Karim Nour
email: knour@univ-savoie.frksaber@messel.emse.fr

Khelifa Saber

A completeness result for the simply typed λµ-calculus

In this paper, we define a realizability semantics for the simply typed λµcalculus. We show that if a term is typable, then it inhabits the interpretation of its type. This result serves to give characterizations of the computational behavior of some closed typed terms. We also prove a completeness result of our realizability semantics using a particular term model.

Introduction

What came to be called the Curry-Howard correspondence has proven to be a robust technique to study proofs of intuitionistic logic, since it exhibits the structural bond between this logic and the λ-calculus. T. Griffin's works [START_REF] Griffin | A formulae-as-types notion of control[END_REF] in 1990 allowed to extend this correspondence to classical logic, which had several consequences. On basis of this new contribution, the λµ-calculus was introduced by M. Parigot [START_REF] Parigot | λµ-calculus: An algorithm interpretation of classical natural deduction[END_REF] and [START_REF] Parigot | Proofs of strong normalization for second order classical natural deduction[END_REF]. The λµ-calculus is a natural extension of the λ-calculus which exactly captures the algorithmic content of proofs written in the second order classical natural deduction system. The typed λµ-calculus enjoys all good properties: the subject reduction, the strong normalization and confluence theorems.

The strong normalization theorem of second order classical natural deduction [START_REF] Parigot | Proofs of strong normalization for second order classical natural deduction[END_REF] is based on a lemma known as the correctness result, which stipulates that each term is in the interpretation of its type. This is also based on the notion of the semantics of realizability. The idea of this semantics consists in associating to each type a set of terms that realizes it, this method has been very effective for establishing the strong normalization of type system "à la Tait and Girard". J.-Y. Girard used it to give a proof of the strong normalization of his system F , method known also as the reducibility candidates, later M. Parigot extended this method to the classical case and provided a proof of strong normalization of the typed λµcalculus. In a previous work [START_REF] Nour | A semantical proof of strong normalization theorem for full propositional classical natural deduction[END_REF], we adapted Parigot's method and established a short semantical proof of the strong normalization of classical natural deduction with disjunction as primitive.

In general all the known semantical proofs of strong normalization use a variant of the reducibility candidates based on a correctness result, which has been important also for characterizing computational behavior of some typed terms, as it was done in J.-L. Krivine's works [START_REF] Krivine | Lambda calcul, types et modèles[END_REF]. This inspired us also to define a general semantics for classical natural deduction in [START_REF] Nour | A Semantics of Realizability for the Classical Propositional Natural Deduction[END_REF] and gave such characterizations.

The question that we now can ask is: "does the correctness result have a converse?". By this we mean: "can we find a class of types for which the converse of the correctness result (completeness result) holds?". J.R. Hindley was the first who study the completeness of simple type systems [START_REF] Hindley | The simple semantics for Coppe-Dezani-Sallé types[END_REF], [START_REF] Hindley | The completeness theorem for typing λ-terms[END_REF] and [START_REF] Hindley | Curry's type-rules are complete with respect to the F-semantics too[END_REF]. R. Labib-sami has established in [START_REF] Labib-Sami | Typer avec (ou sans) types auxiliaires[END_REF] completeness for a class of types in Girard's system F known as strictely positive types, and this for a semantics based on sets stable under βηequivalence. S. Farkh and K. Nour revisited this result, and generalized it, in fact they proved a refined result by indicating that weak-head-expansion is sufficient [START_REF] Farkh | Un résultat de complétude pour les types ∀ + du système F . CRAS[END_REF]. In [START_REF] Farkh | Types Complets dans une extension du système AF 2[END_REF], they established an other completeness result for a class of types in Krivine's system AF 2. Recently, F. Kamareddine and K. Nour improved the result of Hindley, to a system with an intersection type. Independently, T. Coquand established in [START_REF] Coquand | Completeness theorem and λ-calculus[END_REF] by methods using Kripke's models, the completeness for the simply typed λcalculus.

In the present work we deal with this problem and prove the completeness for the simply typed λµ-calculus. The semantics that we define here is not completely different from that of [START_REF] Nour | A Semantics of Realizability for the Classical Propositional Natural Deduction[END_REF] and [START_REF] Nour | A semantical proof of strong normalization theorem for full propositional classical natural deduction[END_REF], nevertheless we add a slight but an indispensable modification to the notion of the µ-saturation. This semantics is inspired by the strong normalization proof of Parigot's λµ-calculus, which consists in rewriting each reducibility candidate as a double orthogonal.

The correcteness result allows to describe the computational behavior of closed typed terms. We have two kinds of proofs for such characterizations. Semantical proofs, in which we guess the computational behaviors, models used in such proofs are exactly built to meet the required characterization. Syntactical proofs, where we construct the behavior based on the type, these proofs are shorter than the semantical ones. In what follows, we give at each time, both of semantics and syntactical proofs.

This paper is organized as follows. Section 2 is an introduction to the simply typed λµ-calculus. In section 3, we define the semantics and prove its correctness. Section 4 is devoted to the completeness result. Finally, in Section 5 we give characterizations of some closed typed terms.

The simply typed λµ-calculus

In this work, we use the λµ-calculus à la De Groote, where the binder µ and the naming construct are split. This allows more expressivity than the Parigot's original version.

Definition 2.1

1. Let X and A be two infinite sets of disjoint alphabets for distinguiching λ-variables and µ-variables. The λµ-terms are given by the following grammar:

T :=X | λX .T | (T T) | µA.T | (A T)

Types are formulas of the propositional logic built from the infinite set of

propositional variables P = {X, Y, Z, ...} and a constant of type ⊥, using the connective →.

3. As usual we denote by ¬A the formula A →⊥. Let A 1 , A 2 , ..., A n , A be types, we denote the type

A 1 → (A 2 → (... → (A n → A)...)) by A 1 , A 2 , ..., A n → A.
5. Let t be a λµ-term, A a type, Γ = {x i : A i } 1≤i≤n and ∆ = {a j : B j } 1≤j≤m , using the following rules, we will define "t typed with type A in the contexts Γ and ∆" and we denote it Γ ⊢ t : A ; ∆.

Γ ⊢ x i : A i ; ∆ ax for 1 ≤ i ≤ n. Γ, x : A ⊢ t : B; ∆ Γ ⊢ λx.t : A → B; ∆ → i Γ ⊢ u : A → B; ∆ Γ ⊢ v : A; ∆ Γ ⊢ (u v) : B; ∆ → e Γ ⊢ t :⊥; ∆, a : A Γ ⊢ µa.t : A; ∆ µ Γ ⊢ t : A; ∆, a : A Γ ⊢ (a t) :⊥; ∆, a : A ⊥
We denote this typed system by S µ .

6. The basic reduction rules are β and µ reductions.

• (λx.u v) ⊲ β u[x := v] • (µa.u v) ⊲ µ µa.u[a := * v]
where u[a := * v] is obtained from u by replacing inductively each subterm in the form (a w) in u by (a (w v)).

7. We denote t ⊲ t ′ if t is reduced to t ′ by one of the rules given above. As usual ⊲ * denotes the reflexive transitive closure of ⊲, and ≃ the equivalence relation induced by ⊲ * .

We have the following results (for more details, see [START_REF] Parigot | Proofs of strong normalization for second order classical natural deduction[END_REF]). Definition 2.2 1. Let t be a term and v a finite sequence of terms (the empty sequence is denoted by ∅), then, the term tv is defined by (t ∅) = t and (t uū) = ((t u) ū).

2. Let t, u 1 , ..., u n be terms and v1 , ..., vm finite sequences of terms, then t[(x i := u i) 1≤i≤n ; (a j := * vj) 1≤j≤m] is obtained from the term t by replacing inductively each x i by u i and each subterm in the form (a j u) in t by (a j (u vj)).

Remark 2.1 In order to avoid the heavy notation of the substitution [(x i := u i) 1≤i≤n ; (a j := * vj) 1≤j≤m], we denote it by σ (which is not an object of the syntax). Then t[(x i := u i) 1≤i≤n ; (a j := * vj) 1≤j≤m] is denoted by tσ. Lemma 2.1 Let t, t ′ be terms and σ a substitution, if t ⊲ * t ′ , then, tσ ⊲ * t ′ σ.

Proof. By induction on t.

The semantics of S µ

In this part we define the realizability semantics and prove its correctness. Definition 3.1

1. We say that a set of terms S is saturated when the conditions: v ⊲ * u and u ∈ S imply v ∈ S for all terms u and v.

2. Let us take a saturated set of terms S and a set C of an infinite classical variables (µ-variables). We say that S is C-saturated when the condition: t ∈ S implies µa.t ∈ S and (a t) ∈ S for all term t and all µ-variable a ∈ C Remark 3.1 The difference between this semantics and those defined in [START_REF] Nour | A Semantics of Realizability for the Classical Propositional Natural Deduction[END_REF] and [START_REF] Nour | A semantical proof of strong normalization theorem for full propositional classical natural deduction[END_REF], is the notion of the C-saturation which is not necessary for the correctness part, but indispensable for the completeness side. It is obvious that this notion introduces ill-typed terms, thing which seems to go against completeness. Nevertheless, the key point is that C is a parameter attached to a particular model, therefore when we take the intersection of all models, all these bad terms are removed. This is exaclty what is done in the proof of the theorem 4.1.

Definition 3.2 1.
Consider two sets of terms K and L, we define a new set of terms:

K L = {t / (t u) ∈ L, for each u ∈ K}. It is clear that when L is a saturated set, then K
L is also saturated one.

2. We denote T ∪ A by T ′ and T ′ <ω the set of finite sequences of elements of T ′ . Let t be a term and π ∈ T ′ <ω , then the term (t π) is defined by

(t ∅) = t, (t π) = ((t u) π ′) if π = uπ ′ and (t π) = ((a t) π ′) if π = aπ ′ .
3. Let S be a set of terms and X ⊆ T ′ <ω , then we define X S = {t / (t π) ∈ S, for each π ∈ X }.

Remark 3.2

The fact that the application (a t) is denoted by (t a) is not something new, it is already present in Saurin's work [START_REF] Saurin | Separation and the λµ-calculus[END_REF]. Except that for us, it is a simple notation in order to uniformize the definition of the application. But for Saurin, it is crucial to obtain the separation theorem in the λµ-calculus.

Definition 3.3 Let S be a C-saturated set and {R i } i∈I subsets of terms such that R i = X Ri S for some X Ri ⊆ T ′ <ω . A model M= C, S, {R i } i∈I is the smallest set containing S and R i , and closed under the constructor .

Lemma 3.1 Let M = C, S, {R i } i∈I be a model and G ∈ M. There exists a set X G ⊆ T ′ <ω such that G = X G S.
Proof. By induction on G.

-

If G = S, take X G = {φ}. -If G = R i , take X G = X Ri . -If G = G 1 G 2 , then, by induction hypothesis, G 2 = X G2 S where X G2 ⊆ T ′ <ω , and take X G = {uv / u ∈ G 1 and v ∈ X G2 }. Definition 3.4 Let M = C, S, {R i } i∈I be a model and G ∈ M. We define the set G ⊥ = ∪{X G / G = X G S}. Lemma 3.2 Let M = C, S, {R i } i∈I be a model and G ∈ M. We have G = G ⊥ S.
Proof. Immediate.

Definition 3.5 1. Let M = C, S, {R i } i∈I be a model. An M-interpretation I is an application X → I(X) from the set of propositional variables P in M which we extend for any formula as follows:

• I(⊥) = S • I(A → B) = I(A) I(B).
2. For any type A, we denote |A| M = {I(A) / I an M-interpretation}.

For any type

A, |A| = {|A| M / M a model}.
The notion of C-saturation is indispensable for completeness but, as we said in the remark 3.1, it provides ill-terms. The presence of such terms has some drawbacks on the correctness side, hence we introduce in the following definition a parameterized relation ֒→ C . Definition 3.6 Let u, v be two terms. The expression u ֒→ C v means that v is obtained from u by replacing the free classical variables of u by some others in C, i.e, if we denote u by u[a 1 , ..., a n] where the a i are the free classical variables of u, then v will be u[a

1 := b 1 , ..., a n := b n] where b i = b j for (i = j) and b i ∈ C for each 1 ≤ i ≤ n (it is obvious that ֒→ C is parameterized by C). Lemma 3.3 (Correctness) Let Γ = {x i : A i } 1≤i≤n , ∆ = {a j : B j } 1≤j≤m , M = C, S, {R i } i∈I a model, I an M-interpretation, u i ∈ I(A i), vj ∈ (I(B j)) ⊥ , σ = [(x i := u i) 1≤i≤n ; (a j := * vj) 1≤j≤m], and u, v two terms such that u ֒→ C v. If Γ ⊢ u : A ; ∆, then, vσ ∈ I(A).
Proof. By induction on the derivation, we consider the last used rule. Proof. Let M be a model and I an M-interpretation. Since ⊢ t : A, then, by the lemma 3.3, t ∈ I(A). This is true for any model M and for any M-interpretation I, therefore t ∈ |A|.

ax: In this case u = x i = v and A = A i , then vσ = u i ∈ I(A). → i : In this case u = λx.u 1 and A = B → C such that Γ, x : B ⊢ u 1 : C ; ∆. Then v = λx.v 1 and u 1 ֒→ C v 1 . Let w ∈ I(B) and δ = σ + [x := w], by induction hypothesis, v 1 δ ∈ I(C), hence (λx.v 1 σ w) ∈ I(C), therefore λx.v 1 σ ∈ I(B) I(C). Finally vσ ∈ I(A). → e : In this case u = (u 1 u 2), Γ ⊢ u 1 : B → A ; ∆ and Γ ⊢ u 2 : B ; ∆. We also have v = (v 1 v 2) where u 1 ֒→ C v 1 and u 2 ֒→ C v 2 . By induction hypothesis, v 1 σ ∈ I(B) I(A) and v 2 σ ∈ I(B), therefore (v 1 σ v 2 σ) ∈ I(A), this implies that vσ ∈ I(A). µ: In this case u = µa.u 1 , then v = µb.v 1 where u 1 ֒→ C v

The completeness result

Roughly speaking, completeness of the semantics amounts to saying that if t is in the interpretation of a type A, then t has the type A. In order to prove the completeness result, we construct in the following part a particular term model. Let Ω = {x i / i ∈ N} ∪ {a j / j ∈ N} be an enumeration of infinite sets of λ and µ-variables.

2.

Let Ω 1 = {A i / i ∈ N} be an enumeration of all types where each type comes infinitely many times.

3.

Let Ω 2 = {B j / j ∈ N} be an enumeration of all types where the type ⊥ comes infinitely many times.

4. We define G = {x i : A i / i ∈ N} and D = {a j : B j / j ∈ N}.

5.

Let u be a term, such that F v(u) ⊆ Ω, the contexts G u (resp D u) are defined as the restrictions of G (resp D) at the declarations containing the variables of F v(u). 8. For each propositional variable X, we define a set of terms R X = {t / G ⊢ * t : X; D}.

Lemma 4.1 1. S is a C-saturated set.
2. The sets R X are saturated.

3. For each propositional variable X, R X = {a j / (a j : X) ∈ D} S.

4. M = C, S, (R X) X∈P is a model Proof. Easy.
Remark 4.1 Observe that the model M is parameterized by the two infinite sets of variables and the enumerations, we need just these infinite sets of variables and not all the variables. This is an important remark since it will serve us in the proof of the theorem 4.1.

