Karim Nour
email: knour@univ-savoie.fr

Khelifa

Khelifa Saber

A semantical proof of the strong normalization theorem for full propositional classical natural deduction

Keywords: .T, (T E), T , T, ω 1

A semantical proof of the strong normalization theorem for full propositional classical natural deduction

Introduction

This paper gives a semantical proof of the strong normalization of the cut-elimination procedure for full propositional classical logic written in natural deduction style. By full we mean that all the logical connectives (⊥, →, ∧ and ∨) are considered as primitive. We also consider the three reduction relations (logical, commutative and classical reductions) necessary to obtain the subformula property (see [START_REF] De Groote | Strong normalization of classical natural deduction with disjunction[END_REF]).

Until very recently (see the introduction of [START_REF] De Groote | Strong normalization of classical natural deduction with disjunction[END_REF] for a brief history), no proof of the strong normalization of the cut-elimination procedure was known for full logic.

In [START_REF] De Groote | Strong normalization of classical natural deduction with disjunction[END_REF], Ph. De Groote gives such a proof by using a CPS-style transformation from full classical logic to implicative intuitionistic logic, i.e., the simply typed λ-calculus.

A very elegant and direct proof of the strong normalization of the full logic is given in [START_REF] Joachimski | Short proofs of normalization for the simplytyped lambda-calculus, permutative conversions and Gödel's[END_REF] but only the intuitionistic case is given.

R. David and the first author give in [START_REF] David | A short proof of the Strong Normalization of Classical Natural Deduction with Disjunction[END_REF] a direct and syntactical proof of this result. This proof is based on a characterization of the strongly normalizable deductions and a substitution lemma which stipulates the fact that the deduction obtained while replacing in a strongly normalizable deduction an hypothesis by another strongly normalizable deduction is also strongly normalizable. The same idea is used in [START_REF] David | A short proof of the strong normalization of the simply typed λµ-calculus[END_REF] to give a short proof of the strong normalization of the simply typed λµ-calculus of [START_REF] Parigot | λµ-calculus: An algorithm interpretation of classical natural deduction[END_REF]. R. Matthes recently found another semantical proof of this result (see [START_REF] Matthes | Non-strictly positive fixed-points for classical natural deduction[END_REF]). His proof uses a complicated concept of saturated subsets of terms.

Our proof is a generalization of M. Parigot's strong normalization result of the λµ-calculus (see [START_REF] Parigot | Proofs of strong normalization for second order classical natural deduction[END_REF]) for the types of J.-Y. Girard's system F using reducibility candidates. We also use a very technical lemma proved in [START_REF] David | A short proof of the Strong Normalization of Classical Natural Deduction with Disjunction[END_REF] concerning commutative reductions. To the best of our knowledge, this is the shortest proof of a such result.

The paper is organized as follows. In section 2, we give the syntax of the terms and the reduction rules. In section 3, we define the reducibility candidates and establish some important properties. In section 4, we show an "adequation lemma" which allows to prove the strong normalization of all typed terms.

Γ ⊢ t : A; ∆, a : A Γ ⊢ (a t) : ⊥; ∆, a : A abs i Γ ⊢ t : ⊥; ∆, a : A Γ ⊢ µa.t : A; ∆ abs e

The cut-elimination procedure corresponds to the reduction rules given bellow.

There are three kinds of cuts:

(a) The logical cuts: They appear when the introduction of a connective is immediately followed by its elimination. The corresponding rules are:

• (λx.u v) ⊲ u[x := v] • (t 1 , t 2 π i) ⊲ t i • (ω i t [x 1 .u 1 , x 2 .u 2]) ⊲ u i [x i := t]
(b) The permutative cuts: They appear when the elimination of the disjunction is followed by the elimination rule of a connective.The corresponding rule is:

• ((t [x 1 .u 1 , x 2 .u 2]) ε) ⊲ (t [x 1 .(u 1 ε), x 2 .(u 2 ε)]) (c)
The classical cuts: They appear when the classical rule is followed by the elimination rule of a connective. The corresponding rule is:

• (µa.t ε) ⊲ µa.t[a := * ε],
where t[a := * ε] is obtained from t by replacing inductively each subterm in the form (a v) by (a (v ε)).

Notation 2.1 Let t and t ′ be E-terms. The notation t ⊲ t ′ means that t reduces to t ′ by using one step of the reduction rules given above. Similarly, t ⊲ * t ′ means that t reduces to t ′ by using some steps of the reduction rules given above.

The following result is straightforward.

Theorem 2.1 If Γ ⊢ t : A; ∆ and t ⊲ * t ′ then Γ ⊢ t ′ : A; ∆.
We have also the confluence property (see [START_REF] Andou | Church-Rosser property of simple reduction for full first-order classical natural deduction[END_REF], [START_REF] De Groote | Strong normalization of classical natural deduction with disjunction[END_REF] and [START_REF] Nour | Saber Church-Russer property of full propositional classical natural deduction[END_REF]).

Theorem 2.2 If t⊲ * t 1 and t⊲ * t 2 , then there exists t 3 such that t 1 ⊲ * t 3 and t 2 ⊲ * t 3 .

Definition 2.2 An E-term t is said to be strongly normalizable if there is no infinite sequence (t i) i<ω of E-terms such that t 0 = t and t i ⊲ t i+1 for all i < ω.

The aim of this paper is to prove the following theorem.

Theorem 2.3 Every typed term is strongly normalizable.

In the rest of the paper we consider only typed terms.

Reducibility candidates

Lemma 3.1 Let t, u and u ′ be E-terms such that u ⊲ u ′ , then:

1. u[x := t] ⊲ u ′ [x := t] and u[a := * t] ⊲ u ′ [a := * t]. 2. t[x := u] ⊲ * t[x := u ′] and t[a := * u] ⊲ * t[a := * u ′].
Proof 1) By induction on u. 2) By induction on t.

= u] w) ∈ N , then ((λx.t u) w) ∈ N . 3. If t 1 , t 2 ∈ N and (t i w) ∈ N , then ((t 1 , t 2 π i) w) ∈ N . 4. If t, u 1 , u 2 ∈ N and u i [x i := t] ∈ N , then (ω i t [x 1 .u 1 , x 2 .u 2]) ∈ N . 5. If t[a := * w] ∈ N , then (µa.t w) ∈ N . Proof 1.
Let w = w 1 ...w n . All reduction over (x w) take place in some w i , because w is a nice sequence, and therefore the w i cannot interacte between them via commutative reductions. Since all w i are strongly normalizable, then (x w) itself is strongly normalizable.

2. It suffices to prove that: If ((λx.t u) w) ⊲ s, then s ∈ N . We process by induction on η(u) + η(t[x := u] w). Since w = w 1 ...w n is a nice sequence, the w i cannot interact between them via commutative reductions. We have four possibilities for the term s. Proof This is proved by that, from an infinite sequence of reduction starting from ((t [x.u, y.v]) w), an infinite sequence of reduction starting from (t [x.(u w), y.(v w)]) can be constructed. A complete proof of this result is given in [START_REF] David | A short proof of the Strong Normalization of Classical Natural Deduction with Disjunction[END_REF] in order to characterize the strongly normalizable terms.

Definition 3.2 1. We define three functional constructions (→, ∧ and ∨) on subsets of terms:

(a) K → L = {t ∈ T / for each u ∈ K, (t u) ∈ L}. (b) K ∧ L = {t ∈ T / (t π 1) ∈ K and (t π 2) ∈ L}. (c) K ∨ L = {t ∈ T / for each u, v ∈ N : If (for each r ∈ K,s ∈ L: u[x := r] ∈ N and v[y := s] ∈ N), then (t [x.u, y.v]) ∈ N }.
2. The set R of the reductibility candidates is the smallest set of subsets of terms containing N and closed by the functional constructions →, ∧ and ∨.

3. Let w = w 1 ...w n be a sequence of E-terms, we say that w is a good sequence iff for each

1 ≤ i ≤ n, w i is not in the form [x.u, y.v]. Lemma 3.5 If R ∈ R, then: 1. R ⊆ N .
2. R contains the λ-variables.

Proof We prove, by simultaneous induction, that R ⊆ N and for each λ-variable x and for each good sequence w ∈ N ′<ω , (x w) ∈ R.

• R = N : trivial.

• R = R 1 → R 2 : Let t ∈ R. By induction hypothesis, we have x ∈ R 1 , then (t x) ∈ R 2 , therefore, by induction hypothesis, (t x) ∈ N hence t ∈ N .

Let w ∈ N ′<ω be a good sequence and v ∈ R 1 . Since wv is a good sequence, then, by induction hypothesis (x wv) ∈ R 2 , therefore (x w) ∈ R 1 → R 2 .

• R = R 1 ∧ R 2 : Let t ∈ R, then (t π i) ∈ R i and, by induction hypothesis, (t π i) ∈ N , therefore t ∈ N .

Let w ∈ N ′<ω be a good sequence, then wπ i is also a good sequence and, by induction hypothesis, (x wπ i) ∈ R i , therefore (x w) ∈ R. Definition 3.3 A set X ⊆ N ′<ω is said to be nice iff for each w ∈ X, w is a nice sequence.

• R = R 1 ∨ R 2 : Let t ∈ R
Lemma 3.6 Let R ∈ R, then there exists a nice set X such that R = X → N .

Proof By induction on R.

• R = N : Take X = {∅}, it is clear that N = {∅} → N . • R = R 1 → R 2 : We have R 2 = X 2 → N for a nice set X 2 . Take X = {u v / u ∈ R 1 , v ∈ X 2 }. We have u v is a nice sequence for all u ∈ R 1 and v ∈ X 2 .
Then X is a nice set and we can easly check that R = X → N .

• R = R 1 ∧ R 2 : Similar to the previous case.

• R = R 1 ∨ R 2 : Take X = {[x.u, y.v] / for each r ∈ R 1 and s ∈ R 2 , u[x := r] ∈ N and v[y := s] ∈ N }.
We have X is a nice set and, by definition, R = X → N .

Remark 3.2 Let R ∈ R and X a nice set such that R = X → N . We can suppose that ∅ ∈ X. Indeed, since R ⊆ N , we have also R = X ∪ {∅} → N . 2. This comes also from the fact that: If, for every i ∈ I, R = X i → N , then R = ∪ i∈I X i → N .

Remark 3.3 For R ∈ R, R ⊥ is simply the greatest nice X such that R = X → N . In fact any nice X such that ∅ ∈ X and R = X → N would work as well as R ⊥ .

Lemma 3.8 Let R ∈ R, t ∈ R and t ⊲ * t ′ . Then t ′ ∈ R Proof Let ū ∈ R ⊥ . We have (t ū) ⊲ * (t ′ ū) and (t ū) ∈ N , then (t ′ ū) ∈ N . We deduce that t ′ ∈ R ⊥ → N = R.

Remark 4.1 We can give now another proof of remark 3.4: "if R ∈ R, the µa.N ⊆ R". Let t = λz.µa.z, we have ⊢ t :⊥→ p for every propositional variable p. By lemma 4.1, for every R ∈ R, t ∈ N → R, then, for every u ∈ N , (t u) ∈ R, therefore, by lemma 3.8, µa.u ∈ R.

•

 s = ((λx.t ′ u) w) where t ⊲ t ′ : By lemma 3.1, (t ′ [x := u] w) ∈ N and η(u) + η((t ′ [x := u] w)) < η(u) + η((t[x := u] w)), then, by induction hypothesis, s ∈ N . • s = ((λx.t u ′) w) where u ⊲ u ′ : By lemma 3.1, (t[x := u ′] w) ∈ N and η(u ′) + η((t[x := u ′] w)) < η(u) + η((t[x := u] w)), then, by induction hypothesis, s ∈ N . • s = ((λx.t u) w′) where w′ = w 1 ...w ′ i ...w n and w i ⊲ w ′ i : By lemma 3.2, w′ is a nice sequence. We have (t[x := u] w′) ∈ N and η(u) + η((t[x := u] w′)) < η(u) + η((t[x := u] w)), then, by induction hypothesis, s ∈ N . • s = (t[x := u] w): By hypothesis, s ∈ N . 3. Same proof as 2).4. Same proof as 2).

5 .Lemma 3 . 4

 534 It suffices also to prove that: If (µa.t w) ⊲ s, then s ∈ N . We process by induction on the pair (lg(w), η(t[a := * w]) + η(w)) where lg(w) is the number of the E-terms in the sequence w. We have three possibilities for the term s.• s = (µa.t ′ w) where t ⊲ t ′ : By lemma 3.1, t ′ [a := * w] ∈ N and η(t ′ [a := * w]) < η(t[a := * w]),then, by induction hypothesis, s ∈ N . • s = (µa.t w′) where w′ = w 1 ...w ′ i ...w n and w i ⊲ w ′ i : by lemma 3.2, w′ is a nice sequence and, by lemma 3.1, t[a := * w′] ∈ N and η(t[a := * w′]) + η(w′) < η(t[a := * w]) + η(w), then, by induction hypothesis, s ∈ N . • s = (µa.t[a := * w 1] w′) where w′ = w 2 ...w n : It is obvious that w′ is a nice sequence and lg(w′) < lg(w). We have t[a := * w 1][a := * w′] = t[a := * w] ∈ N , then, by induction hypothesis, s ∈ N . Let w be a nice sequence. If (t [x.(u w), y.(v w)]) ∈ N , then ((t [x.u, y.v]) w) ∈ N .

Notation 3 . 3

 33 and y, z two λ-variables. By induction hypothesis, we have, for eachu ∈ R 1 ⊆ N and v ∈ R 2 ⊆ N , y[y := u] = u ∈ N and z[z := v] = v ∈ N , then (t [y.y, z.z]) ∈ N , therefore t ∈ N .Let w ∈ N ′<ω be a good sequence and u, v ∈ N such that for each r ∈ R 1 , s ∈ R 2 , u[x := r] ∈ N and v[y := s] ∈ N . We have [x.u, y.v] ∈ N ′ because u and v ∈ N . Thus w [x.u, y.v] is a nice sequence, and by lemma 3.3, (x w [x.u, y.v]) ∈ N , therefore (x w) ∈ R. For S ⊆ N ′ <ω , we define S → K = {t ∈ T / for each w ∈ S, (t w) ∈ K}.

Definition 3 . 4 Lemma 3 . 7 Proof 1 .

 34371 Let R ∈ R, we define R ⊥ = ∪{X / R = X → N and X is a nice set }. Let R ∈ R, then: 1. R ⊥ is a nice set. 2. R = R ⊥ → N . By definition.

 The intuition behind the notion of the nice sequences will be given in the proof of the lemma 3.3. Let w = w 1 ...w n be a nice sequence and w′ = w 1 ...w ′ i ...w n where w i ⊲ w ′ i . Then w′ is also a nice sequence.ProofThis comes from the fact that if ε ⊲ [x.u, y.v] then ε = [x.p, y.q], where p ⊲ u or q ⊲ v. The empty sequence is denoted by ∅.2. Let w = w 1 ...w n a sequence of E-terms and t a term. Then (t w) is t if n = 0 and ((t w 1) w 2 ...w n) if n = 0. The term t[a := * w] is obtained from t by replacing inductively each subterm in the form (a v) by (a (v w)).3. If w = w 1 ...w n is a nice sequence, we denote η(w) =

	1. n i=1 η(w i). Lemma 3.3 Let w be a nice sequence. 1. (x w) ∈ N . Lemma 3.2 Notation 3.2 2. If u ∈ N and (t[x :

Notation 3.1 The set of strongly normalizable terms (resp. E-terms) is denoted by N (resp. N ′). If t ∈ N ′ , we denoted by η(t) the maximal length of the reduction sequences of t.We denote also N ′ <ω the set of finite sequences of N ′ . Definition 3.1 Let w = w 1 ...w n ∈ N ′ <ω , we say that w is a nice sequence iff w n is the only E-term in w which can be in the form [x.u, y.v].

Remark 3.1

The meaning of the new constructors is given by the typing rules below where Γ (resp. ∆) is a context, i.e. a set of declarations of the form x : A (resp. a : A) where x is a λ-variable (resp. a is a µ-variable) and A is a type.Γ, x : A ⊢ x : A ; ∆ ax Γ, x : A ⊢ t : B; ∆ Γ ⊢ λx.t : A → B; ∆ → i Γ ⊢ u : A → B; ∆ Γ ⊢ v : A; ∆ Γ ⊢ (u v) : B; ∆ → e Γ ⊢ u : A; ∆ Γ ⊢ v : B; ∆ Γ ⊢ u, v : A ∧ B; ∆ ∧ i Γ ⊢ t : A ∧ B; ∆ Γ ⊢ (t π 1) : A; ∆ ∧ 1 e Γ ⊢ t : A ∧ B; ∆ Γ ⊢ (t π 2) : B; ∆ ∧ 2 e Γ ⊢ t : A; ∆ Γ ⊢ ω 1 t : A ∨ B; ∆ ∨ 1 i Γ ⊢ t : B; ∆ Γ ⊢ ω 2 t : A ∨ B; ∆ ∨ 2 i Γ ⊢ t : A ∨ B; ∆ Γ, x : A ⊢ u : C; ∆ Γ, y : B ⊢ v : C; ∆ Γ ⊢ (t [x.u, y.v]) : C; ∆ ∨ e

 Remark 3.4Let R ∈ R, we have not in general N ⊆ R, but we can prove, by induction, that µaN = {µa.t / t ∈ N and a is not free in t} ⊆ R.

4 Proof of the theorem 2.3 Definition 4.1 An interpretation is a function I from the propositional variables to R, which we extend to any formula as follows:

Then t[x 1 := u 1 , ..., x n := u n , a 1 := * v1 , ..., a m := * vm] ∈ I(A).

Proof For each term s, we denote s[x 1 := u 1 , ..., x n := u n , a 1 := * v1 , ..., a m := * vm] by s ′ . We look at the last used rule in the derivation of Γ ⊢ t : A ; ∆.

• ax, → e and ∧ j e : Easy.

Let u ∈ I(C) and w ∈ I(D) ⊥ . By induction hypothesis, we have • abs i : In this case t = (a j u) and Γ ⊢ (a j u) :⊥ ; ∆ ′ , a j : B j . We have to prove that t ′ ∈ N , by induction hypothesis, u ′ ∈ I(B j), then (u ′ vj) ∈ N , therefore t ′ = (a (u ′ vj)) ∈ N .