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EXPLICIT RUNGE–KUTTA SCHEMES AND FINITE ELEMENTS
WITH SYMMETRIC STABILIZATION FOR FIRST-ORDER LINEAR

PDE SYSTEMS

ERIK BURMAN∗, ALEXANDRE ERN† , AND MIGUEL A. FERNÁNDEZ‡

Abstract. We analyze explicit Runge–Kutta schemes in time combined with stabilized finite
elements in space to approximate evolution problems with a first-order linear differential operator
in space of Friedrichs-type. For the time discretization, we consider explicit second- and third-order
Runge–Kutta schemes. We identify a general set of properties on the spatial stabilization, encom-
passing continuous and discontinuous finite elements, under which we prove stability estimates using
energy arguments. Then, we establish L2-norm error estimates with (quasi-)optimal convergence
rates for smooth solutions in space and time. These results hold under the usual CFL condition for
third-order Runge–Kutta schemes and any polynomial degree in space and for second-order Runge–
Kutta schemes and first-order polynomials in space. For second-order Runge–Kutta schemes and
higher polynomial degrees in space, a tightened 4/3-CFL condition is required. Numerical results
are presented for the advection and wave equations.

Key words. First-order PDEs, transient problems, stabilized finite elements, explicit Runge–
Kutta schemes, stability, convergence.
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1. Introduction. Let Ω be an open, bounded, Lipschitz domain in R
d and let

T > 0 be a finite simulation time. We consider the following linear evolution problem

∂tu+Au = f in Ω × (0, T ), (1.1)

completed with suitable initial and boundary conditions specified below. Here, u :
Ω × (0, T ) → R

m, m ≥ 1, is the unknown and f : Ω × (0, T ) → R
m is the source

term. Moreover, A is a first-order linear differential operator in space endowed with a
symmetry property specified below (the operatorA can also accommodate a zero-order
term). Typical examples include advection problems and linear wave propagation
problems in electromagnetics and acoustics.

Our goal is to analyze approximations to (1.1) using explicit Runge–Kutta (RK)
schemes in time and finite elements with symmetric stabilization in space. Explicit
RK schemes are popular methods to approximate in time systems of ordinary dif-
ferential equations. In the context of space discretization by discontinuous Galerkin
(DG) methods, explicit RK schemes have been developed by Cockburn, Shu, and
co-workers [11, 10, 8] and applied to a wide range of engineering problems (see, e.g.,
[9] and references therein). This is in stark contrast with the case of space discretiza-
tion by continuous finite elements where, to our knowledge, stabilization techniques
have not yet been analyzed in combination with explicit RK schemes. In particu-
lar, SUPG-type stabilization seems not to be compatible with explicit RK schemes.
In fact, the only viable explicit method with continuous approximation in space for
the present evolution problems is, to our knowledge, the method of characteristics
[15, 25]. Alternatively, implicit methods can be considered (see, e.g., [19, 16, 7]), i.e.
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based on A-stable time discretizations, or semi-implicit methods [7], resulting from
the combination of an A-stable scheme with an appropriate explicit treatment of the
stabilization operator.

The starting point of our analysis is the observation that owing to the properties
of the differential operator A, there is a real number λ0 s.t. for the exact solution,

(Au, u)L ≥ 1
2 (Mu, u)L,∂Ω − λ0‖u‖2

L, (1.2)

where M is a non-negative R
m,m-valued boundary field depending on the boundary

conditions. Here, we have set L := [L2(Ω)]m, (·, ·)L denotes the usual scalar product
in L with associated norm ‖·‖L, and (·, ·)L,∂Ω denotes the usual scalar product in
[L2(∂Ω)]m. As a result, an energy can be associated with the evolution problem (1.1).
Indeed, taking the L-scalar product of (1.1) by u, exploiting (1.2), and integrating in
time, it is inferred using Gronwall’s lemma that solutions to (1.1) satisfy the energy
estimate

max
t∈[0,T ]

‖u‖2
L +

∫ T

0

(Mu, u)L,∂Ωdt ≤ C, (1.3)

where the constant C depends on the initial condition, the source f , the simulation
time T , and the parameter λ0. This implies in particular that the energy, defined as
the L-norm of the solution, is controlled at any time.

Following the seminal work of Levy and Tadmor [24], our analysis of explicit RK
schemes with stabilized finite elements hinges on energy estimates. The crucial point
is that explicit RK schemes are anti-dissipative (that is, they produce energy at each
time step), and this energy production needs to be compensated by the dissipation of
the stabilization scheme in space. In [24], a so-called coercivity condition was proposed
on the discrete differential operator in space, and with this condition, the stability
of the usual RK3 and RK4 schemes was proven under a CFL-type condition. The
coercivity condition in [24] can for instance be satisfied if an artificial viscosity is used
for space stabilization. However, artificial viscosity yields suboptimal convergence
estimates in space as soon as finite elements with polynomials of degree ≥ 1 are used.

In the present paper, we improve on this point by establishing stability estimates
for a wide class of high-order finite element methods with symmetric stabilization.
High-order finite element methods do not satisfy the above coercivity condition. In-
stead, we derive here a sharper set of conditions on the stabilization and proceed
along a different path than in [24] for the stability analysis, still relying on energy
arguments. Furthermore, we additionally derive energy error estimates that are opti-
mal in time and quasi-optimal in space provided the exact solution is smooth enough.
We also consider fully unstructured simplicial meshes.

A salient feature is that our conditions allow for a unified analysis of several
high-order stabilized finite element methods encountered in the literature. Examples
include in the context of continuous finite elements, e.g., interior penalty of gradient
jumps [2, 3], local projection [1, 26], subgrid viscosity [18, 19], or orthogonal subscale
stabilization [12, 13], and also include discontinuous finite elements (DG methods)
[23, 22, 17, 14]. Incidentally, a noteworthy point is that DG methods can be cast into
the same unified framework as stabilized finite element methods, indicating that all
these methods essentially share the same stability properties.

Explicit RK schemes come in various forms; see, e.g., [20]. Here, we present
results for two-stage second-order and three-stage third-order schemes (abbreviated
as RK2 and RK3, respectively). These schemes are written in a specific form suitable
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for the present analysis, and we verify that usual RK2 and RK3 schemes encountered
in the literature can be cast into this form.

Our main results can be summarized as follows:
• under the usual CFL condition τ ≤ ̺(h/σ) where τ is the time step, h the

minimal mesh size, σ a reference velocity, and ̺ a dimensionless constant,
an energy error estimate of the form O(τ2 + h3/2) for the RK2 scheme and
piecewise affine finite elements;

• under the tightened 4/3-CFL condition τ ≤ ̺′(h/σ)4/3, an energy error es-
timate of the form O(τ2 + hp+1/2) for the RK2 scheme and finite elements
with polynomials of total degree ≤ p with any p ≥ 2;

• under the usual CFL condition τ ≤ ̺(h/σ), an energy error estimate of the
form O(τ3+hp+1/2) for the RK3 scheme and finite elements with polynomials
of total degree ≤ p with any p ≥ 1.

To the best of our knowledge, the above results are new for continuous finite element
methods. As such, they provide an attractive alternative to the method of charac-
teristics since the present methods are more easily extendible to higher order. For
DG methods, the two above results for RK2 schemes have been obtained by Zhang
and Shu in the more general context of nonlinear scalar conservation laws [27] and
symmetrizable systems of nonlinear conservation laws [28]. Our result for the RK3
scheme is, to the best of our knowledge, new. Moreover, the present proofs for RK2
schemes on linear PDE systems allow to identify more directly the stability properties
of DG methods that play a role in the analysis.

This paper is organized as follows. In §2, we present the continuous and discrete
settings and state the conditions on the stabilization of the finite element method
allowing for the unified analysis. In §3 and §4, we treat RK2 and RK3 schemes,
respectively. Numerical results illustrating the theory are presented in §5. Finally,
some conclusions and lines for future work are drawn in §6.

2. The setting. This section presents the continuous and discrete settings to-
gether with some examples. We also state the conditions on the stabilization of the
finite element method allowing for the unified analysis.

2.1. The continuous problem. Let {Ai}1≤i≤d be fields in [L∞(Ω)]m,m s.t.

Ai is symmetric a.e. in Ω, ∀i ∈ {1, . . . , d}, (2.1)

Λ :=

d
∑

i=1

∂iAi ∈ [L∞(Ω)]m,m. (2.2)

The differential operator A in (1.1) is

A :=

d
∑

i=1

Ai∂i. (2.3)

For further use, we set σ := max1≤i≤d ‖Ai‖[L∞(Ω)]m,m . Assuming that the PDE
system (1.1) is written in non-dimensional form for u, the components of the fields
Ai scale as velocities, and the quantity σ represents a maximum wave speed.

Let n = (n1, . . . , nd) denote the outward unit normal to Ω. Define the boundary
matrix field D ∈ [L∞(∂Ω)]m,m s.t. a.e. on ∂Ω,

D :=

d
∑

i=1

Aini, (2.4)
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and observe thatD takes, by construction, symmetric values. The boundary condition
on (1.1) enforces at all times t ∈ (0, T ),

(D −M)u|∂Ω = 0, (2.5)

where the boundary matrix field M ∈ [L∞(∂Ω)]m,m is non-negative a.e. on ∂Ω, and
‖M‖[L∞(∂Ω)]m,m ≤ CMσ for some constant CM . The initial condition is u(·, 0) = u0

in Ω with u0 ∈ L, and the source term is such that f ∈ C0(0, T ;L). When deriving
convergence rates, we assume that u ∈ C0(0, T ; [Hp+1(Ω)]m) if finite elements of
degree p are used, and that u ∈ Cl(0, T ;L) and f ∈ Cl−1(0, T ;L) with l = 3 for RK2
and l = 4 for RK3.

Since M is non-negative, the seminorm

|v|M := (Mv, v)
1/2
L,∂Ω, (2.6)

is well-defined. Define the bilinear form

a(v, w) = (Av,w)L + 1
2 ((M −D)v, w)L,∂Ω. (2.7)

A crucial consequence of properties (2.1) and (2.2) is that integration by parts yields

a(v, v) = 1
2 |v|

2
M − 1

2 (Λv, v)L. (2.8)

Letting λ0 := 1
2‖Λ‖[L∞(Ω)]m,m leads to

a(v, v) ≥ 1
2 |v|

2
M − λ0‖v‖2

L. (2.9)

We now give three examples of evolution problems fitting the present framework.
• Advection: let β ∈ [L∞(Ω)]d with ∇·β ∈ L∞(Ω) and consider the PDE

∂tu+ β·∇u = f. (2.10)

Set m = 1 and

Ai = βi, ∀i ∈ {1, . . . , d}, (2.11)

yielding D = β·n. An admissible boundary condition consists in taking M =
|β·n| which enforces u to zero on the inflow boundary.

• Maxwell’s equations: let µ, ǫ be positive constants, set c0 = (µǫ)−1/2, and
consider the PDE system

{

µ∂tH + ∇×E = f1,

ǫ∂tE −∇×H = f2,
(2.12)

where H is the magnetic field and E the electric field. Set m = 6, u =
(µ1/2H, ǫ1/2E), and let

Ai = c0

[

03,3 Ri

Rt
i 03,3

]

, ∀i ∈ {1, . . . , d}, (2.13)

where 03,3 is the null matrix in R
3,3 and (Ri)jk = ǫjik for i, j, k ∈ {1, 2, 3}, ǫjik

being the Levi–Civita permutation tensor. An admissible boundary condition
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is for instance to enforce a Dirichlet condition on the tangential component
of the electric field. Then, D and M are given by

D = c0

[

03,3 N

N t 03,3

]

, M = c0

[

03,3 −N
N t 03,3

]

, (2.14)

where N =
∑3

i=1 niRi ∈ R
3,3 is such that Nz = n×z for all z ∈ R

3.
• Acoustics equations: let c0 be a positive constant, and consider the PDE

system

{

c−2
0 ∂tp+ ∇·q = f1,

∂tq + ∇p = f2,
(2.15)

where p is the pressure and q the momentum per unit volume. Set m = 4,
u = (c−1

0 p, q), and let

Ai = c0

[

0 et
i

ei 03,3

]

, ∀i ∈ {1, . . . , d}, (2.16)

where (e1, e2, e3) denotes the Cartesian basis of R
3. An admissible bound-

ary condition is for instance to enforce a Dirichlet condition on the normal
component of the flux. Then, D and M are given by

D = c0

[

0 nt

n 03,3

]

, M = c0

[

0 −nt

n 03,3

]

. (2.17)

2.2. Space discretization. Let {Th}h>0 be a family of simplicial meshes of Ω
where h denotes the maximum diameter of elements in Th. For simplicity, we assume
that the meshes are affine. Mesh faces are collected in the set Fh which is split into
the set of interior faces, F int

h , and boundary faces, Fext
h . For T ∈ Th and for F ∈ Fh,

‖·‖L,T and ‖·‖L,F respectively denote the [L2(T )]m- and [L2(F )]m-norms; moreover,
we define ‖·‖2

L,Fh
:=
∑

F∈Fh
‖·‖2

L,F . We assume that meshes are kept fixed in time
and also that the family {Th}h>0 is quasi-uniform; see Remark 2.1 below.

Let Vh be a finite element space consisting of either continuous or discontinuous
piecewise polynomials of total degree ≤ p with p ≥ 1 (the case p = 0 is also possible
for DG methods). Let πh denote the L-orthogonal projection onto Vh. Set V (h) :=
[Hp+1(Ω)]m + Vh. We consider a discrete version of the bilinear form a, namely ah,
together with a stabilization bilinear form sh. Both forms are defined on V (h) × Vh.
We define the linear operators Ah : V (h) → Vh and Sh : V (h) → Vh s.t. ∀(v, wh) ∈
V (h) × Vh,

(Ahv, wh)L := ah(v, wh), (Shv, wh)L := sh(v, wh). (2.18)

We also define Lh : V (h) → Vh s.t.

Lh = Ah + Sh. (2.19)

The seminorm |·|M defined above can be extended to V (h).
We now state the key design conditions on the bilinear forms ah and sh. The first

three assumptions are the following:
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(A1) for all vh ∈ Vh, ah(vh, vh) = 1
2 |vh|2M − 1

2 (Λvh, vh)L;
(A2) sh is symmetric and non-negative on V (h) × Vh;
(A3) the strong solution u satisfies for all t ∈ (0, T ), Lhu = πh(f − ∂tu).

Assumption (A3) is a (strong) consistency property; it is equivalent to the fact that
for the strong solution u, for all t ∈ (0, T ), and for all vh ∈ Vh,

ah(u, vh) + sh(u, vh) = a(u, vh). (2.20)

This consistency property can be weakened for the stabilization bilinear form sh. This
is, in particular, useful when analyzing local projection or orthogonal subscale stabi-
lization. The present strong consistency assumption is sufficient to analyze interior
penalty stabilization and DG methods; see Section 2.4 for examples. Furthermore,
owing to Assumption (A2), we can define on V (h) the seminorm

|v|S :=
{

sh(v, v) + 1
2 |v|

2
M

}1/2
. (2.21)

The other assumptions concern the stability of the discrete operators Sh and Lh,
namely

(A4) there is CS s.t. for all vh ∈ Vh,

|vh|S ≤ C
1/2
S σ1/2h−1/2‖vh‖L, (2.22)

and there is C ′
S s.t. for all v ∈ [Hp+1(Ω)]m,

|v − πhv|S ≤ C ′
Sh

p+1/2‖v‖[Hp+1(Ω)]m ; (2.23)

(A5) there is CL s.t. for all z ∈ V (h),

‖Lhz‖L ≤ CL(σ‖∇hz‖Ld + σ1/2h−1/2|z|S), (2.24)

where ∇h denotes the broken gradient of z and ‖·‖Ld the usual norm in Ld

(the broken gradient is needed when working with DG methods; it coincides
with the usual gradient for continuous finite elements);

(A6) there is Cπ s.t. for all (z, vh) ∈ V (h) × Vh,

|(Lh(z − πhz), vh)L| ≤ Cπσ
1/2‖z − πhz‖∗(|vh|S + ‖vh‖L), (2.25)

with the norm for y ∈ V (h),

‖y‖∗ := h1/2‖∇hy‖Ld + h−1/2‖y‖L + ‖y‖L,Fh
+ σ−1/2|y|S . (2.26)

Finally, in the piecewise affine case, that is, p = 1 in the definition of the discrete
space Vh, we also assume that

(A7) there is C ′
π s.t. for all (vh, wh) ∈ Vh × Vh with p = 1,

|(Lhvh, wh − π0
hwh)L| ≤ C ′

πσ
1/2h−1/2(|vh|S + ‖vh‖L)‖wh − π0

hwh‖L, (2.27)

where π0
h denotes the L-orthogonal projection onto piecewise constant func-

tions.
Our analysis hinges on Assumptions (A1)–(A7). For further use, we point out some
useful facts associated with these assumptions. An important consequence of (A1)–
(A2) and the definition (2.21) of the seminorm |·|S is the following dissipativity
property of the discrete setting: For all vh ∈ Vh,

(Lhvh, vh)L = |vh|2S − 1
2 (Λvh, vh)L. (2.28)
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Moreover, it is clear that (A5) implies for all z ∈ V (h),

‖Lhz‖L ≤ CLσh
−1/2‖z‖∗. (2.29)

Using inverse and trace inequalities, it is readily inferred from the definition (2.26) of
the norm ‖·‖∗ that there is C∗ such that for all vh ∈ Vh,

‖vh‖∗ ≤ C∗h
−1/2‖vh‖L. (2.30)

Hence, letting CL∗ := CLC∗, there holds for all vh ∈ Vh,

‖Lhvh‖L ≤ CL∗σh
−1‖vh‖L. (2.31)

Finally, using (2.23) and usual approximation properties in finite element spaces, it
is inferred that there is C ′

∗ s.t. for all v ∈ [Hp+1(Ω)]m,

‖v − πhv‖∗ ≤ C ′
∗h

p+1/2‖v‖[Hp+1(Ω)]m . (2.32)

2.3. CFL conditions. Let τ be the time step, taken to be constant for simplicity
and such that T = Nτ where N is an integer. For 0 ≤ n ≤ N , a superscript n
indicates the value of a function at the discrete time nτ , and for 0 ≤ n ≤ N − 1, we
set In = [nτ, (n + 1)τ ]. We assume without loss of generality that τ ≤ 1. We also
assume that the following, so-called usual, CFL condition holds

τ ≤ ̺(h/σ), (2.33)

for some positive real number ̺. The value of ̺ will be specified below whenever
relevant. Furthermore, in the case of RK2 schemes with polynomials of total degree
≥ 2, we will also need the so-called strengthened 4/3-CFL condition

τ ≤ ̺′(h/σ)4/3, (2.34)

for some positive real number ̺′. Again, the value of ̺′ will be specified below
whenever relevant. Since τ ≤ 1, the strengthened 4/3-CFL condition (2.34) implies
the CFL condition (2.33) with ̺ = (̺′)3/4.

Remark 2.1. It is also possible to work with shape-regular mesh families. In this
case, as usual, the space scale in the CFL condition is no longer h, but the smallest
element diameter in the mesh. The same space scale is used in the negative powers of
h in Assumptions (A4)–(A7).

2.4. Examples. In this section, we present two examples of discrete bilinear
forms satisfying Assumptions (A1)–(A7). For F ∈ F int

h , there are T−, T+ in Th such
that F = ∂T− ∩ ∂T+, nF is the unit normal to F pointing from T− to T+, and for a
smooth enough function v that is possibly double-valued at F , we define its jump and
mean value at F as [[v]] := v|T− − v|T+ and {{v}} = 1

2 (v|T− + v|T+), respectively. For
vector-valued functions, the jump and averages are defined componentwise as above.
The arbitrariness in the sign of [[v]] is irrelevant. Meshes can possess hanging nodes
when working with discontinuous finite elements.

An example with continuous finite elements consists in considering symmetric
stabilization based on inter-element jumps of the gradient of the discrete solution
[2, 3, 5]. In this case,

acip
h (v, w) :=

∑

T∈Th

(Av,w)L,T +
∑

F∈Fext
h

1
2 ((M −D)v, w)L,F , (2.35)

sciph (v, w) :=
∑

F∈Fext
h

(Sext
F v, w)L,F +

∑

F∈F int
h

h2
F (Sint

F nF ·[[∇v]], nF ·[[∇w]])L,F , (2.36)
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where hF denotes the diameter of F . An example with discontinuous finite elements
consists in taking [17]

adg
h (v, w) := acip(v, w) −

∑

F∈F int
h

(DF [[v]], {{w}})L,F , (2.37)

sdg
h (v, w) :=

∑

F∈Fext
h

(Sext
F v, w)L,F +

∑

F∈F int
h

(Sint
F [[v]], [[w]])L,F , (2.38)

where DF :=
∑d

i=1AinF,i for all F ∈ F int
h .

The R
m,m-valued fields Sext

F and Sint
F , which are defined on boundary and interior

faces, respectively, must satisfy the following design conditions:

for the exact solution u and for all t ∈ [0, T ], Sext
F u = 0 on ∂Ω, (2.39)

Sext
F and Sint

F are symmetric and non-negative, (2.40)

∀F ∈ Fext
h , Sext

F ≤ α1σIm and ∀F ∈ F int
h , α2|DF | ≤ Sint

F ≤ α3σIm, (2.41)

and for all F ∈ Fext
h and for all (y, z) ∈ [L2(F )]m × [L2(F )]m,

|((M −D)y, z)L,F | ≤ α4σ
1/2|y|S,F ‖z‖L,F , (2.42)

|((M +D)y, z)L,F | ≤ α5σ
1/2‖y‖L,F |z|S,F . (2.43)

Here, α1, . . . , α5 are positive parameters, inequalities in (2.41) are meant on the as-
sociated quadratic forms, Im denotes the identity matrix in R

m,m, and for F ∈ Fext
h ,

|v|S,F := {(Sext
F v, v)L,F + (Mv, v)L,F }1/2 which is well-defined since Sext

F is non-
negative. The absolute value |DF | is also well-defined since DF is, by construction,
symmetric.

Lemma 2.1. Assume that the design conditions (2.39)–(2.43) hold and that for all
T ∈ Th and for all i ∈ {1, . . . , d}, Ai|T ∈ [C0,1/2(T )]m,m. Then, Assumptions (A1)–

(A7) hold for acip
h and sciph defined by (2.35)–(2.36) and for adg

h and sdg
h defined

by (2.37)–(2.38).
Proof. Assumptions (A1)–(A6) can be proven as in [5, 6] for continuous finite

elements with interior penalty and as in [17] for discontinuous finite elements. To
prove Assumption (A7) for continuous finite elements, let (vh, wh) ∈ Vh × Vh with
p = 1 and set yh = wh − π0

hwh. Since yh may not be in Vh, we obtain

(Lhvh, yh)L =
∑

T∈Th

(Avh, πhyh)L,T +
∑

F∈Fext
h

1
2 ((M −D)vh, πhyh)L,F + sciph (vh, πhyh).

For the third term, using (A2) and (A4) we obtain

|sciph (vh, πhyh)| ≤ |vh|S |πhyh|S ≤ |vh|SC1/2
S σ1/2h−1/2‖πhyh‖L

≤ C
1/2
S σ1/2h−1/2|vh|S‖yh‖L.

The second term is bounded similarly using (2.42) and a trace inequality to bound
‖πhyh‖L,F . For the first term, observe that

∑

T∈Th

(Avh, πhyh)L,T =
∑

T∈Th

(Avh, πhyh − yh)L,T +
∑

T∈Th

(Avh, yh)L,T := T1 + T2.
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Following [5] using a so-called Oswald interpolate, it can be proven that

|T1| ≤ Cσ1/2h−1/2(|vh|S + ‖vh‖L)‖yh‖L.

Furthermore, since p = 1, letting A :=
∑d

i=1(π
0
hAi)∂i,

T2 =
∑

T∈Th

((A−A)vh, yh)L,T ≤ Cσ1/2h−1/2‖vh‖L‖yh‖L,

using the local regularity of the fields Ai and an inverse inequality. This completes
the proof of Assumption (A7) for continuous finite elements. For discontinuous finite
elements, the proof is similar, but simpler since πhyh = yh and so T1 = 0.

The above setting can be applied to the PDE systems presented in §2.1; see [5, 17].
• Advection: take Sext

F = 0 and Sint
F = γ|β·nF | with user-defined parameter

γ > 0 (γ = 1
2 amounts to so-called upwinding in the context of DG methods).

• Maxwell’s equations: take

Sext
F = c0

[

03,3 03,3

03,3 γ1N
tN

]

, Sint
F = c0





γ2N
t
FNF 03,3

03,3 γ3N
t
FNF



 , (2.44)

where γ1, γ2, and γ3 are positive user-defined parameters and where NF

is defined as N by using nF instead of n. The operator Sint
F amounts to

penalizing on each interface the jump of the normal derivative (for CIP) or of
the value (for DG) of the tangential components of the electric and magnetic
fields.

• Acoustics: take

Sext
F = c0

[

0 0t
3

03 γ1n⊗n

]

, Sint
F = c0

[

γ2 0t
3

03 γ3nF⊗nF

]

, (2.45)

where 03 is the null vector in R
3. The operator Sint

F amounts to penalizing
on each interface the jump of the normal derivative (for CIP) or of the value
(for DG) of the pressure and that of the normal component of the momentum
per unit volume.

3. Analysis for explicit RK2 schemes. This section is devoted to the con-
vergence analysis of explicit two-stage RK2 schemes. First, we present the specific
form of the schemes on which we will work and show that usual implementations of
two-stage RK2 schemes fit this form. Then, we derive the error equation and es-
tablish the key energy identity. Finally, we infer (quasi-)optimally convergent error
upper bounds under the CFL condition (2.33) for piecewise affine finite elements and
under the strengthened 4/3-CFL condition (2.34) for polynomials with total degree
≥ 2. We will keep track of the constants to derive the CFL conditions, but not to
state the error estimates. Henceforth, C denotes a generic constant, independent of
the mesh size and the time step, but that can depend on f , u, the fields Ai and M ,
the constants in Assumptions (A4)–(A7), and the constants ̺ and ̺′ in the CFL
condition, and whose value can change at each occurrence. The inequality a ≤ Cb,
for positive real numbers a and b, is often abbreviated as a . b. This convention is
kept for the rest of this work. We also set fh := πhf . Finally, recall that we assume
here u ∈ C3(0, T ;L) and f ∈ C2(0, T ;L).
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3.1. Two-stage RK2 schemes. We consider schemes of the form

wn
h = un

h − τLhu
n
h + τfn

h , (3.1)

un+1
h = 1

2 (un
h + wn

h) − 1
2τLhw

n
h + 1

2τψ
n
h , (3.2)

with the assumption that

ψn
h = fn

h + τ∂tf
n
h + δn

h , ‖δn
h‖L . τ2. (3.3)

There are many ways of writing explicit two-stage RK2 schemes. Since the space
differential operator is linear, they all amount in the homogeneous case (f = 0) to

un+1
h = un

h − τLhu
n
h + 1

2τ
2L2

hu
n
h. (3.4)

Two examples of two-stage RK2 schemes that fit the present form are:
• The second-order Heun method which is usually written in the form (3.1)–

(3.2) with

ψn
h = fn+1

h . (3.5)

Assumption (3.3) obviously holds.
• The second-order Runge method (also called the improved forward Euler

method) which is usually written in the form

k1 = −Lhu
n
h + fn

h , (3.6)

k2 = −Lh(un
h + 1

2τk1) + f
n+1/2
h , (3.7)

un+1
h = un

h + τk2. (3.8)

It is readily verified that (3.6)–(3.8) can be rewritten in the form (3.1)–(3.2)
with

ψn
h = 2f

n+1/2
h − fn

h . (3.9)

Assumption (3.3) obviously holds.
Define

ξn
h = un

h − πhu
n, ζn

h = wn
h − πhw

n, (3.10)

ξn
π = un − πhu

n, ζn
π = wn − πhw

n, (3.11)

with w = u+ τ∂tu. Using these quantities, the errors can be written as

un − un
h = ξn

π − ξn
h , wn − wn

h = ζn
π − ζn

h . (3.12)

The convergence analysis proceeds as follows. Since upper bounds on ξn
π and ζn

π

readily result from standard approximation properties in finite element spaces, we
observe that error upper bounds can be derived by obtaining upper bounds on ξn

h and
ζn
h in terms of ξn

π and ζn
π and then using the triangle inequality. To this purpose, we

first identify the error equation governing the time evolution of ξn
h and ζn

h . The form
of this equation is similar to (3.1)–(3.2) with data depending on ξn

π , ζn
π , f , and u.

Then, we establish an energy identity associated with (3.1)–(3.2), whence the desired
upper bounds on ξn

h and ζn
h are inferred.
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3.2. The error equation. Our first lemma identifies the equations governing
the quantities ξn

h and ζn
h .

Lemma 3.1. There holds

ζn
h = ξn

h − τLhξ
n
h + ταn

h, (3.13)

ξn+1
h = 1

2 (ξn
h + ζn

h ) − 1
2τLhζ

n
h + 1

2τβ
n
h , (3.14)

with

αn
h = Lhξ

n
π , βn

h = Lhζ
n
π − πhη

n + δn
h , (3.15)

with ηn = τ−1
∫

In
(tn+1 − t)2∂tttu dt.

Proof. Recalling Assumption (A3), namely πh∂tu
n = −Lhu

n + fn
h , yields

πhw
n = πhu

n − τLhu
n + τfn

h .

Subtracting this equation from (3.1) yields (3.13). To derive (3.14), observe that

un+1 = un + τ∂tu
n + 1

2τ
2∂ttu

n + 1
2τη

n,

and projecting yields

πhu
n+1 = πhw

n + 1
2τ

2πh∂ttu
n + 1

2τπhη
n

= 1
2 (πhu

n + πhw
n) − 1

2τLhu
n + 1

2τf
n
h + 1

2τ
2πh∂ttu

n + 1
2τπhη

n.

Moreover,

τπh∂ttu
n = τ∂t(πh∂tu

n) = −τLh∂tu
n + τ∂tf

n
h = −Lh(wn − un) + τ∂tf

n
h ,

whence

πhu
n+1 = 1

2 (πhu
n + πhw

n) − 1
2τLhw

n + 1
2τ(πhη

n + fn
h + τ∂tf

n
h ).

Subtracting this equation from (3.2) yields (3.14).
For further use, it is convenient to observe that (3.13)–(3.14) imply

ξn+1
h = ζn

h − 1
2τLh(ζn

h − ξn
h ) + 1

2τ(β
n
h − αn

h). (3.16)

3.3. Energy identity and stability. Our next step is to derive an energy
identity, then leading to our main stability estimate.

Lemma 3.2 (Energy identity). There holds

‖ξn+1
h ‖2

L − ‖ξn
h‖2

L + τ |ξn
h |2S + τ |ζn

h |2S = ‖ξn+1
h − ζn

h‖2
L

+ τ(αn
h, ξ

n
h )L + τ(βn

h , ζ
n
h )L + 1

2τ(Λξ
n
h , ξ

n
h )L + 1

2τ(Λζ
n
h , ζ

n
h )L. (3.17)

Proof. Multiply (3.13) by ξn
h and (3.14) by 2ζn

h , sum both equations, and use (2.28)
to infer (Lhξ

n
h , ξ

n
h )L = |ξn

h |2S − 1
2 (Λξn

h , ξ
n
h )L and (Lhζ

n
h , ζ

n
h )L = |ζn

h |2S − 1
2 (Λζn

h , ζ
n
h )L.

Remark 3.1. The quantity ‖ξn+1
h − ζn

h‖2
L appearing in the right-hand side of the

energy identity (3.17) is the anti-dissipative term associated with the explicit nature
of the RK2 scheme. This term essentially amounts to a second-order derivative in
time.
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Lemma 3.3 (Stability). Under the usual CFL condition (2.33) for any positive
real number ̺, there holds

‖ξn+1
h ‖2

L − ‖ξn
h‖2

L + 1
2τ |ξ

n
h |2S + 1

2τ |ζ
n
h |2S ≤ ‖ξn+1

h − ζn
h ‖2

L

+ Cτ(τ4 + ‖ξn
π‖2

∗ + ‖ζn
π ‖2

∗ + ‖ξn
h‖2

L). (3.18)

Proof. Starting with the energy identity (3.17), we bound the last four terms in
the right-hand side.
(i) We first bound αn

h and βn
h . Let us prove that

τ‖αn
h‖L . τ1/2‖ξn

π‖∗, τ‖βn
h‖L . τ1/2‖ζn

π ‖∗ + τ3, (3.19)

and that for all vh ∈ Vh,

τ(αn
h, vh)L . τ‖ξn

π‖∗(|vh|S + ‖vh‖L), (3.20)

τ(βn
h , vh)L . τ‖ζn

π ‖∗(|vh|S + ‖vh‖L) + τ3‖vh‖L. (3.21)

Using the definition of αn
h, the bound (2.29), and the CFL condition (2.33) to eliminate

the factor h−1/2 yields

τ‖αn
h‖L = τ‖Lhξ

n
π‖L ≤ τCLσh

−1/2‖ξn
π‖∗ . τ1/2‖ξn

π‖∗.

Similarly, using the definition of βn
h , the assumption on δn

h , and the regularity of the
strong solution u yields

τ‖βn
h‖L = τ‖Lhζ

n
π − πhη

n + δn
h‖L . τ‖Lhζ

n
π ‖L + τ3 . τ1/2‖ζn

π ‖∗ + τ3.

This proves (3.19). In addition, owing to Assumption (A6),

τ(αn
h, vh)L = τ(Lhξ

n
π , vh)L . τ‖ξn

π‖∗(|vh|S + ‖vh‖L),

and similarly, using a Cauchy–Schwarz inequality,

τ(βn
h , vh)L = τ(Lhζ

n
π , vh)L + τ(−πhη

n + δn
h , vh)L . τ‖ζn

π ‖∗(|vh|S + ‖vh‖L)+ τ3‖vh‖L.

(ii) Owing to the bounds (3.20) and (3.21),

τ(αn
h, ξ

n
h )L + τ(βn

h , ζ
n
h )L . τ‖ξn

π‖∗(|ξn
h |S +‖ξn

h‖L)+ τ‖ζn
π ‖∗(|ζn

h |S +‖ζn
h ‖L)+ τ3‖ζn

h ‖L.

Moreover, it is inferred from (3.13) using the triangle inequality, the bound (2.31),
and the CFL condition (2.33) that

‖ζn
h ‖L ≤ ‖ξn

h‖L + τ‖Lhξ
n
h‖L + τ‖αn

h‖L . ‖ξn
h‖L + τ‖αn

h‖L.

Hence, owing to (3.19),

‖ζn
h ‖L . ‖ξn

h‖L + τ1/2‖ξn
π‖∗ ≤ ‖ξn

h‖L + ‖ξn
π‖∗,

since τ ≤ 1. Collecting these bounds and using Young inequalities yields

τ(αn
h, ξ

n
h )L + τ(βn

h , ζ
n
h )L ≤ 1

2τ |ξ
n
h |2S + 1

2τ |ζ
n
h |2S + Cτ(τ4 + ‖ξn

π‖2
∗ + ‖ζn

π ‖2
∗ + ‖ξn

h‖2
L).

(iii) Finally,

1
2τ(Λξ

n
h , ξ

n
h )L + 1

2τ(Λζ
n
h , ζ

n
h )L . τ‖ξn

h‖2
L + τ‖ζn

h ‖2
L . τ‖ξn

h‖2
L + τ‖ξn

π‖2
∗,

since ‖ζn
h ‖L . ‖ξn

h‖L + ‖ξn
π‖∗. This concludes the proof.
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3.4. Error estimates. Starting from the stability estimate (3.18), there are two
ways to bound the positive term ‖ξn+1

h − ζn
h ‖2

L appearing in the right-hand side. In
the general case p ≥ 2, the strengthened 4/3-CFL condition (2.34) is needed. By
proceeding differently and using Assumption (A7) for p = 1, it is possible to control
this term using only the usual CFL condition (2.33).

