
HAL Id: hal-00380717
https://hal.science/hal-00380717v1

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic web service robustness testing from WSDL
descriptions

Sébastien Salva, Issam Rabhi

To cite this version:
Sébastien Salva, Issam Rabhi. Automatic web service robustness testing from WSDL descriptions.
12th European Workshop on Dependable Computing, EWDC 2009, May 2009, Toulouse, France. 8
p. �hal-00380717�

https://hal.science/hal-00380717v1
https://hal.archives-ouvertes.fr

Automatic web service robustness testing from
WSDL descriptions∗

Sébastien Salva
LIMOS - UMR CNRS 6158

Université d’Auvergne, Campus des Cézeaux,
Aubière, France

Email: salva@iut.u-clermont1.fr

Issam Rabhi
LIMOS - UMR CNRS 6158

Université de Blaise Pascal, Campus des Cézeaux,
Aubière, France

Email: rissam@isima.fr

Abstract—Web Services fall under the so-called emerging
technologies category and are getting more and more used for
Internet applications or business transactions. Since web services
are used in large and heterogeneous applications, they need to be
reliable. So, we propose in this paper, a robustness testing method
which generates and executes test cases automatically from
WSDL descriptions. We analyze the web service observability
to find the relevant hazards which may be used for testing and
those which are always blocked by SOAP processors. We show
that few hazards can be really handled. By reducing them, we
reduce the test cost too. We improve the robustness issue detection
by separating the SOAP processor behavior from the web service
one. With an academic tool, we show that many web services have
robustness issues and that our method is able to detect them.

Key-words: robustness testing, web services, test framework

I. INTRODUCTION

The web service paradigm is now well established in
companies for developing business applications. These self-
contained components may be used to provide interoperability
between heterogeneous applications, to externalize functional
code in a standardized way, or to compose choreography
and orchestration processes. Interoperability is ensured by
standards proposed by the W3C and the WS-I consortiums.
Especially, the WS-I basic profile gathers the SOAP protocol,
which models how invoking a web service with XML mes-
sages, and the WSDL language, which is used to describe web
service interfaces.

Web services are often the foundation of large and complex
applications. So, to finally produce reliable ones, software
development companies follow software quality processes like
the CMMI process (Capability Maturity Model Integration).
And, of course, to ensure reliability, such quality processes are
composed of testing activities. Testing web service conformity
is required, but we believe that it is not sufficient. Indeed,
web services are distributed in nature, and can be used by
different and heterogeneous client applications. So, they need
to behave correctly despite the receipt of unspecified events,
called hazards. In other words, they need to be robust.

Many web services are currently proposed in UDDI regis-
ters. For most of them, specifications or any information about
their internal structures, are not given. So, keeping in mind

∗This Research is supported in part by the French National Agency of
Research within the WebMov Project http://webmov.lri.fr.

these features, the aim of this paper is to test the web service
robustness without specification, i.e by using only their WSDL
descriptions. Web services are seen here like black boxes from
which only requests and responses are observable.

The crucial issue, with black box web service testing, con-
cerns the lack of observability. To respect the WS-I standards,
they are inserted into several layers (HTTP, SOAP, client
layers,...). Any message which is usually directly observable,
like a classical response or a failure, is encapsulated (or not)
and spread to the client over SOAP. For instance, according to
the SOAP 1.2 protocol, exceptions, in object oriented program-
ming, ought to translated into XML elements called SOAP
faults. But this feature needs to be specified and implemented
by hand in web services.

Consequently, we begin to analyze the web service observ-
ability over hazards to determine what kind of hazards are
relevant for testing. And we show that only few hazards are
really interesting because most of them are blocked by SOAP
processors and are not given to the web service itself. This
analysis reduces the number of hazards used for testing, thus
decreases the test case number and thus the test cost too.
From this analysis, we describe an automatic robustness testing
method whose the main purposes are to be mere, rapid and
automatic. First, it checks if each operation described in the
WSDL file exists and handles the correct value types. Then,
the method tests the robustness of each operation by using a
set of predefined values as hazards. We have implemented this
method in an academic tool which has been used randomly
on some web services deployed on Internet. Our results reveal
that most of them have robustness issues.

This paper is structured as follows: section II provides an
overview of the web service paradigm. We give some related
works about web service testing and the motivations of our
approach. Section III analyzes the web service robustness over
the SOAP layer. Section IV describes the testing method:
we detail the test case generation and a testing framework.
Finally, section V gives some results, some perspectives and
conclusions.

II. WEB SERVICE OVERVIEW

A. Web service

Web services are "self contained, self-describing modular
applications that can be published, located, and invoked across
the web" [1]. To ensure and improve web service interoperabil-
ity, the WS-I organization has proposed profiles, and especially
the WS-I basic profile [2], composed of four major axes:

• the web service description models how to invoke a ser-
vice set, called endpoints, and defines their interfaces and
their parameter/response types. This description, called
WSDL (Web Services Description Language) file [3],
shows how messages must be structured by describing
the complex types used within. WSDL is often used in
combination with SOAP,

• the definition and the construction of XML messages,
based on the Simple Object Access Protocol (SOAP)
[4]. SOAP is used to invoke service operations (object
methods) over a network by serializing/deserializing data
(parameter operation and responses). SOAP takes place
over different transport layers: HTTP is which mainly
used for synchronous web service calls, or SMTP which
is often used for asynchronous calls,

• the discovery of the service in UDDI registers. Web
service descriptions are gathered into UDDI (Universal
Description, Discovery Integration [5]) registers, which
can be consulted manually or automatically by using
dedicated APIs to find dynamically specific web services,

• the service security, which is obtained by using the
HTTPS protocol or XML encryption.

In this paper, we consider black box web services, from
which we can only observe SOAP messages. Other messages,
as database connections and the web service internal code
are unknown. The only available details are the web service
interfaces, given in WSDL files. So, the web service definition,
given below, describes the available operations, the parameter
and response types. We also use the notion of SOAP fault. As
defined in the SOAP v1.2 protocol [4], a SOAP fault is used
to warn the client that an error has occurred. A SOAP fault
is composed of a fault code, of a message, of a cause, and
of XML elements gathering the parameters and more details
about the error. Typically, a SOAP fault is obtained, in object-
oriented programming, after the raise of an exception by the
web service. SOAP faults are not described in WSDL files.

Definition II.1 A web service WS is a component which can
be called with a set of operations OP (WS) = {op1, ..., opk},
with opi defined by (resp1, ..., respn) = opi(param1, ...,
paramm), where (param1, ..., paramm) is the parameter type
list and (resp1, ..., respn) is the response type list.

For an operation op, we define P (op) the set of
parameter value lists that op can handle, P (op) =
{(p1, ..., pm) | pi is a value whose type is parami}. The set
of response lists, denoted R(op), is expressed with R(op) =
{(r1, ..., rn) | rj is a value whose the type is respj} ∪ {r |

r is a SOAP fault} ∪ {ε}. ε models an empty response (or no
response).

The operation op corresponds to a Relation op : P (op) →
R(op). We denote an invocation of this operation with r =
op(p) with r ∈ R(op) and p ∈ P (op).

Note that some operations may be called without parameter
and/or do not return any response. With or without parameter,
an operation is always called with a SOAP message. However,
when there is no response, no SOAP message is sent to the
client.

The parameter types are simple (integer, float, String...)
or complex (trees, tabular, objects composed of simple and
complex types...) and each one is either finite (integer...) or
infinite (String...). The response types are either simple, or
complex or may be a SOAP fault.

A web service example is illustrated in figure 1 with UML
sequence diagrams. This one has two available operations:
"getPerson" which returns a Person object by giving a "String"
and the operation "divide" which returns the integer result
of a division. The WSDL description of the "getPerson"
operation is given in figure 3. This one provides the exchanged
message format. For a request, the message is composed
of two elements "getPerson" and a "String". The response
message is composed of two elements "getPersonResponse"
and a Person objet. The Java code of the "getPerson" operation
(figure 2), shows that two exceptions can be raised (Class-
NotFoundException and SQLException), so that two different
SOAP faults can be received after a "getPerson" invocation.

i n t

d i v ide (in t , i n t)

c l i e n t S e r v i c e

P e r s o n p

g e t P e r s o n (S t r i n g)

P e r s o n

+ g e t _ n a m e () : S t r i n g

+ g e t _ l o c a t i o n () : S t r i n g

+ g e t _ a g e () : i n t

c l i e n t S e r v i c e

Fig. 1. Web service UML specification

B. Related work on web service testing
Some papers on web service testing have been proposed in

[6-14]. Some of them consider compositions, where compo-
nents are web services. System specifications, often expressed

2

Person getPerson(String name) {
try{

p=new Persistent_Layer();
Person pers=p.getperson(name);
}

catch (ClassNotFoundException e)
{throw new RemoteException("no
Database driver found");}

catch (SQLException e)
{throw new RemoteException("SQL
error");}

return pers;

Fig. 2. The "getPerson" operation code

<types> <schema>
<element name="Person">
...
</element>
<element name="getPerson">
<complexType>
<sequence>

<element name="x" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getPersonResponse">
<complexType>
<sequence>

<element name="y" type="Person"/>
</sequence>
</complexType>
</element>
</element>

</schema> </types> <message name=
"getPersonRequest">
<part name="parameters" element=
"getPerson"/>

</message> <message name=
"getPersonResponse">
<part name="parameters" element=
"getPersonResponse"/>

</message>

Fig. 3. WSDL description of the "getPerson" operation

by the UML or the BPEL languages describe the global system
functioning by showing the possible interactions between the
services. In [6], the BPEL specification is translated into the
PROMELA language in order to be used by the SPIN model
checking tool. In [7], the authors use BPEL specifications,
describing web service compositions. Specifications are trans-
lated into Petri nets, then classical Petri net tools are used to
study verification, testing coverage and test case generation. In
[8], the system is represented by a Task Precedence Graph and
the behavior of the composed components is represented by a
Timed Labeled Transition System. Test cases are generated
from these graphs and are executed by using a specific
framework over SOAP. In [9], the BPEL specification is
translated into an IF model, which enables modeling of timing
constraints. Test case generation is based on simulation where
the exploration is guided by test purposes.

Other works, about conformance, robustness and
interoperability tests, focus on web services seen as black
boxes. In [10], web service robustness is tested by performing
mutations on the request messages and by analyzing the
obtained responses. In [11], the specification describes some
successive calls of different operations which belong to the
same web service. The specification is translated into the
LTS model and test cases are generated according to the
ioco implementation relation [12]. In [13], web services are
automatically tested by using only the WDSL description.
Test cases are generated for two perspectives: test data
generation (analysis of the message data types) and test
operation generation (operation dependency analysis). In [14],
the authors test the interoperability between web services.
They propose to augment the WSDL description with a
UML2.0 Protocol State Machine (PSM) diagram which
models the possible interactions between the service and
a client. Test cases are then generated from the PSM. A
framework, called the "Audition framework", is proposed for
executing these test cases in [15]. The authors of [16] propose
a method to test automatically web service robustness. From
a WSDL description, the method uses the Axis 2 framework
to generate a class composed of methods allowing to call
service operations. Then, test cases are generated with the
tool Jcrasher, from the previous class. Finally, the tool
Junit is used to execute test cases. In [17], fault injection
techniques are employed to create diverse fault-trigging test
cases in order to display possible robustness problems in the
web-services code. The method in [18] discuss a technique
of Web Services performance assessment taking out of the
network delays. The main focus in [19], is on analyzing
exception propagation and performance as the major factors
affecting fault tolerance. In [20], the authors show how to use
WS-FIT package to detect a problem in a web service based
system. Their methods are used into, Compile-Time Injection
(is an injection into the source code) and runtime injection.

As in [13], we check if each web service operation described
in the WSDL file, exists, that is if each can be called with
the parameter types given in the WSDL file and returns the
good response types. We also analyze the web service behavior
to determine that the only hazard which is not blocked by
SOAP processors is the operation call with unusual values.
The methods in [10], [16] use other hazards which are finally
not relevant. The use of Axis in [16] adds a client layer with
reduces the web service observability, this is why we have
made our own testing platform which generates test cases
and executes them. If fact, the method in [16] does not test
directly web services but rather client methods which call web
services. Our platform directly calls web service operations
and analyzes the SOAP responses, and especially the SOAP
faults. Indeed, it can detect another robustness problem which
occurs when the exception management (error recovery) is
not implemented by the web service itself but managed by
the SOAP processor (the SOAP fault cause is different to
"RemoteException").

3

III. WEB SERVICE ROBUSTNESS STUDY

Web services can be invoked only through a SOAP layer.
This one reduces observability. So, we study, in this section,
the web service robustness and the kind of hazards which can
be really used for testing.

As in the WS-I basic profile, we consider that a receiver
in a web server is software that consumes a message (SOAP
processor + web service). The SOAP processor is often a part
of the a more complete framework like Apache Axis or Sun
Metro JAXWS.

A. Web service Robustness and exception management

We suppose that a black box web service is robust if
and only if its operations are robust. An operation is robust
when this one does not hang or crash when it is invoked
with hazards. Since web service are in a SOAP environment,
when we call an operation, we call in fact the couple (SOAP
processor, web service) and we obtain a response from it. We
have observed that SOAP processors may affect the test result
by improving the robustness. This improvement is observed
when it returns a SOAP fault if the operation crashes. By
observing this response, we conclude that the operation is
robust despite it crashed. Some SOAP processors generate
SOAP faults in some cases, other don’t. So, we need to
separate the SOAP processor behavior to the web service one.

The WS-I basic profile gives the required informations to
differentiate the SOAP faults generated by SOAP processors
from the SOAP faults constructed by web services. Indeed,
when a exception is raised, the web service ought to generate
itself a SOAP fault. In this case, the SOAP fault cause is
always equal to "Remote Exception". Otherwise, SOAP faults
are generated by SOAP processors. So, we can define a robust
web service by:

Definition III.1 A web service WS is robust if for each
(resp1, ..., respn) = op(param1, ..., paramm) ∈ OP (WS),
op is robust, i.e ∀v ∈ P (op), r = op(v) with:

• r = (r1, ..., rn) such as ri = respi,
• or r is a SOAP fault composed of the cause "RemoteEx-

ception".

To express this issue, consider the "divide" operation codes
of figures 4, 5. When, we wish to divide an integer by 0, we
observe different responses.

In figure 4, there is no exception in the "divide" operation.
When a division by 0 occurs, the web service behavior may
differ according to the web service framework used (Axis 1,
Axis 2, JAXRPC or JAXWS libraries). On the one hand, the
web service crashes without returning any result. A robustness
issue is then detected. On the other hand, with other frame-
works, the web service crashes but the SOAP processor returns
a SOAP fault composed of the "divide / 0" message and of
the cause "java.lang.ArithmeticException", which corresponds
to the raised exception in the server side. In this case, the
client receives a SOAP fault, but this is not thanks to the web

service. Since the cause is not "Remote Exception" we detect
that the operation is not robust.

The web service code of figure 5 describes a good excep-
tion management. When the exception is raised in the web
service, this one spreads until the client thanks to the piece
of code "throw new RemoteException("error divide"+x+"
by "+y). This one produces one SOAP fault, composed of
the message "error divide"+x+" by "+y and of the cause
java.rmi.RemoteException. Here, the operation has itself man-
aged the exception and is robust.

Class Service { public int divide(int x, int y) {
return (x/y); }

}

Fig. 4. Example I

Class Service { public int divide (int x, int y)
throws RemoteException {

try{
int result=x/y; return result;}

catch (Exception e) {
throw new RemoteException(
"error divide"+x+" by "+y); }

}

Fig. 5. Example II

B. Analysis of black box web service behavior with hazards

Analyzing the web service behavior with the presence of
hazards offers the advantage to know the hazards which are
really given to the service and those which are blocked by
SOAP processors. The blocked hazards are unnecessary for
robustness testing since the service is not tested. Using only
the hazards which test the service enables to reduce the test
case number and the test cost.

For a web service operation (resp1, ..., respn) = op(
param1, ..., paramm), we have analyzed the following haz-
ards. Note that the WS-I basic profile does not permit opera-
tion overloading. So, overloading is not dealt with here.

• Replacing parameter types: one or more parameter
types in (param1, ..., paramm) are replaced by other
types. With this hazard, we always obtain a SOAP fault
composed of the cause "Client". This means that the given
parameter values are incorrect and that the invocation is
blocked by the SOAP processor. So, this hazard is not
relevant for testing the web service robustness,

• Adding/injecting parameter types: adding parameter
types in the beginning of the request or between existing
parameters is equivalent to replacing parameter types. So,
as we have seen previously, this hazard is blocked. When,
we call an operation by adding parameters at the end
of the existing ones with op(p1, ..., pm, pm+1, ..., pm+k),
the values pm+1, ..., pm+k are not read by the SOAP
processor. So, these ones are not given to the web service
and are useless too. Therefore, this hazard is not relevant,

4

• Deleting parameter types: as previously, deleting pa-
rameters in the beginning or between existing parame-
ters is comparable to replacing parameter types and is
not relevant. When, we call an operation while delet-
ing parameters at the end of the existing ones with
op(p1, ..., pk), (k < m), we obtain two kind of responses
according the WSDL description. If the option "nill-
able=true" is used in the WSDL file, this is equivalent
to call op with null values (p1, ..., pk, null, ...null). We
consider that a "null" value is an unusual one (see below).
Otherwise, the SOAP processor returns a SOAP fault
composed of the cause "Client" which means that the
invocation is blocked. Thereby, either this hazard is com-
parable to Calling with unusual values or is unnecessary,

• Inverting parameter types: this hazard is comparable to
Replacing parameter types and is unnecessary for testing,

• Calling with unusual values: this hazard, well-known in
software testing [21], aims to call op with a type of values
(p1, ..., pm) ∈ P (op), such as each parameter pi has the
type parami. But these predefined values are unusual.
For instance, null, "", "$", "*" are some unusual "string"
values. These ones are accepted by the SOAP processor
and given to the web service since they satisfy the WSDL
description. Thus, these unusual values can be used for
web service robustness testing.

It exists of course other hazards on the SOAP messages,
such as replacing the operation name, the port, modifying
randomly the SOAP message. These hazards are usually used
for testing web service compositions in order to observe
partner behaviors. These ones are not interesting for testing
only one web service. Indeed, when these hazards are injected
in SOAP messages, either the test is then performed on another
operation, or the SOAP processor returns that the operation or
the service does not exist. Since we test all the operations and
not the interoperability between several components, we do
not need these hazards.

Consequently, the most relevant hazard for testing black box
web services is "Calling web service operations with unusual
values" since this hazard is the only one which is really given
to operations. And this is the one which will be used in our
approach.

IV. AUTOMATIC WEB SERVICE ROBUSTNESS TESTING

For a web service WS, our method aims at testing these
two features:

• Existence of all service operations: for each operation
resp = op(param1, ..., paramm) ∈ OP (WS), we
construct test cases to check whether the implemented
operation corresponds to its description in the WSDL
file. So, test cases call the operation op with several
values (p1, ..., pm) ∈ P (op). op exists if op returns
a response r. On the one hand, r may be a classical
response (r1, ..., rn) such as the type of each value ri

corresponds to respi with resp = (resp1, ..., respn). On
the other hand, r may be a SOAP fault where the cause
is different from "Client" and "the endpoint reference not

found". This first cause means the operation is called with
bad parameter types. The second cause means that the
operation name does not exist. Otherwise, op does not
exist as described in the WSDL file,

• robustness of all web service operations: for each op-
eration resp = op(param1, ..., paramm) ∈ OP (WS),
we construct test cases to check if op does not crash or
hang by calling it with hazards. According to our analysis
of section III-B, the most relevant hazard corresponds to
the call of op with unusual values (p1, ..., pm) ∈ P (op)
where pi has the type parami. So, we construct test
cases with such unusual values. By executing them,
either op should return a "classical" response, or op
should return a SOAP fault whose the cause is equal to
"RemoteException". We consider that the web service is
not robust if no response is observed or if another kind
of SOAP fault, constructed by the SOAP processor, is
received.

To test these properties, we need to set an hypothesis on
web services. We suppose that web service operations return
no empty responses. Indeed, without response that is without
observable data, we cannot conclude whether the operation is
faulty or correct. So, if an operation does not return a response,
we consider that it is faulty.

Web service observable operation hypothesis: We suppose
that each web service operation, described in WSDL files,
returns a non empty response.

In the following, we present the test case generation in
section IV-A, our testing framework and the test case execution
in section IV-B.

A. Test case generation
Prior to describe the test case generation, we define a test

case by:

Definition IV.1 Let WS be a web service and (resp1, ...
, respn) = op(param1, ..., paramm) ∈ OP (WS) an opera-
tion of WS. A test case T is a tree composed of nodes n0, ...,
nm where n0 is the root node and each end node is labeled by
a local verdict in {pass, inconclusive, fail}. The branch tree
are labeled either by op_call(v) or by op_return(r) where

• v ∈ P (op), is a list of parameter values used to invoke op,
• r = (c, soap_fault) is a SOAP fault composed of the

cause c or r = (r1, ...rm) is a list of responses where
rj = (vj , tj) with vj a value and tj the type of vj . We also
denote ∗ any response value. (∗, t) is a response whose the
type is t.

For instance, n0
getperson_call(”12345”)−−−−−−−−−−−−−−−→ n1

getperson_return((”∗”,String))−−−−−−−−−−−−−−−−−−−−→ pass is a test case which in-
vokes the getperson operation with the parameter "12345".
The response must be a String value.

Test case generation is illustrated in figure 6. We parse the
web service WSDL file to list the available operations. Then,
we use a predefined set of values V to generate test cases. This
set contains for each type, an XML list of values that we use

5

W S D L

d e s c r i p t i o n

ope ra t i on l i s t
p a r s i n g

V

se t o f spec i f i c

v a l u e s

T e s t c a s e

g e n e r a t i o n

T e s t c a s e s e t

T C

Fig. 6. Test case generation

for calling operations. Theses values have been chosen after
the web service response analysis of section III-B in order to:

• obtain responses, whose types are described in the WSDL
file, for checking that the operations exist,

• send an hazard. We have chosen, as hazards, the unusual
values used in software robustness testing [21] which are
assumed to have a high bug-revealing rate when used as
inputs.

We denote V (t) the set of specific values for the type t
which can be a simple type or a complex one. Figures 8,
7 and 9 show some values used for the type "Int", "String"
and for "tabular of "simple-type". For a tabular composed of
String elements, we use the empty tabular, tabulars with empty
elements and tabulars of String constructed with V (String).

<type id="Int">
<val value=null />
<val value="0" />
<val value="-1" />
<val value="1" />
<val value="MIN" />
<val value="MAX" />
<val value=RANDOM" /> <!-- a random
Int-->

</type>

Fig. 7. V(Int)

<type id="String">
<val value=null />
<val value="" />
<val value=" " />
<val value="$" />
<val value="*" />
<val value="&" />

<val value="hello" />
<val value=RANDOM" /> <!-- a random
String-->
<val value=RANDOM(8096)" />

</type>

Fig. 8. V(String)

<type id="tabular">
<val value=null /><!-- an empty
tabular-->
<val value= null null /><!--tabular
composed of two empty elts-->
<val value= simple-type />

</type>

Fig. 9. V(tabular)

For a web service WS, this method generates test cases
with the following steps:

1) We parse the WSDL description to obtain the list of
operations L = {op1, ...opl},

2) for each operation (resp1, ..., respn) = op(param1, ...
paramm) ∈ L, we construct, from the set V , the
tuple set V alue(op) = {(v1, ..., vm) ∈ V (param1) ×
...× V (paramm)}. If the parameter types are complex
(tabular, objet,...), we compose these complex types with
other ones to obtain the final values. We also use an
heuristic to estimate and eventually to reduce the number
of tests according the number of tuples in V alue(op),

3) for each operation (resp1, ..., respn) = op(param1, ...
paramm) ∈ L, we construct the test case set TC(op) :
TC(op) =

⋃

v∈V alue(op)

{n0.op_call(v).n1.op_return

(r1).pass, n0.op_call(v).n1.op_return(r2)
.pass, n0.op_call(v).n1.op_return(r3).inconclusive}
where r1 = (∗, t) with t = (resp1, ..., respn),
r2 = (c, soap_fault) cause="RemoteException",
r3 = (c, soap_fault) cause /∈ {"client",
"RemoteException", "the endpoint reference not found"}.
Any other branch corresponds to a fail case and is
finished by "fail",

4) and finally, the test case set TC =
⋃

op∈L

{TC(op)}.

For more readability, we express the fail cases (the test
case discovers a failure) with a dashed line in two separated
figures, one for the operation existence testing (figure 10) and
one for the robustness testing (figure 11). In TC, each tree
calls an operation with authorized parameter values according
to the WSDL description. If the response is not a SOAP
fault and if its type is the one described in the WSDL file,
the local verdict is "pass". If the response is a SOAP fault
whose the cause is equal to "RemoteException" then the
operation manages itself exceptions and the local verdict is
"pass". If the response is a SOAP fault whose the cause is
not in {"RemoteException","client", "the endpoint reference
not found"} then the operation exists but does not manage
exceptions. The operation crashes and a SOAP fault is returned
by the SOAP processor. So this operation is not robust. In this
case, the local verdict is "inconclusive". Otherwise, the local
verdict is "fail".

fa i l

o p _ c a l l (v)

o p _ r e t u r n (r)

r= (resp , t)

o p _ r e t u r n (r)

r = S O A P f a u l t

c a u s e = " c l i e n t "

o r

c a u s e = " t h e e n d p o i n t

r e f e r e n c e . . . n o t f o u n d "

p a s s fa i lp a s s

n o

r e s p o n s e

o p _ r e t u r n (r)

r = S O A P

fau l t

c a u s e =

" R e m o t e

E x c e p t i o n "

i n c o n c l u s i v e

o p _ r e t u r n (r)

r = S O A P f a u l t

c a u s e < > " c l i e n t " o r

c a u s e < > " t h e e n d p o i n t

r e f e r e n c e . . .

n o t f o u n d " o r

c a u s e < >

" R e m o t e

E x c e p t i o n "

Fig. 10. Test case schema for testing the operation existence

6

fa i l

o p _ c a l l (v)

o p _ r e t u r n (r)

r = S O A P

fau l t

c a u s e =

" R e m o t e

E x c e p t i o n "

o p _ r e t u r n (r)

r= (resp , t)

o p _ r e t u r n (r)

r = S O A P f a u l t

c a u s e < >

" R e m o t e

E x c e p t i o n "

p a s s fa i lp a s s

n o

r e s p o n s e

Fig. 11. Test case schema for testing robustness

B. Test case execution

Test cases are generated and executed with the testing
framework, illustrated in figure 12, which as been implemented
in an academic tool. The tester corresponds to a web service
which receives the URL of the web service to test. It constructs
test cases as described previously, and then calls successively
the web service operations to execute them. Once test cases
are executed, it analyzes the obtained responses and finally
gives a test verdict. A more complete report is also produced
to show the responses obtained after each call.

With this framework, we do not need of a specific test
platform where web services should be deployed. The web
service tester can call them on any accessible server.

W S t e s t e r W e b

S e r v i c e

C l i e n t

r e q u e s t s

r e s p o n s e s

v e r d i c t

+

r e p o r t

w e b s e r v i c e U R L

Fig. 12. Test architecture

To give the final verdict, the tester executes each test case by
traversing the test case tree: it successively calls an operation
with parameters and waits for a response while following the
corresponding branch. If a branch is completely executed, a
local verdict is obtained. Otherwise, the fail local verdict is
given. For a test case t, we denote the local verdict trace(t) ∈
{pass , fail , inconclusive}.

The final verdict is given by:

Definition IV.2 Let WS be a web service and TC be a
test case set. The verdict of the test over TC, denoted
V erdict(WS)/TC is

• pass, if for all t ∈ TC, trace(t) = pass. The pass verdict
means that all the WS operation exit and are robust,

• inconclusive, if it exists t ∈ TC such as trace(t) =
inconclusive, and it does not exists t′ ∈ TC such as
trace(t′) = fail. This verdict means that the web service
is not robust but all its operations exist.

• fail, if it exists t ∈ TC such as trace(t) = fail.

For instance, suppose that we wish to test the web service
of figure 1:

• for the getPerson operation whose the code is illustrated
in figure 2, the values of V (String) will produce either
a "String" response or a SOAP fault composed of the
"RemoteException" cause since exception are correctly
managed. So, this operation is robust,

• for the divide operation, the values used for testing are
in the set {(0, 0), (0,−1), (0, 1), ..., (RANDOM,
RANDOM)}. For the tuple (0,0), the code of figure 4
will return either no response or a SOAP fault composed
of the cause "Server" and of the message "divide/0".
This SOAP fault is constructed by the SOAP processor,
so this operation is not robust. And for the code of
figure 5, we obtain the SOAP fault composed by the
"RemoteException" cause which is constructed by the
operation itself. So, no robustness issue is detected in
this case.

V. CONCLUSION

The WS-I basic profile, which gathers the SOAP protocol
and the WSDL language among others, reduces the web
service observability. Few hazards are finally relevant for
testing their robustness since most of them (replacing a type,
inverting, adding deleting parameters) are blocked or deleted
by SOAP processors. Only unusual values whose type is
allowed by the WSDL description can be used. So, we have
proposed to test the web service robustness by using this
hazard only. This helps to reduce the test case number and
the test cost as well. We have also improved the robustness
issue detection by separating the SOAP processor behavior to
the web service one. This method can be used to test black
box web services or web services used in compositions.

We have successfully experimented this method randomly
on some already deployed web services and have detected
robustness issues for most of them. The obtained results are
given in figure 13. In most cases, operations do not catch
the triggered exceptions, and crash. This experimentation has
confirmed the following advantages:

• effectiveness: the use of the tool is quite easy since
the tester can test automatically most of web services
deployed over Internet with only the WSDL description
URL (of course those which does not use authentifica-
tion). Formally, the test coverage of our method is quite
simple: we check that after calling an operation with
hazards, this one does not "hang or crash". However,
the method can detect many problems, like operation
accessibility (operation does not exist, does not handle
the good parameters), exception management problems
(lack of "try...catch" code, SOAP faults not sent), and

7

ws operation number parameter number number of tests fail
s1 1 1 10 7
s2 1 1 10 9
s3 2 2,4 22 0
s4 2 1,1 20 4
s5 1 1 10 6
s6 1 1 10 0
s7 2 2,2 22 20
s8 2 1,2 22 11
s9 1 3 12 0
s10 1 3 12 12
s11 1 5 12 0
s12 1 1 9 9
s13 2 1,2 19 0
s14 2 3,3 20 13
s15 2 3,3 20 0
s16 4 1,6,5,2 40 40
s17 5 2,3,1,4,1 50 0

Fig. 13. Robustness testing results

observability problems (operations do not respond). This
method is also scalable since the predefined set of values
can be upgraded easily,

• test cost: the method is mere and does not perform
sequences of calls. So, the test cost depends only on the
number of predefined values used for testing. To reduce
the test case number, we have actually implemented an
heuristic while their generation. Consequently, testing one
web service with our tool takes some minutes.

However this experimentation has also revealed some draw-
backs:

• the set V of parameters used for testing has been im-
proved to detect more failures. But, it would be more
interesting to propose dynamic analyzes to construct the
most appropriate parameter list for each web service,

• to avoid the test case explosion, the list of parameters
on V are chosen randomly. A better solution would be
to choose these parameters according to the operation
description,

• we have supposed that the operations of the same web ser-
vice are independent. With dependent operations, the web
service creates sessions with clients, becomes persistent
in the web server and has different states during the ses-
sion. Our tool is still able to detect robustness problems,
but not all of them. For instance, if an operation checks
that a session exists before using parameter values, the
method cannot test it. So, we believe that a specification
like a UML state diagram is required.

We have also supposed that the messages sent and received
by web services are only SOAP messages. So, we have only
considered their interfaces provided by the WSDL descrip-
tions. This is true from the client side point of view. However,
services can be connected to other servers, like database ones.
These other messages are not currently considered in most
of web service testing methods and in this work. So, in
future works, we intend to consider web services not only
as black boxes but rather as grey boxes from which any kind

of messages could be observed.

