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SUMMARY

The first part of this manuscript discusses a finite element method that captures arbitrary discontinuities in
a two-phase medium by exploiting the partition-of-unity property of finite element shape functions.
The fluid flow away from the discontinuity is modelled in a standard fashion using Darcy’s relation,
and at the discontinuity a discrete analogy of Darcy’s relation is used. Subsequently, dynamic shear
banding is studied numerically for a biaxial, plane-strain specimen. A Tresca-like as well as a
Coulomb criterion is used as nucleation criterion. Decohesion is controlled by a mode-II fracture energy,
while for the Coulomb criterion, frictional forces are transmitted across the interface in addition
to the cohesive shear tractions. The effect of the different interface relations on the onset of cavitation is
studied. Finally, a limited quantitative study is made on the importance of including a so-called dynamic
seepage term in Darcy’s relation when considering dynamic shear banding.

KEY WORDS: shear band; dynamic fracture; two-phase medium; partition-of-unity method

1. INTRODUCTION

Broadly speaking, two approaches exist for the numerical analysis of the nucleation and

propagation of discontinuities in solids, such as cracks, shear bands and faults. Within the

classical theory of continuum mechanics, the approach in which discontinuities are distributed

over a finite volume, so that relative displacements across the faces of a discontinuity are
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transformed into strains, is perhaps the most natural. Also in an engineering sense, it offers

advantages, since there is no need to keep track of all individual microcracks that arise in a

solid. Indeed, for computations of large structures, any attempt to model each individual crack

would exceed even the currently available computing power. However, from a theoretical point

of view, the modelling of discontinuities in a distributed or smeared sense has a limitation,

namely that at a certain level of accumulated damage, the set of governing equations locally

changes character, from elliptic to hyperbolic for quasi-static loadings, and from hyperbolic to

elliptic for dynamic loadings. Unless a regularization is applied, the resulting initial/boundary

value problem becomes ill-posed, resulting in numerical solutions that depend severely on the

discretization [1].

Intuitively, the most appealing approach is to model discontinuities in a discrete manner, thus

reflecting the change in topology that actually takes place in the solid when a discontinuity

propagates. Recently, such finite element methods have been constructed that exploit the

partition-of-unity property of finite element shape functions [2–12]. While preserving the

original discretization, the addition of extra degrees of freedom to nodes whose support is

crossed by a discontinuity allows to construct two continuous displacement fields that are

separated by a Heaviside function at the discontinuity. As a consequence, discontinuities can

propagate, not biased by the original discretization.

Many problems in geomechanics involve the coupling of the set of equations that describe the

stress evolution and those which describe diffusion-type processes, e.g. water or ion transport.

Indeed, hydro-mechanical interactions have been recognized to play a crucial role in

geotechnical, petroleum and mining engineering since the pioneering works by Terzaghi [13]

and Biot [14]. It is the purpose of this manuscript to formulate a numerical model that is capable

of describing dynamic shear-band propagation in a porous medium, with a solid skeleton and

an interstitial fluid as the constituent phases, in a discrete, mesh-independent manner. The

model exploits the partition-of-unity property of finite element shape functions, and can,

therefore, be considered to be an extension to earlier works on fracture for single-phase media.

On the other hand, the present methodology can be extended in a fairly straightforward manner

to introduce discontinuities, including cracks, in initial value problems where several diffusion-

type problems play a role.

The manuscript starts with a concise derivation of the balance equations for a fluid-saturated

porous medium. Subsequently, the general methodology and the assumptions regarding the

introduction of a discontinuity in a finite element model are discussed. The approach is

specialized to a medium where the (discrete) failure mode is caused by exhaustion of the shear

stress capacity on a critical plane. Next, studies are carried out for a plane-strain, biaxial

specimen. Two different nucleation criteria for shear-band propagation are investigated, and the

role of localization on cavitation in a fluid-saturated porous medium is highlighted. Finally, a

quantitative study is carried out regarding the role of the so-called dynamic seepage term in

Darcy’s law.

2. BALANCE EQUATIONS

We consider a two-phase medium subject to the restriction of small displacement gradients and

small variations in the concentrations [15]. Furthermore, the assumptions are made supposing

that there is no mass transfer between the constituents and that the processes which we consider
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occur isothermally. With these assumptions, the balances of linear momentum for the solid and

the fluid phases read

r � rp þ #pp þ rpg ¼
@ðrpvpÞ

@t
þr � ðrpvp � vpÞ ð1Þ

with rp the stress tensor, rp the apparent mass density and vp the absolute velocity of constituent p:
As in the remainder of this paper, p ¼ s; f ; with s and f denoting the solid and fluid phases,

respectively. Further, g is the gravity acceleration and #pp is the source of momentum for

constituent p from the other constituent, which takes into account the possible local drag

interaction between the solid and the fluid. Evidently, the latter source terms must satisfy the

momentum production constraint:
X

p¼s;f

#pp ¼ 0 ð2Þ

We now neglect convective terms and the gravity acceleration, so that the momentum balances

reduce to

r � rp þ #pp ¼ rp
@vp
@t

ð3Þ

Adding both momentum balances, and taking into account Equation (2), one obtains the

momentum balance for the mixture

r � r� rs
@vs
@t

� rf
@vf
@t

¼ 0 ð4Þ

where the stress is, as usual, composed of a solid and a fluid part,

r ¼ rs þ rf ð5Þ

For relatively slow dynamic loadings, the assumption is often made that the accelerations of the

solid and of the fluid are equal: @vs=@t � @vf =@t: With the mass density of the mixture,

r ¼ rs þ rf ; the balance of momentum (4) reduces to

r � r� r
@vs
@t

¼ 0 ð6Þ

Numerical analyses are usually conducted with the latter equation as balance of momentum,

cf. [16], but the accuracy of this assumption is seldom quantified. At the end of the paper, we will

assess its accuracy, also in the presence of a discontinuity.

In a similar fashion as for the balances of momentum, one can write the balance of mass for

each phase as

@rp
@t

þr � ðrpvpÞ ¼ 0 ð7Þ

Again neglecting convective terms, the mass balances can be simplified to give

@rp
@t

þ rpr � vp ¼ 0 ð8Þ

We multiply the mass balance for each constituent p by its volumetric ratio np; add them and

utilize the constraint
X

p¼s;f

np ¼ 1 ð9Þ
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to give

r � vs þ nfr � ðvf � vsÞ þ
ns

rs

@rs
@t

þ
nf

rf

@rf
@t

¼ 0 ð10Þ

The change in the mass density of the solid material is related to its volume change by

r � vs ¼ �
Ks

Kt

ns

rs

@rs
@t

ð11Þ

with Ks the bulk modulus of the solid material and Kt the overall bulk modulus of the porous

medium. Using the definition of the Biot coefficient, a ¼ 1� Kt=Ks [16], this equation can be

rewritten as

ða� 1Þr � vs ¼
ns

rs

@rs
@t

ð12Þ

For the fluid phase, a phenomenological relation is assumed between the incremental changes of

the apparent fluid mass density and of the fluid pressure p [16]:

1

Q
dp ¼

nf

rf
drf ð13Þ

with the overall compressibility or Biot modulus

1

Q
¼

a� nf

Ks

þ
nf

Kf

ð14Þ

where Kf is the bulk modulus of the fluid. Inserting relations (12) and (13) into the balance of

mass of the total medium, Equation (10), gives

ar � vs þ nfr � ðvf � vsÞ þ
1

Q

@p

@t
¼ 0 ð15Þ

The field equations, i.e. the balance of momentum of the saturated medium, Equation (4), and

the balance of mass, Equation (15), are complemented by the boundary conditions

nG � r ¼ tp; v ¼ vp ð16Þ

which hold on complementary parts of the boundary @Ot and @Ov; with G ¼ @O ¼ @Ot [ @Ov;
@Ot \ @Ov ¼ |; tp being the prescribed external traction and vp the prescribed velocity, and

nf ðvf � vsÞ � nG ¼ qp; p ¼ pp ð17Þ

which hold on complementary parts of the boundary @Oq and @Op; with G ¼ @O ¼ @Oq [ @Op

and @Oq \ @Op ¼ |; qp and pp being the prescribed outflow of pore fluid and the prescribed

pressure, respectively. The initial conditions which specify the displacements up; the velocities vp
and the pressure field at t ¼ 0:

upðx; 0Þ ¼ u0p; vpðx; 0Þ ¼ v0p; pðx; 0Þ ¼ p0 ð18Þ

close the initial value problem.

4



3. DISCONTINUITIES IN A TWO-PHASE MEDIUM

A finite element method that can accommodate the propagation of discontinuities

through elements was proposed by Belytschko and Black [3] and Moës et al. [4], exploiting

the partition-of-unity property of finite element shape functions [2]. Since finite element shape

functions jj form partitions of unity,
Pn

j¼1 jj ¼ 1 with n the number of nodal points, the

components vi of a velocity field v can be interpolated as

vi ¼
X

n

j¼1

jj
’%aj þ

X

m

k¼1

ck
’*ajk

!

ð19Þ

with %aj the ‘regular’ nodal degrees of freedom for the displacements, ck the enhanced basis terms

and *ajk the additional displacement degrees of freedom at node j which represent the amplitude

of the kth enhanced basis term ck: Next, we consider a domain O that is crossed by a single

discontinuity at Gd (see Figure 1). The velocity field v can be written as the sum of two

continuous velocity fields %v and *v:

v ¼ %vþHGd
*v ð20Þ

where HGd
is the Heaviside step function centred at the discontinuity. The decomposition

in Equation (20) has a structure similar to the interpolation in Equation (19), e.g. [17].

Accordingly, the partition-of-unity property of finite element shape functions enables the

direct incorporation of discontinuities, including cracks and shear bands, in finite element

models such that the discontinuous character of cracks and shear bands is preserved. With the

standard small-strain assumption that the strain-rate field of the solid, es; is derived from the

symmetric part of the gradient of the velocity field, we obtain

’es ¼ rs
%vs þHGd

rs
*vs þ dGd

ð*vs � nGd
Þs ð21Þ

with the superscript s denoting the symmetric part of the gradient operator.

With respect to the pore fluid, we consider the case that a diaphragm with a permeability kd is

placed at the discontinuity in the displacement. As a consequence, the fluid pressure can be

discontinuous across Gd and, similar to Equation (20), we have

p ¼ %pþHGd
*p ð22Þ

It is noted that this assumption is different from that of Armero and Callari [18], who

adopt a smooth pressure field (and therefore p ¼ %p) and is also different from that of

Figure 1. Body composed of continuous displacement fields at each side of the discontinuity Gd:
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Larsson and Larsson [19], who assume that a regularized Dirac distribution is added to the

continuous pressure field at the location of the discontinuity in the displacement field. For

the fluid flow, gradients of the pressure need to be computed. Differentiating Equation (22), we

obtain

rp ¼ r%pþHGd
r*pþ dGd

*pnGd
ð23Þ

4. CONSTITUTIVE EQUATIONS

4.1. Models for the bulk

The effective stress increment in the solid skeleton, dr0s is related to the strain increment des by

an incrementally linear stress–strain relation for the solid skeleton

dr0s ¼ %Dtan
: des ð24Þ

where %Dtan is the fourth-order tangent stiffness tensor of the solid material and the d denotes a

small increment. Since the effective stress in the solid skeleton is related to the partial stress by

r0s ¼ rs=ns; the above relation can be replaced by

drs ¼ Dtan
: des ð25Þ

where the notation Dtan ¼ ns %D
tan has been used. In the examples, a linear-elastic behaviour of

the bulk material has been assumed, and we have set Dtan ¼ D; the linear-elastic stiffness tensor.
For the flow of the pore fluid, Darcy’s relation for isotropic media is assumed to hold,

nf ðvf � vsÞ ¼ �kfrp ð26Þ

with kf the permeability coefficient of the porous medium. For loading situations in which high

strain rates play a significant role, Darcy’s relation can be extended with a so-called dynamic

seepage term [16, 20] which results in

nf ðvf � vsÞ ¼ �kf rpþ rf
@vf
@t

� �

ð27Þ

In line with the earlier assumption to neglect the gravity acceleration, this term has also been

omitted here. In practical situations, following the assumption @vs=@t � @vf =@t for relatively

slow dynamic loadings, Equation (27) is often approximated by

nf ðvf � vsÞ ¼ �kf rpþ rf
@vs
@t

� �

ð28Þ

4.2. Interface behaviour

At the discontinuity Gd a discrete relation holds between the interface tractions td and the

relative displacements d:

td ¼ tdðd;kÞ ð29Þ

with k a history parameter. After linearization, necessary to use a tangential stiffness matrix in

an incremental-iterative solution procedure, one obtains

’td ¼ T’d ð30Þ
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with T the material tangent stiffness matrix of the discrete traction-separation law:

T ¼
@td
@d

þ
@td
@k

@k

@d
ð31Þ

A first possibility that has been used in the example calculations for shear-band initiation is

the use of a maximum shear stress criterion in the spirit of Tresca. With the resolved shear stress t;
a shear-band-like discontinuity is created when the criterion equals the critical value tc: t ¼ tc:
The orientation of the interface is such that it maximizes the shear stress. In this orientation, the

shear stress t ¼ js1 � s2j=2; s1; s2 being the principal stresses. A maximum shear stress

nucleation criterion is primarily applicable when compressive stress states around the

discontinuity prevail, such as in rocks and soils. Then, the failure mode will only involve

sliding at the discontinuity, but no crack opening. For this reason, in the example calculations

only degrees of freedom that describe this sliding mode have been added to the finite element

model, which is different from earlier shear-band simulations (for single-phase media) [5, 6, 12]

that have exploited the partition-of-unity property of finite element shape functions, but is

similar to [9]. Dilatancy in the shear band can be incorporated when, in addition to the

tangential degrees of freedom, during propagation extra degrees of freedom are activated which

are normal to the shear band.

A key element is the presence of a mode-II fracture energy, GII
c ; which governs the shear-band

evolution and enters the interface constitutive relation (29) in addition to the shear strength tc: It
is defined as the work needed to create a unit area of fully developed shear band, e.g. [21]:

G
II
c ¼

Z 1

dt¼0

t ddt ð32Þ

with t the shear stress across the shear band, and dt the relative sliding between both faces of the

shear band. GII
c equals the area under the decohesion curves shown in Figure 2.

Figure 2. Relation between relative sliding at the discontinuity and shear tractions.
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Alternatively, a Coulomb criterion for local inception of the shear band has been used in the

examples at the end of this paper. In this criterion, nucleation starts when

t ¼ tcoh þ tfr ð33Þ

with

tcoh ¼ c0

the cohesive contribution and c0 the cohesion. Decohesion is governed by the fracture energy

G
II
c ; similar to the Tresca-like criterion, cf. Equation (32). tfr is the frictional contribution, which

is defined as a function of the traction normal to the discontinuity and the effective friction

coefficient m:

tfr ¼ mnGd
� r � nGd

The effective friction coefficient has a virgin value m ¼ tan f; with f the friction angle. The

vector nGd
is such that it is normal to the critical plane where Coulomb’s criterion for incipient

shear failure is satisfied. A frictional softening relation models the microstructure evolution of

the solid grains in the interface. The particular relation used in the example calculations is

shown in Figure 3. In it, mc is the threshold value and dc the relative sliding at this value. It is

assumed that dc ¼ 2GII
c =c0; which equals the value defined by the cohesive softening relation.

As with the Tresca-like criterion, it is assumed that the failure mode only involves sliding.

Possible dilatancy effects are not included in the kinematics of the discontinuity. For this reason,

one can also now suffice by adding only degrees of freedom to the finite element model that

describe the discrete sliding mode. It is interesting to note that, unlike in non-associated

plasticity, the resulting stiffness matrix remains symmetric.

A discrete equivalent of Darcy’s relation is now defined for the fluid flow qd at the

discontinuity as

nGd
� qd ¼ �kdðp

þ � p�Þ ¼ �kd *pjx2Gd
ð34Þ

where kd is the permeability of the diaphragm that has been assumed to coincide with the

displacement discontinuity Gd and pþ and p� are the pressures in the Oþ and O� domains,

respectively. For an impervious boundary, kd ¼ 0; which implies that nGd
� qd ¼ 0 according to

Equation (34). Conversely, ideal permeability requires that kd ! 1; so that nGd
� qd can only be

Figure 3. Relation between relative sliding at the discontinuity and friction coefficient.
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bounded if pþ � p� ¼ 0; which implies that no discontinuity can exist in the pressure field and

the formulation of Armero and Callari [18] is retrieved.

5. NUMERICAL ELABORATION

5.1. Weak forms

To arrive at the weak form of the balance equations, we multiply the momentum balance (4) and

the mass balance (15) by test functions for the velocities of the skeleton and for the pressures. In

the spirit of a standard Bubnov–Galerkin approach, they are assumed to be of the following

format:

g ¼ %gþHGd
*g ð35Þ

for the velocities, and

z ¼ %zþHGd
*z ð36Þ

for the pressures. Substitution into Equations (4) and (15), and integrating over the domain O

leads to the corresponding weak forms:
Z

O

ð%gþHGd
*gÞ � r � r� r

@vs
@t

� �

dO ¼ 0 ð37Þ

and
Z

O

ð%zþHGd
*zÞ ar � vs þ nfr � ðvf � vsÞ þ

1

Q

@p

@t

� �

dO ¼ 0 ð38Þ

Using the standard procedure of applying the divergence theorem, using the external

boundary conditions (16) and (17), eliminating the Heaviside functions by changing the

integration domain from O to Oþ; eliminating the Dirac delta functions by transforming the

volume integral into a surface integral and introducing the shorter notation of a superimposed

dot for @=@t; the balance equations take the form
Z

O

r%g � ’vs dOþ

Z

Oþ

r*g � ’vs dOþ

Z

O

ðr � %gÞ � r dOþ

Z

Oþ

ðr � *gÞ � r dOþ

Z

Gd

*g � td dO

¼

Z

G

ð%gþHGd
*gÞ � tp dO ð39Þ

and

�

Z

O

kf rfr%z � ’vs dO�

Z

Oþ

kfrfr
*z � ’vs dO�

Z

O

a%zr � vs dO�

Z

Oþ

a*zr � vs dO

�

Z

O

kfr%z � rp dO�

Z

Oþ

kfr*z � rp dO�

Z

Gd

*znGd
� qd dG�

Z

O

%zQ�1
’p dO�

Z

Oþ

*zQ�1
’p dO

¼

Z

G

ð%zþHGd
*zÞqp dG ð40Þ

where for the derivation of the latter equation also Darcy’s relation (28) has been employed.
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5.2. Spatial discretization

We now switch to matrix–vector notation and discretize the trial functions vs and p and the test

functions g and z as

vs ¼ Nð’%aþHGd
’*aÞ

p ¼ Hð%pþHGd
*pÞ

g ¼ Nð%wþHGd
*wÞ

z ¼ Hð%zþHGd
*zÞ

ð41Þ

Inserting Equations (41) into Equations (39) and (40) and requiring that the result holds for all

admissible %w; %z; *w and *z gives:

M%a%a
.%aþM%a*a

.*aþ f int
%a ¼ fext

%a

M*a%a
.%aþM*a*a

.*aþ f int
*a ¼ fext

*a

M%p%a
.%aþM%p*a

.*aþM%p%p
’%pþM%p*p

’*pþ KT
%a%p
’%aþ KT

*a%p
’*aþ K%p%p%pþ K%p*p*p ¼ fext

%p

M*p%a
.%aþM*p*a

.*aþM*p%p
’%pþM*p*p

’*pþ KT
%a*p
’%aþ KT

*a*p
’*aþ K*p%p%pþ K*p*p*p ¼ fext

*p

ð42Þ

with the mass matrices:

M%a%a ¼

Z

O

rNTN dO; M*a%a ¼ M%a*a ¼ M*a*a ¼

Z

Oþ

rNTN dO

M%p%a ¼ �

Z

O

kfrfrHTN dO; M*p%a ¼ M%p*a ¼ M*p*a ¼ �

Z

Oþ

kfrfrHTN dO

M%p%p ¼ �

Z

O

Q�1HTH dO; M*p%p ¼ M%p*p ¼ M*p*p ¼ �

Z

Oþ

Q�1HTH dO

ð43Þ

the stiffness matrices:

K%a%p ¼ �

Z

O

aBTmH dO; K*a%p ¼ K%a*p ¼ K*a*p ¼ �

Z

Oþ

aBTmH dO

K%p%p ¼ �

Z

O

kfrHTrH dO; K*p%p ¼ K%p*p ¼ �

Z

Oþ

kfrHTrH dO

K*p*p ¼ �

Z

Oþ

kfrHTrH dO�

Z

Gd

kdH
TH dG

ð44Þ

the external force vectors:

fext
%a ¼

Z

G

NTtp dG; fext
*a ¼

Z

G

HGd
NTtp dG

fext
%p ¼

Z

G

HTqp dG; fext
*p ¼

Z

G

HGd
HTqp dG

ð45Þ
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and the internal force vectors:

f int
%a ¼

Z

O

BTr dO

f int
*a ¼

Z

Oþ

BTr dOþ

Z

Gd

NTtd dG

ð46Þ

with B ¼ rN and, for two dimensions, m ¼ ½1; 1; 0�:

5.3. Temporal integration and linearization

The semi-discrete initial value problem (42) is second order in time with respect to the displacement

variables and first order for the fluid pore pressure. Yet, the same integration scheme will be used

for both variables, in particular, the Newmark method commonly used in structural dynamics. Let

y denote an array which is a function of time. At the discrete time instant tn its value is yn: Under

the assumption of time continuity, the updating equations of the Newmark method are

ynþ1 ¼ yn þ Dt’yn þ ð1
2
� bÞDt2.yn þ bDt2.ynþ1 ð47Þ

’ynþ1 ¼ ’yn þ ð1� gÞDt.yn þ gDt.ynþ1 ð48Þ

with b; g the parameters of the time integration scheme. The equations can be recast as

.ynþ1 ¼ a0ðynþ1 � ynÞ � a2’yn � a4.yn

’ynþ1 ¼ a1ðynþ1 � ynÞ � a3’yn � a5.yn ð49Þ

with

a0 ¼
1

bDt2
; a2 ¼

1

bDt
; a4 ¼

1

2b
� 1

a1 ¼
g

bDt
; a3 ¼

g

b
� 1; a5 ¼

g

2b
� 1

� �

Dt

For future use we also list the expressions for the variations that can be derived from

expressions (49):

d.ynþ1 ¼ a0dynþ1; d’ynþ1 ¼ a1dynþ1 ð50Þ

Application of the time integration scheme (49) to Equations (42) results in a set of coupled,

discrete equations, which is nonlinear. Therefore, an iterative solution procedure has to be

applied within each time step Dt:When using the Newton–Raphson method, as has been done in

the ensuing examples, and exploiting the variations defined in Equations (50), one obtains a

sequence of linearized problems, which for implementation purposes are conveniently be cast in

a matrix–vector format:

a0M%a%a þ K%a%a a0M%a*a þ K%a*a K%a%p K%a*p

a0M*a%a þ K*a%a a0M*a*a þ K*a*a K*a%p K*a*p

a0M%p%a þ a1K
T
%a%p a0M%p*a þ a1K

T
*a%p a1M%p%p þ K%p%p a1M%p*p þ K%p*p

a0M*p%a þ a1K
T
%a*p a0M*p*a þ a1K

T
*a*p a1M*p%p þ K*p%p a1M*p*p þ K*p*p

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

d%a

d*a

d%p

d*p

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼

fn
%a

fn
*a

fn
%p

fn
*p

0

B

B

B

B

B

@

1

C

C

C

C

C

A

ð51Þ
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with the stiffness matrices

K%a%a ¼

Z

O

BTDB dO; K*a%a ¼ K%a*a ¼

Z

Oþ

BTDB dO

K*a*a ¼

Z

Oþ

BTDB dOþ

Z

Gd

NTTN dG

ð52Þ

and the arrays at the right-hand side

fn
%a ¼ fext

%a � ðf int
%a Þi � a0M%a%a

.%a
i
nþ1 � a0M%a*a

.*ainþ1

fn
*a ¼ fext

*a � ðf int
*a Þi � a0M*a%a

.%a
i
nþ1 � a0M*a*a

.*ainþ1

fn
%p ¼ fext

%p � a0M%p%a
.%a
i
nþ1 � a0M%p*a

.*ainþ1 � a1M%p%p
’%p
i
nþ1 � a1M%p*p

’*pinþ1

� a1K
T
%a%p
’%a
i
nþ1 � a1K

T
*a%p
’*ainþ1

fn
*p ¼ fext

*p � a0M*p%a
.%a
i
nþ1 � a0M*p*a

’*ainþ1 � a1M*p%p
’%p
i
nþ1 � a1M*p*p

’*pinþ1

� a1K
T
%a*p
’%ainþ1 � a1K

T
*a*p
’*ainþ1

ð53Þ

where the superscript signifies that the corresponding quantity has to be evaluated at iteration i:
The quantities .%ainþ1;

.*ainþ1; ’%a
i
nþ1;

’*ainþ1; ’%p
i
nþ1;

’*pinþ1 are evaluated using Equations (49).

The stiffness matrix of Equation (51) is not symmetric. Symmetry can be restored by

multiplying the third and the fourth rows of submatrices by a�1
1 and omitting the contributions

in the tangent stiffness matrix that are due to the dynamic seepage term}the submatrices M%p%a;
M%p*a; M*p%a and M*p*a: Since the corresponding terms are retained in the right-hand side, the results

are not affected, only the convergence speed of the iterative procedure is affected.

5.4. Stress computation at the tip

The nucleation criterion requires the determination of the stresses at the tip of the discontinuity.

Unfortunately, the stresses vary strongly in the vicinity of the tip and an accurate estimate of

them is difficult to obtain. In the present case, the stress in the bulk of the specimen is almost

homogeneous except for a small area around the tip, which exacerbates the problem. Following

Wells [5] and Jirasek [22], we use a smoothing of the stresses around the tip and compute the

stress at the tip by the following non-local-like procedure:

rtip ¼

R

O
wr dO

R

O
w dO

ð54Þ

where w is a Gaussian weight function

w ¼ e�r2=2l2

with r the distance to the tip and l a characteristic length which defines the size of region of

influence of the stress. Because of the nearly homogeneous stress state in the specimen, a small

value of l is desired, preferably in the same order of magnitude as the characteristic element

length. This is accomplished in the following manner. By virtue of the linear behaviour of the

solid phase in the bulk, a separate, independent integration domain can be defined, which

follows the tip during propagation. This domain contains integration cells smaller than those of

12



the mesh used in the discretization}typically, their length is in the order of 15–20% of the

element size. Moreover, a higher-order Gaussian quadrature is used over this domain, which

results in a very accurate determination of the tip stress.

6. EXAMPLE CALCULATIONS

All results of the computations are based on the same two-dimensional specimen with a width

w ¼ 0:04 m and a height H ¼ 0:1 m; see also Figure 4, which is loaded under plane-strain

conditions. The sides are traction free and the external loading is applied via an imposed

constant velocity V0 ¼ �10�3 m=s: Undrained conditions have been imposed on the entire

boundary of the specimen, because fast transient phenomena have been considered. The solid

constituent is assumed to behave in a linear elastic manner with a Young’s modulus E ¼ 20 GPa

and a Poisson’s ratio n ¼ 0:35: The absolute mass densities are r0s ¼ rs=ns ¼ 2000 kg=m3 for the

solid phase and r0f ¼ rf =nf ¼ 1000 kg=m3 for the fluid phase, while the fluid fraction nf ¼ 0:3:
The Biot coefficient a has been set equal to 1, the Biot modulus has been assigned a value

Q ¼ 5:0 GPa; while the bulk material was assumed to have a permeability kf ¼ 10�14 m3=N s:
The permeability of the diaphragm was assigned a value kd ¼ 0:5� 10�14 m2=N s: Shear-band
formation was triggered by a small imperfection, see Figure 4.

A structured mesh that consists of 5841 four-noded elements with equal (bilinear)

interpolations has been used for the displacements and the pressure. The simulation is started

Figure 4. Geometry and boundary conditions.
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using a time step of 0:4 s; which is small enough to accurately follow the pressure evolution and

the near-quasi-static behaviour of the solid skeleton before the onset of the shear band. When

the shear band starts to propagate, the phenomenon becomes dynamic and the time step size is

reduced severely in order to properly capture the propagation of the stress wave. The

parameters of the Newmark scheme are g ¼ 0:5 and b ¼ 0:25:

6.1. Tresca-like initiation criterion

The reference simulation for the Tresca-like nucleation criterion from which most of the results

derive, has been obtained with the following parameters: the time step size during the shear-

band formation equals 0:2 ms; nucleation traction tc ¼ 50MPa and mode-II fracture energy

G
II
c ¼ 750 J=m2: The dynamic seepage term has not been taken into account in the reference

analysis.

The evolution of the pore pressure field, following the time t0 at which the shear band starts to

propagate, is shown in Figure 5. The scale has been chosen such that the white regions on the

picture have a pore pressure below the cavitation pressure (here: �10þ5 Pa). One observes that,

initially, cavitation occurs only in the close vicinity of the discontinuity. When the shear-band

tip reaches the centre of the specimen, the level of the pore pressure above the discontinuity

increases and pore pressures that exceed the cavitation pressure develop over a larger region

below the interface. Subsequently, this region follows the tip of the shear band, and when it

reaches the right boundary of the specimen, the cavitation phenomena extend over the entire

specimen. Because of the limitations of the model}a gas phase has not been modelled

separately}the physical interpretation of the numerical results at this advanced stage of shear-

band propagation becomes questionable.

As illustrated by Figure 6, it seems that in the present simulations that utilize the Tresca-like

criterion, cavitation is a consequence of local elastic unloading behind the process zone, where

cohesive softening takes place. Indeed, Figure 6 shows the pressure field as well as the values of

the shear tractions in the cohesive interface (with bars orthogonal to the discontinuity). The

cavitation front appears to coincide with the transition zone between the damaged and the intact

parts of the interface.

6.2. Coulomb initiation criterion

For the Coulomb criterion, the following model parameters have been used: cohesion

c0 ¼ 10:0MPa; friction angle f ¼ 308: The threshold value in the frictional softening

law is mc ¼ 0:2 tan f: A parametric study has been carried out with respect to the influence of

dc=DUini; where dc is the tangential displacement jump when the cohesive part of the

traction has vanished, and DUini the value of the prescribed displacement at the top

of the specimen at shear-band initiation. The simulations have been carried out using a time

step size of 0:25 ms:
A first simulation has been carried obtained for a fracture energy G

II
c ¼ 15 J=m2: In this case

dc=DUini equals 0:024: The evolution of the pressure field is shown in Figure 7. The results are

quite similar to those obtained with the Tresca criterion since the value of dc=DUini are close.

Figure 10 shows that for this case the process zone, i.e. where the tractions do not vanish, is

rather small. As a consequence, local unloadings are obtained behind this process zone and

cavitation occurs only in a small zone behind the shear-band tip.

14



Figure 5. Evolution of the pressure field for the Tresca criterion.
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Increasing the value of dc=DUini to 0:16; the length of the process zone becomes approximately

equal to that of the shear band, see Figure 10. Now, local unloadings are not observed, but a

global unloading occurs that can be associated with the strain localization inside the shear band

and the softening of the interface at the end of propagation. As a consequence, the pressure

evolution in Figure 8 has no local cavitation zone. Indeed, cavitation is first obtained around the

initiation locus and, subsequently, in the entire specimen. Instability patterns are observed in the

last two figures that plot the pressure distribution.

Such instabilities, which are due to friction, are observed at a larger scale when dc=DUini is

increased further up to 0:24 (Figure 9). Now, the shear band propagates because the stress is

higher than the material strength, but the mechanical energy is not sufficient to damage the

interface. Consequently, no localization is obtained, but only frictional instabilities are

observed. No cavitation is induced because of the absence of strain localization.

The differences between the results using the Tresca-like criterion and those

using the Coulomb initiation criterion are also illustrated in Figure 11, which compares

the global load–displacement responses of the specimen for both criteria. In either case,

three parts in the curve can be distinguished. First, the load remains constant. This corresponds

to the wave propagation from the initial defect to the top of the specimen. In the second

part, the load decreases because of the propagation of the shear band. As in the

Coulomb interface, there is a frictional contribution in the load-carrying capacity, the load

decrease is less pronounced as for the Tresca-like criterion. In the third part of the

load–displacement curve, the global strength of the specimen is more and more due to

transmission of tractions across the shear band. For the Tresca-like criterion, the load now

decreases rapidly until the process zone is completely damaged. For the Coulomb criterion, the

rate at which the load decreases depends on dc=DUini: When increasing dc=DUini; the rate

becomes lower because the interface is less damaged and the frictional contribution remains

active along the entire shear band.

Figure 6. Pressure field near the process zone and tractions at the discontinuity. The scale of the pressures
is the same as in Figure 5. The magnitudes of the tractions are proportional to the lengths of the bars.
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Figure 7. Evolution of the pressure field for the Coulomb criterion with dc=DUini ¼ 0:024:
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Figure 8. Evolution of the pressure field for the Coulomb criterion with dc=DUini ¼ 0:16:
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Figure 9. Evolution of the pressure field for the Coulomb criterion with dc=DUini ¼ 0:24:
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6.3. Propagation of shear-band tip

As a consequence of the time discretization and of the rather homogeneous stress field in the

specimen, the initiation criterion can be violated over a region that extends over several

Figure 10. Shear traction distribution at the end of the shear-band propagation for
different values of dc=DUini:

0.00

0.25

0.50

0.75

1.00

1.25

1.50

 0.0e+00

F
/F

in
i

ini)/Uini

Tresca
δc/∆Uini=0.024

δc/∆Uini=0.160

δc/∆Uini=0.240

Figure 11. Load–displacement curves after initiation: comparison between Tresca and Coulomb criteria.
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elements. Hence, the nucleation criterion is checked in all elements ahead of the actual tip, until

the initiation criterion is no longer violated. Figure 12 illustrates this procedure. Figure 13 shows

the results for both initiation criteria in terms of the computed shear-band length as a function

of time.

For both criteria, the length that has been plotted is that of the topological shear band.

Indeed, a topological tip is defined by the enhanced basis terms, but it is not the actual position

τ<τc

τ>τc

τ>τc

τ>τc

Topological tip

New topological tip

Enhanced node

Discontinuity

Figure 12. Illustration of the shear-band tip propagation procedure. The stress tip is estimated at the
square and the tip is propagated as long as the criterion is exceeded.
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Figure 13. Shear-band evolution for Tresca and Coulomb criteria.
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of the shear-band tip. For the Tresca-like criterion, the actual tip is located at the front of the

cohesive zone. Taking this into account, the average speed of the shear-band propagation can be

estimated to be in the same order as the dilatational wave speed. This value seems rather high,

and a proper explanation for this result has not yet been found. For the Coulomb model, the

determination of the actual tip is complicated. For this reason, only an estimate has been done of

the propagation speed of the topological tip, which is around 80% of the dilatational wave speed.

6.4. Discontinuity in the pressure field

One of the constitutive assumptions in the interface model concerns the introduction of a

discontinuity in the pressure field. Since this assumption is less intuitive than the discontinuity

in the displacement field, a computation has also been carried out without this assumption.

Figure 14 compares the pressure distributions around the process zone obtained in the reference

simulation and in a simulation with a continuous pressure field. In the latter case, strong

pressure gradients are observed in the elements that are crossed by the discontinuity. Moreover,

the cavitation domain is translated to just below these elements, whereas it starts at the interface

in the case of a discontinuous pressure field. Hence, the assumption of a discontinuity in the

pressure field at the interface seems physically justified as the underlying process tends to create

it anyway. Moreover, the computation with a pressure discontinuity seems more robust and

permits the definition of different constitutive relations for the fluid flow inside the interface and

in the bulk. The latter advantage is not to be underestimated, since the microstructure of the

material inside a shear band is usually modified extensively during strain localization, resulting

in a marked variation of material properties such as the permeability.

6.5. Influence of the relative acceleration

In the beginning of this article, a framework for fluid flow in deforming porous media was set up

starting from the balance equations of the two constituent phases, thus including separate

inertia terms for both. However, a model with two separate inertia terms requires the

independent interpolation of three fields. To simplify the ensuing numerical model, the

reduction to one inertia term was subsequently made. Nevertheless, a similar effect as having

two separate inertia terms can be obtained by including a so-called dynamic seepage term in

Figure 14. Pressure distribution around the process zone for a: (a) discontinuous; and
(b) continuous modelling.
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Darcy’s law, Equation (28), at the expense of losing symmetry of the system, Equation (51). To

assess the effect of including the dynamic seepage term in Darcy’s relation, simulations have

been carried out in which this effect has been incorporated. Figure 15 presents the beginning of

the load–displacement curves for the reference simulation with the Tresca criterion and for a

simulation in which the dynamic seepage term has been included. No clear distinction between

both cases is possible. This observation also holds for local quantities, such as the pressures,

where the differences are also negligible (about 10�6), and for a simulation in which both inertia

terms were taken into account. Very similar results were obtained when including both inertia

terms in the analysis.

7. CONCLUDING REMARKS

In this contribution, a numerical model has been elaborated which can capture discontinuities,

e.g. cracks or shear bands, in a fluid-saturated medium. The representation of the discontinuity

is truly discrete and unbiased by the discretization. Moreover, the constitutive relations for the

bulk and for the discontinuity can be specified independently, for the solid phase as well as for

the fluid phase. Example calculations of dynamic shear-band propagation have been presented

with a Tresca-like and a Coulomb criterion for shear-band initiation. The results show that the

propagation of the shear band is strongly influenced by the constitutive assumptions in the

discontinuity. Indeed, as highlighted by the results of the calculations, the cavitation

phenomenon is triggered by unloading of the solid skeleton, which is a direct consequence of

strain localization and strongly depends on the constitutive model for the discontinuity.
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4. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International
Journal for Numerical Methods in Engineering 1999; 46:131–150.

5. Wells GN, Sluys LJ. Discontinuous analysis of softening solids under impact loading. International Journal for
Numerical and Analytical Methods in Geomechanics 2001; 25:691–709.

6. Wells GN, Sluys LJ, de Borst R. Simulating the propagation of displacement discontinuities in a regularized strain-
softening medium. International Journal for Numerical Methods in Engineering 2002; 53:1235–1256.

7. Wells GN, de Borst R, Sluys LJ. A consistent geometrically non-linear approach for delamination. International
Journal for Numerical Methods in Engineering 2002; 54:1333–1355.

8. Remmers JJC, de Borst R, Needleman A. A cohesive segments method for the simulation of crack growth.
Computational Mechanics 2003; 31:69–77.

9. Samaniego E, Belytschko T. Continuum–discontinuum modelling of shear bands. International Journal for
Numerical Methods in Engineering 2005; 62:1857–1872.
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