3.4.1. General case: 4/3-CFL condition. The next theorem provides a gen-
eral a priori error estimate in the general case p ≥ 2 under the strengthened 4/3-CFL
condition.

Theorem 3.1. Assume that u ∈ C3(0, T ;L) ∩ C0(0, T ; [Hp+1(Ω)]m). Under the
strengthened 4/3-CFL condition (2.34) for any positive real number ̺′, there holds

‖uN − uN
h ‖L +

(

N−1
∑

n=0

1
2τ |u

n
h|2S + 1

2τ |w
n
h |2S

)1/2

. τ2 + hp+1/2. (3.22)

Proof. The proof is decomposed into three steps.
(i) Bound on ‖ξn+1

h − ζn
h ‖2

L. Starting from (3.16) and using (3.13) leads to

ξn+1
h − ζn

h = − 1
2τLh(ζn

h − ξn
h ) + 1

2τ(β
n
h − αn

h)

= 1
2τ

2L2
hξ

n
h + 1

2τ(β
n
h − αn

h − τLhα
n
h).

Set Rn
h = 1

2τ(β
n
h −αn

h − τLhα
n
h). Using the triangle inequality, the bound (2.31), and

the CFL condition (2.33) yields

‖Rn
h‖L . τ‖βn

h‖L + τ‖αn
h‖L,

so that (3.19) implies

‖Rn
h‖L . τ3 + τ1/2‖ζn

π ‖∗ + τ1/2‖ξn
π‖∗.

As a result,

‖ξn+1
h − ζn

h‖2
L . τ4‖L2

hξ
n
h‖2

L + τ(τ5 + ‖ξn
π‖2

∗ + ‖ζn
π ‖2

∗).

(ii) Using the above bound together with the stability estimate (3.18) leads to

‖ξn+1
h ‖2

L −‖ξn
h‖2

L + 1
2τ |ξ

n
h |2S + 1

2τ |ζ
n
h |2S . τ4‖L2

hξ
n
h‖2

L + τ(τ4 + ‖ξn
π‖2

∗ + ‖ζn
π ‖2

∗ + ‖ξn
h‖2

L),

since τ5 ≤ τ4. The strengthened 4/3-CFL condition together with (2.31) imply

τ4‖L2
hξ

n
h‖2

L . τ‖ξn
h‖2

L.

Hence,

‖ξn+1
h ‖2

L − ‖ξn
h‖2

L + 1
2τ |ξ

n
h |2S + 1

2τ |ζ
n
h |2S . τ‖ξn

h‖2
L + τ(τ4 + ‖ξn

π‖2
∗ + ‖ζn

π ‖2
∗).

(iii) Summing over n in the above estimate and using Gronwall’s lemma, it is inferred
that

‖ξN
h ‖2

L +

N−1
∑

n=0

1
2τ(|ξ

n
h |2S + |ζn

h |2S) . τ4 +

N−1
∑

n=0

τ(‖ξn
π‖2

∗ + ‖ζn
π ‖2

∗),
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and using the approximation property (2.32) yields

‖ξN
h ‖2

L +

N−1
∑

n=0

1
2τ(|ξ

n
h |2S + |ζn

h |2S) . τ4 + h2p+1,

whence (3.22) readily follows using a triangle inequality and the fact that |u−un
h|S =

|un
h|S and |w − wn

h |S = |wn
h |S .

Remark 3.2. Although there is no specific limit to the value of the constant ̺′ in
the 4/3-CFL condition for the convergence result of Theorem 3.1 to hold, the constant
in the error estimate depends exponentially on ̺′. Hence, in practice, a small enough
value should be considered for ̺′; see Section 5 for numerical experiments.

3.4.2. Piecewise affine finite elements: usual CFL condition. The next
theorem provides an a priori error estimate for p = 1 under the usual CFL condition.

Theorem 3.2. Assume piecewise affine finite elements are used and that u ∈
C3(0, T ;L) ∩ C0(0, T ; [H2(Ω)]m). Then, under the usual CFL condition (2.33) with

̺ ≤ min
{

(2
√

2CL)−2, (2
√

2CLC
′
i)

−2/3
}

, (3.23)

with C ′
i = CiC

′
π and where Ci is the constant in the inverse inequality ‖∇hvh‖Ld ≤

Cih
−1‖vh − π0

hvh‖L valid for all vh ∈ Vh, there holds

‖uN − uN
h ‖L +

(

N−1
∑

n=0

1
8τ |u

n
h|2S + 1

8τ |w
n
h |2S

)1/2

. τ2 + h3/2. (3.24)

Proof. We bound ‖ξn+1
h − ζn

h ‖2
L differently from the proof of Theorem 3.1. Set

xn
h := ξn

h − ζn
h , so that (3.16) yields

ξn+1
h − ζn

h = 1
2τLhx

n
h + 1

2τ(β
n
h − αn

h).

Hence, using a triangle inequality and Assumption (A5) yields

‖ξn+1
h − ζn

h‖L ≤ 1
2CLστ‖∇hx

n
h‖Ld + 1

2CLσ
1/2h−1/2τ |xn

h|S (3.25)

+ 1
2τ‖β

n
h − αn

h‖L.

The first step is to control ‖∇hx
n
h‖Ld . Let yn

h = xn
h − π0

hx
n
h and observe that

‖yn
h‖2

L = (xn
h, y

n
h)L = τ(Lhξ

n
h , y

n
h)L − τ(αn

h, y
n
h)L,

since xn
h = τLhξ

n
h − ταn

h. To bound the first term in the right-hand side, we use
Assumption (A7) to infer

τ |(Lhξ
n
h , y

n
h)L| ≤ C ′

πσ
1/2h−1/2τ(|ξn

h |S + ‖ξn
h‖L)‖yn

h‖L.

Furthermore, bounding the second term by a Cauchy–Schwarz inequality, using the
CFL condition, and simplifying by ‖yn

h‖L leads to

‖yn
h‖L ≤ C ′

πσ
1/2h−1/2τ |ξn

h |S + τ‖αn
h‖L + Cτ1/2‖ξn

h‖L.

Thus,

‖∇hx
n
h‖Ld ≤ Cih

−1‖yn
h‖L ≤ C ′

iσ
1/2h−3/2τ |ξn

h |S + Ch−1(τ‖αn
h‖L + τ1/2‖ξn

h‖L),
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with C ′
i = CiC

′
π. Hence, substituting back into (3.25) yields

‖ξn+1
h − ζn

h ‖L ≤ 1
2CLC

′
iσ

3/2h−3/2τ2|ξn
h |S

+ 1
2CLσ

1/2h−1/2τ |ξn
h − ζn

h |S + Cτ1/2(τ5/2 + ‖ξn
π‖∗ + ‖ζn

π ‖∗ + ‖ξn
h‖L),

where the contributions of αn
h and βn

h have been bounded using (3.19) and the (generic)
CFL condition (2.33). Owing to the condition (3.23), it is now inferred that

‖ξn+1
h − ζn

h ‖L ≤ 2−5/2τ1/2(|ξn
h |S + |ζn

h − ξn
h |S) + Cτ1/2(τ5/2 + ‖ξn

π‖∗ + ‖ζn
π ‖∗ + ‖ξn

h‖L)

≤ 2−3/2τ1/2(|ξn
h |S + |ζn

h |S) + Cτ1/2(τ5/2 + ‖ξn
π‖∗ + ‖ζn

π ‖∗ + ‖ξn
h‖L).

Squaring yields

‖ξn+1
h − ζn

h‖2
L ≤ 3

8τ |ξ
n
h |2S + 3

8τ |ζ
n
h |2S + Cτ(τ5 + ‖ξn

π‖2
∗ + ‖ζn

π ‖2
∗ + ‖ξn

h‖2
L).

The conclusion readily follows by proceeding as in the proof of Theorem 3.1.

4. Analysis of explicit RK3 schemes. This section is devoted to the con-
vergence analysis of explicit three-stage RK3 schemes. We proceed similarly to Sec-
tion 3. The main difference is that a sharper stability estimate can be derived for
RK3 schemes, so that the strengthened 4/3-CFL condition (2.34) is no longer needed.
Finally, recall that we assume here u ∈ C4(0, T ;L) and f ∈ C3(0, T ;L).

4.1. Three-stage RK3 schemes. We consider schemes of the form

wn
h = un

h − τLhu
n
h + τfn

h , (4.1)

yn
h = 1

2 (un
h + wn

h) − 1
2τLhw

n
h + 1

2τ(f
n
h + τ∂tf

n
h ), (4.2)

un+1
h = 1

3 (un
h + wn

h + yn
h) − 1

3τLhy
n
h + 1

3τψ
n
h , (4.3)

with the assumption that

ψn
h = fn

h + τ∂tf
n
h + 1

2τ
2∂ttf

n
h + δn

h , ‖δn
h‖L . τ3. (4.4)

There are many ways of writing explicit three-stage RK3 schemes. Since the space
differential operator is linear, they all amount in the homogeneous case (f = 0) to

un+1
h = un

h − τLhu
n
h + 1

2τ
2L2

hu
n
h − 1

6τ
3L3

hu
n
h. (4.5)

One example that fits the above form is the third-order Heun method which is usually
written as follows:

k1 = −Lhu
n
h + fn

h , (4.6)

k2 = −Lh(un
h + 1

3τk1) + f
n+1/3
h , (4.7)

k3 = −Lh(un
h + 2

3τk2) + f
n+2/3
h , (4.8)

un+1
h = un

h + 1
4τ(k1 + 3k3). (4.9)

Straightforward algebra yields

ψn
h = − 5

4f
n
h + 9

4f
n+2/3
h − 1

2τ∂tf
n
h − 3

2τLh(f
n+1/3
h − fn

h − 1
3τ∂tf

n
h ). (4.10)

Proposition 4.1. Assume that f ∈ C2(0, T ; [H1(Ω)]m) and that sh = sciph as

defined by (2.36) or that sh = sdg
h as defined by (2.38). Then, (4.4) holds.
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Proof. We need to prove that ‖ψn
h − (fn

h + τ∂tf
n
h + 1

2τ
2∂ttf

n
h )‖L . τ3. Set ψn

h =

A+B with A = − 5
4f

n
h + 9

4f
n+2/3
h − 1

2τ∂tf
n
h and B = − 3

2τLh(f
n+1/3
h − fn

h − 1
3τ∂tf

n
h ).

Using Taylor expansions yields

‖A− (fn
h + τ∂tf

n
h + 1

2τ
2∂ttf

n
h )‖L . τ3‖f‖C3(0,T ;L).

Consider now the termB and set zn := fn+1/3−fn− 1
3τ∂tf

n so thatB = − 3
2τLh(πhz

n).
Assumption (A5) yields

‖Lh(πhz
n)‖L . ‖∇zn‖Ld + h−1/2|πhz

n|S ,

where we have used the H1-stability of πh in writing ‖∇zn‖Ld . When sh = sdg
h ,

observe that |zn|S = 0 since f ∈ C2(0, T ; [H1(Ω)]m) so that

h−1/2|πhz
n|S = h−1/2|zn − πhz

n|S . ‖∇zn‖Ld .

When sh = sciph , the boundary contribution is bounded as above, while the interior
contribution is bounded by a trace inequality and the H1-stability of πh, yielding
again h−1/2|πhz

n|S . ‖∇zn‖Ld . As a result, using Taylor expansions yields

‖B‖L . τ‖∇(fn+1/3 − fn − 1
3τ∂tf

n)‖Ld . τ3‖f‖C2(0,T ;[H1(Ω)]m),

completing the proof.

4.2. The error equation. Along with definitions (3.10) and (3.11), let

θn
h = yn

h − πhy
n, θn

π = yn − πhy
n, (4.11)

with y = u+ τ∂tu+ 1
2τ

2∂ttu.
Lemma 4.1. There holds

ζn
h = ξn

h − τLhξ
n
h + ταn

h, (4.12)

θn
h = 1

2 (ξn
h + ζn

h ) − 1
2τLhζ

n
h + 1

2τβ
n
h , (4.13)

ξn+1
h = 1

3 (ξn
h + ζn

h + θn
h) − 1

3τLhθ
n
h + 1

3τγ
n
h , (4.14)

with

αn
h = Lhξ

n
π , βn

h = Lhζ
n
π , γn

h = Lhθ
n
π − πhη

n + δn
h , (4.15)

where ηn = τ−1
∫

In

1
2 (tn+1 − t)3∂ttttu dt.

Proof. Equations (4.12) and (4.13) are obtained as in Lemma 3.1. To derive (4.14),
observe that

un+1 = un + τ∂tu
n + 1

2τ
2∂ttu

n + 1
6τ

3∂tttu
n + 1

3τη
n,

and proceed again as in Lemma 3.1.
For further use, it is convenient to recall that (4.12)–(4.13) imply

θn
h = ζn

h − 1
2τLh(ζn

h − ξn
h ) + 1

2τ(β
n
h − αn

h), (4.16)

and to observe that (4.13)–(4.14) imply

ξn+1
h = θn

h − 1
3τLh(θn

h − ζn
h ) + 1

3τ(γ
n
h − βn

h ). (4.17)
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4.3. Energy identity and stability. Our goal is now to derive an energy iden-
tity, then leading to our main stability estimate.

Lemma 4.2 (Energy identity). There holds

1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n
h‖2

L + 1
2τ |ξ

n
h |2S + 1

6τ |ζ
n
h |2S + 1

3τ |θ
n
h |2S + 1

6‖θ
n
h − ζn

h‖2
L

= 1
6τ |ζ

n
h − ξn

h |2S + 1
2‖ξ

n+1
h − θn

h‖2
L + Λn

h

+ 1
3τ(γ

n
h , θ

n
h)L + 1

6τ(β
n
h , ξ

n
h )L + 1

3τ(α
n
h, ξ

n
h + 1

2ζ
n
h )L,

(4.18)

where Λn
h := 1

6τ(Λξ
n
h , ξ

n
h )L − 1

6τ(Λζ
n
h , ξ

n
h )L + 1

6τ(Λθ
n
h , θ

n
h)L.

Remark 4.1. The quantities 1
6τ |ζn

h − ξn
h |2S and 1

2‖ξ
n+1
h − θn

h‖2
L appearing in the

right-hand side of the energy identity (4.18) are the anti-dissipative terms associated
with the explicit nature of the RK3 scheme. However, contrary to the RK2 scheme,
there is now a positive term in the left-hand side of (4.18), namely 1

6‖θn
h − ζn

h‖2
L,

which significantly improves the stability properties of the RK3 scheme, in particular
circumventing the need for the strengthened 4/3-CFL condition for high-order poly-
nomials.

Proof. Set A = 1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n+1
h − θn

h‖2
L − 1

2‖ξn
h‖2

L. Then,

A = (ξn+1
h − 1

2θ
n
h , θ

n
h)L − 1

2‖ξ
n
h‖2

L

= 1
2‖θ

n
h‖2

L + (ξn+1
h − θn

h , θ
n
h)L − 1

2‖ξ
n
h‖2

L

= 1
2‖θ

n
h‖2

L − 1
2‖ξ

n
h‖2

L − 1
3τ(Lh(θn

h − ζn
h ), θn

h)L + 1
3τ(γ

n
h − βn

h , θ
n
h)L,

where (4.17) has been used. Set

D1 := 1
3τ(γ

n
h − βn

h , θ
n
h)L.

The term 1
2‖θn

h‖2
L − 1

2‖ξn
h‖2

L can be evaluated using the energy identity (3.17) for the

RK2 scheme upon replacing ξn+1
h by θn

h . Setting

D2 := D1 + 1
2τ(α

n
h, ξ

n
h )L + 1

2τ(β
n
h , ζ

n
h )L + 1

4τ(Λξ
n
h , ξ

n
h )L + 1

4τ(Λζ
n
h , ζ

n
h )L,

yields

A = − 1
2τ |ξ

n
h |2S − 1

2τ |ζ
n
h |2S + 1

2‖θ
n
h − ζn

h ‖2
L − 1

3τ(Lh(θn
h − ζn

h ), θn
h)L +D2

= − 1
2τ |ξ

n
h |2S − 1

2τ |ζ
n
h |2S − 1

3τ |θ
n
h |2S + 1

2‖θ
n
h − ζn

h‖2
L + 1

3τ(Lhζ
n
h , θ

n
h)L +D′

2

= − 1
2τ |ξ

n
h |2S − 1

6τ |ζ
n
h |2S − 1

3τ |θ
n
h |2S + 1

2‖θ
n
h − ζn

h‖2
L + 1

3τ(Lhζ
n
h , θ

n
h − ζn

h )L +D′′
2

= − 1
2τ |ξ

n
h |2S − 1

6τ |ζ
n
h |2S − 1

3τ |θ
n
h |2S + 1

2 (θn
h − ζn

h , θ
n
h − ζn

h + 2
3τLhζ

n
h )L +D′′

2 ,

with D′
2 := D2 + 1

6τ(Λθ
n
h , θ

n
h)L and D′′

2 := D′
2 − 1

6τ(Λζ
n
h , ζ

n
h )L. Consider the fourth

term in the right-hand side, say B, and observe that owing to (4.12) and (4.16),

B = 1
2 (θn

h − ζn
h ,− 1

3 (θn
h − ζn

h ) + 2
3τLhξ

n
h + 2

3τ(β
n
h − αn

h))L

= − 1
6‖θ

n
h − ζn

h ‖2
L + 1

3 (θn
h − ζn

h , ξ
n
h − ζn

h )L + 1
3τ(β

n
h , θ

n
h − ζn

h )L.

Set G = − 1
2τ |ξn

h |2S− 1
6τ |ζn

h |2S− 1
3τ |θn

h |2S− 1
6‖θn

h−ζn
h‖2

L and D3 = D′′
2 + 1

3τ(β
n
h , θ

n
h−ζn

h )L,
so that

A = G+ 1
3 (θn

h − ζn
h , ξ

n
h − ζn

h )L +D3.
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Then, using again (4.16) leads to

A = G+ 1
3 (− 1

2τLh(ζn
h − ξn

h ) + 1
2τ(β

n
h − αn

h), ξn
h − ζn

h )L +D3

= G+ 1
6τ |ζ

n
h − ξn

h |2S +D4,

with D4 = D3 + 1
6τ(β

n
h − αn

h, ξ
n
h − ζn

h )L − 1
12τ(Λ(ζn

h − ξn
h ), ζn

h − ξn
h )L. Using the

expressions for D1, D
′′
2 , and D3 in D4 yields (4.18).

Lemma 4.3 (Stability). Under the usual CFL condition (2.33) with

̺ ≤ min( 5
154C

−1
S , ( 3

4 )1/2C−1
L∗ ), (4.19)

there holds

‖ξn+1
h ‖2

L − ‖ξn
h‖2

L + 1
48τ |ξ

n
h |2S + 1

12τ |ζ
n
h |2S + 1

48τ |θ
n
h |2S

≤ Cτ(τ6 + ‖ξn
π‖2

∗ + ‖ζn
π ‖2

∗ + ‖θn
π‖2

∗ + ‖ξn
h‖2

L). (4.20)

Proof. We bound the terms in the right-hand side of the energy identity (4.18).
(i) Bound on 1

6τ |ζn
h − ξn

h |2S . Let ǫ and ǫ̂ be positive real numbers to be chosen later.
Observe that

|ζn
h − ξn

h |2S ≤ (1 + ǫ)|θn
h − ξn

h |2S + (1 + ǫ−1)|θn
h − ζn

h |2S
≤ (1 + ǫ)(1 + ǫ̂)|θn

h |2S + (1 + ǫ)(1 + ǫ̂−1)|ξn
h |2S + (1 + ǫ−1)|θn

h − ζn
h |2S

≤ (1 + ǫ)(1 + ǫ̂)|θn
h |2S + (1 + ǫ)(1 + ǫ̂−1)|ξn

h |2S
+ (1 + ǫ−1)CSσh

−1‖θn
h − ζn

h ‖2
L,

where Assumption (A4) has been used. Then, taking ǫ = 5
72 and ǫ̂ = 7

11 and observing
that 1

6 (1 + ǫ)(1 + ǫ̂) = 7
24 , 1

6 (1 + ǫ)(1 + ǫ̂−1) = 11
24 , and that

1
6τ(1 + ǫ−1)CSσh

−1 ≤ 1
12 ,

owing to the choice (4.19) for the CFL condition, it is inferred that

1
6τ |ζ

n
h − ξn

h |2S ≤ 7
24τ |θ

n
h |2S + 11

24τ |ξ
n
h |2S + 1

12‖θ
n
h − ζn

h ‖2
L.

(ii) Bound on 1
2‖ξ

n+1
h − θn

h‖2
L. Using (4.17) and the bound (2.31) yields

1
2‖ξ

n+1
h − θn

h‖2
L ≤ 1

9τ
2‖Lh(θn

h − ζn
h )‖2

L + 1
9τ

2‖γn
h − βn

h‖2
L

≤ 1
9 (τCL∗σh

−1)2‖θn
h − ζn

h ‖2
L + 1

9τ
2‖γn

h − βn
h‖2

L

≤ 1
12‖θ

n
h − ζn

h ‖2
L + 1

9τ
2‖γn

h − βn
h‖2

L,

owing to the choice (4.19) for the CFL condition.
(iii) Inserting the bounds delivered in steps (i) and (ii) into (4.18) yields

1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n
h‖2

L + 1
24τ |ξ

n
h |2S + 1

6τ |ζ
n
h |2S + 1

24τ |θ
n
h |2S

≤ 1
9τ

2‖γn
h − βn

h‖2
L + 1

3τ(γ
n
h , θ

n
h)L + 1

6τ(β
n
h , ξ

n
h )L + 1

3τ(α
n
h, ξ

n
h + 1

2ζ
n
h )L + Λn

h.

(iv) It remains to bound the five terms in the right-hand side, say T1–T5. To this
purpose, we first bound the quantities αn

h, βn
h , and γn

h by proceeding as for the RK2
scheme. It is readily inferred that

τ‖αn
h‖L . τ1/2‖ξn

π‖∗, τ‖βn
h‖L . τ1/2‖ζn

π ‖∗, τ‖γn
h‖L . τ1/2‖θn

π‖∗ + τ4,
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and that for all vh ∈ Vh,

τ(αn
h, vh)L . τ‖ξn

π‖∗(|vh|S + ‖vh‖L),

τ(βn
h , vh)L . τ‖ζn

π ‖∗(|vh|S + ‖vh‖L),

τ(γn
h , vh)L . τ‖θn

h‖∗(|vh|S + ‖vh‖L) + τ4‖vh‖L.

Moreover, still proceeding as for the RK2 scheme,

‖ζn
h ‖L . ‖ξn

h‖L + ‖ξπ‖∗, ‖θn
h‖L . ‖ξn

h‖L + ‖ξπ‖∗ + ‖ζn
π ‖∗.

Using these estimates yields

T1 . τ(τ7 + ‖ζn
π ‖2

∗ + ‖θn
π‖2

∗).

Furthermore, using Young inequalities leads to

T2 + T3 + T4 ≤ 1
48τ |ξ

n
h |2S + 1

12τ |ζ
n
h |2S + 1

48τ |θ
n
h |2S

+ Cτ(τ6 + ‖ξn
π‖2

∗ + ‖ζn
π ‖2

∗ + ‖θn
π‖2

∗ + ‖ξn
h‖2

L).

Finally, since Λ is symmetric,

T5 . τ(‖ξn
h‖2

L + ‖ζn
h ‖2

L + ‖θn
h‖2

L) . τ(‖ξn
π‖2

∗ + ‖ζn
π ‖2

∗ + ‖ξn
h‖2

L).

Collecting the above bounds and since τ7 ≤ τ6 concludes the proof.

4.4. Error estimate. The next theorem provides a general a priori error esti-
mate under the usual CFL condition.

Theorem 4.1. Assume that u ∈ C4(0, T ;L) ∩ C0(0, T ; [Hp+1(Ω)]m). Under the
CFL condition (2.33) with the choice (4.19) for ̺, there holds

‖uN − uN
h ‖L +

(

N−1
∑

n=0

1
48τ |u

n
h|2S + 1

12τ |w
n
h |2S + 1

48τ |y
n
h |2S

)1/2

. τ3 + hp+1/2. (4.21)

Proof. Starting with estimate (4.20), sum over n, apply Gronwall’s lemma, and
use the approximation property (2.32).

5. Numerical results. In this section we investigate numerically the explicit
RK2 and RK3 schemes using, respectively, their implementations (3.6)-(3.8) and (4.6)-
(4.9). Regarding space discretization, we consider the continuous (CIP stabilized)
and discontinuous (DG) finite element methods discussed in §2.4, using piecewise
affine (p = 1) and quadratic (p = 2) polynomials. We first illustrate the convergence
properties of the various schemes by considering two test cases with analytical smooth
solutions. Then, we investigate on a benchmark with rough solution the capability
of the present schemes to control spurious oscillations. The numerical computations
have been carried out using FreeFem++ [21].

5.1. Convergence rates for smooth solutions. We focus on two of the ex-
amples discussed in §2.1, namely the advection and acoustics equations.

To illustrate the convergence rate of the discrete solutions, we have computed the
energy errors ‖uN −uN

h ‖L at the final simulation time for specific sequences of τ - and
h−refinements. The scaling τ/h is chosen to satisfy the appropriate CFL condition
and, according to the error estimates (3.22), (3.24) or (4.21), in such a way that the
error in time dominates the error in space. More precisely, we have taken:
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• For RK2 with p = 1 and RK3 with p = 2, τ = Ch (constant usual CFL);
• For RK2 with p = 2, τ = Ch4/3 (constant strengthened 4/3-CFL);
• For RK3 with p = 1, τ = Ch1/2. This choice is made in order to reduce the

spatial error which scales as h3/2 only. The usual CFL increases as the time
step is reduced; for the smallest time step considered, we have ensured that
the scaling τ/h satisfies the required condition (4.19).

5.1.1. Advection equation. As a first numerical test, we consider a two-
dimensional rotating Gaussian benchmark: we solve (2.10) with β = (y, x)t, f = 0,
Ω = {(x, y) ∈ R

2 : x2 + y2 ≤ 1}, and the following Gaussian function, centered at
the point (0.3, 0.3),

u0(x, y) = e10[(x−0.3)2+(y−0.3)2],

as initial condition. The stabilization parameter γ in Sint
F is set to 0.5 for DG (i.e.,

upwinding), and to 0.005 and 0.001 for CIP with p = 1 and p = 2, respectively
(improvements by further tuning of these parameters goes beyond the present scope;
see, e.g., [4] for such an investigation in the steady case). For each numerical scheme,
we report the energy errors at the final time T = 2π, i.e., after a complete rotation of
the initial condition.

Figure 5.1. Advection equation. Convergence history for explicit RK2 with continuous (CIP)
and discontinuous (DG) affine finite elements (p = 1).

(h, τ) (h, τ)/2 (h, τ)/4 (h, τ)/8

CIP 0.4 7 54 568

DG 1.6 11 90 781

Table 5.1
Advection equation. Elapsed CPU time (dimensionless) for the computation of the results

reported in Figure 5.1.
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Figure 5.1 presents the convergence results for the RK2 scheme with p = 1.
We have set τ/h = 0.2, which amounts to choosing ̺ = 0.2 in the usual CFL condi-
tion (2.33) (recall that, here, σ = 1). The RK2-CIP and the RK2-DG schemes exhibit
second-order accuracy in time, as stated in Theorem 3.2. On a fixed mesh, the DG
formulation yields more accurate results, together with increased computational cost.
This is reflected in Table 5.1 which reports the corresponding (dimensionless) CPU
times. The increased accuracy and cost of the DG formulation can be related to the
larger number of degrees of freedom. In this sense, it is worth noticing that all the lin-
ear systems have been solved using the sparse direct solver provided with FreeFem++
without explicitly exploiting the block diagonal structure of the DG mass matrix (this
is particularly relevant in large-scale computations).

The convergence results for the RK2 scheme with quadratic finite elements (p = 2)
are presented in Figure 5.2. Here, the discretization parameters τ and h satisfy the
strengthened 4/3-CFL condition (2.34) with ̺′ = 0.14. As expected, the RK2-CIP
and RK2-DG schemes exhibit the O(τ2) accuracy predicted by Theorem 3.1. We also
observe that the strengthened 4/3-CFL condition seems to be numerically sharp.

Figure 5.2. Advection equation. Convergence history for explicit RK2 with continuous (CIP)
and discontinuous (DG) quadratic finite elements (p = 2).

Figure 5.3 presents the results for the RK3 scheme with affine finite elements
(p = 1). Here, τ scales as h1/2 and the usual CFL condition is satisfied with an
increasing parameter ̺, up to 0.21. Surprisingly, both the RK3-CIP and the RK3-
DG schemes show a convergence rate higher than the theoretical O(τ3) stated in
Theorem 4.1. A possible explanation is that contributions of the spatial error can
be dominant on the coarser meshes. Finally, Figure 5.4 reports the results for RK3
with quadratic finite elements (p = 2). Here, the usual CFL condition (2.33) holds
with ̺ = 0.08. Both the RK3-CIP and the RK3-DG schemes exhibit the O(τ3)
accuracy stated in Theorem 4.1, although some perturbations, due to the O(h5/2)
spatial contribution of error, are clearly visible on the finer meshes.

5.1.2. Wave equation. We now consider the first-order PDE system (2.15) in
the unit square Ω = [0, 1]2 with reference velocity c0 = 1 and final simulation time
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Figure 5.3. Advection equation. Convergence history for explicit RK3 with continuous (CIP)
and discontinuous (DG) affine finite elements (p = 1).

Figure 5.4. Advection equation. Convergence history for explicit RK3 with continuous (CIP)
and discontinuous (DG) quadratic finite elements (p = 2).

T = 1. The right-hand sides f1 and f2 and the initial data are chosen to yield the
following exact solution:

p(x, y, t) = exp(t) sin(πx) sin(πy), q(x, y, t) = p(x, y, t)

[

1
1

]

.

For the DG method, the free parameters in Sext
F and Sint

F are set to γ1 = 1 and
γ2 = γ3 = 0.1, while for the CIP method, they are set to γ1 = 1 and γ2 = γ3 = 0.01
with p = 1 and γ2 = γ3 = 0.005 with p = 2. In Figures 5.5 to 5.8, we report the
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convergence results for the energy norm of the error at final time.
The RK2 scheme with affine finite elements (p = 1) exhibits optimal time conver-

gence, as shown in Figure 5.5. Here, the discretization parameters satisfy the usual
CFL constraint with ̺ = 0.13. The same optimal rate is obtained in Figure 5.6 with
quadratic finite elements (p = 2) and a set of time and space meshes satisfying the
strengthened 4/3-CFL condition with ̺′ = 0.07.

Figure 5.5. Wave equation. Convergence history for explicit RK2 with continuous (CIP) and
discontinuous (DG) affine finite elements.

Figure 5.6. Wave equation. Convergence history for explicit RK2 with continuous (CIP) and
discontinuous (DG) quadratic finite elements.

As in the rotating Gaussian benchmark, a super-convergence behavior is obtained
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Figure 5.7. Wave equation. Convergence history for explicit RK3 with continuous (CIP) and
discontinuous (DG) affine finite elements.

Figure 5.8. Wave equation. Convergence history for explicit RK3 with continuous (CIP) and
discontinuous (DG) quadratic finite elements.

for the RK3 scheme and affine finite elements (p = 1), see Figure 5.7. The time step
τ scales as h1/2 and the usual CFL is satisfied with an increasing parameter ̺, up to
0.21. Finally, Figure 5.8 presents the results for RK3 with quadratic finite elements
(p = 2) and the usual CFL condition holding with ̺ = 0.05. Optimal O(τ3) accuracy
is obtained for the CIP and the DG discretizations.
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(a) Discrete initial condition (b) RK2-P1/Unstabilized

Figure 5.9. Contour-lines for the discrete initial condition and the final discrete solution
provided by the explicit RK2 scheme with unstabilized continuous affine finite elements.

5.2. Controlling oscillations in rough solutions. For the advection bench-
mark discussed in §5.1.1, we now consider the following initial data:

u0(x, y) =
1

2

[

tanh

(

e−10[(x−0.3)2+(y−0.3)2] − 0.5

0.001

)

+ 1

]

.

This function is smooth but has a sharp layer (with thickness of order 0.001) leading
to spurious oscillations when using unstabilized continuous finite elements on meshes
that are too coarse to resolve the internal layer. Our goal with this test case is to illus-
trate the capabilities of the methods analyzed in this paper to control such spurious
oscillations. To this aim, we consider a fixed uniform mesh with 256 elements along
the boundary of Ω (h ≈ 0.025). The sharp layer is thus under-resolved. The discrete
initial data takes the form of a cylinder of height 1 centered at the point (0.3, 0.3); the
contour-lines of its linear interpolant are shown in Figure 5.9a. Figure 5.9b shows the
solution at final time, T = 2π (i.e., after one rotation of the initial data), obtained
by the explicit RK2 scheme (1000 time steps) with unstabilized continuous, piecewise
affine finite elements (γ = 0 in the CIP method). The numerical solution is globally
polluted by spurious oscillations.

In Figure 5.10 we report the approximate solutions obtained with the explicit RK2
scheme, using piecewise affine or quadratic CIP or DG finite elements and using the
largest allowed (in terms of stability) time step size τ . As expected, global oscillations
are eliminated by both the CIP and the DG methods, and the numerical solution
maintains its general aspect with a sharp layer. The increased accuracy of CIP and
DG with p = 2 is clearly visible. Note that, compared to DG and for the considered
values of γ, the CIP method allows the use of larger time steps. Moreover, the critical
value of τ depends on the polynomial order.

In Figure 5.11 we have finally reported the approximate solutions obtained with
the explicit RK3 scheme. Note the slightly improved accuracy with respect to Fig-
ure 5.10. Once more, the critical value of τ depends on the polynomial order and the
largest values were obtained with the CIP method (for the considered choice of the
stabilization parameter).

6. Concluding remarks. In this work, we have analyzed several approximation
methods to the evolution problem (1.1) combining explicit RK schemes in time and
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(a) RK2-P1/CIP, τ/h = 0.51 (b) RK2-P1/DG, τ/h = 0.2

(c) RK2-P2/CIP, τ/h = 0.2 (d) RK2-P2/DG, τ/h = 0.12

Figure 5.10. Contour-lines of the final discrete solution obtained with the explicit RK2 scheme
and piecewise affine or quadratic CIP stabilized or DG finite elements.

stabilized finite elements in space. A series of numerical tests confirmed the stated
stability and convergence results. In our opinion, salient features of this work are the
following: (i) the fact that continuous and discontinuous finite element approximation
in space can be cast into a unified analysis framework, (ii) the possibility to use high-
order approximation methods in space and time (at least up to third-order in time, but
an extension to RK4 schemes proceeding along the same lines should be feasible) in an
explicit framework, (iii) the intertwined stability effects coupling stabilization in space
and anti-dissipativity in time. This last point is particularly evident in the analysis of
RK2 schemes with piecewise affine finite elements, but it also plays a role in bounding
the αn

h, βn
h , and γn

h terms in the energy identities owing to Assumption (A6).
Extensions of this work can explore various directions. Firstly, a more general

form for the evolution problem (1.1) can be considered, namely

A0∂tu+Au = f on Ω × (0, T ). (6.1)

When A0 is smooth, the above analysis carries over with minor modifications. When
A0 is not smooth (e.g., piecewise constant on the mesh), the analysis must be modified;
DG methods appear to be more appropriate to handle this case. A further extension of
the present analysis is to tackle error estimates in the graph norm. Finally, ongoing
work focuses on combining explicit and implicit schemes for the approximation of
evolution problems with stiff terms resulting from diffusion or strong reaction.
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(a) RK3-P1/CIP, τ/h = 0.64 (b) RK3-P1/DG, τ/h = 0.26

(c) RK3-P2/CIP, τ/h = 0.26 (d) RK3-P2/DG, τ/h = 0.15

Figure 5.11. Contour-lines of the final discrete solution obtained with the explicit RK3 scheme
and piecewise affine or quadratic CIP stabilized or DG finite elements.
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