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A two-scale approach for fluid flow in fractured porous media
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3LTDS-ENISE-UMR CNRS 5513, Saint-Etienne, France

A two-scale numerical model is developed for fluid flow in fractured, deforming porous media. At the 
microscale the flow in the cavity of a fracture is modelled as a viscous fluid. From the micromechanics 
of the flow in the cavity, coupling equations are derived for the momentum and the mass couplings to the 
equations for a fluid-saturated porous medium, which are assumed to hold on the macroscopic scale. The 
finite element equations are derived for this two-scale approach and integrated over time. By exploiting the 
partition-of-unity property of the finite element shape functions, the position and direction of the fractures 
is independent from the underlying discretization. The resulting discrete equations are non-linear due to the 
non-linearity of the coupling terms. A consistent linearization is given for use within a Newton–Raphson 
iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach, 
and show that faults in a deforming porous medium can have a significant effect on the local as well as on 
the overall flow and deformation patterns. 
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1. INTRODUCTION

Flow of fluids in deforming porous media has been a topic of attention in engineering science

ever since the seminal works of Terzaghi [1] and Biot [2], see [3] for a recent account. Indeed,

the subject is crucial for understanding and predicting the physical behaviour of many systems of

interest. We mention geotechnical and petroleum engineering as more classical examples, but the

recognition that many human tissues are, in fact, porous media and must be analysed as such, has

put flow in porous media in a totally new perspective. Because of the complicated structure and
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Figure 1. Flow characteristics in a fractured, deforming porous medium.

functioning of human tissues, the classical two-phase theory has been extended in recent times to

three- and four-phase media, taking into account ion transport and electrical charges as well [4–6].
A general framework for accommodating multi-field problems has been presented by Jouanna and

Abellan [7].
In spite of the importance of the subject, flow in damaged porous media has received little

attention. Yet, the presence of damage, such as cracks, faults, shear bands, can markedly change

the physical behaviour. Indeed, as illustrated in Figure 1, the physics of the flow within such

discontinuities will be very different from the flow of the interstitial fluid in the deforming bulk

material. These differences in physics will therefore affect the flow pattern and the deformations

in the vicinity of the discontinuity. As we will show at the end of the paper, the local differences

in flow characteristics even influence the flow and deformations in the entire body of interest, as

the porosity on this scale is altered.

In this contribution, we will develop a general numerical model for flow in fractured porous

media. Building on earlier work in which we have constructed a numerical model for fracture

propagation in deforming, fluid-saturated porous media [8], we now extend the theory to include

flow inside such cavities directed tangentially to the discontinuity. This is achieved by a priori

adopting a two-scale approach. At the fine scale the flow in the cavity created by the discontinuity

is modelled as a viscous fluid using Stokes equations. Since the cross-sectional dimensions of the

cavity are small compared to its length, the flow equations can be averaged over the cross-section

of the cavity. The resulting equations provide the momentum and mass couplings to the standard

equations for a porous medium, which are assumed to hold on the macroscopic scale.

Numerically, the two-scale model which ensues imposes some requirements on the interpolation

of the displacement and pressure fields near the discontinuity. The displacement field must be

discontinuous across the cavity. Furthermore, the micromechanics of the flow within the cavity

require that the flow normal to the cavity is discontinuous, and in conformity with Darcy’s relation
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which is assumed to hold for the porous medium, the normal derivative of the fluid pressure field

must also be discontinuous from one face of the cavity to the other. For arbitrary discretizations,

these requirements can still be satisfied, namely by exploiting the partition-of-unity property of

finite element shape functions [9], as has been done successfully in applications to cracking in

single-phase media [10–20].
To provide a proper setting, we will first briefly recapitulate the governing equations for a

deforming porous medium under quasi-static loading conditions. The strong as well as the weak

formulations will be considered, since the latter is crucial for incorporating the micromechanical

flow model properly. This micromechanical flow model is the subject of the subsequent section,

whereafter it will be demonstrated how the momentum and mass coupling of the micromechanical

flow model to the macroscopic porous medium can be accomplished via the weak formulation.

