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2D X-FEM Simulation of Dynamic Brittle
Crack Propagation

A. Combescure, A. Gravouil, H. Maigre, J. Réthoré and D. Gregoire

LaMCoS, INSA-Lyon, CNRS UMR5259, 18–20 allée des sciences, F-69621 Lyon,
France, alain.combescure@insa-lyon.fr

Summary. The application of X-FEM technique to the prediction of two dimen-
sional dynamic brittle crack growth is presented in this paper. The method is known
to guarantee exact energy conservation in case of crack propagation and it is ap-
plied to the simulation of one dynamic crack propagation experiment submitted to
a mixed mode loading and showing stop and restart of a crack.
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1 Introduction

Modeling and predicting dynamic crack propagation remain difficult chal-
lenges. There are at least five different methods to simulate dynamic crack
propagations with a finite element technology.

The first one is the element deletion strategy which consists in removing
the elements which have no remaining stresses or which are fully damaged.
This method, currently used in explicit codes, is very simple to implement
but it has two drawbacks: very fine meshes are needed and the results exhibit
mesh dependencies.

The second one is the remeshing strategy: this type of method cannot
preserve energy conservation both on the whole structure and in the crack tip
region.

The third one is based on “element edge” cohesive segments: this method
is not robust and leads to crack paths which are mesh dependent [1] because
the crack paths are forced to follow the edges of the elements.

The fourth is often named the embedded discontinuity method [2]. It allows
a discontinuity of the displacement field at the element level to represent the
presence of a crack. The discontinuity amplitude is typically governed by a
cohesive law.

The fifth is based on X-FEM method [3]. This method may be coupled
or not to a level set technique which is used to represent the geometry of the



crack [4]. We shall suppose here that the crack geometry is meshed with a set
of 2 nodes geometrical segments. Those segments are totally independent on
the structural finite element mesh. The crack growth can be either driven by
a LEFM law (which can be used only for brittle fracture mechanics) or by
a cohesive law approach which can rather easily be coupled with non linear
behavior of the bulk material [5].

One of the main difficulties of dynamic fracture mechanics is the uncer-
tainty upon the appropriate choice for models to be applied for dynamic crack
propagation simulations and the method to obtain the corresponding material
parameters. Some experiments are already available and used extensively for
the validation of numerical predictions: the Kalthoff plate experiments [6] and
the Rittel–Maigre ones [7, 8]. These experiments show complex crack paths
but no arrest and restart. The object of this paper is first to explain a new nu-
merical scheme based on extended finite element method and second to apply
it to the simulation of a very carefully designed experiment which provides
precise and reliable data on dynamic brittle crack propagations. The paper
is limited to bi-dimensional experiments and analysis. The numerical simu-
lation of dynamic crack growth is a useful tool to understand the physics of
the dynamic crack propagation. For instance it is difficult to explain from the
measures alone the reasons why the crack changes direction or stops during
the propagation. The numerical simulation helps to understand such complex
questions: for instance the stop and direction changes can be explained by
stresses wave reflections during the transient event, which are very difficult to
obtain experimentally. The paper is organized as follows:

The concepts used for brittle fracture mechanics numerical simulation are
first presented.

The use of the X-FEM tool for dynamically evolving cracks is presented
in a second section.

The experiment and its numerical simulation are then presented.

2 Dynamic brittle fracture mechanics

The dynamic crack propagation is a rather difficult subject because the exper-
imental check of the theoretical models is difficult. We shall limit the thermo-
dynamical presentation to a bi-dimensional case and only one crack of length
a.

2.1 Theoretical background

Let us suppose that the crack propagates at a velocity ȧ, the total energy
variation writes:

dW

dt
=
(

∂W

∂t

)
a

+
(

∂W

∂a

)
t

ȧ. (1)



In equation (1) W is the total energy which includes kinetic and external
loads energy. The second term of equation (1) has a dissipative nature and
represents the energy necessary to advance the crack. A detailed and precise
theory can be found in [9, 10]. The definition of energy release rate G is the
following in case of a load which is not applied on the crack lips:

G = lim
Γ→0

F

ȧ
=

1
ȧ

lim
Γ→0

[∫
Γ

((w + τ)ȧn1 + σn · u̇)dΓ

]
. (2)

In equation (2) Γ is a closed contour surrounding the crack tip, w (resp.
τ) the strain (resp. kinetic) energy density, n1 the normal to the contour Γ ,
σn the traction vector normal to the contour Γ and u̇ the velocity field. This
definition can be used for any type of dynamic crack advance and any type
of material. Under the hypothesis of linear material behavior and stationary
crack tip fields the G integral can be proved to be independent of Γ [9, 10]
and its expression is:

G =
∫

Γ

((w + τ)δ1j + σijui,1)njdΓ. (3)

In equation (3) the convention of summation on repeated indices is sup-
posed, δ1j is the Kronecker symbol, 1 is the direction of the crack tip and nj

the outward jth component of the normal to Γ contour. Let us now define
the following stress intensity factors:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Kkin
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r→0

μ
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√
2π

r
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√
2πr σ22(θ = 0),

Kkin
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r→0

μ

4(1 − ν)

√
2π

r
[u1(θ = π)], Kdyn

II = lim
r→0

√
2πr σ12(θ = 0).