REFERENCES

[1] D. Tidwell, “Web services, the web’s next revolution,” in IBM develop-
erWorks, November 2000.

[2] W.-I. organization, “Ws-i basic profile,” 2006, http://www.ws-
i.org/docs/charters/WSBasic_Profile_Charter2-1.pdf.

[3] W. W. W. Consortium, “Web services description language (wsdl),”
2001.

[4] ——, “Simple object access protocol v1.2 (soap),” June 2003.
[5] O. U. Specification, “Universal description, discovery and integration,”

2002, http://www.oasisopen.org/cover/uddi.html.
[6] J. García-Fanjul, J. Tuya, and C. de la Riva, “Generating test cases

specifications for compositions of web services,” in in Proceedings of
International Workshop on Web Services Modeling and Testing (WS-
MaTe2006), A. Bertolino and A. Polini, Eds., Palermo, Sicily, ITALY,
June 9th 2006, pp. 83–94.

[7] W.-L. Dong, H. Yu, and Y.-B. Zhang, “Testing bpel-based web service
composition using high-level petri nets,” edoc, vol. 0, pp. 441–444, 2006.

[8] A. Tarhini, H. Fouchal, and N. Mansour, “A simple approach for testing
web service based applications,” in 5th International Workshop IICS,
Paris, France, june 2005, pp. 134–146.

[9] M. Lallali, F. Zaidi, A. Cavalli, and I. Hwang, “Automatic timed test
case generation for web services composition,” Web Services, European
Conference on, vol. 0, pp. 53–62, 2008.

[10] J. Offutt and W. Xu, “Generating test cases for web services using data
perturbation,” in ACMSIGSOFT, S. E. Notes, Ed., vol. 29(5), 2004, pp.
1–10.

[11] L. Frantzen, J. Tretmans, and R. de Vries, “Towards model-based
testing of web services,” in in Proceedings of International Workshop
on Web Services Modeling and Testing (WS-MaTe2006), A. Bertolino
and A. Polini, Eds., Palermo, Sicily, ITALY, June 9th 2006, pp. 67–82.

[12] J. Tretmans, “Test generation with input, outputs, and repetitive quies-
cence,” Software - Concepts and Tools, vol. 17, pp. 103–120, 1996.

[13] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen, “Wsdl-based automatic test
case generation for web services testing,” in SOSE ’05: Proceedings
of the IEEE International Workshop. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 215–220.

[14] A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans, “Audition
of web services for testing conformance to open specified
protocols,” in Architecting Systems with Trustworthy Components,
ser. LNCS, R. Reussner, J. Stafford, and C. Szyperski, Eds.,
no. 3938. Springer-Verlag, 2006, pp. 1–25. [Online]. Available:
http://www.cs.ru.nl/ lf/publications/BFPT06.pdf

[15] A. Bertolino and A. Polini, “The audition framework for testing web
services interoperability.” in EUROMICRO-SEAA, 2005, pp. 134–142.

[16] E. Martin and T. Xie, “Automated test generation for
access control policies,” in Supplemental Proc. 17th IEEE
International Conference on Software Reliability Engineer-
ing (ISSRE 2006), November 2006. [Online]. Available:
http://www.csc.ncsu.edu/faculty/xie/publications/issre06-policytest.pdf

[17] M. Vieira, N. Laranjeiro, and H. Madeira, “Assessing robustness of web-
services infrastructures,” in In Proc. of the Int. Conf. On Dependable
Systems and Networks (DSN’2007).

[18] A. Gorbenko and al., “The threat of uncertainty in service-oriented
architecture,” in SERENE ’08: Proceedings of the 2008 RISE/EFTS Joint
International Workshop on Software Engineering for Resilient Systems.
ACM, 2008.

[19] A. Gorbenko and al, “Experimenting with exception propagation mech-
anisms in service-oriented architecture,” in WEH ’08: Proceedings of
the 4th international workshop on Exception handling. ACM, 2008.

[20] Looker, N., Munro, M., Xu, and J., “Ws-fit: A tool for dependability
analysis of web services,” in in Proceedings of the 28th Annual Inter-
national Computer Software and Applications Conference - Workshops
and Fast Abstracts - (COMPSAC’04). IEEE Computer Society Press,
Vol. 02., 2004.

[21] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek, “Automated robustness
testing of off-the-shelf software components,” in FTCS ’98: Proceedings
of the The Twenty-Eighth Annual International Symposium on Fault-
Tolerant Computing. Washington, DC, USA: IEEE Computer Society,
1998, p. 230.

8

