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ABSTRACTLN this paper, we present a propositional logic (called ndixegic) containing disjoint
copies of minimal, intuitionistic and classical logics. Yeve a completeness theorem for this
logic with respect to a Kripke semantics. We establish s@iaions between mixed logic and
minimal, intuitionistic and classical logics. We presenttee end a sequent calculus version for
this logic.

KEYWORDSpropositional logic, minimal logic, intuitionistic logjcclassical logic, mixed logic,
completeness theorem, Kripke semantics.

1. Introduction

Propositional intuitionistic and classical logics (abbated: PLI and PLC) are
built by adding absurdity rules to propositional minimagio (abbreviated PLM).
The best known formalization consists to adding the intnistic absurdity rule (from
the absurdity we can deduce all formulas) to PLM to obtain, Rbd to adding the
classical absurdity rule (a non false formula is true) to P(dviPLI) to obtain PLC.
With this kind of formalism there are some problems.

— A classical formula does not contain any information on sheallest logical
system in which it is derivable. To have this information,wast use the non effective
decision algorithms of PLM and PLI. But with these algorigme cannot know how
many times we used the absurdity rules and on which formulas.

Journal of Applied Non-Classical Logics.Volume 13*-12003.
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— A formula has several derivations and the formula doesemtiain informations
to find its “better” derivation. For example, if one takds= (X — Y) Vv (Y — X)),
we can prove this formula using the classical absurdityauld (i.e. we prove-—A).
And we can also prove it using the classical absurdity ruléhervariableY”. Indeed,
if Y is true, then we have (in PLMX — Y, and ifY is false, then we have (in PLI)
Y — X. The second derivation is nearer to the human reasoninghBareason we
want to call it “a good derivation” of the formula.

— Each of these three logics has a semantics and a completieesem. For
PLC it is the truth tables, for PLI it is the intuitionistic ke models and for PLM
it is the minimal Kripke models. If we look closely at the pfe@f the completeness
theorems, a great resemblance is seen. Why not study adllthgiss at the same time?
i.e. introduce a single semantics for these logics and ordygone completeness
theorem in order to deduce the completeness of each system.

We propose in this paper a partial solution to these prohl&vespresent a propo-
sitional logic (called mixed logic and abbreviated PML) taining three kinds of
variables: minimal variables indexed by, intuitionistic variables indexed byand
classical variables indexed lay We restrict the absurdity rules to the formulas con-
taining the corresponding variables. The main novelty afsystem is that minimal,
intuitionistic and classical logics appear as fragments.ifistance a proof of an intu-
itionistic formula may use classical lemmas without anyrieson. This approach is
radically different from the one that consists in changhmgrule of the game when we
want to change logic. Here there is only one logic which, delggg on its use, may
appear classical, intuitionistic or minimal. We introddioethe system PML a Kripke
semantics which is the superposition of minimal, intuitstic and classical seman-
tics. We show a completeness theorem which implies the catenpdss theorems of
systems PLM, PLI and PLC. We deduce from this theorem a vemyifgiant result
which is the following: “for a formulaA to be derivable in a logic, it is necessary
that the formula contains at least a variable which corradpdo this system”. We
were interested by labelling problems (we label variablesh i or ¢) for classical
formulas. We present decision algorithms for these problend we formally define
the concept of “good derivation” for a classical formula. Weo present a sequent
calculus version of this system. This presentation is cafterith what we already
know on sequent calculus: classical logic comes from theipiity to put several
formulas on the right.

This paper is an introduction to this domain and much questiemain open. For
example, the standard proofs of cut-elimination are nopaethto our system. This
comes primarily from impossibility of coding disjunction.

The idea to present only one system for different logics isawmnpletely new.
Indeed, J.Y. Girard presented ip [GIF 93] a single sequeltutss (denoted LU)
common to classical, intuitionistic and linear logics. Tilea of Girard is to use a
single variable set but different connectives which cqroesl to each fragment. Each
formula is given with a polarity: positive, neutral and nédga For each connective
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the rules depend on the polarity of the formulas. On the dthad the system LU has
a cut-elimination theorem and then the sub-formula prgpert

Finally, let us mention that J.-L. Krivine and K. Nour intnackd a second or-
der mixed logic in order to type storage and control opesatori-calculus (see
[NOU 04]). The theoretical properties of this system aredifficult to prove because
the only connectives are> andV. The presence of in system PML complicates our
study.

2. Thesystem PML

We present in this section the natural deduction versionropgsitional mixed
logic.

DEFINITIONS 1. —

(1) We suppose that we have three disjoint countable setsopbgitional vari-
ables: V,, = {Xm, Y, Zm, ...} the set ofminimal variablesV; = {X,,Y;, Z,, ...}
the set ofintuitionistic variablesV, = {X,, Y, Z., ...} the set ofclassical variables
and a special constant denoted

(2) Theformulasare defined by induction. Each elemenfof& V,,, UV, UV U{ L}
is a formula. And ifA4,B are formulas, theml A B, AV B and A — B are formulas.
We denotenA = A — 1.

(3) If A is a formula, we denote byar(A) the set of variables ofi. A classical
formula(resp. anintuitionistic formulg is a formulaA such thatar(A) C V. (resp.
var(A) C V; UV,). We allow the use of classical variables to build intuifiit
formulas because the intuitionistic absurdity rule is aatile in classical logic.

(4) Asimple sequens an expression of the forfh+ A wherel'U{ A} is afinite set
of formulas. A derivatiorD may be constructed according to one of the rules below.

A
o) T4 W) FBra
T''FA Tob Ay ' AL A Ay

(/\I) I',ToF Ay A Ay (/\E) T'F A
(\/) ' A; (\/ )F1FA1VA2 FQ,AlFB F37A2|7B

I ' AV A E I, T2, T3+ B
( ) F,All—Ag ( )F1I—A1—>A2 F2|—A1

I FFA1—>A2 B 1—‘l17I‘2F142

I'L A is an intuitionistic formula

(L) TFA

(L) I'—--A Ais a classical formula
€ 'A
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The rules given above determine the natural deductionsysibbreviatedPML.
If D is a derivation ending with a simple sequént A, then we writel -,,,,; A.

EXAMPLE 2. —
a)Fpm; Xe VX

X FX.
XoF XoV—Xe —(XoV—Xo) F (X, V =Xo)
X, (X V—Xo) FL
ﬁ(XC V ﬁXc) =X
(X VX0 F Xo VX, (X V Xo) F (X, V —X.)
(X VX FL
F (X, v —X.)
F X,V X,
b) Fp?TLl (Xm - Xc) vV (Xc — X,L)

X Xe ~XcF-Xe

X - X KXo, Xe b L
Xe, X H Xe Xe, 7 X F X,
X F Xm — Xe X EXe = X;

FXeVXe Xk (X — Xo)V(Xe = Xi) —Xeb (Xon — X))V (Xe — X5)
F (Xm - Xc) V (Xc — XL)
C) Fpmi (Xe — X V Xi) — (X V (X — X;)) (left to the readers).

REMARK 3. — Note that the indices of variables used in the derivadnimfilas give
some ideas on their derivations. For the form}g,, — X.) v (X, — X;), the
classical absurdity rule is used on the variakileand the intuitionistic absurdity rule
is used on the variabl¥;.

DEFINITION 4. — Let A, F be formulas andX € P. The formulaA[F/X] repre-
sents the result of substitution Bfto each occurrence of.

We have the following result.

THEOREM5. — LetT"' U {A, F'} be a set of formulasX,,, a minimal variable, X
an intuitionistic variable X . a classical variableF; an intuitionistic formula, and,.
a classical formula. " k., A, thenT'[F/X,,] Fpmi A[F/Xm) TIFi/X5] Fpou
A[F;/X;) andT'[F./ X ] Fpmi A[Fe/X].

ProoF. — By induction on the proof of +,,; A. [

3. A semanticsfor PML

Now we are ready for a definition of Kripke semantics for PML.

DEFINITION 6. — A mixed Kripke models a triple X = (K, <,k ), where(K, <)
is an inhabited, partially ordered set (poset), ahkda binary relation onK x P such
that:
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1) Forall x € P, if alt-x andg > «, thengh-x.
2) If at+ L, then, for all classical or intuitionistic variabl&,, at- X .
3) If - X, and,a &~ L, thenforeachs € K: g+ X..

