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Abstract— We study how to combine the censoring technique
for Markov chains and the strong stochastic comparison to
perform model checking of discrete-time Markov chains. Our
goal is to reduce the complexity of the model checking in order
to be able to consider numerically intractable models. In model
checking we do not need the exact values but we must decide
if the required guarantees are satisfied or not. Thus bounding
methods are suitable in this context : if the bounds meet the
threshold we can decide for the satisfaction of the formula. In
the case when it is not possible to decide the satisfaction of the
underlying formula through the bounds, we can refine the bounds
by considering a larger set of states.

I. INTRODUCTION

Model checking is a method to automatically check if
complex performability measures expressed by using formal
logics are satisfied or not. Traditional model-checking tech-
niques for the integrated analysis of both qualitative and
quantitative system properties has been extended to stochastic
models. Especially, labelled Markov chains in which a list of
atomic propositions are assigned to states are used as models
in probabilistic model checking: Probabilistic Computation
Tree Logic (PCTL) [13] with Discrete Time Markov Chains
(DTMC) and Continuous Stochastic Logic (CSL) [4] with
Continuous Time Markov Chains (CTMC). In these logics the
properties over paths are described by path formulas. Thus
it is possible to study transient properties as well as long
run behaviours. In numerical model checking, the state space
explosion problem may limit the size of tractable models with
conventional techniques. Different methods as decomposition,
bounding, storage methods have been proposed to overcome
this problem.

Bounding methods are suitable in model checking context
since we need to verify if some thresholds are satisfied or not
without computing the exact values. In [9], the bounds on state
reachability probabilities of Markov decision processes are
computed by abstraction of the underlying model defined on
smaller state spaces. If the verification of the considered prop-
erty cannot be concluded, the abstract model is refined until a
verdict to the property can be deduced from the computations.
We propose the stochastic comparison techniques which have
been largely applied in different areas of applied probability
as well as in reliability, performance evaluation, dependability
applications [17]. Intuitively speaking, this method consists

in computing bounding distributions rather than the exact
distributions by analysing “simpler” bounding chains. This
method let us to derive bounds on transient distributions as
well as on the steady-state distribution. The stochastic com-
parison techniques have been applied in [18], [6] to overcome
state space explosion problem in the model checking context.
In [18], the underlying models are simplified by means of
bounding aggregations and in [6] by bounding Markov chains
having closed-form solutions for transient and the steady-state
distributions.

In this paper we propose to combine censoring and stochas-
tic comparison techniques to perform efficiently model check-
ing. Censored Markov chains take values in a restricted state
space and observed at successive visits to these states. In [14],
bounds on rewards and absorption times for large (which may
be infinite) Markov chains by censoring Markov chains and
stochastic comparison techniques have been derived. We study
in this paper discrete-time model checking formulas by bounds
derived by censoring. Thus we can reduce substantially the
complexity of the model checking procedure. If we can not
decide with the computed bounds, then we can refine the
bounds by considering a larger set of states.

The remaining of the paper is organised as follows: In
section 2, we briefly describe censored Markov chains, the
bounds on performability measures and the algorithms to de-
rive these bounds. We present the model checking of DTMCs
in section 3. Section 4 is devoted to the proposed methodology
to check formulas using censoring techniques and stochastic
comparison (summarized in the appendix). Finally in section
5 we give some numerical results to illustrate the proposed
methodology.

II. CENSORING MARKOV CHAINS

In this section we first recall the definition of censoring
Markov chains. We then present the bounds on the performa-
bility measures that we can derive by using this technique.
Some of these bounds are derived by combining censoring
and stochastic comparison techniques (see appendix). We then
briefly present the bounding algorithms.



A. Definition
Consider a discrete-time Markov chain (DTMC) {Xt : t =

1, 2, . . .} with finite state space S. Suppose that S = E ∪Ec,
E∩Ec = ∅. Suppose that the successive visits of Xt to E take
place at time epochs 0 < t1 < t2 < . . . <. Then the chain
{XE

u = Xtu , u = 1, 2, . . .} is called the censored process (or
chain) with censoring set E [21].

Lemma 1 (Theorem 2 in [21]): Let Q be the transition
probability matrix of a DTMC Xt. Consider a partition of
the finite state space S into two subsets E and Ec.

Q =
(

QE QEEc

QEcE QEc

)
E
Ec

Then, the censored process XE
t is a Markov chain and its

transition probability matrix is given by:

SE = QE + QEEc

( ∞∑

i=0

(QEc)i

)
QEcE (1)

If Q is irreducible, with steady-state distribution πQ =
(πE , πEc) then the steady-state distribution πSE of the cen-
sored matrix SE are given by:

πSE =
πE∑

i∈E πE(i)
(2)

Let us mention that the πSE represents the conditional prob-
ability distribution to be in E. Assume that (QEc) does not
contain any recurrent class, the fundamental matrix [19] is∑∞

i=0(QEc)i = (I−QEc)−1. When the chain is ergodic there
are strong relations with the theory of stochastic complement
[16]. Note that it is not necessary for censored Markov chains
to be ergodic and we can study for instance the absorbing
time. In many problems Q can be large and therefore it is
difficult to compute (I −QEc)−1 to finally get SE . Deriving
bounds of SE from QE and some information on the other
blocks without computing SE is therefore interesting idea.

B. Bounding performability measures by censoring techniques
In this subsection, by applying stochastic comparison tech-

niques (see appendix) we derive monotone bounding chains
to the censored Markov chain. First we state the bounds
on performance measures that we can deduce from these
bounding chains. In section IV we show how these bounds
may be applied to provide model checking of DTMCs.

First we give the following proposition which states that the
steady-state probability in a state i ∈ E of the original chain
is less or equal to the steady-state probability in the censored
chain.

Proposition 1 (Upper bounds on steady-state probabilities):
Let πE(i) (resp. πSE (i)) the steady-state probability in state
i ∈ E of the original (resp. censored) chain. It is clear that:

πE(i) ≤ πSE (i) ∀i ∈ E
Proof:

The upper bounds to πE(i) can be deduced from equation
2. Indeed πSE is the steady-state distribution for censored
states (E), under the condition that the process is in E. The
denominator of equation 2 is the sum of probabilities to be in
partition E which is less or equal to 1.

Assume that we have derived a monotone stochastic matrix
Ssup

E such that SE (st Ssup
E .

Proposition 2 (Sum of steady-state probabilities):
Assuming that E = S′ ∪ S′′ is the censored subset and
that states of S′′ are placed at the end of E, then:

∑

i∈S′′

πE(i) ≤
∑

i∈S′′

πSE (i) ≤
∑

i∈S′′

πSsup
E

(i)

Proof: The first part of inequality is obviously derived
from proposition 1. Since by construction SE (st Ssup

E and
Ssup

E is (st-monotone we deduce from corollary 1 of appendix
that πSE (st πSsup

E
. Therefore we can derive the second part

inequality since S′′ is placed in the last position (see property
1 of appendix).

Proposition 3 (Steady-state rewards): Let ρ : S → R be
the reward function that assigns to each state i ∈ S a reward
value ρ(i). Assume that ρ(i) ≥ 0 for all i. Let E be the
set of states which has non zero rewards. Assuming that we
sort the states in E such that function ρ is non decreasing
(ρ(i) ≤ ρ(j), if i ≤ j), then

∑

i∈E

ρ(i)πE(i) ≤
∑

i∈E

ρ(i)πSE (i) ≤
∑

i∈E

ρ(i)πSsup
E

(i) (3)

Proof: The first part is derived from proposition 1 and by
the fact that ρ(i) > 0. Since states belonging to E are ordered
such that function ρ is non decreasing and since (st order
is associated to increasing reward functions (see definition 1),
we can deduce then the second part of inequality 3.
In the following proposition we state the results concerning
the absorption probability and the mean time to absorption
for censored Markov chains. We omit the proofs because of
lack of space, but they can be found in [14].

Proposition 4 (Absorption probability): We consider a
chain X with a finite number of absorbing states. Let Y be
the censored chain, such that all absorbing states and the
states which immediately precede absorbing states are in E.
Moreover we assume that the initial state is in E.

1) Obviously, the sum of absorption probabilities is 1 in
both chains. Moreover the absorbing probabilities in
each absorbing state are the same in both chains.