Time integration and a consistent linearization of the resulting equations, which are non-linear due

to the coupling terms, complete the numerical model. Finally, example calculations are given of

a body with existing faults, which can have an arbitrary direction and an arbitrary location within

the body. Apart from demonstrating the effectiveness of the two-scale approach, the calculations

show that the influence of the presence of discontinuities on flow and deformation patterns can be

significant.

2. GOVERNING EQUATIONS FOR THE BULK

2.1. Strong form

The bulk is considered as a two-phase medium subject to the restrictions of small displacement

gradients and small variations in the concentrations [7]. Furthermore, it is assumed that there is

no mass transfer between the constituents, that convective terms and the gravity acceleration can

be neglected, and that the processes which we consider, occur isothermally and quasi-statically.

With these assumptions, the balances of linear momentum for the solid and the fluid phases read,

e.g. [21]:

∇ · r� + p̂� = 0 (1)

with r� the stress tensor of constituent �. In the remainder of this paper we follow � = s, f , with

s and f denoting the solid and fluid phases, respectively. Further, p̂� is the source of momentum

for constituent � from the other constituent, which takes into account the possible local drag

interaction between the solid and the fluid. Evidently, the latter source terms must satisfy the

momentum production constraint:

∑

�=s, f

p̂� = 0 (2)

Adding both momentum balances, and taking into account Equation (2), one obtains the ‘standard’

equilibrium equation for the mixture

∇ · r= 0 (3)

where

r= rs + rf (4)
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Under the same assumptions as for the balance of momentum, one can write the balance of

mass for each phase as

���

�t
+ ��∇ · v� = 0 (5)

with �� is the apparent mass density and v� the absolute velocity of constituent �. We multiply

the mass balance for each constituent � by its volumic ratio n�, add them and utilize the constraint

∑

�=s, f

n� = 1 (6)

to give

∇ · vs + nf∇ · (vf − vs) + ns

�s

��s

�t
+ nf

�f

��f

�t
= 0 (7)

The change in the mass density of the solid material is related to its volume change by

∇ · vs =−Ks

Kt

ns

�s

��s

�t
(8)

with Ks the bulk modulus of the solid material and Kt the overall bulk modulus of the porous

medium. Using the definition of the Biot coefficient, � = 1 − Kt/Ks [3], this equation can be

rewritten as

(� − 1)∇ · vs =
ns

�s

��s

�t
(9)

For the fluid phase, a phenomenological relation is assumed between the incremental changes of

the apparent fluid mass density and of the fluid pressure p [3]:
1

Q
dp= nf

�f
d�f (10)

with the compressibility modulus

1

Q
= � − nf

Ks
+ nf

Kf
(11)

where Kf is the bulk modulus of the fluid. Inserting relations (9) and (10) into the balance of mass

of the total medium, Equation (7), gives:

�∇ · vs + nf∇ · (vf − vs) + 1

Q

�p

�t
= 0 (12)

The governing equations, i.e. the balance of momentum of the saturated medium, Equation (3),

and the balance of mass, Equation (12), are complemented by the kinematic relation,

es = ∇sus (13)

with us, es the displacement and strain fields of the solid, respectively, the superscript s denoting

the symmetric part of the gradient operator, and an incrementally linear stress–strain relation for
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Figure 2. Boundary conditions and internal discontinuity �d for body �.

the solid skeleton. The effective stress increment in the solid skeleton, dr′s is related to the strain

increment des by an incrementally linear stress–strain relation for the solid skeleton,

dr′s = D̄tan : des (14)

where D̄tan is the fourth-order tangent stiffness tensor of the solid material and the d symbol

denotes a small increment. Since the effective stress in the solid skeleton is related to the partial

stress by r′s = rs/ns, the above relation can be replaced by

drs =Dtan : des (15)

where the notation Dtan = nsD̄
tan has been used. In the examples, a linear-elastic behaviour of the

bulk material has been assumed, and we have set Dtan =D, the linear-elastic stiffness tensor. For

the pore fluid flow, Darcy’s relation for isotropic media is assumed to hold,

nf(vf − vs) = − kf∇ p (16)

with kf the permeability coefficient of the porous medium. The boundary conditions (see Figure 2)

n� · r= tp, u=up (17)

hold on complementary parts of the boundary ��t and ��u , with �= �� = ��t ∪ ��u , ��t ∩
��u =∅, tp being the prescribed external traction and up the prescribed displacement at the

boundary, and

nf(vf − vs) · n� =qp · n�, p= pp (18)

hold on complementary parts of the boundary ��q and ��p, with �= �� = ��q ∪ ��p and

��q ∩ ��p =∅, qp · n� and pp being the prescribed outflow of pore fluid and the prescribed

pressure, respectively.

2.2. Weak form and coupling

To arrive at the weak form of the balance equations, we multiply the momentum balance (3) and

the mass balance (12) by kinematically admissible test functions for the displacements g of the
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skeleton and for the pressure �. Substitution into Equations (3) and (12), using Darcy’s relation

(16), integrating over the domain � and using the divergence theorem leads to the corresponding

weak forms
∫

�

(∇ · g) · r d� +
∫

�d

�g · r� · n�d
d�=

∫

�

g · tp d� (19)

and

−
∫

�

��∇ · vs d� +
∫

�

kf∇� · ∇ p d� −
∫

�

�Q−1 ṗ d�

+
∫

�d

n�d
· ��nf(vf − vs)� d� =

∫

�

�n� · qp d� (20)

where the shorter notation of a superimposed dot has been introduced to denote differentiation

with respect to time. Because of the presence of a discontinuity inside the domain �, the power of

the external tractions on �d and the normal flux through the faces of the discontinuity are essential

features of the weak formulation. Indeed, these terms enable the coupling between the bulk and

the inner cavity of the discontinuity.

The mechanical coupling comes from the tractions applied by the fluid in the discontinuity onto

the discontinuity faces. We assume that the tractions are the same on each side of the discontinuity

and that they are imposed by the fluid pressure inside the discontinuity. Because of the continuity

from the cavity to the bulk, this gives

r · n�d
= −pn�d

on �d (21)

Hence, the weak form of the balance of momentum becomes

∫

�

(∇ · g) · r d� −
∫

�d

�g� · pn�d
d� =

∫

�

g · tp d� (22)

As a consequence, the test function for the pressure, �, also has the same value at both faces of

the cavity, and the mass transfer coupling term can be rewritten as follows:

∫

�d

n�d
· ��nf(vf − vs)� d� =

∫

�d

�nfn�d
· �vf − vs� d� =

∫

�d

�n�d
· qd d� (23)

where qd denotes the fluid flux through the faces of the discontinuity.

The above identities for the coupling of the mass transfer can be interpreted as follows. Part

of the fluid that enters the cavity through one of its faces flows away tangentially, that is in the

cavity. Therefore, the fluid flow normal to the discontinuity is discontinuous. Because the fluid

flow between the cavity and the surrounding porous medium has to be continuous at each of the

faces of the discontinuity, and because the fluid velocity is related to the pressure gradient via

Darcy’s law, the gradient of the pressure normal to the discontinuity must be discontinuous across

the discontinuity. Next, the influence at the ‘macro’-scale of the tangential ‘micro’-flow inside the

discontinuity—the normal flux discontinuity—will be quantified.
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3. MODEL FOR THE FLOW INSIDE THE CAVITY

Subject to the same assumptions as listed in the preceding section for the bulk, the balance of

momentum for the fluid phase in the cavity reads (Figure 3)

∇ · rm = 0 (24)

The subscript m denotes that a quantity is related to the ‘micro’-flow. Assuming a Newtonian fluid,

the balance of momentum inside the cavity gives

�∇ · ∇vm = ∇ pm (25)

where � is the viscosity of the fluid and pm the pressure in the ‘micro’-flow. We assume that

the dimensions of the cross section of the cavity are small in comparison to the length of the

discontinuity (for the two-dimensional problem of Figure 3 this dimension is the cavity width

2h). A quasi-one-dimensional flow is assumed inside the cavity. Hence, the vector equation (25)

leads to

0= �pm

�y
(26)

in the normal direction n�d
and

�
�
2
v

�y2
= �pm

�x
(27)

in the tangential direction t�d
. x, y give the position of a material point inside the cavity in the

t�d
, n�d

co-ordinate system. v = vm · t�d
is the velocity tangential to the discontinuity. From the

first equation, pm is constant through the cavity and, for continuity reasons, it is equal to p

pm = p (28)
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Integrating the second equation twice with respect to the y-co-ordinate, we obtain the velocity

profile

v(y)= 1

2�

�p

�x
(y2 − h2) + vf (29)

where v = vf = vf · t�d
has been applied as essential boundary condition on both faces of the cavity

(y =−h and y = h).

Under the assumption of small changes in the concentrations the balance of mass in the ‘micro’-

flow reads

��f

�t
+ �f∇ · vm = 0 (30)

We now assume that the first term can be neglected because the problem is monophasic in the

cavity and the velocities are therefore much higher than in the porous medium. Accordingly, the

mass balance inside the cavity simplifies to

∇ · vm = 0 (31)

If w = vm · n�d
denotes the normal component of the velocity, the simplified mass balance can

also be written as

�v

�x
+ �w

�y
= 0 (32)

To relate the mass transfer equation to the ‘macro’-flow, the mass balance is averaged over the

width of the cavity:

∫ h

−h

�v

�x
dy +

∫ h

−h

�w

�y
dy = 0 (33)

Accordingly, the difference in the velocity components that are normal to both crack faces is

given by

�wf� =w(h) − w(−h)= −
∫ h

−h

�v

�x
dy

Substitution of Equation (29) into Equation (33) then leads to

�wf� = 2

3�

�

�x

(

�p

�x
h3

)

− 2h
�vf

�x
(34)

This equation gives the amount of fluid attracted in the tangential fluid flow. It can be included

in the weak form of the mass balance of the ‘macro’-flow to ensure the coupling between the

‘micro’-flow and the ‘macro’-flow. Indeed, the coupling term n�d
· qd can now be written as

n�d
· qd = nf�wf − ws�= nf

(

2

3�

�

�x

(

�p

�x
h3

)

− 2h
�vf

�x
− 2

�h

�t

)

(35)
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where ws is the velocity of the solid skeleton in the normal direction, and the difference between

the two crack faces is given by

�ws� = 2
�h

�t

and vf follows from Darcy’s law in the tangential direction

vf =
(

vs − kf

nf
∇ p

)

· t�d

In Equation (35), the last term ensures the continuity between the cavity and the bulk. The first

term is driven by the balance of momentum of the viscous fluid.

4. NUMERICAL ELABORATION

4.1. Discretization

The model presented in the two previous sections puts some requirements on the displacement

and pressure fields in the vicinity of the discontinuity. The opening of the discontinuity must

be described with sufficient accuracy in order to reproduce the cavity geometry properly. The

pressure field has to be continuous across the discontinuity, but its normal derivative should be

discontinuous from one face of the cavity to the other. These requirements can be satisfied by

exploiting the partition-of-unity property of finite element shape functions [9].
In the spirit of previous work on cracks in single-phase media [10–12] the interpolation of each

component of the displacement field of the solid phase is enriched with discontinuous and singular

functions

us =
∑

i∈N
Ni ūi +

∑

i∈Ncut

NiH�d
ûi +

∑

i∈Ntip

∑

j∈[1,4]
Ni� j ũi j (36)

where Ni are standard finite element shape functions supported by the set of nodes N included in

the discretized domain �. Nodes in Ncut have their support completely cut by the discontinuity.

They hold additional degrees of freedom ûi corresponding to the discontinuous function H�d

defined by

H�d
(x) = x · n�d

‖x · n�d
‖ (37)

Nodes whose support contain the tips of the discontinuity are included in Ntip. Four singular

functions � j and their corresponding degrees of freedom ũi j are supported by this set of nodes

(Figure 4). The singular functions are

{� j (r, �)} j∈�1,4� =
{√

r cos
�

2
,
√
r cos

�

2
sin �,

√
r sin

�

2
,
√
r sin

�

2
sin �

}

(38)

where r, � are the polar co-ordinates of the tip of the discontinuity. Symbolically, Equation (36)

can be written as

us =NU (39)
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Figure 4. Enrichment strategy: circles denote Ncut, square Ntip, and grey field circle Npres.

where the matrix N contains the standard interpolation polynomials Ni as well as the discontinuous

function H�d
and the singular functions � j , and the array U contains the displacement degrees

of freedom ūi , ûi , and ũi j . Furthermore, we define the matrix �N� which contains the jumps in the

interpolation polynomials, and the matrix B, which contains the bounded part of spatial derivatives

of N.

For the pressure approximation, the standard finite element interpolation is enriched with the

functionD�d
, which is the distance to the discontinuity.D�d

is continuous through the discontinuity,

but its normal derivative is discontinuous and equal to H�d

n�d
· ∇D�d

=H�d
(40)

All nodes whose support is cut, or partially cut by the discontinuity,Npres, hold additional pressure

degrees of freedom, cf. [12]:

p=
∑

i∈N
Hi p̄i +

∑

i∈Npres

HiD�d
p̂i (41)

Hi are the finite element shape functions used as partition of unity for the pressure interpolation.

In a fashion similar to the displacement interpolation, we write Equation (41) symbolically as

p=HP (42)

where H contains the shape functions Hi as well as the distance function D�d
, and the array P

contains the degrees of freedom p̄i and p̂i .
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The choices for Ni and Hi are driven by modelling requirements. Indeed, the modelling of the

fluid flow inside the cavity needs the second derivatives of the pressure, see Equation (35). Hence,

the order of the finite element shape functions Hi has to be high enough, otherwise the coupling

between the fluid flow in the cavity and the bulk will not be achieved. Further, the order of the

finite element shape functions Ni must be greater than or equal to the order of Hi for consistency

in the discrete balance of momentum equation. The examples in the next section illustrate these

arguments.

4.2. Discrete equations and resolution

In a Bubnov–Galerkin sense we choose the test functions for the displacements and the pressures,

g and �, respectively, in the same space as the displacement and pressure interpolations defined by

Equations (36) and (41), and require that Equation (19) and Equation (20) hold for all admissible

g and �. This gives:

∫

�

BT
r d� + Finter = Fext (43)

−
∫

�

�HTmT∇̇us d� +
∫

�

kf∇HT∇ p d� −
∫

�

Q−1HT ṗ d� + Qinter =Qext (44)

where, for two dimensions, m=[1, 1, 0], and the external force and flux vectors, Fext and Qext,

are given by

Fext =
∫

�

NTtp d� (45)

Qext =
∫

�

HTnTqp d� (46)

The time integration is carried out using a backward finite difference scheme

(

d(.)

dt

)t+�t

= (.)t+�t − (.)t

�t
= �(.)

�t
(47)

where �t is the time increment, while (.)t and (.)t+�t denote the unknowns at t and t + �t ,

respectively. Substitution in the semi-discrete equation (44) leads to:

−
∫

�

�HTmT∇�us d� + �t

∫

�

kf∇HT∇ p d� −
∫

�

Q−1HT
�p d� + �tQinter = �tQext (48)

The interfacial force vector Finter is derived from Equation (22) by integrating �g� · pn�d

along �d:

Finter = −
(∫

�d

�N�
T
n�d

H d�

)

P (49)
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In a similar fashion, Equation (23) is integrated along �d to give

Qinter =
∫

�d

HTnT
�d
qd d� (50)

The interfacial flux vector Qinter is then elaborated by incorporating the discrete form of Equation

(35), yielding:

nT
�d
qd = nf

12�
(tT

�d
(∇∇Ht�d

)P)(nT
�d

�N�U)3

+ nf

4�
(tT

�d
∇HP)(nT

�d
�∇N�t�d

U)(nT
�d

�N�U)2

− (nT
�d

�N�U)(nf〈N〉U̇ − kf∇HP)Tt�d

− nfn
T
�d

�N�U̇ (51)

where 〈.〉 is the average of . taken on the − and the + sides of the discontinuity.

As Qinter is non-linear, an iterative procedure must be used to compute the solution at each time

step. For this purpose, a residual vector Ri is defined at iteration i :

Ri =
[

0 0

KT
up K(1)

pp

](

�U

�P

)i

+
[

Kuu Kup

0 �tK(2)
pp

](

U

P

)i

+
(

Finter

�tQinter

)i

−
(

Fext

�tQext

)

(52)

where the stiffness matrices are defined as

Kuu =
∫

�

BTDtanB d� (53)

Kup = −
∫

�

�BTmH d� (54)

K(1)
pp = −

∫

�

Q−1HTH d� (55)

K(2)
pp = −

∫

�

kf∇HT∇H d� (56)

In a full Newton–Raphson algorithm, the iterative matrix Ki is the Jacobian matrix of the

residual R

Ki =

⎡

⎢

⎢

⎢

⎣

Kuu Kup + �Finter

�P

KT
up + �t

�Qinter

�U
K(1)

pp + �tK(2)
pp + �t

�Qinter

�P

⎤

⎥

⎥

⎥

⎦

(57)

where all quantities are evaluated at iteration i .
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The coupling terms, Finter and Qinter, cause the Jacobian matrix to become unsymmetric. To

restore symmetry, the contributions due to the coupling terms are omitted in the Jacobian matrix,

and the iterations in the example calculations in the next section have been carried out with the

following stiffness matrix:

Ki =
[

Kuu Kup

KT
up K(1)

pp + �tK(2)
pp

]

(58)

5. EXAMPLE CALCULATIONS

A two-dimensional specimen under plane-strain conditions is considered. The specimen is a square-

shaped fractured block, see Figure 5. A normal fluid flux q0 = 10−4 ms−1 starting at t = 0 s is

imposed at the bottom face while the top face is assigned a drained condition with zero pressure.

Both left and right faces have undrained boundary conditions. No mechanical load is applied, but

essential boundary conditions have been applied in order to remove rigid body motions. The block

is 10m× 10m and consists of a porous material with a fluid volumic fraction nf = 0.3. The absolute

mass densities are �′
s = �s/ns = 2000 kg/m3 for the solid phase and �′

f = �f/nf = 1000 kg/m3 for

the fluid phase. The solid constituent is assumed to behave in a linear elastic manner with a

Young’s modulus E = 9 GPa and a Poisson ratio �= 0.4. The Biot coefficient � has been set

equal to 1, and the Biot modulus has been assigned a value Q = 1018 GPa so as to simulate a

quasi-incompressible fluid. This is not a limitation of the model, but more clearly brings out the

influence of a fault. The bulk material has a permeability kf = 10−9 m3/Ns while the viscosity of

the fluid is �= 10−3 N/m2 s.
.

q .

q

.
q

n
 =

n =

p =

n
 =

0

0

0

o

Figure 5. Fractured block with boundary conditions.
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Figure 6. Fine and coarse mesh composed of quadrilateral elements.

Figure 7. Deformed mesh for a crack angle of 30◦ (magnified× 1000).

5.1. One inclined fault

Initially, only one fault is considered. This fault, at the centre of the specimen, is 2 m long, and

has an angle � with the horizontal axis. A reference simulation has been run for a period of 10 s

using 75 time steps. For this reference simulation, the coarse mesh shown in Figure 6 has been

used with quadrilateral elements equipped with quadratic shape functions.

The results obtained for � = 30◦ are shown in Figures 7–9. Because of the imposed fluid flux at

the bottom, the pressure increases in the specimen and inside the fault, which subsequently opens,

14



Figure 8. Normal derivative of the pressure n�d
· ∇ p for a crack angle of 30◦. The top picture, where the

data have been plotted as a piecewise-constant field, shows the results for the coarse mesh. Below, the
results for the fine mesh have been smoothed and are depicted with filled iso-values.
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Figure 9. Fluid velocity field for a crack angle of 30◦.

and fluid can flow inside, see Figure 7. The discontinuity in the normal derivative of the pressure

is illustrated in Figure 8. Its jump has an opposite sign at both tips of the fault. The pore fluid

flows into the cavity at the left tip where the gradient of the fault opening is positive. At the right

tip, the gradient of the fault opening is negative and the fluid in the cavity flows back into the

bulk.

Figure 9 gives the absolute velocity field of the fluid. The ‘macro’-flow is oriented from the

bottom to the top of the specimen. The ‘micro’-flow in the cavity is oriented by the direction

of the fault. In the cavity, the velocity of the fluid is very high compared to the velocity in

the bulk because there is no resisting solid skeleton. As a consequence, the global response of the

specimen, which is defined in terms of the ratio outflow over inflow, qout/qin, is affected by the

presence of the fault. Indeed, part of the fluid in the vicinity of the fault is, at least temporarily,

stored inside the cavity, which causes the global flow to slow down in a macroscopic sense. This

is illustrated in Figure 10, which shows the ratio qout/qin for different fault angles. These results

are compared with those obtained without a fault. The time scale has been normalized by the 5%

response time �5% of the non-fractured specimen.

