If Γ ⊢ ′ u : ∀X A, then, for every formulas G, Γ ⊢ ′ u : A[X := G]. (
) If Γ ⊢ ′ u : A[x := a], and a ≈ E b, then Γ ⊢ ′ u : A[x := b]. 8

5. 3

 3 Parallel-orLet T B = {b ; b → µ ++ {0} or b → µ ++ {1}} the set of true booleans.A closed normal λµ ++ -term b is said to be a false boolean iff :b ⇀ µ ++ λx u or b ⇀ µ ++ λx u where u ⇀ µ ++ λy v and u ⇀ µ ++ (x v 1 ...v n) or b ⇀ µ ++ λxλy u where u ⇀ µ ++ λy v, u ⇀ µ ++ (x w 1 ...w n) and u ⇀ µ ++ (y w 1 ...w n).We denote F B the set of false booleans. Intuitively a false boolean is thus a term which can give the first informations on a true boolean before looping.Let B = T B ∪ F B the set of booleans.We said that a closed normal λµ ++ -term T is a parallel-or iff for all b 1 , b 2 ∈ B:(T b 1 b 2) → µ ++ {0, 1} ; (T b 1 b 2) ⇀ µ ++ 1 iff b 1 → µ ++ 1 or b 2 → µ ++ 1 ; (T b 1 b 2) ⇀ µ ++ 0 iff b 1 → µ ++ 0 and b 2 → µ ++ 0.Let or be a binary function defined by the following set of equations :or(1, x) = 1 or(0, x) = x or(x, 1) = 1 or(x, 0) = x Let = λxλyµα (α (x 1 (y 1 0) (I (α (y 1 (x 1 0) α))))) where 1 = λp 1 and 0 = λp 0. Theorem 5.4 ⊢ ′ : ∀x∀y {Bool[x], Bool[y] → Bool[or(x, y)]} and is a parallel-or. Proof Let B[x] = ¬Bool[x] → Bool[x]. x : Bool[x] ⊢ ′ x : B[1], B[0] → B[x], then x : Bool[x] ⊢ ′ (x 1 0) : B[x].In the same way we prove that y : Bool[y] ⊢ ′ (y 1 0) : B[y]. y : Bool[y] ⊢ ′ y : B[1], B[x] → B[or(x, y)], then x : Bool[x], y : Bool[y] ⊢ ′ (y 1 (x 1 0)) : Bool[or(x, y)], therefore

 ′ if t ′ is obtained from t by applying n times these rules.-t → µ t ′ if there is n ∈ IN such that t → n µ t ′ .

	For any λµ-terms t, t ′ , we shall write:
	-t → n µ t

α has no free occurence in u (**) if u contains a subterm of the form [α]λy w

 Consequently, we can give more explanations for rule S 6 . It means that "in a proof of a formula we cannot have a subproof of the same formula". The terms µα u[y := (α v)] and v has the same type, then the rule S 6 authorizes we obtain⊢ ′ P IN : ∀x {Ent[x] → ∃y Ent[y]}.It is clear that, with this rule, we lose the strong normalization property. But we possibly can put restrictions on this rule to have weak normalization. Let R ⊆ IN be a recursively enumerable set. There is a closed normal λµ ++ -term P R such that (P R 0) → µ ++ {m ; m ∈ R}.

	We can deduce the following corollary:
	Corollary 5.1

) If Γ, α : ¬B ⊢ ′ u :⊥, then Γ ⊢ ′ µα u : B.

Acknowledgement. We wish to thank C. Raffalli for helpful discussions. We do not forget the numerous corrections and suggestions by N. Bernard.

a program to be reduced to one of its subroutines which has the same behaviour.

If △ = α 1 : B 1 , ..., α m : B m , then we denode by ¬△ = α 1 : ¬B 1 , ..., α m : ¬B m . If Γ = x 1 : A 1 , ..., x n : A n , α 1 : ¬B 1 , ..., α m : ¬B m , then we denote by Γ λ = x 1 : A 1 , ..., x n : A n and Γ µ = α 1 : B 1 , ..., α m : B m .

We have the following results:

4 Theoretical properties of λµ ++ -calculus

Proof It suffices to verify that the reduction rules are well typed.

Proof According to the theorem 3.3 and the corollary 3.1, it is enough to show that the λµ + -calculus is strongly normalizable. It is a direct consequence of the theorem 2.2 and the following lemma:

Let t be a λµ ++ -term and V t a set of normal λµ ++ -terms. We write t → µ ++ V t iff:

-for all u ∈ V t , t ⇀ µ ++ u.

-If t ⇀ µ ++ u and u is normal, then u ∈ V t . Intuitively V t is the set of values of t.

Theorem 4.3 (Unicity of representation of integers)

Proof Let t be a closed normal term such that ⊢ ′ t : Ent[s n (0)]. Since we cannot use rules S 4 and S 5 , we prove that t = λxλf u and x : X(0), f : ∀y (X(y) → X(s(y))) ⊢ ′ u : X(s n (0)). The term u does not contain µ-variables. Indeed, if not, we consider a subterm (α v) of u such that v does not contain µ-variables.

It is easy to see that v is of the form (f m x), thus u is not normal (we can apply rule S 6). Therefore u = (f n x) and t = n. Let us note that the λµ ++ -term I simulates the exit instruction of C programming language and the λµ ++ -term P simulates the Call/cc instruction of the Scheme functional language (see [START_REF] Krivine | About classical logic and imperative programming[END_REF]).

Producers of integers

For every n 1 , ..., n m ∈ IN, we define the following finite sequence (U k) 1≤k≤m :

and U 1 = (α (x λdλy (y n 1) id α)).

Let P n1,...,nm = λxµα U m . We have: We define the following finite sequence (V k) 1≤k≤m :

We have (P n1,...,nm 0)

Let P IN = (Y F) where F = λxλyµα (α (y λd (x (s y)) id (I (α (y λdλz (z y) id α))))), Y is the Turing fixed point and s a λµ ++ -term for successor on Church integers. It is easy to check that:

We can check that

Therefore, if we add to the typed system the following rule: