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Abstract We present a Lagrangian data assimilation exper-
iment in an open channel flow above a broad-crested weir.
The observations consist of trajectories of particles trans-
ported by the flow and extracted from a video film, in ad-
dition to classical water level measurements. However, the
presence of vertical recirculations on both sides of the weir
actually conducts to the identification of an equivalent to-
pography corresponding to the lower limit of a surface jet.
In addition, results on the identification of the Manning co-
efficient may allow to detect the presence of bottom reciru-
clations.

1 Introduction

The numerical simulation of hydraulic systems require a pre-
cise modeling of the physics involved in the considered
flows. Hydraulic models are built on physical assumptions
and require information on the value of parameters, initial
and boundary conditions in order to forecast a flow state
which corresponds as well as possible to reality. To this pur-
pose, data assimilation methods make it possible to combine
optimally mathematical information contained in the equa-
tions of the model and physical information from observa-
tions. Such methods have been used in river models for the
identification of model parameters in one dimensional chan-
nels [11,17,27] as well as for bidimensional shallow water
equations [2,3,7,12,15,19,22,23]. Let us point out that one
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of the main difficulties is to match real observations using a
mathematical model that is naturally incomplete.

Commonly available observation data consist of water
level measurements at gauging stations but remain very
sparse in space. Recently, remote sensing techniques have
been explored with the hope of providing new kinds of ob-
servations on hydraulic systems. In particular, image velo-
cimetry techniques have been investigated [6,24] in order to
reconstruct a dense field of surface velocity.

Observation of successive positions of passive particles
transported on the surface of water can bring valuable infor-
mation on the dynamics of the flow. In oceanography, data
assimilation of drifting buoys positions has been experimen-
tally used to improve numerical ocean models, either using
Kalman filter [4,18,28] or variational based methods (see
[16] for a shallow water model and more recently [26] for a
primitive equations circulation model of the ocean).

Concerning river hydraulics, variational data assimila-
tion of Lagrangian observations in a river model based on
bidimensional shallow water equations was introduced
in [14]. Numerical experiments using synthetic observations
show that in addition to traditional water depth measure-
ments, the use of particle trajectories can improve signifi-
cantly the identification of model parameters.

In the current paper, we extend the methodology devel-
oped in [14] to a real application. We present experimental
results of Lagrangian data assimilation in an open channel
for the identification of a local topography among other pa-
rameters. The Lagrangian data consist of trajectories of pa-
per confetti spread on the surface and observed by a video
camera. The objective of the experiment is to catch the shape
of a broad-crested weir positioned widthwise in the chan-
nel. However, the presence of vertical recirculations on both
sides of the weir invalidates the shallow water model. In-
stead, the present configuration leads to the identification of
an equivalent topography corresponding to the lower limit
of a surface jet. Additional results suggest that the value of
the Manning coefficient may allow to detect the presence of
these bottom recirculations in the identified topography. Ini-
tial conditions corresponding to a permanent flow are iden-
tified as well.
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The experimental setup is described in Section 2 and the
method for the extraction of observations from images is
detailed in Section 3. In Section 4, we introduce the equa-
tions used for the modeling of the flow and the transport of
particles. Section 5 is devoted to the description of the La-
grangian data assimilation method, following [14]. Finally,
numerical results of data assimilation are presented and com-
mented in Section 6.

2 Experimental setup

The measurements are conducted in a channel with a rectan-
gular cross section. The width is L = 0.805m and the length
of the observation area in the longitudinal direction is 1.1m

(see Fig. 1 for a schematic view). A broad-crested weir,
made of a wooden plank, is placed on the bottom widthwise
in abscissa x1 = 0.43m. This weir has a rectangular cross
section, of 94mm long and 37mm high. The channel slope is
0.18%.

The water enters the channel through honeycomb and
wire netting buffers. A constant discharge of q̄ = 20 l/s is
imposed at the inflow and the free surface is set downstream
to the level z̄s = 0.107m, thanks to an adjustable tailgate.
The corresponding Reynolds number is Re = 75190. As the
channel walls are made of PVC, the flow is hydraulically
smooth with this value of the Reynolds number and the cor-
responding Manning roughness coefficient is therefore es-

timated to n = 0.0105s/m
1
3 . The boundary conditions are

maintained until a mean permanent flow is reached. The ob-
servations were carried out in this hydraulic configuration.

Observations. The discharge is measured by an electro-
magnetic flow meter with an error of ±0.05 l/s. The water
levels are measured thanks to a moveable point gauge, with
an error of ±0.15 mm. Figure 1 shows the positions of wa-
ter level measurements with black dots between the abscissa
x = 0.18m and x = 0.85m in the local coordinate system of
the observation area.

Observation area
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Fig. 1 Schematic description of the experimental setup.

Fig. 2 Image extracted from a video sequence used for the experiment.
Paper confetti transported on the water surface (from left to right).

Two kinds of observations coming from the experimental
configuration are taken into account for the data assimilation
experiment:

– a single surface elevation measurement, located at the
abscissa x = 0.18m and denoted by the bold circle in
Fig. 1;

– a video sequence of paper bits drifted by the water. A
video camera has been placed vertically above the obsta-
cle to record the positions along time of confetti dropped
on the surface upstream from the observation area.

All the observations that are not involved in data assimila-
tion will be used for the validation of numerical results.

Parameters to be identified. The aim of the data assimi-
lation experiment, presented in Section 5, is to identify the
shape of the weir in the channel starting from the initial as-
sumption of a flat bottom and using a shallow water model.
In addition, we look for compatible values for the Manning
coefficient as well as the initial conditions of the flow. A
correlation coefficient between the surface velocity and the
depth-averaged shallow water velocity will be also identi-
fied.

3 Data processing

An image extracted from a video sequence used in the data
assimilation experiment is shown in Fig. 2. As we can see,
several paper bits are often clustered together. Each cluster
can easily be identified and tracked along the video sequence
using a correlation–based matching method. A background
image has been recorded without any confetti. In order to
be less dependant of illumination conditions, each image is
pre–processed by subtracting the background. The tracking
of confetti clusters is then done as follows:
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1. For each cluster coming into the camera field, a M ×M

pixel square is initialized on the center of the cluster. Let
p = (u,v) denote the coordinates of the center of this
square in frame #i.

2. In the next frame #i+1, we then look for the pixel with
coordinates p′ = (u′,v′) that minimizes the correlation:

C(p,p′) =
M

∑
x=−M

M

∑
y=−M

[

I(u− x,v− y)− I′(u′− x,v′− y)
]2

, (1)

where I and I′ correspond to the luminance of pixels
respectively in frame #i and #i+1.

It should be noted that there exist a lot of correlation mea-
sures proposed in computer vision literature; see for exam-
ple [5]. We have chosen here one of the simplest.

By recording the coordinates p frame after frame, we
obtain a set of coordinates corresponding to the trajectory of
a cluster along the sequence. Tracking several clusters, we
finally obtain a set of Np = 256 trajectories. These raw tra-
jectories were then filtered by a reconstruction process based
on a local averaging in time and space, as described in de-
tails in [14]. In Fig. 3 (a), the longitudinal coordinate x of a
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Fig. 3 Trajectories and longitudinal velocity of the observed particles.
Thin line : raw observations from video images. Bold line : filtered
trajectories.

series of trajectories is plotted against the time t in seconds.
In Fig. 3 (b), the longitudinal velocity is plotted against the
first space variable. One can notice a quantization of the ve-
locity of the raw observations. This phenomenon is due to
the sampling of the video image: from one image to the fol-
lowing, the shifting of a particle is whole number of pixels
and its velocity is therefore a discrete value. However, this
quantization is strongly smoothed by the filtering process.

4 Forward model

In order to carry out numerical simulations of this flow, we
use a river hydraulics model based on the bidimensional
shallow water equations in a conservative formulation.

Shallow Water equations. The state variables are the wa-
ter depth h and the local discharge q = hu, where u is the
depth-averaged velocity vector:











∂t h+div(q) = 0

∂t q+div( 1
h
q⊗q)+ 1

2 g∇h2 +gh∇zb +g
n2‖q‖
h7/3 q = 0

I.C. h(0) = h0 , q(0) = q0 .

(2)

where g is the magnitude of the gravity, zb is the bed eleva-
tion, n is the Manning roughness coefficient, h0 and q0 are
the initial conditions for the state variables.

Boundary conditions. Concerning boundary conditions,
a scalar discharge q̄ is prescribed at the inflow Γq , a wa-
ter elevation z̄s at the outflow Γz and the Riemann invariant
is constant along the outgoing characteristic. For the lateral
walls Γw , a slip condition on the velocity is prescribed:

B.C.











(q ·n)|Γq
= −q̄ , (q ·n)|Γw

= 0 ,

(∂nh)|Γq∪Γw
= 0 ,

h|Γz
= z̄s − zb|Γz

, ∂n(u ·n+2c)|Γz
= 0 ,

(3)

where c =
√

gh denotes the local wave celerity. Boundary
conditions on Γq and Γz are only valid for sub-critical flows,
i.e. when ‖u‖ < c. The model state variables (h,q) are com-
pletely determined by the value of model parameters, initial
conditions and boundary conditions gathered in the control
vector k = (h0,q0,n,zb, q̄, z̄s).

Transport model. Let us consider a set of N particles
transported by the flow. We state that their trajectories Xi(t)
are solutions of the following ODEs:

For i = 1, . . . ,N :
{

d
dt

Xi(t) = v
(

Xi(t), t
)

∀ t ∈ ]t0
i , t f

i [

Xi(t
0
i ) = x0

i

(4)

where v is the transport velocity of the particles, t0
i and t

f
i are

the time when the particle enters and leaves the observation
domain. In the following, the transport velocity is related to
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the shallow water model velocity by a multiplicative con-
stant: v = γ u. Here, γ will be an additional control variable.
The free surface velocity is usually greater than the depth-
averaged velocity. Graf [10] indicates that for uniform fully-
developed flows, γ ranges from 1.1 to 1.25. Moreover, an
acceleration of the flow correspond to a decrease of γ while
it increases in a decelerating flow.

This set of ODEs is weakly coupled with the shallow
water model since the state variable of the latter is not de-
pendent on the solution of the former.

Implementation. The shallow water model (2)–(3) is im-
plemented using a finite volume scheme in the software
Dassflow 1 [13], designed for numerical simulation of river
hydraulics, especially for parameter identification and vari-
ational data assimilation.

5 Lagrangian data assimilation

Variational data assimilation [20,29] is based on optimal
control theory [21] and consists in identifying the control
vector k that minimizes a cost function measuring the dis-
crepancy between the state variable of the model and data
obtained from the observation of the physical system.

Lagrangian data assimilation consists in using observa-
tions described by Lagrangian coordinates in a data assim-
ilation process. Here, we consider observations of passive
particles transported on the surface of the flow. However,
the state of the flow is described in Eulerian coordinates by
the shallow water model. Following [14], the link between
Lagrangian data and the classical Eulerian variables of the
shallow water model is made by the transport model.

Observations. We consider two kinds of observations.
The first one consists in classical, Eulerian observations of
the water depth in some locations of the physical domain,
denoted by hobs(t). The second one consists in trajectories of
physical particles transported by the water flow. These La-
grangian observations are denoted by Xobs

i (t).

Cost function. In order to take into account both kinds of
observations, we build a composite cost function measuring
the discrepancy between observation data and model state
variables:

j(k) =
1
2

∫ T

0

∥

∥

∥
Ch(t)−hobs(t)

∥

∥

∥

2

obs
dt

+
αt

2

N

∑
i=1

∫ t
f
i

t0
i

∣

∣

∣
Xi(t)−Xobs

i (t)
∣

∣

∣

2
dt +

αp

2
‖Dk‖2

k ,
(5)

where k = (h0,q0,n,zb,γ) denotes the control vector and the
constants αt and αp are scaling parameters. The operator C

computes the restriction of the model state variable h to the
space of Eulerian observations on which is defined the norm
‖·‖obs. D is a differential operator and ‖·‖k is a norm defined

1 <http://dassflow.gforge.inria.fr/>

on the space of controls. The first term measures the dis-
crepancy between water depth observations and model state
variable. The second term measures the distance between
virtual particles of the transport model and observations of
trajectories, while the third one is a regularization term.

Optimization problem. We seek to minimize the cost
function, ie. to identify the control vector kopt that is solution
to the following optimization problem:

kopt = min
k

j
(

k
)

. (6)

A quasi-Newton method can be used to that purpose, which
requires the computation of the gradient of the cost function.
Here, we use the M1QN3 algorithm [9] based on the BFGS
formula.

Adjoint model The adjoint method [21] makes it possible
to compute efficiently all partial derivatives of the cost func-
tion j with respect to the components of the control vector k.
The derivatives can be expressed as simple functions of the
solutions to an adjoint model. In the case of the system (2)–
(3)–(4), the latter is weakly coupled. A backward integration
in time of an adjoint transport model followed by a backward
integration in time of an adjoint shallow water model are
sufficient to compute all components of ∇ j(k). This method
has been implemented in the software Dassflow. A complete
description is given in [14,12].

6 Identification results

In this section, we present a data assimilation experiment in
order to identify model control variables. The objective is to
catch the shape of the broad-crested weir positioned width-
wise in the channel with the shallow water model, knowing
that the latter is incomplete in regard to the considered flow.

Reference simulation. Beforehand, a direct simulation,
thereafter called reference shallow water simulation, is car-
ried out using all available informations about the hydraulic
configuration – boundary conditions, topography of the chan-
nel, estimated Manning coefficient. The Fig. 4 (a) shows a
comparison between the simulated water depth (dashed line)
and the observations hobs (black dots). One can notice a good
agreement between the two curves, which shows that the
model is able to represent correctly water depth observa-
tions. The Fig. 4 (b) shows the same comparison for lon-
gitudinal velocities. Here, the black dots represent the dis-
charge velocity computed from water depth observations:
uobs = q̄

L×hobs, where L is the channel width. In addition, the
continuous line corresponds to the longitudinal velocity of a
filtered trajectory. A significant discrepancy can be noticed
between this surface velocity and the discharge velocity. In
the first part of the flow (for x < 0.5m), this gap could be
modeled by a multiplicative constant γ as in equation (4)
with a value roughly approximated to 1.1.

In the second part of the flow, however, this relation does
not stand up anymore. Indeed, the weir introduces a sharp

<http://dassflow.gforge.inria.fr/> 
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Fig. 4 Comparison between the reference simulation and observations.
(a) Water depth and (b) longitudinal velocity. Dashed line: shallow
water reference simulation. Black squares: data computed from water
depth measurements. Bold circle: measurement used for data assimila-
tion. Continuous line: velocity of a filtered particle.

topography gradient. Such an obstacle in the flow typically
produces a surface jet and a bottom recirculation [8,30], as
shown schematically in Fig. 5. These recirculations com-
prise vertical accelerations, which are not compatible with
the shallow water equations. A full free-surface 3D Navier-
Stokes model would be more suitable to simulate these struc-
tures. One can nevertheless carry out data assimilation using
the water depth measurements and the observations of tra-
jectories in order to determine the optimal set of parameter
that combine optimally this data with the present shallow
water model.

Data assimilation experiment. Given the observation of
the water depth at the single point xobs = 0.18m, highlighted
in Fig. 4 (a), in addition to Nm = 150 filtered trajectories
denoted Xobs

j (t), we seek to identify the topography zb, the

Manning coefficient n, the initial conditions h0 and q0 as
well as the coefficient γ from the transport model (4). Initial
assumptions on the value of these parameters are adopted: a
flat bottom without obstacle, Manning coefficient uniformly
set to n = 0.01, γ coefficient uniformly set to 1.1. Moreover,

the first guess value for the initial conditions correspond to
the steady state of the flow obtained with the other parame-
ters.

The data assimilation experiment consists in minimizing
the following cost function:

j(zb,n,h0,q0,γ) =
1
2

∫ T

0

∫ L

0

∣

∣h(xobs,y ; t)−hobs(t)
∣

∣

2
dydt

+
αt

2

Nm

∑
j=1

∫ t
f
j

t0
j

|X j(t)−Xobs
j (t)|2 dt

+
αz

2
‖∆zb‖2 +

αh

2
‖∆h0‖2 +

αq

2
‖∆q0‖2 ,

(7)

where the scaling coefficient αt is set to 10−5 in order to
respect an initial balance between the first two terms. The
weights αz, αh and αq of the regularization terms are set
respectively to 10−9, 10−12 and 10−12.

Identification results. The results of the identification are
shown in Fig. 6. For each control variable, the identified
value is drawn with a continuous line and the reference value
from the reference shallow water simulation is drawn with a
dotted line for comparison. In addition, the evolution of the
cost function and the norm of its gradient is plotted against
the number of iterations of the minimization process in
Fig. 6 (f). The value of the cost function was divided by
10000 to reach 5 × 10−6, which indicates a good perfor-
mance of the minimization. This is confirmed by the similar-
ity between velocity of the observed particles and the model
surface velocity γu as shown in Fig. 7.

Concerning the identified control variables, Fig. 6 (a)
shows that the identified topography does not reproduce the
shape of the obstacle: instead of a sharp rectangular profile,
one gets a bump whose dispersion in the longitudinal di-
rection is much more important. However, its amplitude is
acceptable.

A physical interpretation to this result can be provided.
Indeed, the extension of the identified topography on both
sides of the real obstacle reveal bottom recirculations up-
stream and downstream of the weir, as shown in Fig. 5. In
any point of the domain, the discharge in the shallow wa-
ter equations is equal to the integration of that of the three-
dimensional flow. Therefore, the integrated discharge over
a vertical vortex is zero. The shallow water model cannot
reproduce such a structure, but only the upper part of the
flow taking part in the effective discharge, ie. the region be-
tween the water surface and the line of zero discharge, de-
noted parting line in Fig. 5. The latter is the center line of
the mixing layer between the bottom recirculation and the
surface jet.

From a quantitative point of view, it is possible to val-
idate this hypothesis by looking at the ratio between the
length Lr of the downstream recirculation in the longitudi-
nal direction and the height w of the weir, as shown in Fig. 5.
Given the identified topography in Fig. 6 (a) and assuming
that it actually covers the real obstacle and bottom recircula-
tions, this ratio Lr

w
is approximately 12.

For a backward facing step, Adams and Johnston [1]
show that this ratio depends on the downstream and up-
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Fig. 5 Schematic view of upstream and downstream recirculations around a rectangular immersed obstacle.
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stream depths but also on the Reynolds number ; the in-
fluence of the latter disappears for values higher than 104,
condition fulfilled in the present work as well as in the pa-
pers cited below. In a case closer to our problem, Fritz and
Hager [8] have studied experimentally flow characteristics
downstream of submerged symmetric trapezoidal weirs. In
the case of a surface jet, they established the following rela-
tion:

Lr

w
= 6.8

hd

w

(

1− hd −w

hu −w

)
1
6

, (8)

where hu and hd are respectively the upstream and down-
stream water levels. Using our data (w = 37mm,
hu = 109mm and hd = 107mm), this relation gives a ratio
Lr
w

= 10.8.
In our case, however, the obstacle is rectangular shaped,

not trapezoidal. Nakayama and Yokojima [25] carried out
numerical simulations based on free surface Navier-Stokes
equations in a configuration similar to ours. Their results
show a ratio Lr

w
close to 11. This indicates that the order

of magnitude of the ratio given by equation (8) is still valid
for a rectangular shaped obstacle. This physical likelihood
tends to confirm our hypothesis. So, instead of the bottom
geometry, the numerical model reproduces the line of zero
discharge, i.e. the upstream recirculation, the weir crest and
the downstream recirculation.

The physical behavior of the flow being stated, the values
of the other control variables must be analyzed. Concerning
the initial water depth and longitudinal velocity, shown in
Fig. 6 (c) and (d), they correspond rather well to a steady
state. As expected, the γ coefficient, whose evolution is de-
picted in Fig. 6 (e), is slightly lower than its reference value
in the converging – and therefore accelerating – flow up-
stream the weir. Conversely, it is above its reference value
in the diverging – and therefore decelerating – flow over the
downstream recirculation. The sudden increase in the last
part of the observation window may be related to the mis-
match between the velocity of the particles and the transport

velocity γu in the same region, as can be observed in Fig. 7.
This may be explained by a very small sensitivity of the con-
trol variables to the observations in this area.

Finally, it is interesting to comment the evolution of the
identified Manning roughness coefficient (Figure 6 (b)).
Downstream and upstream of the weir and the recircula-
tions, its value is close to the experimental one (from 0.009
to 0.016 instead of 0.01), except at the boundaries of the
observation window. One can notice a strong decrease of
the coefficient in the region corresponding to the identified
“equivalent weir”. It stands for the huge modifications of the
vertical velocity profiles in this region, compared to the uni-
form flow velocity profiles required by the use of a Man-
ning roughness coefficient: shear stresses smaller in the two
mixing layers than on the bottom shear layer and uniform
velocity profiles on the weir crest. Although this should be
confirmed on a wider range of experiments, such values of
n close to zero may allow to detect the presence of bottom
recirculations in the identified topography.

7 Conclusion

In this paper, we have presented a lagrangian data assimila-
tion experiment in an open channel flow. The channel had a
rectangular cross section and was fitted with a broad-crested
weir. With a mean permanent flow, vertical recirculations
were present upstream and downstream from the weir. Small
paper bits were spread on the surface of water and their tra-
jectories were recorded with a video camera placed verti-
cally above the weir.

We developed a numerical model of this flow configura-
tion based on the shallow water equations, combined with a
transport model for the particles. By means of a variational
data assimilation, we sought to identify the topography of
the channel, using the observations of trajectories in addi-
tion to traditional water level measurements at one single
point.

The first striking result of this experiment is that the
identified topography does not correspond to the real bottom
geometry of the channel, but to the line of zero discharge
covering the upstream and downstream recirculations in ad-
dition to the weir. Indeed, vertical recirculations are three-
dimensional fluid structures, and cannot be plainly repre-
sented by a shallow water model.

Secondly, the results concerning the Manning coefficient
suggest that the identification of values of n that are close to
zero may be used as a criterion to distinguish a real topog-
raphy from an apparent topography and therefore detect the
presence of recirculations.

Finally, the identified initial conditions correspond
closely to a steady state, which is in accordance with the
nature of the real flow. These first results seem promising
since the model reproduces correctly the topography and
water depth in a case of complex flow, i.e. involving flow
separations. Nevertheless, future work should be carried out
to confirm these results through an evaluation of the model
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with other experiments, either in absence of flow separation
or with variations of the channel width inducing transverse
velocities.
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