Definition 4.2

We define the M-interpretation I as follows:

• I(⊥) = S.

• I(X) = R X for each propositional variable. Proof. By a simultaneous induction on the type A.

Proof of (1)

1. If A = X or ⊥, the result is immediate from the definition of I. Proof of (2)

Let

A = B → C and G ⊢ * t : A ; D, then t ⊲ * t ′ such that: G ⊢ t ′ : B → C ; D.
1. If A = X or ⊥, the result is immediate from the definition of I.

2. Let A = B → C, t ∈ I(B) I(C) and y be a λvariable such y ∈ F v(t) and (y : B) ∈ G. We have y : B ⊢ y : B, hence, by induction hypothesis (1), y ∈ I(B), then, (t y) ∈ I(C). By induction hypothesis (2), G ⊢ * (t y) : C ; D, then (t y) ⊲ * t ′ such that G ⊢ t ′ : C ; D and, by the corollary 4.1, t is a normalizable term. The normal form of t can be either (x u 1) u 2 ...u n either λx.u or µa.u (the case (a u) gives a contradiction for typing reasons). Theorem 4.1 Let A be a type and t a term. We have t ∈ |A| iff there exists a closed term t ′ such that t ⊲ * t ′ and ⊢ t ′ : A.

Proof. ⇐) By the lemma 3.3. ⇒) We consider an infinite set of λ and µ variables Ω such that it contains none of the free variables of t, then from this set we build the completeness model as described in the definition 4.1. If t ∈ |A|, then t ∈ I(A), hence by (1) of the lemma 4.4 and by the fact that F v(t ′) ⊆ F v(t), we have t ⊲ * t ′ and ⊢ t ′ : A.

Characterization of some typed terms

We begin by adding to our system new propositional constants to obtain a new parameterized typed system. In such systems we can characterize the syntactical form of a term having some type, this will be useful for the proof of the lemma 5.3. This part is inspired by Nour's works [START_REF] Nour | Opérateurs de mise en mémoire et types ∀-positifs[END_REF] and [START_REF] Nour | Mixed Logic and Storage Operators[END_REF].

A type A is said an Ō-type iff A is obtained by the following rules:

• Each O i is an Ō-type.

• If B is an Ō-type, then, A → B is an Ō-type.
2. The typed system S µ Ō is the system S µ at which we add the following conditions:

• The rules ax is replaced by

Γ ⊢ Ō x i : A i ; ∆ ax
where ∆ does not contain declarations of the form a : C such that C is an Ō-type.

• The rules → e is replaced by

Γ ⊢ Ō u : A → B; ∆ Γ ⊢ Ō v : A; ∆ Γ ⊢ Ō (u v) : B; ∆ → e
where B is not an Ō-type.

Remark 5.1 It is obvious that S µ Ō can be seen as the system S µ where the syntax of formulas is extended by the new constants Ō and some restrictions are imposed on the typing rules. Therefore in the remainder of this work we consider that, any typed term in the system S µ Ō is strongly normalizable.

Lemma 5.1 If Γ ⊢ t : A ; ∆, X a propositional variable and F is not an Ō-type, then Γ ⊢ Ō t : A[X := F] ; ∆.
Proof. By induction on the derivation.

The following lemma stipulates that the new system S µ Ō is closed under reduction (subject reduction).

Lemma 5.2 If Γ ⊢ Ō t : A ; ∆ and t ⊲ * t ′ , then Γ ⊢ Ō t ′ : A ; ∆
Proof. By induction on the length of the reduction t ⊲ * t ′ . It suffices to check this result for t ⊲ β t ′ and t ⊲ µ t ′ . We process by induction on t.

Lemma 5.3 Let Γ = {x

i : A i } 1≤i≤n , ∆ = {a j : B j } 1≤j≤m Ō = O 1 , ..., O k and 1 ≤ l ≤ k. If Γ ⊢ Ō t : O l ; ∆, then, t = x j for some 1 ≤ j ≤ n and A j = O l .
Proof. By induction on the derivation. ax: Then, Γ ⊢ x j : A j ; ∆, hence t = x j and O l = A j . → i : A contradiction because this implies that O l is not atomic.

→ e : This implies that t = (u v), then, Γ ⊢ u : A → O l ; ∆, therefore this gives a contradiction with the restriction on the rule → e since O l is an Ō-type.

µ: Then, t = µa.t 1 and Γ ⊢ t 1 :⊥; ∆ ′ , a : O l , where ∆ = ∆ ′ ∪ {a : O l }, therefore this gives a contradiction with the fact that ∆ does not contain declarations of the form a j : O j .

⊥: A contradiction because O l is different from ⊥.
Now we give some applications of the lemma 3.3. We will see that the operational behavior of a typed term depends in "certain sense" only of its type. Definition 5.2 Let t be a term. We denote M t the smallest set containing t such that: if u ∈ M t and a ∈ A, then µa.u ∈ M t and (a u) ∈ M t . Each element of M t is denoted µ.t. For example, the term µa.µb.(a (b (µc.(a µd.t)))) is denoted by µ.t.

Terms of type ⊥→ X

Example 5.1 Let e 1 = λx.µa.x and e 2 = λx.µb.(b µa.x), we have: ⊢ e i :⊥→ X.

Given a λ-variable x, and a finite sequence of λ-variables ȳ, we have:

• (e 1 x) ȳ ⊲ * µa.x • (e 2 x) ȳ ⊲ * µb.(b µa.x)
The operational behavior of closed terms with the type ⊥→ X is given in the following theorem.

Theorem 5.1 Let e be a closed term of type ⊥→ X, then, for each λ-variable x and for each finite sequence of λ-variables ȳ, (e x) ȳ ⊲ * µ.x Proof. Semantical proof: Let x be a λ-variable and ȳ a finite sequence of λ-variables. Let C = A, take S = {t / t ⊲ * µ.x} and R = {ȳ} S. It is clear that S is C-saturated set and x ∈ S. So let M = C, S, R and take I the interpretation which at X associates I(X) = R. By the lemma 3.3, e ∈ I(⊥→ X), then, e ∈ S R, i.e, e ∈ S ({ȳ} S), therefore (e x) ∈ {ȳ} S, and (e x) ȳ ∈ S. Finally (e x) ȳ ⊲ * µ.x.

Syntactical proof:

We can also give a syntactical proof of this result. Let Ō = O 1 , ..., O n be a sequence of new constants, A = O 1 , ..., O n → ⊥ and ȳ = y 1 ...y n a sequence of λvariables. By the lemma 5.1, ⊢ Ō e :⊥→ A, then, x :⊥, (y i : O i) 1≤i≤n ⊢ Ō (e x)ȳ :⊥, hence (e x)ȳ ⊲ * τ . It suffices to prove that, if τ is a normal term and x : ⊥, (y i : O i) 1≤i≤n ⊢ Ō τ : ⊥ ; (b j : ⊥) 1≤j≤m , then τ = µ.x. This can be proved easily by induction on τ .

Corollary 5.1 Let e be a closed term of type (⊥→ X), then, for each term u and for each v ∈ T <ω , (e u) v ⊲ * µ.u Proof. Immediate from the previous theorem and the lemma 2.1.

Remark 5.2 Let ⊢ e : ⊥ → X, the term (e u) modelizes an instruction like exit(u) (exit is to be understood as in the C programming language). In the reduction of a term, if the subterm (e u) appears in head position (the term has the form ((e u) v)), then, after some reductions, the sequence v is deleted, and we obtain µ.u as result.

⊢ E i : (¬X → X) → X.
Given λ-variables x, z 1 , z 2 and a finite sequence of λ-variables ȳ, we have:

• (E 1 x) ȳ ