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Abstract—We present an approach based on a multilevel
security policy and the theory of abstract interpretation for
checking secure interaction between applications in Java Cards.
The security policy is defined by the user, which assigns security
levels to Java Card applications. Actual values are abstracted into
security levels, and an abstract interpreter executes the bytecode
of applications in the abstract domain. We show JCSI, a tool
that implements the presented approach. JCSI can be used to
check the binary code of Java Card applications before their
installation on-card.

I. INTRODUCTION

Java Cards are pocket-size cards equipped with an embed-
ded microcontroller that supports the execution of a Java Vir-
tual Machine. Typical applications include credit and loyalty
systems, electronic cash, healthcare and government identifi-
cation. In multi-applicative Java Cards, new applications can
be downloaded and installed even after card issuance [4].

The Java Card system has built-in mechanisms to enforce
security and protection. Indeed, Java Card applications are exe-
cuted within a protected space, called context. Each application
is associated with a unique context, and a Java Card com-
ponent, called firewall, uses an access control mechanism to
limit the access rights of applications. The basic rule enforced
by the firewall is that applications can access only objects of
their own context. Information exchange between applications
is realised through special objects, called shareable interfaces.
Although firewall and runtime environment provide powerful
security mechanisms, they are inadequate to protect applica-
tions against unauthorised information propagation. Indeed, in
order to check secure interaction between applications, the
analysis of all information flows among applications installed
on-card is required. The Electronic Purse case study [3] is an
example in which an unauthorised application avoids the rules
of the firewall and is able to get access to a service provided
by another application by using information gathered from a
third application installed on-card.

The contribution of this work is an approach for the analysis
of secure interaction in Java Cards. The approach is based
on a multi-level security policy and the theory of abstract
interpretation of the operational semantics [5], [6], [12].
Abstract interpretation is a method for analysing programs
in order to collect approximate information about their run-
time behaviour. It is based on non-standard semantics, i.e.
a semantic definition in which a simpler abstract domain
replaces the standard one, and the operations are interpreted
on the new domain. The use of abstract interpretation allows,

on one side, being semantics based, to accept as secure a wide
class of programs, and, on the other side, being rule based, to
be fully automated. The security policy assigns unique security
levels to applications, and data are initially assigned to the
security level of the application they belong to. Applications
are executed in the abstract domain through a set of abstract
rules that trace the flow of information. Java Card applications
are analysed one at a time and the analysis is performed
method per method. We associate a state to every instruction in
the bytecode. The state takes into account the security level of
local variables, method invocations and the heap. Instructions
of the bytecode are executed by an abstract interpreter by
means of a fixpoint iteration. A similar fixpoint iteration is
used by the Bytecode Verifier, which checks type correctness
of the Java bytecode [10].

We developed a tool suitable to analyse the binary code
of Java Card applications, which are released to users when
installing new services on-card. The complete Java Card
instruction set is handled by our analysis.

II. PROBLEM STATEMENT

The Java Card system relies on the Java Card Runtime Envi-
ronment (JCRE), which is responsible for managing resources,
executing programs and applying access control mechanisms
(see Figure 1). JCRE consists of a native operating system, the
Java Card Virtual Machine (JCVM) and the Application Pro-
gramming Interfaces (APIs), which define the set of services
provided by the system. Java Card applications reside in a user
space, and they can use JCRE services. Both applications and
APIs are implemented as packages. A package contains the
compiled form of a set of Java classes and interfaces. Interfaces
define only methods. Shareable interfaces are special interfaces
used to define methods that can be shared between different
contexts.

JCRE assigns an unique identifier (AID) to packages in-
stalled on-card. Some classes contained in the package act
like servers, and wait for commands dispatched by the JCRE.
Such classes are called applets.

A. Firewall & object sharing mechanisms

The Java Card firewall limits the boundaries of applets. The
basic rule enforced by the firewall is the following: applets
may access only objects belonging to the context of their own
package. Namely, at runtime, the firewall checks all operations,
and denies the executed applet to access objects belonging to



contexts different from the current active context, that is the
context of the applet which is being executed.

The Java Card system provides mechanisms for sharing
information and services between applets of different con-
texts. Sharing is based on Entry Point Objects (EPOs) and
Shareable Interface Objects (SIOs). EPOs are objects of JCRE;
examples of EPO classes are APDU, which stores applet
commands, AID, which identifies applets installed on-card,
and JCSystem, which provides methods suitable for a limited
inspection of the call stack of shared methods. SIOs, on the
other hand, are objects belonging to applets and they are
used to implement shared objects interfaces. SIOs must always
extend Shareable. SIOs can be accessed by applets belonging
to any package. Moreover, pointers to SIOs can be passed from
one applet to another, for example by saving a pointer to a SIO
in a public field. Access policies to methods defined in the SIO
are managed by the applet that implements the SIO.

In order to exemplify the object sharing mechanism, let
us consider the scenario depicted in Figure 1. Assume that
applets A and B belong to different contexts, and that B wants
to invoke foo(), a shared method provided by A. The chain
of method invocations is the following. (1) Applet B invokes
getAppletSIO(AID), implemented by a static EPO; AID
identifies the applet implementing the shared object (A, in
this case). (2) Method getAppletSIO(AID) dispatches a
request for the shareable object to A. The request is done by
triggering the invocation of method getSIO(AID) imple-
mented by A, where AID identifies the applet that requested
the shared object (B, in this case). (3) If applet A accepts
the request, a pointer to the shareable object is returned to
JCRE, which in turn returns the pointer to B. If the request
is not accepted – this may happen, for example, when A uses
an authentication policy and B is not authorised, or simply
because A does not implement the getSIO(AID) – a null
pointer is returned to JCRE, which in turn returns a null
pointer to B. Applet B, after having received the pointer to the
SIO implemented by A, may invoke method foo(). When
method foo() is invoked, JCRE automatically performs a
context switch: the current active context (i.e, the context
of B in this case) is saved and subsequently restored when
the execution of method foo() completes. Applet A is able
to ensure the actual identity of the caller by using method
getPreviousContext() of a static system EPO, which
returns the identifier of the owner of the previous active
context.

B. Limits of the firewall
Let us consider the Electronic Purse case study [3], which

considers the interactions between a purse applet and two
loyalty applets (see Figure 2).
Purse. Purse performs debit and credit operations in
different currencies, plus some administration functions.
To this purpose, Purse implements a shareable inter-
face, PurseLoyaltyInterface, which contains method
getTransaction() that can be invoked by loyalty applets
to get transaction records stored in the transaction log. The

Fig. 1. The Java Card Environment.

transaction log has a limited dimension, thus Purse may over-
write old records to save new records. Purse offers a logfull
service that can be subscribed by client applets that need loss-
less transaction logs. Client applets that are registered to the
logfull service must implement a shareable interface defined
by Purse (LoyaltyPurseInterface). This interface is
used by Purse to invoke method logFull(), which notifies
applets registered to the service that the transaction log is
going to be over-written.
AirFrance. AirFrance is a loyalty applet. This applet
is a client of Purse and can interact with other loy-
alty applets. AirFrance implements two shareable interfaces:
LoyaltyAirFranceInterface, which contains, among
others, method getBalance() which can be invoked by
other loyalty applets to get the current number of points
collected; LoyaltyPurseInterface, which is needed
by AirFrance since the loyalty applet subscribed the logfull
service of Purse.
RentACar. RentACar is a loyalty applet. Similarly
to AirFrance, RentACar implements a shareable interface
LoyaltyRentACarInterface which contains, among
others, method getBalance() which can be invoked
by other loyalty applets to get the current number of
points collected. RentACar is a client of Purse, as well,
but RentACar is not registered to the logfull service,
thus RentACar does not implement the shareable interface
LoyaltyPurseInterface.

Assume that AirFrance requests RentACar the amount
of points every time it is notified by Purse that the
transaction log is full. Namely, assume that the imple-
mentation of logFull() in AirFrance has an invocation
to method getTransaction() of Purse followed by
getBalance() of RentACar. In this case RentaACar, upon
receiving the invocation of getBalance(), may infer that
Purse is going to over-write the transaction log, and may
benefit from the logfull service of Purse even without subscrib-
ing to the service. Purse is not able to detect such problem.
Moreover, this problem cannot be avoided by the firewall,
since both AirFrance and RentACar are allowed to invoke
getTransaction() to retrieve the transaction log.

The Electronic Purse shows an an example of secure inter-
action violation caused by nested calls to shareable interface
methods between different packages. There are several other



Fig. 2. The Electronic Purse.

methods to avoid the firewall policy (see Subsection III-C).

III. THE PROPOSED APPROACH

In order to analyse secure interaction, we use the theory
of secure information flow in a program [11]. We assume the
following security model. We define a set P of security levels,
one for each package. We consider the powerset Σ = 2P , i.e.
the set of all subsets of P , ordered by subset inclusion. (Σ,⊆)
is a complete lattice (every pair of elements of Σ has both
a greatest lower bound, glb, and a least upper bound, lub).
The lub is given by the union (∪) and the glb is given by
the intersection of subsets (∩). Given A ⊆ B, A ∪ B = B
and A ∩ B = A. The analysis operates over security levels
in Σ. For any element p of P , the singleton set {p} denotes
information whose security level is that of package p. The set
{p1, p2} denotes information that depends on both packages
p1 and p2. The minimum of Σ is the empty set.

We use the following notation. Given a package p,
Import(p) is the set of imported methods, i.e., methods
invoked by p which belong to a SIO of another package,
Export(p) is the set of exported methods, i.e., the set of meth-
ods of a SIO implemented by p, and Internal(p) is the set
of internal methods of p. Given a method mt, Packages(mt)
is the set of packages that implement mt. Given a class τ , we
use the syntax τ.f to denote field f of class τ . We use [τ to
denote arrays of type τ .

A set of user packages satisfies secure interaction if methods
shared between package p and package p′ depend at most on
the security levels of p and p′ (⊆ {p, p′}). The analysis checks
the following constraints:

• Imported methods: the method call is correct. If the
method belongs to a SIO of p′, this means that the calling
environment and parameters depend at most on p and p′.

• Exported methods: the method return is correct. If the
method is invoked from p′, this means that the return
depends at most on p and p′.

Packages are analysed one at a time. When we verify a
package, we have an ambient file that maintains the security
level of methods, objects, and arrays in the heap.

A. Ambient file

Heap. The heap is a private resource of the package. The
ambient file maintains a security level for each class field
and for each array type.

When analysing package p, the security level of class fields
is initially set to the security level of p. The level of class
fields will be updated during the analysis according to the flow
of information and dependencies between instructions in the
program. When the analysis completes, the security level of
class field τ.f consists of the maximum security level of field
f of all objects of class τ . We abstract from array instances
and indexes in the ambient file. The security level of arrays
is initially set to the security level of the analysed package.
When the analysis completes, the security level of [τ is the
maximum security level saved into all arrays of type [τ .
Methods. The security level of a method characterises how
the method is called in terms of the maximum security level
of method’s actual parameters, calling environment and return.
The ambient file saves the security level of all methods
of a package1. Each method is denoted by an expression
of the form mtp

′

p (τ1, . . . , τn)τ ; τ ′, where τ1, . . . , τn are the
arguments, τ is the return and τ ′ is the calling environment; p
is the package that implements mt and p′ is the package that
invokes mt.

Let M be the set of methods defined in the ambient
file. For internal methods, a single instance of the method is
inserted in the ambient file with levels of arguments, return
and calling environment equal to the level of the package:
mtpp(p, · · · , p)p; p ∀mt ∈ Internal(p).

Methods imported by p are inserted in the ambient file with
security levels for parameters and calling environment equal
to the level of package p. The level of the method return in
the ambient file is computed as the lub between packages
implementing such method, since we cannot statically derive
the actual implementation that will be invoked at run-time:
mtpp′({p}, · · · , {p})S; {p} ∀mt ∈ Import(p), where
S = lub(

⋃
p′∈Packages(mt){p, p′})

For every method exported by p, an instance of the method
is inserted in the ambient file for every package that invokes
such method. For the method instance invoked by package p′,
the level of method’s parameters, return and calling environ-
ment is {p, p′}:
mtp

′

p ({p, p′}, · · · , {p, p′}){p, p′}; {p, p′} ∀mt ∈ Export(p)
Note that method getSIO() is implicitly exported by ap-

plets that implement such method. Moreover, the invocation

1Note that an interface can be declared in a package and implemented by
other packages. Moreover, the same interface can be implemented by many
packages.



of getSIO() is triggered by getAppletSIO(). As a conse-
quence, an instance of getSIO() for all packages that invoke
getAppletSIO() is inserted in the ambient file:
getSIOp′

p ({p, p′}, · · · , {p, p′}){p, p′}; {p, p′} ∀p′ such that
getAppletSIO() ∈ Import(p′)

B. Analysis of a package
The analysis of a package is based on an iterative process

that, starting from the initial ambient file D0, verifies all
methods in M that are implemented by the package. The
list of methods to be analysed is maintained. Whenever a
security level changes in the ambient file, all methods must
be re-verified. The analysis uses an abstract interpreter, named
Method Security Checker (MSC), to verify a single method.
The analysis is carried out with the algorithm shown in Figure
3. Given a method mt ∈ M implemented by p and an
ambient file D, MSC performs an abstract execution of the
bytecode of mt with respect to the security levels in D and
produces a new ambient file D′. If D′ = D, another method
is analysed; if D′ &= D, all methods are verified again starting
from the ambient file D′. The verification terminates when,
starting from an ambient file, all methods are analysed and
the new ambient file is unchanged.

D := D0

T := {mt ∈M | mt implemented by p}
MT := T
while(MT "= ∅)

select mt ∈ MT
MT := MT − {mt}
D′ := MSC(mt, D)
if(D′ "= D)

D := D′

MT := T

Fig. 3. Main steps of the analysis of a package

C. Analysis of a method
Basics

JVML is a stack based assembly language: there is an
operand stack and a memory containing local variables (reg-
isters). The language has typed instructions (for example,
τload x pushes the content of type τ of register x onto the
operand stack) and includes subroutines and exceptions. The
bytecode of a method mt is a sequence of JVML instructions
Bmt. We assume instruction are numbered starting from 1 and
we use Bmt[i] to denote instruction i of the bytecode.

We briefly recall basic concepts of secure information flow
in a program [11]. A program, with variables partitioned into
two disjoint sets of high and low security, has secure infor-
mation flow if observations of the final value of low security
variables do not reveal any information about the initial value
of high security variables. Assume y is a high security variable
and x a low security one. Examples of violation of secure
information flow in a high level language are: (1) x:=y and
(2) if y=0 then x:=0 else x:=1. Statement (1)

1 iload y
2 ifcmpz 5
3 iconst 1
4 goto 6
5 iconst 0
6 istore x
7 return

Fig. 4. A simple bytecode and its CFG

1 aload x
2 aload y
3 getfield B.f2
4 putfield A.f1
5 return

(a)

1 aload x
2 aload y
3 getfield B.f2
4 ifge 6
5 invoke mt
6 return

(b)

Fig. 5. Secure information flow violation (a) Objects (b) Methods

contains an explicit information flow from y to x, statement
(2) contains an implicit information flow: in both cases, the
final value of x reveals information on the value of the higher
security variable y.

Our analysis considers information flow in the Java byte-
code. Since the bytecode is unstructured, implicit flows are
handled through the control flow graph (CFG) and the notion
of immediate postdominator (ipd). Consider the bytecode in
Figure 4, which corresponds to statement (2). The branching
instruction ifcmpz j causes the beginning of an implicit
flow: if the conditional instruction is at position i, then the
implicit flow affects all instructions belonging to paths from
i to ipd(i). Note that ipd(i) is the first instruction which is
not affected by the implicit flow, since it represents the point
where the two branches join together. Let us consider the graph
in Figure 4. We have that ipd(2) = 6, and both instructions
iconst 12 and iconst 0 are in the scope of the control
instruction. The bytecode violates secure information flow,
since there is an implicit flow from the high security variable
y to the constants 1 and 0, and instruction istore x saves
a high constant into the low variable x.

An example of secure information flow violations through
objects is shown in Figure 5(a). Assume register x contains
a reference to an object of class A, while register y contains
a reference to an object of class B. Moreover, assume that
the security level of x, y and A.f1 is low, while the level of
B.f2 is high. The code represents an explicit information flow
from an high security field to a low security field. Figure 5(b)
shows an example of secure information flow violation through
a method invocation. Let mt be a method of low security level
class A. Method mt is invoked or not according to the value
of a high security field.

2Instruction iconst 1 pushes the constant 1 onto the stack.



Our strategy
The semantics of the language has been enhanced to con-

vey the level of information flow during execution. This is
accomplished i) by annotating each value with the level of the
information flows, both explicit and implicit, which the value
depends on, and ii) by executing instructions under a security
environment, which represents the least upper bound of the
security levels of the open implicit flows when an instruction
is executed.

Data are pairs (k, σ), where k is the value and σ is the
security level. We model a state of the program execution
as a tuple 〈σ, i,m, st〉, where σ is the security level of the
environment, i is the address held by the program counter,
m is the memory representing the current state of registers
and st is the current state of the operand stack. In the state
〈σ, i,m, st〉, instruction i must be executed. For example, the
rule for τload x pushes onto the stack a value with security
level equal to the least upper bound between the security
level of m(x) and the environment and assigns i + 1 to the
program counter:

τ load B[i] = τload x m(x) = (k, σ′)
〈σ, i, m, st〉 −→ 〈σ, i + 1, m, (k, σ ∪ σ′) · st〉

The standard concatenation operator is · and the empty
stack is represented by the symbol λ. We assume that the top
of the stack appears on the left hand-side of the sequence (i.e.,
given st = s1 · · · sn, element s1 is the top of the stack).

We define an abstract semantics that abstracts from actual
values and maintains only annotations on security levels. Any
memory m is abstracted into an abstract memory M such that
any variable x holds the security level of m(x). Similarly,
an abstract operand stack St keeps the security levels of the
items in the corresponding stack st. For example, the rule for
τload is the following:

τ load B[i] = τload x M(x) = σ′

〈σ, i, M, St〉 −→ 〈σ, i + 1, M, (σ ∪ σ′) · St〉

A method is executed in the abstract domain starting from
the security level assigned to arguments and calling environ-
ment in the ambient file.

Note that an invoke instruction updates the security level of
the invoked method in the ambient file, and the security level
returned by the invoked method is taken from the ambient
file. A read and/or write operation of object fields or arrays
refers to the security levels saved in the ambient file.

D. The abstract interpreter
The abstract interpreter MSC performs an abstract execution

of the bytecode of a method according to a data flow analysis.
Given a method mt, each instruction i ∈ Bmt is assigned a
state 〈Qi, D〉, which represents the state in which instruction
i is executed. D is the ambient file and Qi is an abstraction
of the JCVM’s state before the execution of i. Qi is a
triple (E,M,St), where E ∈ Σ is the security level of the
environment, M : Registers → Σ is a mapping from local
registers to security levels (the memory) and St ∈ Σ! (where

! denotes the set of finite sequences over a set) is a mapping
from the elements in the operand stack to security levels (the
stack). In the following, we use Q to denote the set of states
Qi.

A partial order relation on the domain Q is defined. This
relation is induced from the ordering relation among security
levels. For example, the bottom element of memories is
assigned to all registers. Given two memories M1 and M2,
M1 ⊆ M2 iff, for every register x, M1(x) ⊆ M2(x). Given
two stacks St1 and St2, St1 ⊆ St2 iff each item in St1
is ⊆ of the corresponding item in St2. Given two states
Qi = (E,M,St) and Q′

i = (E′, M ′, St′), Qi ⊆ Q′
i iff E ⊆

E′, M ⊆ M ′, St ⊆ St′. The least upper bound operation on Q
is defined point-wise on memories, stacks and environments:
(E,M,St) ∪ (E′, M ′, St′) = (E ∪ E′, M ∪M ′, St ∪ St′).

The abstract interpreter is based on a set of rules for
instructions. The rules defines a relation →⊆ 〈Q,D〉×〈Q,D〉.
Figure 6 show some rules. Given Q, the notation Q[Qi∪=
(σ, M, St)] is used to denote a new state which is equal to
Q except for the entry Qi, that is set equal to the least upper
bound between Qi and (σ, M, St). The rules are defined for all
bytecode instructions. For instance, rule if (for B[i] = ifL)
updates the successors Qi+1 and QL taking into account
the security level of the environment and the new operand
stack. Moreover, it updates also the security environment of
every instruction j ∈ scope(i). Rule getfield leaves onto
the stack the lub between the security level of a class field
in the ambient file, the parameter on the stack and the
environment. Exception and subroutines are handled with a
proper modification of the CFG: for exceptions, the after state
of protected instructions and implicit flows is propagated to
the entry point of exception handlers; for subroutines, the after
state of ret x is propagated to all possible return point of
the subroutine.

Instructions to be verified are inserted into a worklist WL,
initialised by inserting instruction 1. When instruction i is
executed, the state Qi is considered and the after-state of
instruction i is computed. The after-state is then merged with
the before-state of every successor of the instruction. If the
state of a successor j changes, or if a successor has not been
visited yet, j is inserted in WL. Note that, since an instruction j
can be the successor of more than one instruction, Qj stores a
state that merges all possible states in which j can be executed.
When WL is empty, the verification of a method completes.
The initial state 〈Q0, D0〉 reflects the state of the JCVM on
method entrance. The fixpoint is reached with a finite number
of iterations and the termination is guaranteed independently
from the order of application of the rules.

Figure 7 shows the result of the analysis applied to the
bytecode in Figure 4. Q1 consists of a memory with x and y,
a low and a high variable, respectively, an empty operand stack
and a low security environment. Instruction 1 loads y onto the
operand stack. The after-state of 1 becomes the before-state of
2. Instruction 2 pops an element from the stack and updates
the environment of instructions in its scope (3, 4 and 5) with
the level of the implicit flow (high in this case). The after-state



if B[i] = ifcond L, Qi = (σ, M, k · St), Qj = (σ′, M ′, St′), γ = σ ∪ k ∪ σ′

〈Q, D〉 → 〈Q[Qj,j∈scope(i)∪= (γ, M ′, St′), Qj∈{i+1,L}∪= (γ, M ∪M ′, St ∪ St′)], D〉

getfield B[i] = getfield τ.f, Qi = (σ, M, k · St), γ = σ ∪ k ∪D(τ.f)
〈Q, D〉 → 〈Q[Qi+1∪= (σ, M, γ · St)], D〉

Fig. 6. Examples of abstract execution rules

E (M(x), M(y)) St
Q1 l (l, h) λ
Q2 l (l, h) h
Q3 h (l, h) λ
Q4 h (l, h) h
Q5 h (l, h) λ
Q6 l (l, h) h
Q7 l (h, h) λ
QEND l (h, h) λ

Fig. 7. An example of data-flow analysis

of 2 becomes the before-state of 3 and 5 (the successors of
2). When the data flow analysis completes, the low security
variable x contains a high value.

IV. DETECTING ILLEGAL FLOWS IN JAVA CARDS

When the analysis terminates, the ambient file records the
highest implicit flow for method’s calls, the least upper bound
of the security levels of data flowing into method parameters,
arrays and objects in the heap during the execution of the
package. Illicit flow of information can be detected looking
at SIO methods in the ambient file, since interface methods
must not exceed a given security level.

1) Exported Methods. For every exported method
mtp

′

p (τ1, · · · , τn)τ ; τ ′ in the ambient file, the security
level of the return must be ⊆ {p + p′}. This way we
assess that the method is not releasing information to
package p′ that depends on packages different form p
and p′. In the case of getSIO(), we check that the
release of the SIO between two packages p and p′ (p
provides the SIO, and p′ requests the SIO) does not
depend on a third package.

2) Imported Methods. For every imported method
mtpp′(τ1, · · · , τn)τ ; τ ′ in the ambient file, the security
level of method parameters and calling environment
must be ⊆ glb(

⋃
p̄∈Packages(mt){p, p̄}). This way we

assess that a method invocation does not release infor-
mation to package p′ that depends on packages different
form p and p′.

The approach proposed in this work is conservative, in the
sense that all insecure packages are rejected, but we may also
reject some secure packages, since in the abstract analysis all
branches of control instructions are checked, even those that in
the real execution would have never been executed. Moreover,
when a shareable interface method is invoked, we assume
that every package implementing the method can be invoked.
The precision of the approach can be enhanced by annotating

method invocations in the bytecode with information about the
callers’ identity. Such information can be provided by package
developers.

V. THE JCSI TOOL

JCSI is a tool that analyses programs compiled into CAP
files, which is the standard Java Card binary file format. When
a CAP file is analysed, JCSI assumes that it is type correct,
i.e. it assumes that the CAP file has already been analysed by
the off-card verifier provided by the Java Card platform.

Fig. 8. Software modules of the tool.

Fig. 9. GUI of JCSI.

JCSI is composed of the following main software modules
(see Figure 8):

Ængine: implements the abstract interpreter MSC of the
bytecode according to the process in Figure 3.

XTrim: generates the control flow graph of the bytecode
of each method, and takes into account exception handlers



Fig. 10. DeCap tool.

and subroutines. XTrim is also responsible of computing the
scope of control instruction.

Vision: the GUI of JCSI (see Figure 9). Users can i) select the
package to be analysed and the context of packages stored
on-card, ii) start/stop the full analysis, iii) view the analysis
results and a brief summary for each analysed method, iv)
view the full log of the analysis.

DeCAP: a CAP file disassembler and visualiser (see Figure
10). DeCAP is a tool that provides a set of APIs suitable
to read binary CAP files used by Java Cards. This tool is
invoked by Ængine in order to parse CAP files. Binary CAP
files are represented through a Java class called CapFile.
DeCAP also provides a GUI that allows users to explore
the structure of CAP and export files, and to visualise their
binary content in a more comprehensive mnemonic format.

JCSI performs the analysis of a CAP file in four main
steps. First, unique security levels are automatically assigned
to packages and the Import and Export of a package are
automatically computed (optionally, they can also be specified
by the user). Second, security levels are assigned to methods
and class fields and array types in the ambient file. Third, the
abstract interpretation of the bytecode is performed following
the verification method described in Section III-B. Fourth,
the tool reports the final result at the end of the analysis,
which shows the secure interaction properties described in
Section IV. If a package does not guarantee secure interaction,
a detailed report on methods and instructions causing the
violation is shown.

We checked the Electronic Purse with JCSI. In the follow-
ing, we show an excerpt from the initial ambient file for the
analysis of AirFrance.
------- Interface Methods (Exported)
interface purse/LoyaltyPurseInterface
- method_294():void //%--logFull
@method_294():{airfrance,purse};{airfrance,purse}

interface purse/LoyaltyPurseInterface
- method_607():void //%--exchangeRate
@method_607():{airfrance,purse};{airfrance,purse}

interface airfrance/LoyaltyAirFranceInterface
- method_473():short //%--getBalance

Fig. 11. Example of analysis results.

@method_473():{airfrance,rentacar};{airfrance,rentacar}
interface airfrance/LoyaltyAirFranceInterface
- method_503(byte,short):void //%--updatePoints
@method_503({airfrance,rentacar},{airfrance,rentacar})
:{airfrance,rentacar};{airfrance,rentacar}

---- Internal Methods
- install(array of byte,short,byte):void
@install(airfrance,airfrance,airfrance)
:airfrance;airfrance

- <init>(array of byte,short,byte):void
@init(airfrance,airfrance,airfrance)
:airfrance;airfrance

//%-- more initialisations omitted

At the end of the analysis of the Electronic Purse, we
obtain that Purse satisfies secure interaction, while AirFrance
and RentACar violate secure interaction. Indeed, we re-
call that, when AirFrance invokes getBalance() in the
code of logFull(), there is a secure interaction viola-
tion because there is an implicit flow from logFull() to
getBalance(). The level of the calling environment is
{purse, airfrance, rentacar}. Similarly, the level
of the calling environment is {purse, airfrance,
rentacar} when RentACar invokes getTransaction()
in the code of getBalance() JCSI performs the analysis
of AirFrance in a few minutes on a desktop computer, and
produces the report shown in Figure 11 at the end of the
analysis. The JCSI tool and the case study are available at
http://www.ing.unipi.it/∼o1833499/JCSI/.



VI. RELATED WORK AND CONCLUSIONS

Several works deal with the formalisation of the Java Card
firewall in order to find out its limits in protecting sensitive
data of packages. In [8], [7] a formal specification of the
firewall is presented and an operational semantics of a subset
of the Java Card language that includes the security checks
of the firewall is defined. In [2] an analysis is proposed for
detecting whether an access to shared objects violates the rules
of the firewall.

Other works statically check secure interaction by using
the theory of secure information flow. The reader can refer
to [11] for a survey of the techniques applied for enforcing
information flow security policies in programs. In [3], a tool
based on a model checking technique has been developed to
check information flow in Java Cards. The tool is based on a
security policy that defines the allowed flows of information
between applets and the verification is done with the SMV
model checker. The tool computes all call graphs of the
application and generates an SMV model per graph. In [9]
a case study is presented, where a combination of static
program analysers are employed to check the source code of a
smart card applet. More recent works propose tools that apply
analysis techniques that do not guarantee sound and complete
analyses [13], [1].

The main contribution of this work is the provision of an
approach to statically check secure interaction in Java Cards
based on abstract interpretation of the operational semantics.
The proposed approach is conservative, which means that all
codes that are not secure are guaranteed to be rejected. To
verify a package, only the import component of the other
packages is required. We reduce the complexity of the analysis
by using a data-flow analysis. Moreover, the analysis scales
up, since packages are analysed separately by a method per
method verification.

We provide a tool that implements the approach, and is
suitable to analyse the binary code of Java Card applets, which
are released to users when installing new services on-card.

A limit of our approach is that the analysis is monomorphic,
in the sense that it is impossible to distinguish between object
instances. This is due to the design choice of modelling
corresponding fields of different objects of the same class by a
unique (the highest) security level. However, this is not a real
limitation, since applets rarely create more than few objects.
Similarly, we model array and method invocation without
taking into account array instances and program points of
method invocation. All the above limitations can be overridden
by collecting in the ambient file, for each object instance and
array instance, the program point of its creation, and, for each
method, the program point of method invocation.
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