The relationtt- is then extended to logically compound formulas by the viotig
clauses:

—af-A A B iff o+ A andalt- B.
—al- AV B iff att-A or alt- B.
—ao-A — Biffforall 3> «, if gf A, thengi- B.

LeEmMA 7. — For all formulas we have monotonicity: for all, 5 € K (oA and
8 > aimpliesght- A).

PrROOF. — By formula induction. ]

DEFINITION 8. — A formulaA is valid in a mixed Kripke model = (K, <, i) iff
forall a € K, aft- A; notation = A. If T' is a set of formulas, we say thBt- A iff
in each mixed modd&l such that: if for all B € T", K- B, then alsofCt A.

REMARK 9. — To check ifi- A it is enough to limit/C to the variables ofl.
We have the following lemmas.

LEMMA 10. — Let A be an intuitionistic formula and a mixed Kripke model. We
havelt |1 — A.

PrROOF. — By induction on the complexity ofl. ]

LEMMA 11. — Let A be a classical formula ani a mixed Kripke model. We have
Kit—-—-4 — A.

PrROOF. — We first prove, by induction, that B is a classical formula; € K and
O B, then, for eachy € K, v B. Leta € K such thailt-—-—A. We may assume
a A L. Thereforew A~—A and thus there i$ > « such thatg- A. We deduce
al- A. [

We can deduce the soundness theorem for PML.
THEOREM12. — LetI' U {A} be a set of formulas. F F,,,,; A, then'#- A.

PrOOF. — The proof is by induction on derivation &ft-,,,,; A and we use Lemmas
g4 and1]1. "

We present now a completeness proof for PML.
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DEFINITION 13. — A set of formulag) is said to besaturatedff: if A t-,,,; C'Vv D,
thenC € Aor D € A.

REMARK 14. — A saturated set of formulas is closed by deduction. Indeed, if
A Fpmi B, thenA b, BV B, thusB € A.

LEMMA 15. — If T I/, A, then there is a saturated sBt, such thafl® C I',, and
Fw |71pml A.

PROOF. — Same proof as the corresponding lemma in intuitionistigd [[DAV 01,

DAL 94]. n
DEFINITION 16. — LetI'y be any saturated set of formulas. Then we define

(K, C,H) such that = {A ] A saturated sets anHl, C A}, and, for eachy € P:
Al iff x € A.

LEMMA 17. — K is a mixed Kripke model.
PROOF. — We must prove the three needed conditions:

1) Trivial.

2) If A= L, thenA Fppy L, thusA by X andA by X, e AR X; and
Al X,.

3) Let A-X., A A L, andA’ M4 L. We havely Fp, X V =X, then
To Fpmi Xe 0r Do Fpmy = X,. Sincelly C A andIly C A/, we havel'of- X, and
A'l-X..

|
LEMMA 18. — For all A € K and each formulaB, A+ B iff B € A.

PROOF. — By induction on the complexity aB. ]
THEOREM19. — LetI' U {A} be a set of formulas. Fi- A, thenI t-,,,,; A.
PrROOF. — Supposd” t,mi A, and letl'y be a saturated extension Bfsuch that

A ¢ Ty. By the last construction there is a mixed Kripke molet (K, C,#) and
a € K such that for allB: aft- B iff B € TI'y. In particular,att- B for B € T' and
a f~A. Hencel' f-A. [

We also have the following results.
THEOREM20. —

1) The syster®ML has the finite mixed Kripke model property.
2) The systerPML is decidable.

PROOF. — Same proof as the corresponding result in intuitionistaic [DAV 01,
DAL 94]. "
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4, Propertiesof PML

In this section we prove the principal result of the papere(d?emﬂs anﬂ?):
“To be derivable in the system using only classical (requitionistic, minimal) rules
a mixed formula must contain at least a classical (respitiotustic, minimal) vari-
able”. This result is easily shown if the system PML has souiefsrmula property.
However usually such a property is a direct consequenceeafutrelimination theo-
rem which is difficult to show here because we cannot codeitjertttive formulas
(indeed the formulas(-AA—B) — AV B is not derivable) and eliminate the classical
cuts.

DEFINITION 21. —

(1) Anintuitionistic mixed Kripke mode{resp. aminimal mixed Kripke modglis
amixed Kripke model restricted on the formulas built on tief%,) = V,,, UV; U{ L}
(resp. the formulas built on the sBY,,y = V,,, U {L}).

(2) We writel" ;) Aif I' = A is derivable without using the rulel.) and
['F(ny Aif ' = Als derivable without using the rulds_;) and (L.).

We have the following results:
THEOREM22. —

1) LetI' U {A} be a set of formulas without classical variabld$|-; A iff for
all intuitionistic mixed Kripke mode{: Ci-T" impliesCH- A.

2) LetI’ U { A} be a set of formulas without classical and intuitionisticiaales.
I I=(,) A iff for all minimal mixed Kripke modeC: KCi-T" implies/Ci-A.

PROOF. — In the proof of Theorerp 19, we use the derivation rules twgiemma
3. "

DEFINITION 23. — For each mixed Kripke modé&l we define the intuitionistic (resp.
the minimal) mixed Kripke moddl;, (resp.X,,)) as beingk restricted on the set
Py (resp.Pq.y,)). By definition, it is clear that each intuitionistic mixedipke model
(resp. minimal mixed Kripke model) can be seen & a (resp. ak’,,)) for a mixed
Kripke modelK.

LEMMA 24. —

1) LetA be a formula without classical variables. We ha¥e A iff IC(;) it A.

2) Let A be a formula without classical and intuitionistic variable We have
ICH= Aiff K = A

PrROOF. — By induction on the complexity ofl. ]
The following theorem is now an easy corollary.
THEOREM25. —

1) LetT' U{ A} be a set of formulas without classical variables. We Have,,,; A
iff ' ;) A.
(4)
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2) LetI’ U { A} be a set of formulas without classical and intuitionisticiaales.
We havd’ Fpml AiffT F(m) A.

PrROOF. —

1) If T’ Fpy A, then for all mixed Kripke modéel: ICH-T" impliesCH- A, thus, by
Lemma[2}, for all intuitionistic mixed Kripke modél ;): KT implies ;- A.
Therefore, by Theorefn P2, ;) A.

2) Same proof af 1).

]
DEFINITION 26. — We writel" -;;y A if I' = A is derivable without using the rule
(Li)-

THEOREM 27. — LetT' U {A} be a set of formulas without intuitionistic variables.
[ Fpmi Aiff T Feny A
PROOF. — Same proof as Theorem] 25. "

The proof of Theore@S is not constructive. We will try to reaksyntactical and
constructive proof of this result (Corolla37) but for ebsystem of PML.

DEFINITION 28. — Let)’,,, be a countable subset df,,, andm be a bijective map-
ping betweer; and V! . For all formulas which do not contain classical variables
the translatior? is defined inductively byi"=1, X,," = X,,,, X;" = -—m(X;) and
(AoB)" = A"o B if o € {\,V,—}.

LEMMA 29. — Let A be an intuitionistic formulat-(,,,y L — A™.
PROOF. — By induction onA. ]

THEOREM 30. — LetT' U {A} be a set of formulas without classical variables. If
r F(l) A, thenI™ F(m) Am,

PROOF. — By induction onl" I-(;) A. ]

COROLLARY 31. — LetT'U{ A} be a set of formulas without classical and intuition-
istic variables. We have ;) Aiff I' -, A.

PROOF. — By Theoren{ 3. "

This method cannot be extended to get a syntactical proohebflen[25. We
restrict our study to a subsystem of PML.

DEFINITION 32. — We denote bi?MLY the systenPML with this restriction on the
rule (Vg): if A; vV As is a classical formula, the® is also a classical formula. We
denotel’ FV A, if A is derivable byl" in PMLY.

REMARK 33. — The following derivation cannot be done in the system.PM
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XekEXe Xe = XmbEXe—=Xm “XekFoXe 2 Xe = Xm b oXe = Xm
F XeVoXe Xe, Xe = Xm F Xm —Xc, " Xe = Xm F Xm
Xe = Xm, 7 Xe = Xm F Xm
Xe > Xm F (2Xe = Xm) = Xm
F(Xe = Xm) = (0Xe = Xm) — Xm)

DEFINITION 34. — LetV! be a countable subset ¥f, andi be a bijective mapping
betweeny,. and V{ For all formulas ofPML the translation® is defined inductively
by: 1i=1, X,," = X, Xi* = X3, X2 = =i(X,), (Ao B) = A* o Bt if
o€ {A,—},and(AV B) = =—(A* Vv BY).

LEMMA 35. — Let A be a classical formula. We havg;) -—A* — A*.

PROOF. — By induction onA. ]
THEOREM36. — LetI' U {A} be a set of formulas. If - A, thenl'™ F(;) A*.

PROOF. — By induction onl" ¥ A. We use Lemm§ 35 for the rulés ) and(V ).
]

We can then deduce:
COROLLARY 37. —

1) LetT’ U { A} be a set of formulas without classical variablesT'If-V A, then
2) LetI’ U { A} be a set of formulas without classical and intuitionisticiaales.
IfT Y A, thenl |—(m) A.

ProoF. — [l) by Theorenf 36, anld 2) by Corollajry]31. n

5. Labels

We establish in this section relations between PML and mahinmtuitionistic
and classical logics. I is a derivable formula of ordinary propositional classical
logic, we can label the propositional variables4foy m, i or ¢ in order to obtain
a derivable formula in PML. It is clear that such a labellisgiot unique. We give
in this section algorithms in order to give “minimal” label§classical propositional
formulas (Theorerﬂ3) and classical propositional dddm;t(TheorenBB). We also
define the notion of “good” derivation for a propositionassical formula (Definition

Bd).

DEFINITION 38. —

(1) Lety = {X,Y, Z, ...} be a countable set of propositional variables. We sup-
pose thad’,, (resp.V;, V.) are obtained by indexing the variablesiofUsingVu{ L }
we define, as usually, the minimal, intuitionistic, and sleal logic denoted respec-
tively byPLM, PLI and PLC. We use as abbreviatiofis,,, F;, |-, for derivability in
PLM, PLI, PLC respectively. A formula built o¥ U { L} is calledordinary formula
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(2) Alabelis a functionl : V — P such thatl(X) € {X,,, X;, X.}. A labell
is extended to logical formulas by the following clausEs:) =1 andi(A ¢ B) =
I(A)ol(B)ifoe {AV,—}.

(3) We define oV, U V; U V. a binary relation< as follows: for allX € V,
Xm < X; < X.. We define on labels a binary relatienas follows:] < I’ iff (1) for
all variable X € vV, [(X) < I'(X) and (2) there is aX € V such that (X) < I'(X).

(4) Letl,, (resp.l;, I.) be the label defined by: foralk’ € V, [,,,(X) = X,,, (resp.
LX) =X, 1.(X) = X,).

The following result means that PML contains disjoint capad systems PLM,
PLI and PLC.

THEOREM 39. — LetT" U {A} be a set of ordinary formulas. We have:-,, A iff
I (F) F(m) Im (A), 'k, A iff l; (F) F(z) l; (A) andIl F. A iff lC(F) Fpml lC(A)

PrROOF. — Easy. ]

DEFINITION 40. — Let A be an ordinary formula such that. A. Alabel for A is
a label!l such that-,,,; [(A) and for every variableX which does not appear id,
I(X) = X

REMARK 41. — LetA be an ordinary formula such that A. By Theoren{309]. is
a label forA.

DEFINITION 42. — Let A be an ordinary formula such that. A. A minimal label
for A is a labell for A such that: ifl’ <[ is a label forA4, then!’ = I.

THEOREM 43. — Let A be an ordinary formula such that. A. A has a minimal
label.

PROOF. — Since PML is decidable we try all possible labels for ]

ExXAMPLE 44. — Letb the label defined byb(X) = X, b(Y') = Y;, and for every
Z # X andY, b(Z) = Z,,. Itis easy to check thdtis the unique minimal label
for the ordinary formuldZ — X) v (X — Y). The minimal label for an ordinary
formulais not unique. Lett = (X — Y) v (Y — X) andl,!’ suchthai(X) = X,
(V) =Y, lI'/(X) = X; andl/(Y) = Y.. Itis easy to check thdtand!’ are two
minimal labels forA but they are not comparable.

DEFINITION 45. — Let D be a derivation inPLC. A label forD is a labell such
that: (1) for every variableX which does not appear i, I(X) = X,,, and (2) by
extending on D we obtain a derivation ifPML. A minimal label forD is a labell
for D such that: ifl’ <[ is alabel forD, thenl’ = 1.

REMARK 46. — [, (respl;, l.) is a label for all derivation in PLM (resp. PLI, PLC).

DEFINITION 47. — Letly, ..., 1, be labels. We define a new labelp(ly, ...,1,,) as
follows: for everyX € V, sup(ly, ..., 1,)(X) = sup(l1(X), ..., Lo (X)).

THEOREM 48. — Let D be a derivation inPLC. The derivationD has a unique
minimal label.
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PROOF. — We define the unique minimal labig} by induction onD.

1) If Dis (Ax), thenlp = I,,.
2) If the last rule used ifd is
- (W), (AE), (Vi),0r(—7), thenip = Ip, .
- (A1), or (—E), thenlp = sup(lp,,ip,).
- (Vg), thenlp = sup(lp,,lp,,p,).
- (L;), thenlp =l olp,, where
X if X € var(A4) andip, (X) # X,
I(lp, (X)) =< X, if X €var(A)andlp,(X) = X,
Ip,(X) otherwise
- (L), thenlp =l olp,, wherel(lp, (X)) = {i ) ';tife :N :fsaer(A)

ExXAMPLE 49. — ltis easy to check that the laliedf the Examplﬂ4 is the minimal
label for the following derivation:

XX -XEF-X

XEX X, - X+l
X, ZF X X, -XFY
XFZ X XFX Y

TXVX X7V (X=V) X ZoX)v (XY
FZ-X)V(X—-Y)

DEFINITION 50. — Let A be an ordinary formula such that, A. Agood derivation
for A is a derivationD of A in PLCsuch thatp is a minimal label forA. Intuitively, a
good derivation of a formulal is a derivation ofA with minimal use of the absurdity
rules.

THEOREM51. — Let A be an ordinary formula such that, A. The formulaA has
a good derivation.

ProOF. — Letl4 be a minimal label ofd. Since we can enumerate all derivable
formulas, then we can find a derivatihending withl 4 (A). The derivation obtained
by erasing the indexes in the derivatibris a good derivation foA. ]

ExamMPLE 52. — The derivation of the Examp|§|49 is a good derivationtfar
formula(Z — X) V(X - Y).
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6. Sequent calculus

We describe below a sequent calculus version of PML. Thiseseiccalculus is non
satisfactory because it does not satisfy the cut-elimongtiroperty (Theorer@l).

DEFINITION 53. — In this section a sequent is of the foii" A; A wherel" (resp.
A) is a finite set of formulas (resp. of classical formulas) ahds a formula. The
rules of sequent calculus are the following:

Fl,A |—/ B;Al 1—‘2 I—I A; AQ

(A:E) A A, (CUt) Fl, FQ el B, Al, AQ
TH A LA 'H A A A
) T aa ) T A A
(W) T'H1; A Ais an intuitionistic formula
" = A;A
' A;A
CE W=y

' A; A B is aclassical formula
'+ A;B,A

(W)

' A; B,A Ais a classical formula

(B) TH B;A A

Fl - Al;Al FQ - AQ;AQ F,Al - B,A
(Ar (A1)
Fl,FQ F/Al/\AQ;Al,AQ F,Al/\AQ el B,A

(\/ ) Fl—/ Ai;A (\/) Fl,Al |—/ B;Al FQ,AQ I—I B;Ag
" I+ A1 \/AQ,A ! Fl,FQ,Al \/AQ el B;Al,AQ
F,Al F/ AQ,A Fl F/ Al;Al FQ,AQ F/ B,AQ
(_“”) / . (_”) ! R.
'k A1—>A2,A Fl,FQ,A1—>A2|— B,Al,Ag

We writeI" -P™ A: A if there is a derivationD ending with the sequert -/
A; A,

We wish to showl™ F™! A; iff T 1, A.
LEMMA 54, —

1) If A is an intuitionistic formula, thea?™ | — A;.
2) If B is a classical formula, ther?™ ——B — B;.

Proor. — [l) is easy. Fof]2):



Propositional Mixed Logic 13

B+ B; L
BF1;B
' -B;B 1+ 1;
-—-BFL.1;B
-—-BF B; L
--B | B,
F —==B — B;

| ]
THEOREM55. — Letl' U {A} be a set of formulas. I i, A, thenT 7™ A,

PrRoOF. — By induction on the proof of +,,,; A. We use the cut rule and Lemma
E4. -

LEMMA 56. — If A, B are classical formulas, theR,,,; [(—4 — A) — A] A
(=B — A) = (A — B)].

PROOF. — Easy. [
DEFINITION 57. — Let—A indicate the negation of the formulas i

THEOREM58. — LetI" be a set of formulas) a set of classical formulas, andl a
formula. IfT FP™ A; A, thenT', = A b A.

PROOF. — By induction on the proof of 7™ A; A. We use Lemm@G for the
rules(E) and(S;). |

We can then deduce:

COROLLARY 59. — LetI' U {A} be a set of formulas. We hate -, A iff
Il AL

PROOF. — We use Theoren{s 55 ahd 58. "
REMARK 60. — The usual process to eliminate cuts in the sequentloalésinot

valid for our system. For example, the elimination of cutghie following derivation
needs the use of several non classical formulas on the right.

X, H X,
X H X L
X H1; X,
=X Xe

H XV -Xe; Xe

F X, Xe vV -Xe XeH Xe; X H Xony X H —Xe, X H X

F X.V-Xe; XeV-Xe Xe, Xe — X H X “Xe,nXe — X M X
F Xc VX XeVaXe, Xe = X, 7 Xe = X H X
Xe — X, Xe = X H X
THEOREM 61. — The PML sequent calculus does not satisfy the cut-elimination

(even weak) property.



14 Journal of Applied Non-Classical Logics. Volume 13°-112003

PROOF. — We prove that there is no normal derivation (i.e. withoutsg for the
sequentX, — X,,,~X. — X,, FP™ X,.:. By using the following mixed Kripke
model = (K, <,t) whereK = {«a, 8}, a < 3, g+ X,,,, andgt L, we prove
easily thatX, — X,, 2™ X,.:, X, — X,,, P =X, - X, — X, 7™ X,
X — X 2 X s, P X andP™ - X ;. Let us take a minimal derivation
of X, — X, =X, — X,m FP™ X,,; and look at the last used rule.

1) Ifitis the rule(W;), thenX,. — X,,, FP™ X,.; or =X, — X, FP™ X+
2) If it is the rule (—;), then-X, — X,, F?™ X, or F? X_: or X, —
Xy FPL =X s or FPME X
3) Ifitis the rule(S,.), thenX, — X,,,, ~X. — X,, F?™ X,,,; L. We again look
at the last rule used.
- If it is the rule (W;), thenX, — X,,, FP™ X,,; L or =X, — X, FP™
X L.
- Ifitis the rule(—;), then-X, — X, FP™ X ;or-X, — X, FP"™ X.; |
or=Pmt X or-Pmh X 1 oor X — X, P =X or X — Xy, FP™ X Loor
FPml X or Pl - X L

REMARK 62. — To get a normal derivation of the sequefy — X,,, =X, —
Xm H' Xp;, we need more flexible rules. For example:

— allowing the use of the logical rules each formula on thétrig
— allowing several occurrences of the same non classicaluiaron the right.

Here is a derivation of sequeft. — X,,,,—~X. — X,,, ' X,,, without using the cut
rule.

X H X XpH X
Xe, Xe = Xm H X
X, Xe = X H X, L
Xc i Xm H X'nu_‘Xc Xm ! Xm
X, = X = Xo — Xon F Xom: Xom
Xe— X, Xe = X H X

OPEN QUESTION — “Is it possible to eliminate cuts in such a system?”
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