(4)

In equation (4), 1 denotes the direction of the tangent direction of the crack
at the crack tip, ν the Poisson’s ratio and μ the second Lame coefficient. The
intensity factors are related through the following relations:

Kkin
i = fi(ȧ)Kdyn

i i ∈ {I, II}, (5)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fi(ȧ) =
4αi(1 − α2

II)
(κ + 1)D(ȧ)

,

αi =

√
1 −

(
ȧ

ci

)2

D(ȧ) = 4αIαII − (1 + α2
II)

2.

(6)

In equation (6), the indices i are I or II, κ is the Kolosov constant (1 for
plane stress state and 3–4ν for plane strain case), cI is the compression elastic
wave velocity and cII the shear wave one. The zero of D function gives the



Rayleigh wave velocity which will be denoted cR. The two fi functions have a
value of 1 for a null crack speed. Injecting equations (4), (5), (6) in equation
(3) one gets:

G =
1

E∗ (Kkin
I Kdyn

I + Kkin
II Kdyn

II ), (7)

E∗ =

⎧⎪⎨
⎪⎩

E plane stress,

E

1 − ν2
plane strain.

(8)

These equations are the extension of Irwin’s equation [11] to the dynamic
case. If we now want to predict dynamic crack propagation, we have to answer
three questions:

1. In which direction will the crack propagate?
2. At what speed will it run?
3. Will the crack propagate?

We shall now limit the presentation to the case where the crack propaga-
tion direction is driven by the maximum principal hoop stress. The direction
is then given by the following equation:

θc = 2 arctan

⎡
⎢⎣1

4

⎛
⎜⎝Kdyn

I

Kdyn
II

− sign(Kdyn
II )

√√√√8 +

(
Kdyn

I

Kdyn
II

)2
⎞
⎟⎠
⎤
⎥⎦ . (9)

Knowing the possible critical direction θc, one defines an equivalent stress
intensity factor K∗

I by the following equation:

K∗
I = cos3

(
θc

2

)
Kdyn

I − 3
2

cos
(

θc

2

)
sin(θc)K

dyn
II . (10)

The crack is supposed to propagate at the speed which is such that:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ȧ > 0 with K∗
I = KID (ȧ),

ȧ = 0 if K∗
I < KIC ,

KID (ȧ) =
KIC

1 − ȧ
cR

.

(11)

In equation (11) KIC is the static fracture toughness. Equation (11) is
a nonlinear equation when the crack speed is not zero. These equations are
sufficient to define brittle fracture crack propagation.



2.2 Numerical evaluation of fracture parameters

The precise numerical evaluation of the stress intensity factors is a rather dif-
ficult task. The line integral evaluation given in equation (3) is not easy to
compute with finite elements because the best values of stresses are obtained
on gauss points within the elements. The best numerical method consists to
replace the line integral by a surface integral using the divergence theorem.
The evaluation of dynamic stress intensity factors rely on the interaction in-
tegral presented in the book of Freund [10] and denoted M integral by Attigui
[12]. This integral writes:

I int = −
∫

S

qi,j [(σaux
kl uk,l − ρu̇ku̇aux

k )δij − (σaux
kj uk,i + σkju

aux
k,i ]dS

+
∫

S

qi[(σaux
kj,juk,i + ρükuaux

k,i ) + ρ(u̇ku̇aux
k,i + u̇aux

k u̇k,i)]dS. (12)

In this equation S is the surface surrounded by the contour Γ , q is a virtual
extension field which must be continuous and tangent to the crack lips and
zero out of the Γ contour, (uaux, u̇aux, σaux) are auxiliary displacement velocity
and stress fields which are arbitrary but must be statically and kinematically
admissible. Figure 1 shows a typical virtual extension field q and also displays
the integration box around the crack tip.

If one chooses the q field module to be 1 at crack tip one has:

I int =
2

E∗ (fI(ȧ)Kdyn
I Kaux

I + fII(ȧ)Kdyn
II Kaux

II ). (13)

It is now clear that if one chooses the auxiliary fields to be such that
Kaux

I = 1, Kaux
II = 0 one will get directly Kdyn

I from the interaction integral.
The same holds for the computation of Kdyn

II . Let us now compute the dynamic
stress intensity factors: the simplest solution is to choose the analytical mode
I and mode II solutions as auxiliary stress fields. The computation of these
quantities implies the evaluation of integrals which are performed numerically
using a domain S defined by a rectangular box filled with a large number of
sub-elements using standard Gauss integration schemes. The auxiliary fields
are computed using the analytical expressions and the other field values within
the sub-element are calculated using the original mesh with its associated
shape functions.

2.3 Remarks on extension to other cases like different brittle
failure mechanism or ductile dynamic fracture

The preceding formulation is only valid for brittle fracture mechanics because
of the use of energy release rate G concept. If one would like to use this type
of approach for a different critical direction one has to replace equations (9)
and (10) by different ones. For ductile fracture one has to come back to the



Fig. 1. Virtual crack extension field q and associated integration box.

basic definition given by equation (2) and hence to use the stress state close
to the crack tip to define the properties of the propagation as it is often used
in the cohesive zone approach of the simulation [13]. One may nevertheless
observe that in existing cohesive zone models the velocity of the crack tip is
governed by the de-cohesion rate.

3 X-FEM method for dynamically propagating cracks

3.1 X-FEM strategy: description and energy conservation
properties

We shall describe in this section the special features associated with X-
FEM simulation of dynamically evolving brittle cracks. The standard X-FEM
method is used here [3] with the usual jump function added into the elements
fully cut by the crack and the singular functions for the element partially



cut. The following representation of displacement field within the elements is
chosen:

u(ξ, n) =
nodes∑
i=1

Ni(ξ, η)[ui + Hi(ξ, η)ai] for cut elements,

u(ξ, n) =
nodes∑
i=1

Ni(ξ, η)

⎡
⎣ui +

4∑
j=1

ψij(ξ, η)bij

⎤
⎦ crack tip element. (14)

In equation (14) Ni(ξ, η) are the standard shape functions, ai represent
the amplitude of the degrees of freedom associated with the jump function H
and bij represent the amplitude of the jth singular functions at node i of the
element containing the crack tip. Let us recall that the following 4 singular
ψij functions are chosen:

√
r

{
sin
(

θ

2

)
, cos

(
θ

2

)
, sin

(
θ

2

)
sin(θ), cos

(
θ

2

)
sin(θ)

}
. (15)

It must be observed that these extended functions are implicitly linked to
the crack tip position (r is the distance to the crack tip and θ the angle with
the tangent to the crack tip direction). When the crack propagates statically
in an elastic medium, one can forget the previous singular function for the
new position of the crack. This is not possible in time dependent problems,
such as dynamic crack propagations or elasto-viscoplastic material behavior.
For dynamic crack propagation it has been shown [14] that if one simply
adds new extended degree of freedom associated with the new crack position
and that these new extended displacements and velocities are initialized to
0. Consequently the energy is perfectly kept and the new crack segment is
closed at the beginning of the time step. Within the next time step the crack
opens and the opening work is exactly equal to the fracture energy necessary
to propagate the crack. This is a very important result because it ensures that
the change of geometry of the body (crack length change) does not affect the
numerical results. The local energy is not altered by the geometry changes.

3.2 Time integration

The simplest implementation is to use a standard Newmark scheme to in-
tegrate the transient equations. The implicit integration is straight forward.
One could prefer to use an explicit integrator because the crack propagation
is generally very fast. But the method has to be adapted because the time
step tends to zero when the crack passes very close to a node. This is simply
due to the fact that the mass of the jump degree of freedom of the node very
close to the interface is close to zero. A simple approximation has been pro-
posed in [15] to overcome this difficulty: one replaces the added mass on the



jump degrees of freedom (ai) by the standard translational mass for the dis-
continuous enrichment. The mass matrix is diagonal and the time step of the
explicit extended finite element constructed by this method has been shown
analytically to be greater than one half of the standard time step of the non
enriched element: this is valid for linear finite elements.

3.3 Specific crack propagation strategy

The crack propagation evaluation is a complex task because the equations
defining the direction, the equivalent stress intensity and the crack speed are
coupled and non linear (equations (9), (10), (11), (13)). The simplest way
to proceed is to use an explicit time integration of crack advance with the
known quantities at the beginning of the time step. In case of propagation
the time step is generally chosen to be such that the crack does not progress
of more than one element. Nevertheless the time step has to be large enough
for the crack tip not to stay more than two time steps within a single element
(because of the enrichment strategy choice that keeps the enriched functions
corresponding to the old position of the tip). In case of dynamic explicit
computation this leads to a constraint for the time steps which may not be
compatible with the CFL condition. This explicit procedure works but some-
times induces instabilities in the crack propagation simulation. It needs to be
improved in order to permit robust computations: a possible improvement is
the implicitation of the prediction of crack increment.

4 Numerical interpretation of experimental test

This section describes a specific experiment for dynamic crack propagation.
It uses a Hopkinson’s bar system, and can be considered as a reference case.
This experiment shows very interesting features as complex crack paths and
crack arrest and restart.

4.1 Experimental set up

The experimental loading system is displayed in Figure 2.

Fig. 2. Hopkinson’s bar characteristics.



Table 1. Material data for the specimen (PMMA) and bars (Nylon).

Property name Unit PMMA Nylon

Young’s Modulus GPa 3.3 3.6
Poisson’s ratio – 0.42 0.41
Density Kg/m3 1180 1145
Rayleigh wave speed m/s 938 996

Fig. 3. Detailed geometry of the test specimen.

The specimen is a simple rectangular PMMA plate with a wave concen-
trator (the circular hole) and an initial non symmetric crack. It is placed
between two nylon bars with appropriate sections. The sections are close to
that of the PMMA specimen (1050 mm2). This permits to avoid the wave
reflection on the interface. The thickness of the plates is 15 mm. Careful ex-
periments are performed: they are found to be very repetitive, which proves
the good quality of the loading system. The input and output velocities as
well as the input and output stress waves have been measured and treated in
order to have usable data for the numerical analysis.

4.2 Material data

Table 1 describes the basic material data. The determination of Young’s mod-
ulus for a PMMA under dynamic load is a difficult task because the elastic
properties of this material are strain rate depend- ant. A mean value is pro-
posed here. This value is chosen in order to get the best possible fit between
experimental results and simple one dimensional wave propagation model of
the experiment.



Fig. 4. Mesh of the specimen.

Fig. 5. Input velocity time history.

4.3 One hole specimen

The precise geometry is displayed in Figure 3.
The first modeling difficulty is the specification of appropriate boundary

conditions. One could mesh the two nylon bars, but these bars are axisymetric
and very long to avoid wave reflection. The resulting model would lead to
axisymetric plane strain coupling, as well as a large model which would lead
to heavy computations. A plane strain model of the specimen alone was used.
The right hand side (output) bar is modeled by an impedance condition. This
condition is applied on all nodes on a width of 40 mm. The impedance is a
linear relationship between the velocity of the interface and the applied force
on the interface. The following equation gives the impedance relationship:

Fx(t) = −√Enylonρnylon u̇x. (16)

The second difficulty is the modeling of the moving crack path. Had the crack’s
path been known, an “element edge” cohesive zone approach could have been



Fig. 6. Comparison of measured (dotted line) and experimental (continuous line)
crack paths (KIC = 133 MPa

√
m).

Fig. 7. Comparison of computed and experimental horizontal crack speed (KIC =
1.33 MPa

√
m).

successful, but it cannot be used in order to predict the crack’s path prior to
the experiment. The mesh, consisting of 1,500 4-node elements, is shown in
Figure 4. The number of enriched X-FEM element is changing with time. The
loading of the left impacting bar is simulated by an imposed speed on the left
of the model.

The measured velocity V (t) is applied to the left part of the specimen, on
a 40 mm width. The input velocity time history is given by Figure 5.

The computation has been performed with a constant value of KIC

(1.33 MPa
√

m). The comparison of computed and experimental crack path is
displayed in Figure 6. The comparison of crack velocity is given in Figure 7.



Fig. 8. Comparison of computed and experimental crack path at initiation of crack
propagation (KIC = 1.33 MPa

√
m).

The agreement is rather good except at the very beginning of the propaga-
tion: the crack path is slightly different from the measured one (Figure 8). An
explanation of this difference could be the radius of curvature of the notch,
which is really smaller when the crack propagates.

Figure 9 shows a photograph of the crack tip just after propagation. It
is clear that the COD of the moving crack is much smaller of that of the
arrested one. The computation has then been rerun with two different values
of KIC . When the crack is at arrest (ȧ = 0) the value is taken as the static
value of 1.42 MPa

√
m whereas the previous value is kept for running cracks

(1.33 MPa
√

m). With these values the trajectories as well as crack velocities
perfectly coincide with experimental data.

5 Conclusion

This paper has shown the interest of X-FEM to model dynamic brittle crack
propagation. Simple macroscopic models seem to be sufficient to explain the
crack complex propagations. Indeed, the results of an experimental dynamic
brittle crack growth are compared successfully with numerical X-FEM simu-
lation.



Fig. 9. Photograph of propagating crack tip.
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