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ABSTRACTIN this paper, we extend the systeftF2 in order to have the subject reduction for
the Bn-reduction. We prove that the types with positive quansif@e complete for models that
are stable by weak-head expansion.

KEYWORDSSYstemAF2, type with positive quantifier, complete type.

1. Introduction

The semantics of realisability of the systefin proposed by J.-Y. Girard, consists
in interpreting the types by “saturated subsets’\eterms. The correction theorem
(also called “adequacy lemma”) stipulates that: X-germ is typable then it belongs
to the interpretation of its type. The adequacy lemma allmaghow the strong nor-
malization of the systertF when we take an adequate concept of saturation. The
power of this notion of semantics comes from the variety afgilme interpretations
of the second order quantifier. For the syste#2, J.-L. Krivine proposed a more
general semantics by defining the concepAahodels for a second-order language.
His semantics is a modification of the traditional concepd second-order model in
which the set of the truth values is not, as usyal,1} but an adequate subset bf
terms (seg| [KRI 94] and [RAF P8]). The corresponding adeglgmma allows also
to prove the uniqueness of the representation of the data.

Many researchers were interested in finding a general definif a data type.
For example, Bohm and Berarducci gave such a definition, fomlierm algebras, in
the systen¥ (see [BOH 8p]) and Krivine generalized their definition tetgm.AF?2
(see [KRI 90]). We noticed that the clagsof the types thus built has the following
feature: a normal-term is typable of a typ® € A iff it is in the interpretation ofD
for a certain semantics. Then, we decided to take this rastite definition of the data
types which we called “complete types”, because the corsitlgemantics is complete
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for these types. R. Labib-Sami was the first to build a classoafplete types: they
are the types with positive quantifiers (denoted/gy of the systens compared to a
semantics based on the subsets saturatgthbgquivalence (se¢ [LAB $6]).

We generalized in[[FAR 98] Labib-Sami’s result, by showihgtttheV; types
of system AF2 are complete for the semantics based on sets saturatgth-by
equivalence. It was natural to imagine a refinement of thesilitenamely interpre-
tation of the types by sets saturated by weak-head exparfsiithis, we considered
a more restricted class of thg types which includes the data types of J.-L. Krivine.
Then, we showed i [FAR 98] that these types are preservegraguction and are
complete for the considered semantics.

We propose in this paper another solution to this problem.adé typing rules
to the system4.F2 in order to have the conservation of types/fyreduction. The
system, which we propose, is inspired by the works of Mitc[{élIT 88] and the
second autho[[NOU 96]. We show that, in this new systemy;aliypes are complete
for the semantics based on sets saturated by weak-headsexpan

2. Notations and definitions

NOTATIONS 1. — We denote by the set of terms of purg-calculus, also called
M-terms. Lett, u,uy,...,u, € A, the application of to u is denoted byt)u. In the
same way we writét)u ... u, instead of(. .. ((¢)u1) . . .)u,. TheS-reduction (resp.
B-equivalence) is denoted By—s u (resp.t ~3 u). The set of free variables of a
A-termt is denoted byFv(t). Let us recall that a\-term¢ either has aweak-head
redex[i.e. t = (Azu)vv; ... v, the weak-head redex beiigzu)v], or is in weak-
head normal form[i.e. t = (z)vvy ... vy, Or t = Azu]. The notationt -, ¢ means
thatt’ is obtained from by someveak-head reductions

2.1. The AF2 type system

The types will be formulas of second-order predicate loger@ given language.
The logical symbols are_ (for absurd),— andV (and no other ones). There are
individual variables:z, y, ... (also called first-order variables) amdary predicate
variablesf = 0,1,...): X,Y, ... (also called second-order variables). The terms and
formulas are built in the usual way.

If X is a unary predicate variableandt’ two terms, then the formuldX [ Xt —
Xt'] is denoted byt = ¢/, and is said to be arquation. A particular case of
t = t'is a formula of the formé[uy /a1, .., un/x,] = t'[ur/z1, ..., un/xy,] OF
tur/z1,. . un/xn) = tlur/a1, ... un/xy], ul,. .., u, being terms of the lan-
guage. Then, we denote liya system of function equations. A contéxis a set of
the formzxy : Ay, ..., 2, : A, Wherexq,...,x, are distinctvariablesand,, ..., A,
are formulas. We are going to describe a system of typedlculus called second-
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order functional arithmetic (abbreviatedti72 for Arithmétique Fonctionnelle du
second ordrg. The typing rules are the following:

QDT z: AFgr x: A

)T, x: BEygrat: C,thenl’ k4570 Aat : B — C.

BT Farau:B— C,andl Faps v: B, thenl' Fazo (u)v: C.

(4) T Far2 t: A, andz does not appear ifi, thenl' - 472 ¢ : V2 A.

(5) f T F4ra t: VoA, then, for every termu, T' b 470 t 1 Afu/x].

(6) f T'Far2t: A, andX does not appear i, thenl' - 472 ¢ : VX A.

(7) f T 470 t : VX A, then, for every formuldr,

Tharet: AlG/X (21,...,2,)] ]

B) T Fgxat: Alu/z], thenl F 4z t : Alv/z], w = v being a particular case

of an equation oE.

Whenever we obtain the typidgk 472 t : A by means of these rules, we say that
“the A\-termt is of type A in the context", with respect to the equations B&f.

THEOREM2. —

DT Fart: A andt —g ¢/, thenl' gz t' 2 A.
2) f T F 479 t: A, thent is strongly normalizable.

2.2. The semantics ofAF2

If G,G' € P(A), we define an element dP(A) by: G — G' = {u € A/
(u)t € G’ for everyt € G}. Let R, the set of subsets of stable by weak-head
reduction (i.eZ € Ry iff foreveryv € =, if u >~ v, thenu € Z). A subsetk of R
is saidadequateiff R is closed by— andn.

Let L be a second-order language Ay-modelis defined by:

—anon empty sdtV/| calleddomain of M,

— an adequate sét of R,

— for every am-ary function symbol of_, a functionfy, : |M|™ — |M]|,
— for everyn-ary predicate symbaP of L, a functionPy; : |[M|™ — R.

Let M be aA-model of L.

— An interpretation I is a function from the set of first (resp. the setrehry
second) order variables {8/ (resp. toRM ™).

— LetI be an interpretation; (resp.X) a first (resp. am-ary second) order vari-
able, and: (resp.®) an element of M| (resp. of RIM™). We define an interpretation

1. A|[G/X (x1,...,zx)] is obtained by replacing idl each atomic formul& (¢4, ...,t,») by
Glt1/z1, ..., tn/xn]. To simplify, we writeA[G/X] instead ofA[G/ X (21, . .., zx)].
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J = Iz « a] (resp.J = I[X «— ®]) by takingJ(z) = a (resp.J(X) = ®) and
J(&) = 1(¢) (resp.J (&) = I(¢")) for every variableg # x (resp.£’ # X).

Let I be an interpretation. To every ternof L, we define, by induction, itgalue
tag € | M|

—ift ==z, thent]u,] = I(,T),

—ift=f(t', ..., t"), thentarr = far(thypo- -5 Uhpp)-

Let A be a formula ofL. Thevalue of A in a modelM and an interpretatior
(denoted by Al 1) is an element of? defined by induction:

—if A= P(t,...,t"), whereP is an-ary predicate symbol (resp. second-order
variable) andt', ..., t" are terms off, then|A|rr,; = Pa(th s-- - thy ) (resp.
|A|M.,I = I(X)(t}w,p T tﬁf,]))-

—-ifA=B—C, then|A|M_J = |B|M_j — |C|M7[,

—if A =VxB wherez is a first-order variable, thepl |y, 1 = N{|B[]| a1, 1[z—a):
a € |Ml},

—if A=VXB whereX is an-ary second-order variable, thed|; ; =
M{IBIX]|a1ix o) ® € RMI™Y.

Itis clear that: ifA is a closed type, theji|,, ; does not depend on the interpre-
tationI and we writel A| .

Let M be aA-model of L.

— We say thafl/ satisfiesthe equation: = v, if for every interpretatiod, uys,; =
v, If E is a set of equations df, we say that\/ satisfiesE, or M is amodel for
E, iff M satisfies all the equations &f.

—If A is a closed formula, we denote | = N{|A]|am; M is aAg-model
which satisfie='}.

The following theorem is known under the name “adequatiomi@” or “the cor-
rection theorem”:

THEOREM3. — Lett be ai-term andA a closed type of systediF2. If - 472 ¢ : A,
thent € |A|y.

3. The systemAF2c

The typing systerdF2 does not conserve the typesidyeduction. Indeed; 42
AzAy(z)y VX (X — (X — X)) - (VXX - VX(X — X)) but Azdy(z)y —,
Azx andiars Azr VX (X — (X — X)) - (VXX - VX(X — X)). We
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will define an extension of the systedi72 which, while keeping the properties of
the system4F2, conserves the types byreduction.

DEFINITION 4. — Let E be an equation system of second-order languagaNe
define on the formulas 042 a binary relationC by: A C B iff it is obtained by the
following proof rules:
ar’) ACA
dist) Y¢(C — D) CVEC — VED
—) If¢"CCandD C D',thenC - D CC' — D’
V.) If A CVEC, thenA C CIF/E]
V;) If A C D and¢ is not free inA, thenA C VED
)

tr) f AC DandD C B, thenA C B

(
(
(
(
(
(
(

e) If A C D[u/y] andu = v is a particular case of an equation &, thenA C
Dlv/y]

DEFINITION 5. — The systeF2¢ is the systerl 72 where we add the following
rule:

fTFarac t: AandA C B, thenl' a2 t: B («)

It is clear that the rule&s), (7) and(8) are particular cases of the rule)

3.1. Syntactical properties of the system

NOTATIONS 6. — Let& = &,...,&, be a sequence of variables. We denote the
formulaVe; ... V€, F by VEF. We write “€ is not free inA” if for every 1 < i < n,

& is not free inA. Let A be a formula,F a sequence of formulag,, ..., F,, u

a sequence of terms,, ..., u, and x (resp. X) a sequence of first (resp second)
ordre variablesz,...,z, (resp.Xi,...,X,). We denote byl[u/x| the formula
Aluy /21, ..., uy/x,) and byA[F / X] the formulaA[Fy / X, ..., F,/ X,).

LEMMA 7. — In the typing, we may replace the succession ¢times C) andm
times(4) and(6), by the succession af times(4) and(6), andn times ).

PrROOF. — By induction onn andm. ]
We deduce the following corollary:

COROLLARY 8. — If ' - 42 t : Bis derived froml’ 472 ¢ : A, then we may
assume that we begin by the applicationg4f (6) and next €) (i.e. there is¢€ not
free inT" such thatvé A C B).
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Then we have the following characterization:
THEOREMY9. —

() If T' Farac @@ A, thenthere is a typ® such thatr : B € T'andVEB C A,
where€ is not free inl".

(i) If T' Farac Azu @ A, then there are two typeB and C such thatl’,z :
B Farac u:CandVg(B — C) C A, wheref is not free inl".

(i) If T Faz2c (w)v: A, then there are two type8 andC such thafl” - 4z u :
B—C,T'Farec v: B andVv&éC C A, where€ is not free inl'.

We will define a typing system equivalent to systet# 2.
DEFINITION 10. — The systervd 725 is defined only by the three following rules:

(S Ifz: BeT andvVeéB C A, thenl' F g5 x: A
(S2) If ',z : BFazes u:CandVé(B — C) C A, thenl' - gr25 Azu: A
(S3) fT'Faras u: B — C,T'Faras v: BandVeC C A, thenl' b 4x25 (u)v: A

where€ is not free inl".
We have the following result:
THEOREM11. —T'kyrac t: Aiff T'Eyrast: A,
PROOF. — We use Theoreff] 9. "

In the rest of the paper we often consider the systefRS.

The following corollary will often be used:

COROLLARY 12. — If ',z : Ak ax2s5 (x)us ... u, : B, then

n =0,V A C B and&p does not appear it and A, or

n 75 O,VgoA cCy— BlyVSiBi - Ci+1 — Bi+1 (1 <1 < n—l), andV{an CB
where&; (0 < i < n) are not free inI" and A, andT,z : A Faras u; : C;
(I1<i<n).

PROOF. — By induction onn and using Theorerﬂ 9. ]

3.2. Conservation of type by-reduction

LEmMMA 13. — If A C B, then, for any sequence of termgresp. of formulag-),
Alu/x] C Blu/x] (resp.A[F/X] C B[ F/X]), and we use the same proof rules.



Complete Types 7

PROOF. — By induction on the derivatiod C B. ]

LEMMA 14. — If " 4 r05 t : A, then, for all sequences of terméresp. of formulas
F),T[u/X] Fazas t: A[u/X] (resp.I'[F/Y] Faras t : A[F/Y]) and we use the same
typing rules.

PROOF. — By induction on the derivatioll 425 t : A. We look at the last rule

used and we use Lemrpd 13. "
LEMMA 15. — Ifzy : Ay, ..,z 2 Ap Faras t: A, B; C A (1 < i <n)et
ACB,thenzy : By,...,2, : B, Faras t: B.

PROOF. — By induction on the\-termt. ]
LEMMA 16. — f T,z : Bt gros u: Aetl b aros v: B, thenl' F 4x05 ufv/a] :
A.

PROOF. — By induction on the derivatioR, = : B F 4725 u : A. [
LEMMA 17. — If T,z : C 4725 u : D and there is & which does not appear in

I and¢’ such thatvé(C — D) C V¢'(A — B),thenl,z : A+ 4705 u: B.

PROOF. — By induction on the derivatiovi¢ (C — D) C V¢/(A — B). We look at
the last rule used. We consider only three cases.

(—) We haved C C andD C B, then, by Lemm& 15, we deduce the result.

(e) We havev§(C — D) C Efu/y] = V&' (Flu/y] — M[u/y]). ThenA = Flv/y]
andB = M|v/y] whereu = v is a particular case of an equationef By in-
duction hypothesis, we obtalh z : Flu/y] Fares v : M[u/y]. But Flv/y] C
Flu/y] andM[u/y] C M[v/y], then, by Lemm& 15,2 : A+ 4r95 u : B.

(Ve) We havevé(C — D) C VsVE'(E — F)andA = E[G/s], B = F[G/s]. By
induction hypothesis, we obtalnh z : E F 4729 uv : F. We may assume that
s is not free inT, then, by Lemm@ 140,z : E[G/s] Faras u : F[G/s], i.e
F,SC : AI—A]:QSu : B.

LEMMA 18. — f ' F 4795 Aovu: A — B, thenl',x : At gr05 u : B.

PrROOF. — We havel' - 725 Azu : A — B, thenl',z : C F4r25 v : D and
V&(C — D) C (A — B) where¢ is not free inT. Therefore, by Lemmf L7,
F,l‘:Al—Ay:gsuiB. ]

THEOREM19. — If ' 4zos ¢t : Aandt —g t/, thenl' Fazag t' @ A.

ProoF. — It suffices to do the proof for one step of reduction. We pegt by
induction ont et we use Lemmds [16 apd 18. =
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3.3. Conservation of type by-reduction

THEOREM20. — If T' 425 ¢t : Aandt —, ¢/, thenl' k4725 t' : A.

PrROOF. — It suffices to do the proof for one stepgfreduction denoted,. We do
the proof by induction on. The only difficult case i$ = Azu, then two cases can
arise:

1)t = Azu’ whereu —,,, v’': We havel' 4725 Azu : A, thenD, z : B F 4725
u : C andVé(B — C) C A whereg is not free in[". By induction hypothesis,
we havel',x : B Fares v : C, and, by the rulgS2), T' b az2s Azu’ : A, i.e
I'Farast' : A

2)u = (t')x wherez is not free int’: We havel',x : B 4725 (¢)z : C, and
VE(B — C) C A where€is not freeinl’. ThenT,z : B b ars t' : E — F,
I,z : BFars x: EandVe’'F C C where¢’ is not free inl* and B. By Corollary
E, we obtairv¢” B C E where¢” is not free in[ and B. We haveB C B, then
B C V¢”B C E,andB C V¢'E. Using the rulegdist) and (—), we deduce
V¢'(E — F) CVE&'E — V&'F C B — C andVeve!(E — F) C VE(B — C).
Finally , we havel b gr25 t' : E — F, thenl' k- gx05 t' : VEVE'(E — F), and, by
the rule(¢r), we obtainl’ F_4z05 t' : A.

We will see that the systetd 725 is exactly.4AF2 in which one adds the conser-
vation of the type byj-reduction as a typing rule.

DEFINITION 21. — The typing systemd 72 is the systerdF2, in which we add
the following typing rule:

IfT I_A]-"Q»q t: Aandt —n tl, thenl "A]:gn A (77)

The typing rule|]) is derivable in the systetd 721.
THEOREM22. — If ' 472, t: AandA C B, thenl' - 472, ¢ : B.

PrROOF. — By induction on the proof oA C B. We consider the last rule used. The
only difficult case is(dist). We haveA = V¢(C' — D) andB = V(C — VED. If
Iz : VEC Fara t : VE(C — D), thenl,z : VEC Fara ¢t : C — D andl, z :
VEC b ar2 (t)x : D. Sincet is not free inl", we obtainl’, x : VEC' b 4x2 (¢)x : VED
andl’ 472 Az(t)x : VEC — VED. Sincerz(t)r —, t, we deduc&' 472t : B. m

We can then deduce the following result:
THEOREM23. —TI'F st Aiff T qr0, t 1 A
PROOF. — By Theoremg§ 30 4t 2. "

We can also state the following proposition:
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PROPOSITION24. — If " F 472, t : A, then there is a\-termwu such thatu —,, ¢
andl' - 472 u : A.

PrROOF. — By induction on the typing' - 472, ¢ : A. ]

3.4. The strong normalization
NOTATION 25. — We writeu — g+ v if v is obtained fromu by at least one step of
[B-reduction denoted.

LEMMA 26. — Letu,t,v be-terms such that —,, t andt — 3, v. Thenthereisa
A-termw such thatu —z+ w andw —, v.

PROOF. — See [BAR 8H]. ]

LEMMA 27. — Letu,t be A-terms. Ifu is strongly normalizable, and —, t, then
t is also strongly normalizable.

PROOF. — If tis not strongly normalizable, then there is an infinite segeefs,-
reductions starting with. Sinceu —, ¢, then, by Lemm§ 26, we construct an infinite
sequence ofi,-reductions starting with. ]

THEOREM28. — If T' 405 t : A, thent is strongly normalizable.
PROOF. — By Propositior] 24, Theorefh 2 and Lemma 27. "

4. The complete types
DEFINITION 29. — We say that a closed typé is completein AF2S iff |A|; =
{t eAlt —3 t' andk 4725 t' : A}

We will give a class of complete types. We start by extendiregdorrection theo-
rem to systemd F2S.

LEMMA 30. — Let M be aAy-model ofE and! an interpretation ofE. If A C B,
then|A|M.J - |B|1\,{7].

PrROOF. — By induction on the derivatiod C B. ]
THEOREM 31 (THE GENERALIZED CORRECTION. — Let M be aA¢-model ofE
andI an interpretation. Il' = z1 : By,...,2, : By Faras t/ 1 A, t ~5 ¢/, and
u; € |Bi|M,I (1 <1< n), thent[ul/xl, .. .,un/l'n]]u,] S |A|M7].

PROOF. — We may assume thétis normal. The proof is done by induction on the
typing oft’. We look at the last rule used.

