
HAL Id: hal-00380729
https://hal.science/hal-00380729

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tool for Assessing Fault Tolerance Mechanisms
applied to Web Service applications

Khaled Farj, Neil A. Speirs

To cite this version:
Khaled Farj, Neil A. Speirs. A Tool for Assessing Fault Tolerance Mechanisms applied to Web Service
applications. 12th European Workshop on Dependable Computing, EWDC 2009, May 2009, Toulouse,
France. 2 p. �hal-00380729�

https://hal.science/hal-00380729
https://hal.archives-ouvertes.fr

A Tool for Assessing Fault Tolerance Mechanisms applied to Web Service
applications

Khaled Farj and Neil A. Speirs
School of Computing Science, University of Newcastle upon Tyne

Newcastle upon Tyne, NE1 7RU, UK.

{k.a.s.farj, neil.speirs}@ncl.ac.uk

Abstract

 Testing Fault Tolerance Mechanisms (FTM’s) is crucial for the

development of today’s Web Service applications. In this work, we

propose a methodology for assessing the efficacy of FTMs applied to

Web services applications distributed over the Internet.

 We present a tool that uses application level fault injection

techniques to inject communication faults by using a network

Emulator Service. The emulator also generates additional workload

on the tested system in order to produce more realistic results. As well

as allowing the user to generate a fault model script, the tool provides,

(by analyzing WSDL documents), the ability to inject selected faults

into the exchanged SOAP messages.

The tool can be used to test either a single Web Service or to test

composed services without any modification to the system under test.

Keywords: Web Services, Fault Injection, SOAP, SWIFI, Network
Emulator.

1. Introduction and Related Work
 Web services are becoming progressively more important in
forming the backbone of the modern Internet. Therefore testing
the reliability and fault tolerance of web services has become
an active research area. Fault injection is a well-proven method
of assessing the reliability of a system [1]. Although much
work has been done in testing single web services, there
appears still more research to be carried out on composed
services.
 There are many Software Fault Injection tools testing
software systems and their reliabilities. In [2] a tool is
developed for generating and validating test cases. Tools start
from the WSDL schema types and introduce some operator to
generate a request with random data and a test script that
manipulates the request parameters. In [3] a technique for
testing Web Services using mutation analysis is proposed. A
mutant WSDL document is generated by applying mutant
operators to the original WSDL document. A test tool called
WSDLTest [4] tool generates Web service requests from the
WSDL schemas and tunes them in accordance with the pre-
conditions written by the tester and verifies the response
against the post-conditions offline. In [5] a testing tool is
proposed based on some rules defined in XML schema or DTD.
The tool modifies the value of the parameters in requests by
using boundary value testing, and on interaction perturbation,
using mutation analysis. Another tool in [6] introduces a
framework intercepting and perturbing SOAP messages by

injecting faults by corrupting the encoding schema address,
dropping messages, and inserting random text in the SOAP
Body. The work described in [7] helps service requesters create
test cases so as to select suitable and correct Web services from
public registries. It proposes a method where faults are injected
into SOAP messages to test boundaries of the parameters, as
specified in the WSDL document. WS-FIT tools [8] inject
faults by modifying SOAP messages using scripts. The
function parameters are modified by using the value boundaries
specified by the tester.
 A common characteristic of previous work is that their focus
is only on testing single services in isolation; furthermore, most
of their focus is on only injecting faults by modifying the
SOAP message, since they do not emulate additional workload
in the tested system which could give rise to different results.
 This paper sets out an approach method and fault model for
testing the fault tolerance of either a single Web Service or
composed service, without any modification to the system
being tested and generating background workload for the
system.

2. Tool Architecture and Roles
Our tool consists of three main components as follows:
– The Fault Injection Interceptor (FII) is a web service
application which has the capability to be a proxy Web Service
to one or more Web services of the system under test. The FII
role depends upon where it is deployed:
 At the client side, its role is generating a proxy WSDL from
the actual Web Service WSDL needed to be called by client.
As a result all client requests are processed by the FII.
Thereafter, the FII sends the request to its internal
subcomponent, the Fault Injection Controller (FIC) to inject
faults. Then the request is sent to another FII that is deployed
on the site where the actual Web Service is running. When the
client side FII receives a response from the web service it
forwards it to the client.
At the actual web service side, the FII Web Service role is a

little different. Request messages received from the FII,
deployed at client side, are forwarded to the actual web service
by the FII. When the response is received, it is redirected to the
internal FIC for fault injection, and then the response, if any, is
sent back to the FII deployed at the client site.
In the case of composed services, where the service has to act

as both a service and client in the same system, a single FII can

perform both of the roles explained above. Using this way of
intercepting messages, no modification is made to the system
under test.

