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The present paper deals with the homogenization of the heat conduction which takes place in a binary three-dimensional medium consisting of an ambiental phase having conductivity of unity order and a rectangular honeycomb structure formed by a set of thin layers crossing orthogonally and periodically. We consider the case when the conductivity of the thin layers is in inverse proportion to the vanishing volume of the rectangular honeycomb structure. We find the system that governs the asymptotic behaviour of the temperature distribution of this binary medium. The dependence with respect to the thicknesses of the layers is also emphasized. We use an energetic method associated to a natural control-zone of the vanishing domain.

Introduction

The study of the lattice-type structures which are characterized by periodicity and small thickness of the material is one of the main achievements of the homogenization theory. Civil engineering, electrotechnics and the aerospace industry are mainly concerned by composite materials, particularly truss structures, which have to be treated by techniques of homogenization when direct computations fail.

The foundations of homogenized layered materials were laid down by Murat and Tartar in their pioneering work [START_REF] Murat | Homogenization methods: theory and applications in physics[END_REF]. This method was still used by [START_REF] Héron | Homogenization of some quasilinear problems for stratified media with low and high conductivities[END_REF] in the framework of weaker topologies. The case of BV -functions and sequences of measures is worked out in [START_REF] Bouchitté | Singular perturbations and homogenization in stratified media[END_REF]. Many examples and applications may be found in [START_REF] Bakhvalov | Homogenization: averaging processes in periodic media[END_REF]. The difficulties arising from the direct computation of the behaviour of these structures are twofold: the great number of cells and the small thickness of the material. The periodic distribution classically suggests that the homogenization method for perforated domains should be used as in [START_REF] Cioranescu | Homogenization of reticulated structures[END_REF], where the period ε and the thickness δ of the material are considered as independent vanishing parameters. A classical issue is then to consider the problem of permuting both converging processes. This is made in details in [START_REF] Cioranescu | Homogenization of reticulated structures[END_REF]. As the pratical point of view favors geometric consideration, measures provide a more general tool when they are confined to the description of the critical part of a system, as in [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF] and [START_REF] Bentalha | Homogenization of a conductive suspension in a Stokes-Boussinesq flow[END_REF]. This approach was used in [START_REF] Zhikov | Derivation of the limit equations of elasticity theory of thin sets[END_REF], where the homogenization of elastic reticulated structures is performed for an anisotropic material surrounded by an empty environment.

Our study is based on the control-zone method which was introduced and developed by [START_REF] Bentalha | Diffusion process in a rarefied binary structure[END_REF]- [START_REF] Bentalha | Diffusion in a highly rarefied binary structure of general periodic shape[END_REF] and [START_REF] Gruais | Homogenizing a critical binary structure of finite diffusivities[END_REF]- [START_REF] Gruais | Periodic structures separated by highly conductive thin layers[END_REF], specific to the binary composition of the system, namely the truss and the ambiental phase. This procedure proved its efficiency in the modelling of fine substructures where concentrated material of high contribution influences the behavior of the global problem in spite of its vanishing volume. The asymptotic treatment reveals the apparent paradox between an obviously disappearing element and its everlasting action on their environment. The coupling between both components manifests itself through the rarefying ratio γ ε which arises as a criterium for the reduced problem to exist. Unlike the critical case studied in [START_REF] Bentalha | Diffusion in a highly rarefied binary structure of general periodic shape[END_REF], the connections between the layers of the reticulated structure annihilate the capacitary term lim ε→0 γ ε when it is defined. This was also observed in [START_REF] Gruais | Periodic structures separated by highly conductive thin layers[END_REF] in the absence of connections. Interestingly, the presence of the ambiental phase substantially modifies the contribution of the truss in a way that cannot be anticipated from [START_REF] Cioranescu | Homogenization of reticulated structures[END_REF]- [START_REF] Zhikov | Derivation of the limit equations of elasticity theory of thin sets[END_REF], because the sequence of problems under consideration behaves singularly with respect to the period of distribution and involves a new criterium, namely the capacity of the intersections of the crossing layers.

The present paper is organized as follows: Section 2 is devoted to the main notations and to the description of the initial problem. We set the functional framework for which the existence and uniqueness of the solution can be established.

In the first part of Section 3 we present two operators that have a localizing effect and that we use in order to obtain the specific inequalities related to honeycomb structures. We also define the capacitary functions and step approximation operators which are associated with the test-functions defined in our control-zones. They overcome the singular behavior of the energy term when ε tends to zero.

Section 4 deals with the homogenization process in the reticulated case in the so-called box structure geometry. We obtain the homogenized equation which displays explicit effective coefficients. The proof relies on the energetic method applied in the control-zone context. No critical thickness of the layers appears and the intersections of the layers have no distinct influence upon the asymptotic behaviour of the temperature.

The homogenization process in the gridwork case is worked out in Section 5. We obtain the homogenized equation and explicit effective coefficients in this case also. The proofs are only sketched because the arguments follow the same lines as in Section 4.

The significant difference between the effective coefficients obtained in the two cases studied here shows how important is the internal geometry of the vanishing superconductive material.

Setting of the problem

Let Ω = I 3 , I =] - 1 2 , 1 2 
[ and n ∈ N. From now on we use the notations

ε = 1 2n + 1 , Z ε = {k ∈ Z, |k| ≤ n} and I k ε = εk + εI, k ∈ Z ε . (1)
Obviously, card Z ε = 1/ε and x ∈ I if and only if there exists

k ∈ Z ε such that x ∈ I k ε . For any i ∈ {1, 2, 3}, we consider r i ε ≥ 0, r i ε << ε, that is r i ε ε → 0 when ε → 0. For any k ∈ Z ε we define: T i ε,k = {x = (x 1 , x 2 , x 3 ) ∈ Ω, |x i -εk| < r i ε }, T i ε = ∪ k∈Zε T i ε,k (2) 
T ε = ∪ 3 i=1 T i ε , T ij ε = T i ε ∩ T j ε , for 1 ≤ i < j ≤ 3. (3) 
We consider that Ω is occupied by two materials with highly different conductivities; one is highly conductive and it is concentrated in the vanishing domain of the thin layers T ε (|T ε | → 0) and the other forms the ambiental phase which has conductivity of unity order.

Assuming that we are given a source term f ε in Ω and some conductivity coefficients a, b > 0, we consider the heat conduction problem, that is we study the temperature u ε which satisfies in some sense the system

-a∆u ε = f ε in Ω \ T ε (4) - b |T ε | ∆u ε = f ε in T ε (5) 
u ε = 0 on ∂Ω, (6) 
together with the natural transmission conditions on the interface ∂T ε \ ∂Ω.

More precisely, assuming that f ε ∈ H -1 (Ω), the variational formulation of our problem is :

To find u ε ∈ H 1 0 (Ω) such that a Ω\Tε ∇u ε ∇v + b - Tε ∇u ε ∇v = f ε , v , ∀v ∈ H 1 0 (Ω), (7) 
where we have used the notation

- E • = 1 |E| E • for any measurable E ⊂ Ω (8)
and •, • is the duality product between H -1 (Ω) and H 1 0 (Ω). Applying the Lax-Milgram theorem we obtain: Proposition 2.1 The variational equation [START_REF] Gruais | Homogenizing a critical binary structure of finite diffusivities[END_REF] has a unique solution u ε ∈ H 1 0 (Ω).

The aim of this paper is to describe the asymptotic behaviour of the temperature u ε as ε → 0, assuming that the source term is weakly convergent:

∃f ∈ H -1 (Ω) such that f ε ⇀ f in H -1 (Ω). ( 9 
)
We have to remark here that the boundedness of (f ε ) ε implies immediately:

Proposition 2.2 (u ε ) ε is bounded in H 1 0 (Ω) and there exists C > 0, indepen- dent of ε, such that - Tε |∇u ε | 2 ≤ C. ( 10 
)
3 The control-zone homogenization method

In order to obtain further results, specific to the thin substructure considered here, we have to introduce the following operators:

Definition 3.1 To any u ∈ H 1 (Ω) we associate G i ε (u) ∈ L 2
(Ω) defined by the following:

G i ε (u)(x 1 , x 2 , x 3 ) = k∈Zε G i ε,k (u)(x i )1 I k ε (x i ), x i = (• • • , x i , • • •) ∈ I 2 (11) G i ε,k (u) = 1 2 u xi=εk-r i ε + 1 2 u xi=εk+r i ε , k ∈ Z ε ( 12 
)
where u xi=εk±r i ε are the traces of u on the corresponding faces of T i ε,k .

These operators have three basic properties, which were already proved in [START_REF] Gruais | Periodic structures separated by highly conductive thin layers[END_REF]: Proposition 3.2 For any u ∈ H 1 (Ω) and i ∈ {1, 2, 3}, we have

- T i ε |G i ε (u) -u| 2 ≤ r i ε ∂u ∂x i 2 Ω (13) - T i ε |G i ε (u)| 2 = |G i ε (u)| 2 Ω ( 14 
)
|G i ε (u) -u| Ω ≤ ε ∂u ∂x i Ω ( 15 
)
where

| • | Ω is denoting the norm of L 2 (Ω).
The first important consequence is

Theorem 3.3 There exists C > 0, independent of ε, such that - Tε |u| 2 ≤ C|∇u| 2 Ω , ∀u ∈ H 1 0 (Ω). ( 16 
)
Proof. Let us notice that

- Tε |u| 2 ≤ 2 i=1 - T i ε |u| 2 ≤ 2 2 i=1 - T i ε |G i ε (u) -u| 2 + |G i ε (u)| 2 .
Using (13)-( 14), it yields

- Tε |u| 2 ≤ 2 ( max i=1,2,3 r i ε ) |∇u| 2 Ω + 4 2 i=1 |G i ε (u) -u| 2 Ω + |u| 2 Ω
and the proof is completed by ( 15) and the Poincaré-Friedrichs inequality in Ω.

As the techniques of Section 3 [START_REF] Bentalha | Diffusion in a highly rarefied binary structure of general periodic shape[END_REF] can be used to the domain T ij ε (i < j), then, according to [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF], we have:

Theorem 3.4 There exists C > 0, independent of ε, such that - T ij ε |u| 2 ≤ C max 1, ε 2 ln 1 r i ε , ε 2 ln 1 r j ε |∇u| 2 Ω , ∀u ∈ H 1 0 (Ω). ( 17 
)
Finally, we remind an estimation of the same type proved in [START_REF] Bentalha | Diffusion in a highly rarefied binary structure of general periodic shape[END_REF] and which is associated to

T 0 ε = ∩ 3 i=1 T i ε . (18) 
Theorem 3.5 There exists C > 0, independent of ε, such that

- T 0 ε |u| 2 ≤ C max 1, ε 3 r ε |∇u| 2 Ω , ∀u ∈ H 1 0 (Ω). (19) 
As the vanishing highly conductive layers have thicknesses of size r i ε , 0 < r i ε << ε, we find the asymptotic behaviour of u ε by applying a control-zone method, that is an energetic method using test-functions associated to an adequate control-zone: a vanishing set which includes the layers and has much larger thicknesses R i ε , where r i ε << R i ε << ε. First, let us introduce the tools of this method. Denoting

R = {(R ε ) ε , r ε << R ε << ε}, (20) 
then, for any (R i ε ) ε ∈ R we define the control-zone of the present problem by

C ε = ∪ 3 i=1 C i ε , C i ε = ∪ k∈Zε C i ε,k , i ∈ {1, 2, 3}, (21) 
where for any k ∈ Z ε and i ∈ {1, 2, 3} we have

C i ε,k = {x = (x 1 , x 2 , x 3 ) ∈ Ω, |x i -εk| < R i ε }. (22) 
The test-functions associated to this control-zone are defined by using the following capacitary functions w i ε ∈ W 1,∞ (Ω) (i = 1, 2, 3), given by

w i ε (x 1 , x 2 , x 3 ) =            1 - r i ε R i ε if x = (x 1 , x 2 , x 3 ) ∈ T i ε 1 - |x i -εk| R i ε if x ∈ (C i ε,k \ T i ε,k ) for some k ∈ Z ε 0 if x ∈ Ω \ C i ε , (23) 
and the step approximation operators introduced by Definition 3.6 To any ϕ ∈ D(Ω) we associate

ϕ i ε ∈ L ∞ (Ω) (i = 1, 2, 3), as follows ϕ i ε (x 1 , x 2 , x 3 ) = k∈Zε ϕ | xi=εk (x i ) 1 I k R i ε (x i ), ( 24 
)
where

I k R i ε := εk + 2R i ε I.
These operators have the following basic properties:

|∇w i ε | Cε ≤ 2 εR i ε 1/2 (25) |ϕ -ϕ i ε | L ∞ (C i ε ) ≤ R i ε |∇ϕ| L ∞ (Ω) . ( 26 
)
|∇ϕ i ε | Cε ≤ 2R i ε ε 1/2 |∇ϕ| L ∞ (Ω) . ( 27 
)
4 The reticulated case

For any i ∈ {1, 2, 3} let us denote m i ≥ 0 as the limit of

m i = lim ε→0 |T i ε | |T ε | . (28) 
Obviously, we have

m 1 + m 2 + m 3 = 1.
In this section, we consider the case when

m i > 0, ∀i ∈ {1, 2, 3}, (29) 
that is the case when all the three parameters r i ε have the same order of magnitude with respect to ε. This geometry is called sometimes as the box-structure case.

We can present now the preliminary convergence results:

Proposition 4.1 There exists u ∈ H 1 0 (Ω) such that, on some subsequence, there hold

u ε ⇀ u in H 1 0 (Ω) ( 30 
)
G i ε (u ε ) → u in L 2 (Ω), ∀i ∈ {1, 2, 3} (31) 
- Tε u ε v → Ω uv, ∀v ∈ H 1 0 (Ω). ( 32 
)
Moreover, for any i ∈ {1, 2, 3} we have:

- T i ε ∂u ε ∂x j v → Ω ∂u ∂x j v, ∀v ∈ H 1 0 (Ω), ∀j ∈ {1, 2, 3}, j = i. ( 33 
)
Proof. The weak convergence (30) follows from Proposition 2.2. As H 1 0 (Ω) is compactly embedded in L 2 (Ω), the strong convergence (31) is obtained by using (15) and (30). In order to prove (32) we remark that

- Tε u ε v = |T 0 ε | |T ε | - T 0 ε u ε v - 1≤i<j≤3 |T ij ε | |T ε | - T ij ε u ε v + 3 i=1 |T i ε | |T ε | - T i ε u ε v. (34) 
Using ( 10), ( 17) and ( 19), we prove that the first two terms of (34) are converging to zero, as follows:

|T 0 ε | |T ε | - T 0 ε u ε v ≤ C |T 0 ε | |T ε | max 1, ε 3/2 r 1/2 ε |∇v| Ω → 0, |T ij ε | |T ε | - T ij ε u ε v ≤ C |T ij ε | |T ε | max 1, ε ln 1 2 1 r i ε , ε ln 1 2 1 r j ε |∇v| Ω → 0.
Taking into account (28), the proof of ( 32) is completed by applying to Proposition 2.15 of [START_REF] Gruais | Periodic structures separated by highly conductive thin layers[END_REF], where we have proved that

- T i ε u ε v → Ω uv, ∀v ∈ H 1 0 (Ω). (35) 
Next, let ϕ ∈ D(Ω) and i ∈ {1, 2, 3}. Denoting by ν = (ν 1 , ν 2 , ν 3 ) the outward normal to ∂T ε we obviously have ϕν j = 0 on ∂T i ε (j = i) and hence:

-

T i ε ∂u ε ∂x j ϕ = -- T i ε u ε ∂ϕ ∂x j .
Using (35), from the previous relation it follows:

-

T i ε ∂u ε ∂x j ϕ → - Ω u ∂ϕ ∂x j = Ω ∂u ∂x j ϕ.
The proof of (33) is completed by continuity, using [START_REF] Murat | Homogenization methods: theory and applications in physics[END_REF] and ( 16).

Now we can present our main result.

Theorem 4.2 (u ε ) ε is weakly convergent in H 1 0 (Ω). Its limit, u ∈ H 1 0 (Ω), is the only solution of the equation

- 3 i=1 a + b 3 (1 -m i ) ∂ 2 u ∂x 2 i = f in Ω. (36) 
Proof. For any i ∈ {1, 2, 3}, let (R i ε ) ε ∈ R and ϕ ∈ D(Ω). Using the definitions (23)-(24), we denote

v ε (ϕ) = 3 i=1 1 - r i ε R i ε ϕ + (ϕ i ε -ϕ)w i ε . (37) 
We notice that 7) and it follows

ϕ i ε (x)w i ε (x) =                    1 - r i ε R i ε ϕ| xi=εk (x i ), x ∈ T i ε,k for some k ∈ Z ε 1 - |x i -εk| R i ε ϕ| xi=εk (x i ), x ∈ (C i ε,k \ T i ε,k ), k ∈ Z ε 0, x ∈ Ω \ C i ε (38) and hence v ε (ϕ) ∈ W 1,∞ 0 (Ω). Then we set v = v ε (ϕ) in (
a 3 i=1 1 - r i ε R i ε Ω\Cε ∇u ε ∇ϕ + a Cε\Tε ∇u ε ∇v ε (ϕ) + + b 3 i=1 1 - r i ε R i ε - Tε ∇u ε ∇ϕ i ε = f ε , v ε (ϕ) . (39) 
As

|C ε | → 0 it follows that 1 - r i ε R i ε (∇ϕ)1 Ω\Cε → ∇ϕ strongly in L 2 (Ω) (40) 
and using (30) we obtain the convergence of the first left-hand side term of (39):

a 3 i=1 1 - r i ε R i ε Ω\Cε ∇u ε ∇ϕ → 3a Ω ∇u∇ϕ. (41) 
The second left-hand side term of (39) is converging to zero. Indeed, as (u ε ) ε is bounded in H 1 0 (Ω), we have

a Cε\Tε ∇u ε ∇v ε (ϕ) ≤ C|∇v ε (ϕ)| Cε . (42) 
Moreover, by a straightforward computation we find that

|∇v ε (ϕ)| Cε ≤ C|∇ϕ| Cε + C 3 i=1 |ϕ i ε -ϕ| L ∞ (C i ε ) |∇w i ε | Cε + |∇ x i ϕ i ε | Cε (43)
and the assertion is proved by using (25)-( 27):

|∇v ε (ϕ)| Cε ≤ C|∇ϕ| L ∞ (Ω) 3 i=1 R i ε ε 1/2 → 0. ( 44 
)
For the convergence of the third left-hand side term of (39) we notice that

- Tε ∇u ε ∇ϕ i ε = 1 |T ε | T i ε ∇u ε ∇ϕ i ε = = 1 |T ε | k∈Zε T i ε,k ∇ xi u ε (x)∇ xi ϕ| xi=εk (x i ) dx . (45) 
Using [START_REF] Murat | Homogenization methods: theory and applications in physics[END_REF] and the smoothness of ϕ we have 

1 |T ε | k∈Zε T i ε,k ∇ xi u ε (x) (∇ xi ϕ| xi=εk (x i ) -∇ xi ϕ(x)) dx ≤ ≤ C(ϕ)r ε 1 |T ε | T i ε |∇ x i u ε | ≤ C(ϕ)
∇ϕ i ε = lim ε→0 |T i ε | |T ε | T i ε ∇ xi u ε ∇ xi ϕ.
Next, recalling (28) and applying (33) we obtain

b 3 i=1 1 - r i ε R i ε - Tε ∇u ε ∇ϕ i ε → b 3 i=1 m i Ω ∇ xi u∇ xi ϕ = = b 3 i=1 (1 -m i ) Ω ∂u ∂x i ∂ϕ ∂x i . (46) 
Finally, noticing that (25) and (26) imply

f ε , (ϕ i ε -ϕ)w i ε ≤ C|w i ε | Cε |∇ϕ| L ∞ (Ω) + C|∇w i ε | Cε |ϕ i ε -ϕ| L ∞ (C i ε ) ≤ ≤ C(ϕ) |C ε | 1/2 + R i ε ε 1/2 → 0,
we obtain the convergence of the right-hand side term of (39), that is:

f ε , v ε (ϕ) = 3 i=1 1 - r i ε R i ε f ε , ϕ + 3 i=1 f ε , (ϕ i ε -ϕ)w i ε → 3 f, ϕ . (47) 
Resuming, we can say that if we pass (39) to the limit, then we obtain:

3a

Ω ∇u∇ϕ + b 3 i=1 (1 -m i ) Ω ∂u ∂x i ∂ϕ ∂x i = 3 f, ϕ , ∀ϕ ∈ D(Ω), (48) 
which is, by continuity, the variational formulation of (36). The convergence of the entire sequence (u ε ) ε follows from the unicity of the solution of (36). 

Remark 4.4

The reticulated domain occupied by all the intersections of the layers has no distinct influence upon the asymptotic distribution of the temper-ature. For i < j and k ∈ {i, j}, this follows from

1 |T ε | T ij ε ∇u ε ∇ϕ k ε ≤ C|∇ϕ| L ∞ (Ω) 1 |T ε | T ij ε |∇u ε | 2 1 2 |T ij ε | |T ε | 1 2 ≤ ≤ C(ϕ) r ε ε 1 2 → 0, ( 49 
)
where we have used [START_REF] Murat | Homogenization methods: theory and applications in physics[END_REF].

The gridwork case

Using the notations and definitions of the previous sections, the gridwork case corresponds to the situation when the horizontal layers are missing and the other two layers have the same order of magnitude with respect to ε. It follows that

T ε = T 1 ε ∪ T 2 ε ( 50 
)
and there exist

m i = lim ε→0 |T i ε | |T ε | (i = 1, 2), such that m 1 + m 2 = 1. ( 51 
)
For consistency with the honeycomb case, we also define here

m 3 = 0. (52) 
Obviously, for i ∈ {1, 2} th properties of the corresponding operators defined in Section 3 are still valid. Then we prove results similar to those of Proposition 4.1, with only one mentionable distinction:

For any i ∈ {1, 2} we have (33). Consequently, the homogenization result in this case is the following:

Theorem 5.1 (u ε ) ε is weakly convergent in H 1 0 (Ω). Its limit, u ∈ H 1 0 (Ω), is the only solution of the equation:

- 3 i=1 a + b 2 (1 -m i ) ∂ 2 u ∂x 2 i = f in Ω. ( 53 
)
Proof. The proof is completely analogous to that of Theorem 4.2, with the difference that the control-zones are oriented in only two directions. That is, with the test-function

v ε (ϕ) = 2 i=1 1 - r i ε R i ε ϕ + (ϕ i ε -ϕ)w i ε ( 54 
)
we get the same convergence as in (46):

b 2 i=1 1 - r i ε R i ε - Tε ∇u ε ∇ϕ i ε → b 2 i=1 m i Ω ∇ xi u∇ xi ϕ = = b 3 i=1 (1 -m i ) Ω ∂u ∂x i ∂ϕ ∂x i , (55) 
where we have taken in account the convention (52) also. From here the proof can be completed identically.

Remark 5.2 Assuming that the quantity |T ε | is the same in the both cases that we considered, the significant difference between the equations ( 36) and ( 54) shows how important is the internal geometry of the vanishing superconductive material.

  r ε → 0 and thus we replace (45) by lim ε→0 -Tε ∇u ε

Remark 4 . 3 m 2 = m 3

 4323 In spite of the vanishing volume of the rectangular honeycomb structure the homogenized behaviour is anisotropic, except the case when m 1 =
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