2) Let MX [i, j] (resp. MY [i, j]) be the mean number of
passages in j before absorption knowing that the initial
state is i for chain X (resp. Y), then:

MX [i, j] = MY [i, j] if j ∈ E
Proposition 5 (Absorption time): Let TX [i] (resp. TY [i]) be

the random variable denoting the absorption time in chain X
(resp. Y), i is the initial state. The mean absorption time in
chain Y is less or equal than the mean absorption time in chain
X :

E(TY [i]) ≤ E(TX [i]) (4)
Proof: The mean absorption time is indeed the mean

number of passages in non absorbing states. Then for the
censored chain, E(TY [i]) =

∑
j∈E MY [i, j]. This inequality

4 follows from the fact that the mean number of passages are



the same in both chains for states E and in the original chain
there are other non absorbing states which are not in E:

E(TX [i]) =
∑

j∈E∪Ec MX [i, j]
= E(TY [i]) +

∑
j∈Ec MX [i, j] ≥ E(TY [i])

Proposition 6 (Bounds to absorption probability and time):
Let Z be an (st monotone upper bounding chain to the
censored chain Y . Assume that both chains (Y and Z) have
an absorbing state k placed at the end of E.

1) Let πY [i, k] (resp. πZ [i, k]) the absorption probability in
k for chain Y (resp. Z) when initial state is i, then:

πY [i, k] ≤ πZ [i, k]

2) Let TY [i] (resp. TZ [i]) be the random variable denoting
the absorption time in chain Y (resp. Z) where i is the
initial state, then:

TZ [i] (st TY [i] and E(TZ [i]) ≤ E(TY [i])

Notice that the (st comparison of random variables
TY [i] and TZ [i] is defined on dates that ∈ N and not
on states.

Proof: Let πY [i] (resp. πZ [i]) the steady-state distribution
of the chain Y (resp. Z). We note that πY [i] and πZ [i] depends
of the initial state i because both chains Y and Z are reducible.
Since by construction Y (st Z and Z is (st monotone we
can deduce from corollary 1 that πY [i] (st πZ [i]. Moreover,
absorbing state k is placed at the end of E we can deduce
then from property 1 that πY [i, k] ≤ πZ [i, k].

In proposition 2.9 of [5], it has been shown that if the
absorbing state is placed at the end then TZ [i] (st TY [i].
Therefore E(TZ [i]) ≤ E(TY [i]) can be derived (see definition
1). Let us remark here that by considering the sub-stochastic
matrix restricted to non absorbing states, and by applying
the definitions of stochastic monotonicity and comparison
extended to sub-stochastic cases [12] we can also prove this
property.

Now, we will present algorithms developed to construct
bounds for censored Markov chain.

C. Algorithms
Several methods have been proposed to derive bounds on

SE . The main idea is to take the probability transition matrix
restricted to censored states and bound the second part of
equation 1 in the sense of (st order. Then by making the
bounding matrix (st monotone, we can derive bounds on
transient and the steady-state distributions of SE . The worst-
case in the sense of (st is reached when all the returns from
Ec to E occur to the last state. In [20], Truffet has proposed
a bounding method that consists in the following two steps:
first add the slack probability in the last column of QE to
make it stochastic and then apply Vincent’s algorithm [1] to
obtain a monotone upper bound T (QE) to SE . Let us denote
by T(L) the stochastic monotone matrix obtained when we
apply Truffet’s method on a sub-stochastic matrix L.

In [14], we have developed a new approach based on the
computation of element-wise lower bounds to SE that provide

a more accurate bound than the bound given by Truffet’s
method. It consists on the determination of an element-wise
lower bounds to SE that is better than QE by exploring some
paths that return to partition E passing through partition Ec.
Assume that this element-wise lower bounds to SE is L such
that QE (el L (el SE . By applying Truffet’s method to L we
obtain a better stochastic monotone bound T (L) than T (QE):
SE (st T (L) (st T (QE).

In [10], we have proposed an algebraic algorithm based on
blocks QE and QEEc . By dispatching the slack probabilities
more precisely than Truffet’s method using the block matrix
QEEc we derive a stochastic bound to SE that is more accurate
than T (QE). Moreover that if QEEc is rank 1, the proposed
algorithm gives the exact matrix SE .

These algorithms for constructing bounding stochastic
monotone matrices to SE presented above have been assem-
bled in a tool named CUT [15].

Let us remark that due to the monotonicity constraints, the
ordering of states has an impact on the accuracy of bounds.
Obviously, the results are more accurate if we consider an
order implying a small number of matrix entry modifications
due to the monotonicity constraints.

III. MODEL CHECKING OF DISCRETE TIME MARKOV
CHAINS

The underlying system is modeled by a labeled, finite,
ergodic (irreducible, aperiodic, positive recurrent) discrete-
time Markov chain M = (S, P, L) where S is a finite set
of states, P : S × S → [0, 1] is the transition matrix and
L : S → 2AP is the labeling function which assigns to each
state s, the set L(s) of atomic propositions valid in s. AP
denotes the finite set of atomic propositions. An execution of
M is represented by a path that can be finite or infinite. An
infinite path σ is a sequence of states s0s1s2 · · · with si ∈ S
and P (si, si+1) > 0,∀i.

For Markov chains, there are two types of state probabilities:
transient probabilities where the system is considered at time
n. Let π(s, s′, n) be the probability that the system is in state
s′ within n steps given the system starts in state s. The steady-
state probabilities are the long-run probabilities where the
system reaches an equilibrium: π(s, s′) = limn→∞π(s, s′, n)
is the steady-state probability of state s′. For ergodic DTMC,
π(s, s′) exists and is independent of the initial state s and that
will be noted by π(s′).

We present in the following subsection, the considered
formulas by giving their syntax and semantics.

A. Considered formulas
Let p ∈ [0, 1] a probability threshold, r ∈ R a real value and

n ∈ N a natural number. Let $ ∈ {≤, >,≥, >} a comparison
operator. In the sequel, we denote by φ-states or Sφ the set
of states that satisfy φ and by |= the satisfaction relation. We
consider the following formulas:

φ ::= L"p(φ) | E"r(φ) | P"p(φUφ) | P"p(φU≤nφ) | D"r(φ)

Now we give the semantic of each operator.



1) Long-run average operator L"p(φ): the long-run aver-
age operator L"p(φ) was defined in [3] to enrich PCTL [13]
which is an extension of CTL [7] with probabilistic operators
to specify performability measures over discrete-time Markov
chains. The state formula L"p(φ) asserts that the long-run
average fraction of time spent in Sφ states meets the bound
$p. Let π (if it exists) the steady-state distribution of the
considered Markov chain M.

L"p(φ) is satisfied iff
∑

s′|=φ

π(s′) $ p (5)

Let us just remark that:

L≤p(φ) = L>1−p(¬φ) (6)

In the next section we will present our verification approach
based on constructing bounds to the censored Markov chain.
The remark given in equation 6 let us to consider only upper
bound case whatever $ ∈ {≤, <,≥, >}.

2) Long-run reward rate operator E"r(φ) : This formula
expresses the long run expected reward per unit-time for φ-
states. It is a state formula of PRCTL [3] that is an extension
of PCTL allows to specify constraints over reward measures.
Let ρ : S → R≥0 be the reward function that assign to each
state s ∈ S a reward value ρ(s) ∈ R≥0. The state formula
E"r(φ) holds if the long-run expected reward rate per time-
unit for φ-states meets the bounds of $r. If the steady-state
exists, E"r(φ) is satisfied if:

E"r(φ) is satisfied iff
∑

s′|=φ

π(s′)ρ(s′) $ r (7)

3) Bounded until operator P"p(φ1U≤nφ2) : This path
formula of PCTL asserts that the probability measure of path
satisfying φ1U≤nφ2 meets the bound given by $p. Whereas,
the path formula φ1U≤nφ2 asserts that the state formula φ2

will be satisfied at some time k ≤ n and that at all preceding
time φ1 holds. Let s be the initial state, then:

s |= P"p(φ1U
≤nφ2) iff Prob(s, φ1U

≤nφ2) $ p (8)

Where Prob(s, φ1U≤nφ2) denotes the probability measure of
all paths σ starting from s and satisfying φ1U≤nφ2. In [11],
authors show that computation of Prob(s, φ1U≤nφ2) requires
the computation of the transient distribution in a modified
Markov chain M′. This chain is deduced from M by making
absorbing states that satisfy ¬φ1 ∨ φ2. Let πM′(s, s′, n) be
the transient probability in state s′ at time n of the chain M′

when the initial state is s, then Prob(s, φ1U≤nφ2) is defined
as (see proposition 1 in [11]):

Prob(s, φ1U
≤nφ2) =

∑

s′∈Sφ2

πM′(s, s′, n)

Let us remark that
∑

s′∈Sφ2
πM′(s, s′, n) represents the

absorption probabilities of φ2-states at time n of the absorbing
Markov chain M′ when s is the initial state. Therefore the
verification of the bounded until operator is reduced to the
computation of the absorption probabilities at time n of φ2-
states in the Markov chain M′.

4) Unbounded until operator P"p(φ1Uφ2) : The standard
unbounded until operator P"p(φ1Uφ2) is obtained by taking
n equal to ∞ in the bounded until formula:

P"p(φ1Uφ2) = P"p(φ1U
≤∞φ2)

Similarly, the verification of the unbounded operator requires
the computation of Prob(s, φ1Uφ2) that is equal to the
absorption probability of φ2-states in the chain M′. Let
πM′(s, s′) = limn→∞πM′(s, s′, n) be the steady-state prob-
ability of state s′, then:

Prob(s, φ1Uφ2) =
∑

s′∈Sφ2

πM′(s, s′) (9)

5) Mean first passage time D"r(φ) : This operator was
studied by de Alfaro in [2] and Andova et al. in [3]. Let s be
an initial state, D"r(φ) holds in s if the mean time to reach φ
states in Markov chain M meets the bound $r.

By making φ-states absorbing, the verification of D"r(φ)
is reduced to the computation of the mean absorption time of
the obtained chain Ma, when the initial state is s:

s |= D"r(φ) iff E(TMa[s]) $ r (10)

IV. PROPOSED VERIFICATION APPROACH

In this section, we will explain the proposed approach based
on stochastic comparison and censoring techniques to check
the formulas presented previously. First we present different
steps of the verification procedure in an abstract way. These
steps must be precised depending on the underlying formula.

Step 1: Defining the censored state space such E such
that E contains Sφ states.
Step 2: Reordering of the state space. This is necessary
in order to provide probability inequalities from the
stochastic comparison relations.
Step 3: Constructing of bounding models.
Step 4: Computing bounds on the considered measures.
Step 5: Checking the formula by means of bounds.

In the first step we define the partition of the state space.
Recall that, depending on the formula that we check, we are
interested in evaluating a performance measure on states of Sφ.
Thus we have to put states of Sφ in the watched subset E. We
include other states in E, obviously if we have more states in
this set, the bounds are more accurate. Thus the determination
of E is a tradeoff between the complexity and the accuracy
of bounds.

After the determination of E we have to reorder this subset.
Indeed we put always Sφ in the last rank to deduce inequalities
to Sφ probabilities (see proposition 2) or to Sφ increasing
reward measures (see proposition 3). Once the censored subset
E is defined and states are ordered, we construct bounding
chains to the censored Markov chain by using one of the
algorithms presented in subsection II-C. Then by analyzing
the bounding chain, that has a reduced size (number of states
in E) comparing to the size of the original chain (the whole
state space S), and depending of the formula that we check
we deduce bounds on the exact measure.



The last step consists in comparing the obtained bound
with the threshold given by $p or $r. Suppose that the given
threshold is ≤ p and that the obtained upper bound is bsup.
• if bsup ≤ p then we can conclude that the considered

formula is satisfied.
• else we can not conclude and therefore the obtained

bound must be refined. To do this we can increase the size
of E by including other states. The second possibility is to
modify the order of states belonging to E with respecting
the assumptions given form each formula. Indeed, the
accuracy of bounds depends on the effect of monotonicity
constraint that we impose to the bounding chain.

Now we give further details on the verification of each
operator.

A. Checking L"p(φ)
Recall that the verification of this operator requires the

computation of the steady-state probabilities of φ-states, if
they exist, (see equation 5). If $ ∈ {<,≤} then we put in
E, φ-states and other states of S (i.e. E = S′ ∪ Sφ, S′ ⊆ S.)
Obviously, the bounds are more accurate if we have a larger
S′ set. We order states of E by putting Sφ at the end. Then
we construct an upper bounding matrix to SE , that we denote
by Ssup

E , using proposed algorithms. By taking S′′ = Sφ in
proposition 2 we have the following steady-state probability
bounds for φ-states:

∑

s∈Sφ

π(s) ≤
∑

s∈Sφ

πSsup
E

(s)

Therefore, if
∑

s∈Sφ
πSsup

E
(s) ≤ p, we can conclude that the

formula is satisfied else the bound must be refined by taking
into account more states (increasing the size of S′ set).

Let us mention that if $ =≥ we have just to verify the
formula L<1−p(¬φ) by the same approach presented above
(see equality 6).

B. Checking E"r(φ)
The verification of this operator is similar to the previous

case. It requires the computation of the steady-state reward
measure of φ-states (see equation 7 ). We put in E states
belonging to Sφ then we reorder φ-states according to their
increasing reward values. In the case of this operator, we will
only consider the case when $ ∈ {≤, <} because we can
only obtain an upper bound to the exact steady-state reward
measure of φ-states (see equation 3). Hence, we construct an
upper bound matrix to SE to derive bounds on the reward
rates and conclude that the formula is satisfied if this bound
meets the threshold.

C. Checking P"p(φ1Uφ2)
The verification of this operator requires the computation

of absorption probability of φ2-states in the modified Markov
chain M′ (see equation 9). Let us denote by S′ the set of
states that precede immediately absorbing states (S¬φ1∨φ2).
We must put in the censored state set (E) all absorbing states
(S¬φ1∨φ2), S′ and the initial state s. Since we are interested

in the absorption probability of φ2-states, we aggregate Sφ2

to one macro-state θφ2 . Recall that under these assumptions
the absorption probability of θφ2 in M′ (πM′ [s, θφ2 ]) and
in its censored chain M′

E (πM′
E
[s, θφ2 ]) are the same (see

proposition 4). So, by deriving bounds to πM′
E
[s, θφ2 ], we

derive bounds to πM′ [s, θφ2 ]. This allows us the possibility to
consider the lower bound comparison operators $ ∈ {≤, <}
and the upper bound comparison operators $ ∈ {≥, >}. The
only difference between the two cases is that if $ ∈ {≤, <} we
put θφ2 at the end of E to derive upper bound to πM′

E
[s, θφ2 ]

(see equation 11 of appendix) however if $ ∈ {≥, >} we
place θφ2 at the beginning of E to obtain a lower bound to
πM′

E
[s, θφ2 ] (see equation 12 of appendix). Then we construct

an upper bounding chain to M′
E that we denote by M′sup

E . Let
πM′sup

E
[s, θφ2 ] be the absorption probability of θφ2 in M′sup

E ,
we can deduce from proposition 4 and 6 that:

• If θφ2 is placed at the end of E then:

πM′ [s, θφ2 ] = πM′
E
[s, θφ2 ] ≤ πM′sup

E
[s, θφ2 ]

Then we compare the obtained bound πM′sup
E

[s, θφ2 ] to
$p, $ ∈ {≤, <}.

• If θφ2 is placed at the beginning of E then:

πM′ [s, θφ2 ] = πM′
E
[s, θφ2 ] ≥ πM′sup

E
[s, θφ2 ]

We check then if πM′sup
E

[s, θφ2 ] meets the threshold $p,
$ ∈ {≥, >}.

D. Checking D"r(φ)

The verification of this operator requires the computation of
the mean absorption time of Ma obtained from the considered
chain M by making absorbing states that belong to Sφ

(see equation 10). To check this operator with the proposed
approach we must put in E, states belonging to Sφ and states
that precede immediately Sφ and the initial state s. Obviously,
we include other states in this set by considering the tradeoff
between the accuracy and the complexity. We aggregate Sφ

to one macro-state that we put it at the end of E. Then we
construct an upper bounding chain to the censored chain MaE

that we denote by Masup
E . We derive after that the mean

absorption time of Masup
E that is a lower bound to the mean

absorption time of Ma (see proposition 5 and 6):

E(TMasup
E

[s]) ≤ E(TMa[s])

where TMasup
E

[s] (resp. TMa[s]) is the random variable
denoting absorption time when the initial state is s in the chain
Masup

E (resp. Ma).
To conclude we have to check if E(TMasup

E
[s]) meets the

threshold $r, $ ∈ {≥, >}. We note that for this operator we
consider only the case when $ ∈ {≥, >} because we can
derive only a lower bound to the mean time absorption of
Ma .



E. Checking P"p(φ1U≤nφ2)
The verification of this formula requires the transient analy-

sis of the underlying chain. However the time evolution is not
the same in the original and the censored chain. Recall that the
censored process is observed at time epochs when the chain is
visiting states of E. Therefore the probability transition matrix
given by equation 1 and the bounds on it do not let us to derive
transient bounds and to check time bounded until formula.

In [8], the authors considered the model checking of Gen-
eralized Stochastic Petri Nets (GSPN) which is the extension
of Stochastic Petri Nets (SPN) with immediate transitions
(vanishing states). By defining E as normal states and Ec

as vanishing states, the probability transition matrix given by
equation 1 is the underlying chain for these models. Therefore
the proposed bounds on the censored chains can be applied
to provide model checking of these models including time
bounded formula.

V. NUMERICAL EXAMPLES

In this section we present numerical results obtained by
applying the proposed methodology for an example of re-
pairable system. The considered example can have more than
107 reachable states and more than 108 non zero transitions
(see table I). We consider a system that contains N resources
that can be operational or faulty. There are two failure modes:
soft and hard that we denote respectively by s and h. We
consider that the fault arrival of errors (hard and soft) is a
batch process with maximum size G. In this example we take
G = 1. We denote by pa

si (resp. pa
hi) the probability that i soft

(resp. hard) errors happen in the system in a time slot and by
pr

si (resp. pr
hi) the probability that i soft (resp. hard) errors are

repaired during a time slot. At the end of a slot, it is assumed
that first the end of reparation takes place and then the arrival
of errors is considered.

The considered system can be modelled by a discrete-time
Markov chain with state space S = {(fs, fh), fs + fh ≤ N},
where fs (resp. fh) represents the number of faulty resources
caused by soft (resp. hard) error. The size of the underlying
DTMC is (N+1)(N+2)

2 . We associate to each state s of the
chain a set a atomic propositions that characterize the state and
which are verified by the state. We assign to state (0, 0) which
is the state when the system has N resources operational, the
atomic proposition up. Moreover we assign to states when
there is no soft (resp. hard) errors in the system the atomic
proposition (fs = 0) (resp. (fh = 0)) and we assign to states
when there is one (resp. two) hard errors in the system the
atomic proposition (fh = 1) (resp. (fh = 2)).

In this example we give results for checking unbounded
until formula (see table II), steady-state formula (see table
III) and mean first passage time formula (see table IV) using
censoring techniques and stochastic comparison. We present
in table I the size of the exact chain and the censored chain
that we have considered in the verification of these formulas.
We give in column Size the state space size and in column
Entries the number of non null entries of the exact and
the bounding chain. We also report computation time (in

second) in column T ime needed to obtain the exact and
bounding measure. We can see clearly that computation times
are drastically reduced using the proposed bounding approach
which also provide results when the exact analysis fails (N =
10000).

Exact Markov chain Bounding Markov chain
N Size(S) Entries Time Size(E) Entries Time

100 5151 45351 0.27 202 1298 0.06
500 125751 1126751 23.46 1002 6498 2.21
1000 501501 4503501 154.46 2002 12998 4.36
10000 50015001 - - 20002 129998 55.05

TABLE I
COMPARISON OF ORIGINAL AND BOUNDING MODEL SIZES

In table II we present results obtained for the verification
of the unbounded until formula P≥0.7(¬(fh = 0) U up)
and P≤0.3(¬up U (fh = 0)). By making absorbing states
that verify (fh = 0) ∨ up we compute a lower bound (resp.
upper bound) to the absorption probability of states up (resp.
(fh = 0)) to check the formula P≥0.7(¬(fh = 0) U up) (resp.
P≤0.3(¬up U (fh = 0))). For both formulas we suppose that
we start from state (0, 1).

In table III we give results for checking steady-state for-
mula. We can observe that if the bound is not very accurate
we can not conclude through the bound (see symbol ?).

In table IV we give results for checking mean time operator
D≥102(up). By making up-state absorbing we compute a
lower bound to the mean first passage time before absorption.
We suppose that we start from the initial state (N, 0).

We note that numerical results are computed in an Intel
Pentium 4 with CPU 2.8 GHz and 1.5GBytes memory and
that probabilities pa

s0 = pa
h0 = 0.8, pa

s1 = pa
h1 = 0.2 , pr

s0 =
pr

h0 = 0.1 and pr
s1 = pr

h1 = 0.9.

VI. CONCLUSION

In this paper we show how we can combine stochastic
bounding techniques with censoring Markov chains techniques
to check formulas under discrete-time Markov chain. Thus
the proposed approach lets us to reduce substantially the
complexity of the model checking and to consider the model

Formulas N Exact prob. Bound prob. Is it satisfied?
P≥0.7(¬(fh = 0) U up) 1000 7.95 10−1 7.3 10−1 yes

10000 - 7.01 10−1 yes
P≤0.3(¬up U (fh = 0)) 1000 2.04 10−1 2.69 10−1 yes

10000 - 2.99 10−1 yes

TABLE II
CHECKING UNBOUNDED UNTIL FORMULA

Formulas N Exact prob. Upper bound prob. Is it satisfied?
L≤0.2((fs = 0) ∧ (fh = 1)) 1000 1.60 10−1 1.98 10−1 yes
L≤0.1((fs = 0) ∧ (fh = 2)) 1000 0.40 10−3 2.08 10−1 ?

TABLE III
CHECKING STEADY STATE FORMULA



N Exact time(second) bound time (second) Is it satisfied?
100 2.19 103 1.58 102 yes
500 6.62 103 5.07 102 yes
1000 9.06 103 9.07 102 yes
10000 - 7.52 103 yes

TABLE IV
CHECKING MEAN FIRST PASSAGE TIME FORMULA D≥102 (up)

checking of numerically intractable models. The extension of
this approach to infinite size cases are under study.
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APPENDIX

We present some preliminaries on the stochastic comparison
method and we refer to the books [17] for the theoretical issues
and different applications of this method.

Definition 1: Let X and Y be random variables taking
values on a totally ordered space S. Then X is said to be
less than Y in the strong stochastic sense, (X (st Y ) if and
only if E[f(X)] ≤ E[f(Y )] for all non decreasing functions
f : S → R, whenever the expectations exist.

We give in the next property the (st comparison in the case
of finite state space S = {1, 2, · · · , n}.

Property 1: Let X , Y be random variables taking values
on {1, 2, · · · , n} and p, q be probability vectors which denote
respectively distributions of X and Y .

X (st Y iff
n∑

j=i

p[j] ≤
n∑

j=i

q[j] ∀i = {n, n−1, · · · , 1} (11)

X (st Y iff
i∑

j=1

p[j] ≥
i∑

j=1

q[j] ∀i = {n, n−1, · · · , 1} (12)

The stochastic comparison of random variables has been
extended to the comparison of Markov chains. It is shown
in Theorem 5.2.11 of [17, p.186] that monotonicity and
comparability of the probability transition matrices of time-
homogeneous Markov chains yield sufficient conditions to
compare stochastically the underlying chains. We first define
the monotonicity and comparability of stochastic matrices and
then state this theorem and some useful corollaries.

Definition 2: Let P be a stochastic matrix. P is said to be
stochastically st-monotone if for any probability vectors p and
q:

p (st q =⇒ p P (st q P

Theorem 1: Let P (resp. Q) be the probability transition
matrix of the time-homogeneous Markov chain {Xt, t ≥ 0}
(resp. {Yt, t ≥ 0}). Xt (st Yt ∀t if:
• X0 (st Y0,
• at least one of the probability transition matrices is

monotone, that is, either P or Q is monotone,
• the transition matrices are comparable, (i.e. P (st Q).
In [1] an algorithm based on this theorem is given to

construct an optimal st-monotone upper bounding Markov
chain. This algorithms takes an irreducible stochastic matrix P
as input and returns as output a st-monotone upper bounding
matrix, Q, such that, P (st Q. Indeed, the monotonicity and
comparability constraints can be given as in equation 13. Note
that inequalities are replaced by equalities to construct optimal
bounds.

{ ∑n
k=j Q[1, k] =

∑n
k=j P [1, k]∑n

k=j Q[i + 1, k] = max(
∑n

k=j Q[i, k],
∑n

k=j P [i + 1, k])
(13)

Corollary 1: Let Q be a monotone, upper bounding matrix
for P for the st-ordering. If the steady-state distributions (πP

and πQ) exist, then πP (st πQ.