Figure1. Tool Architecture

– Fault Injection Controller (FIC): this is a java application
inside the FII which is regarded as the main component of the
tool. It is responsible for controlling the tool and injecting the
proper faults into the messages. Faults are injected into the
SOAP message based upon decisions coming from two other
components of the tool – the Network Emulation Service (NES)

and the Script Fault Model (SFM). These two components can
either be turned on or off at the choice of the user. The SFM is
a java script program written by the user. The function
parameters may be modified by using the value boundaries
specified by the tester. When both SFM and NES are active, the
SFM decision can only be applied if the decision from NES is
not to drop or corrupt the message. The FIC gives network
faults higher priority. The FIC also logs SOAP messages to be
analyzed offline. The message, if it has not been dropped, is
sent back to the interceptor to complete its journey to the
corresponding FII.
– Network Emulator Service (NES) is an extended version of
A Wide Area Network Emulator for CORBA Applications [9],
which gives the applications the sense of running over a local
or wide area network. It gives the applications the sense that
there are other -synthetic- applications running at the same
time and sharing the networking resources. In addition, it
provides the ability to inject network faults (loss, delay,
corruption, reordering, etc.). This work has been modified so
that only Web Service technology is used. All the generated
workload traffic and the faults injected use SOAP messages.
The system is deployed and exposed as composed web
services. The NES consists of one centralised Network

Controller Service (NCS), controlling the emulated network
and a set of NES’s deployed at each node in the system which
emulate the nodes of the targeted network. The NCS and every
NES communicate with each other by exchanging SOAP
messages and also communicate with the FIC using SOAP
messages as required.

3. Conclusion and Future Work

 We have built a tool that can inject faults into any Web
Service application without touching the code of the
application. There is great flexibility in the number and type of
fault that can be injected and, furthermore, we can control the
network that is used and can add background traffic. The
proposed system will be used to detect problems in existing
systems and also to produce metrics, based on a logging
mechanism, for measuring the efficacy of Fault Tolerant
Mechanisms in Web Services systems.
 We are currently testing the tool with some simple TMR
based Web applications to check that the enhancement in
reliability of the systems makes its deployment worthwhile. A
prototype version of the tool may become available for
academic use in the near future.

4. References

[1] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, Fault Injection
Techniques and Tools. IEEE Computer, vol. 30, pp 75-82, 1997.

[2] de Almeida, L.F. and S.R. Vergilio. Exploring Perturbation Based

Testing for Web Services. in Web Services, 2006. ICWS '06.

International Conference on. 2006.

[3] Siblini, R. and N. Mansour. Testing Web services. in Computer

Systems and Applications, 2005. The 3rd ACS/IEEE International

Conference on. 2005.

[4] Sneed, H.M. and H. Shihong. WSDLTest - A Tool for Testing Web

Services. in Web Site Evolution, 2006. WSE '06. Eighth IEEE

International Symposium on. 2006.

[5] Jeff, O. and X. Wuzhi, Generating test cases for web services

using data perturbation. SIGSOFT Softw. Eng. Notes, 2004. 29(5): p.
1-10.

[6] Looker, N. and X. Jie. Assessing the Dependability of SOAP RPC-

Based Web Services by Fault Injection. in Object-Oriented Real-Time

Dependable Systems, 2003. WORDS 2003 Fall. The Ninth IEEE

International Workshop on. 2003.

[7] Zhang, J. and R.G. Qiu. Fault injection-based test case generation

for SOA-oriented software. in 2006 IEEE International Conference on

Service Operations and Logistics, and Informatics, SOLI 2006. 2006.

[8] Looker, N., M. Munro, and J. Xu. WS-FIT: A tool for

dependability analysis of web services. in Proceedings - International

Computer Software and Applications Conference. 2004. Hong Kong,
China.

[9] Mohammad Alsaeed , Neil A. Speirs, “A Wide Area Network
Emulator for CORBA Applications”, Proceedings of the 10th IEEE
International Symposium on Object and Component-Oriented Real-
Time Distributed Computing, p.359-364, May 07-09, 2007.

WS

Network Emulator Service

Site B

Fault Injection Interceptor

Decision
maker

Injector

Logging

Script

WS-Proxy

Request
Interceptor

Response
Deliverer

Request
Deliverer

Response
Interceptor

Site C
Network Controller Service

Site A
Client

Network Emulator Service

Fault Injection Interceptor

Script

Injector

Logging

Decision
maker

WS-Proxy

Request
Interceptor

Response
Deliverer

Request
Deliverer

Response
Interceptor

http://portal.acm.org/citation.cfm?id=1261899&dl=GUIDE&coll=GUIDE&CFID=24735552&CFTOKEN=73567892
http://portal.acm.org/citation.cfm?id=1261899&dl=GUIDE&coll=GUIDE&CFID=24735552&CFTOKEN=73567892
http://portal.acm.org/citation.cfm?id=1261899&dl=GUIDE&coll=GUIDE&CFID=24735552&CFTOKEN=73567892
http://portal.acm.org/citation.cfm?id=1261899&dl=GUIDE&coll=GUIDE&CFID=24735552&CFTOKEN=73567892