(S1) Thent' = z; (1 < i < n)andVéB; C A wheref is not free inB; (1 <
i < n). Sincet ~g z;, thent =7 z; andt{ui/z1,...,un/zn] >¢ u;. But
u; € |Bilam,r, thentuy/xy, ... un/xy] € |Bi|a,r. Since€ is not free in
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B;, we deduce|uy/z1, ..., u,/z,] € VEB; and, by Lemmd 30, we obtain
tur/z1, .. un /2] € Al

(S2) Thent' = Xzu/, T,z : B b ares v’ : C andV€(B — C) C A wheref is
not free inB; (1 < i < n). Sincet ~g Azv/, thent =, Azu whereu ~3 v/’

andt[ui/x1, ..., un/Tn] =5 Azului/x1, ..., un/z,]. Therefore, by induction
hypothesis,

ulur/x1, ..., un/xn,v/x] € |Clag,r forallv € |B|as, ;. We have

Azuur /1, ... un/xp])v = wlur /1, . .., U /xn, v/x], then

Azufur /21, .. un/zy] € |B — Clagr, andt[us /z1,. .. un/x,] € [VE(B —
O)|ar,r- By Lemmd 3P, we dedudus /x1, ..., u,/x,] € [Alar 1.

(53) Thent’ = (u’)v’, I' Faras uw : B — C, T FAros v B andVSC Cc A
where¢ is not free inB; (1 < i < n). Butt ~g (x,)v]...v,,, thent =,
(xr)v1 ... vy Wherev; ~3 o) (1 < i < m), and, by induction hypothesis,
(up)vr[ur/z1, ooy un /@]« o Um—1[ur /@1, .. un/2n] € |B — Clprand
Um[ur/T1, ..., Un/xn] € | Bl 1. Therefore
(up)vr[ur/z1, .o un /@] - vmur /21, ..o un /2] € |Cla,r and
t[ul/xl, Ce ,un/xn] S |A|M7].

DEFINITION 32. — We define the types withositive quantifier(resp. negative
quantifier) denotedvy (resp.V; ) by:

— An atomic formula i3 andV; ;

—If AisVy (resp.¥y) and B is Y, (resp.Vy), thenB — AisV] (resp.vs);

—If AisV§ andx (resp.X) is a first order (respn-ary second-order) variable,
thenvVz A (resp.vX A) is V7 ;

—If AisV; andx is a first-order variable, theWz A isV, .

We will prove that the7] types are complete il F25.

DEFINITIONS 33. — Let) = {x;; 7 € N} be an enumeration of an infinite set of
variables ofA-calculus and{ 4, ; i € N} be an enumeration of, types ofAF2S,
where every/; type occurs an infinite number of times. We define thé&'set {z; :
A;; i € N}. Letu be ai-term such thatv(u) C 2, we define the contexfé, as
the restriction ofl"~ on the setF'v(u). The expressiof’~ + 47,5 u : B means that
I Farss u: B. We putl'~ s u: Biff there is a\-termu’ such thats — u’
andl'™ F 475 u' : B.

Let L be a second-order language aiitlan equation system df. We define on
the set of terms af an equivalence relation denotet; by: ¢ ~g b iff we can obtain
it by the following rules:

(i) if a = bis a particular case of an equation @&f, thena ~g b;

(ii) for every termsa, b, c of L, we haveia ~g a; and ifa ~g b andb ~g ¢, then
a g C,
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(iii) If f is m-ary function symbol of, and ifa; ~p b; (1 < i < n), then
f(ala"'aa’n.) ~E f(blvvbn)

The following lemma allows to generalize the r¢#.
LEMMA 34. — If T'F 42 u : Bla/z] anda ~g b, thenl' - 472 v : B[b/z].
PROOF. — By induction in the definition ok . [

DEerINITION 35. — We considerM, the set of all closed terms df. We define a
particular A ;-modelM by:

— The domainM| = M,/ =~ (the set of equivalence classes modulg);
— The adequate s® ¢,

— To everyn-ary symbol functiory, we associate a functiofi : |M|* — | M|
defined byfapq(aq, ..., an) = f(a1,...,an);

— To everyn-ary predicate symbaP, we associate a functioRy : |[M|* — Ry
defined byPu((ar, ..., @) = {r € A; I Fipog 7: Plas, ..., a,)}.

It is easy to see thaty, and Py, are well defined.

DEerFINITION 36. — We define a particular interpretatiofi on the variables by:
I(x) =7 andZ(X) = @, where® : IM|* — R, defined by® (a7, ...,a,) = {7 €
AT Fi}-ﬁ 7: X (1, ,a0)}

We have the following lemma.

LEMMA 37. — Let S be a formula of. andr a A-term.
(i) If SisV4 andr €| S |m.z, thenl'™ Fo g 7 S.
(i) If SisVy andl"™ F g 7: S, thent €| S [z

PROOF. — By simultanous induction on the] andv, types.
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SuBPROOF(OF[)). —

1) S'is atomic: The result is trivial.

2) S = VXBwhereBisVj: LetY be ann-ary predicate variable which does
not appear in~ andB. If 7 € VX B|a 7, thent € [B[X]|pmz(x —|V|mz] =
|B[Y/X]|m z. By induction hypothesis, we have™ Fifzs 7 : B[Y], and there
is a-term 7’ such thatr —3 7" andI, Far.s 7' : B]Y]. SinceFu(r") C
Fo(r), we deducd, Faz.s 7' : VY B[Y] =VXB,andl'™ F ;¢ 7:S.

3)S =B — CwhereBisV, andCisVy: lett €| B — C |pm,z. We put
ani such thatB = A; andx; is not free inr. We haver; : B - 47> z; : B, then,
by (ii), z; €] B |m,z. therefore(r)z; €| C' |am,z, and, by induction hypothesis,
I~ Fopag (Nzi : C. Thus(r)z; —5 7' andl Faz.s 7' : C. We deduce that
(1)x; is normalizable, them is also normalizable. Sinde)z; —3 7/, we obtain
Az (T)z; —p AeyT’.

- If the normal form ofr is Azu, thenz;(7)z; —p Az;(Azu)z; —p

Azu and Az; 7" —g Azu. But I'™ Fag.s Axm 0 S and Fo(dzu) C

Fu(\z;7'), then, by Theorenj 19, we obtaifi~ F4r.s Azu : S, and

- LB .

I' FypeT: S,

- If not, let v the normal form ofr. We havez;(1)z; —p Az;(v)x;
andz; 7" —g Az;(v)x;. SinceFv(Ax;(v)z;) C Fu(iz;7"), we deduce that

'™ Faras Axi(v)z; : S. Then, by Theorerh 20 anlv(\z; (v)z;) = Fo(v),

we obtainl"~ 47,5 v : S. Thereforel'~ Fihs T:8S. .

SuBPROOF(OF[i)). —

1) S is atomic: The result is trivial.

2)S = B — CwhereBisV{ andCisVy: If '™ Fo. o 7: B — C,
then, there is a\-term 7’ such thatr —g 7" andl, Far.s 7 : B — C. |If
u € |B|a,z, then, by (),]~ F5 4. u : B, and there is a-term«’ such that
u—gu andl’, Far.s u' : B. ThereforeF(;,)u/ Farss (7' : C, and, since
(T)u —g (7')u/, we obtainl"~ Fifzs (t)u : C. By induction hypothesis, we
deducg7)u € |C|m z-

3) S = VzB whereB isV;: Leta € |M|; we havea = b whereb is a term
of L. If '~ 0 z,¢ 7 : VaB, then there is a-term 7’ such thatr —; 7’ and
I'", baF.s T : VaB, thereforel, - ar.s 7' : Blb/x]. But B[b/x]is V¥, , then,
by induction hypothesis’ € [B[b/x]|mz = |Bl g 7105 = |Blm zjz—a)- Thus
T € |B|pm,z[2—a) TOr eVeErya € |IM|.

O
[

THEOREM 38. — The closed/] types are complete.

PROOF. — Let A be a closed/s type. We will prove thatt € |A|; iff there is a
A-termt’ such that — g t' andk- 4725 ' : A.
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— That the condition is sufficient is a simple consequencenefen] 31.

— The condition is necessary: Indeed, dte al-term such that € |A|, then
t € |A|pm. We may assume thd,” = 0. By (i) of Lemma[3]7, we obtai™~ ¢
t : A, then there is a-termt’ such that —g t’ and I, Far.s t' : A. Since
Fu(t') C Fu(t), we deducd’,, = 0.

COROLLARY 39. — Let A be a closed/ type and: a \-term. Ift € |A|;, thent is
normalizable angi-equivalent to a closed-term.

PROOF. — By Theoren{ 38. .
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