The results of Figure 10 show that the variation of the response time can be up to about 4%

for a horizontal fault. Obviously, the variation of the time response decreases when the fault angle

increases. Indeed, for the degenerated case where the fault is vertical, the pressure gradient is

tangential to the fault. Hence, even if the fault is opening, the tangential flow which is supplied

by the discontinuity in the normal derivative of the pressure, is not activated.
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Figure 10. The ratio of the outward flow over influx for several fault angles. Results are for the coarse
mesh with quadrilaterel elements and quadratic shape functions.
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Figure 11. Comparison of the outward fluid flow for different quadrilateral elements.

Figures 11 and 12 show the influence of the order of interpolation. Figure 11 justifies the use

of quadrilateral elements with linear shape functions: the refinement of the mesh allows the use

of a lower order of interpolation. In Figure 11, a comparison is made between the results obtained

with the reference simulation and a simulation with the fine mesh of Figure 6 and bilinear shape

functions. The results are almost identically similar and the latter type of interpolation will therefore

be used in the simulation of the next paragraph. Such ‘convergence’ is not obtained with triangular

elements, see Figure 12. Indeed, to be consistent with the model, the interpolation must have

non-zero second derivatives. Otherwise, the coupling term between the bulk and the cavity is not
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Figure 12. Comparison of the outward fluid flow for different triangular elements.

Figure 13. Three levels of mesh refinement with triangular elements.

computed correctly. With quadrilateral elements, a constant second derivative is obtained by virtue

of the bilinear shape functions, which is evidently not the case for triangular elements. Figure 12

proves that mesh refinement, see Figure 13, cannot remedy this deficiency.

5.2. Ten randomly generated faults

A set of 10 faults is randomly generated, see Figure 14. The length of the faults is between 1 and

3m, while the fault angle varies from � =−10 to 30◦. Figure 15 shows the influence of the faults

on the norm of the pressure gradient. The global fluid flow is strongly affected by the ‘micro’-flows

inside the faults. From Figure 15 it is observed that the main effect is due to the two longest faults.

Evidently, the effect of a fault on the ‘macro’-flow increases with its length because more fluid

can flow inside the cavity. The outward flow obtained for this 10 randomly generated faults is

plotted in Figure 16. The variation of the response time is about 18%. For this simulation, the

fine quadrilateral mesh has been used with bilinear shape functions. Indeed, when a large number

of faults are considered, the iterative matrix becomes ill-conditioned when using quadratic shape

functions. This is avoided by using bilinear shape functions.
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Figure 14. Ten randomly generated faults.

Figure 15. L2—Norm of the pressure gradient.

19



0.900

0.910

0.920

0.930

0.940

0.950

0.960

0.970

0.980

0 0.05 0.1 0.15 0.2 0.25

q
o

u
t/

q
in

t/τ5%

No fault

10 faults

Figure 16. Outward fluid flow for 10 randomly generated faults.

6. CONCLUDING REMARKS

A methodology has been proposed to insert discontinuities such as cracks, faults, or shear bands,

in a porous medium. The discontinuities can be located arbitrarily, not related to the underlying

discretization. For the fluid flow in the fractured porous medium a two-scale approach has been

chosen, where the flow of the fluid inside the discontinuity (the ‘micro’-scale) is modelled inde-

pendently from the flow of the pore fluid in the surrounding porous medium (the ‘macro’-scale).

The mechanical and the mass transfer couplings between the two scales are obtained by inserting

the homogenized ‘constitutive’ relations of the ‘micro’-flow into the weak form of the balance

equations of the bulk. The assumptions made for the fluid flow in and near the discontinuity

require the addition of special enrichment functions for the displacement and the pressure fields.

These conditions are satisfied by exploiting the partition of unity property of the finite element

polynomial shape functions. The examples confirm the efficiency of the method and also guide

the choice of the order of interpolation. Finally, the influence has been studied which faults have

on the fluid flow in a porous medium. It has been shown that the effect can be extensive.
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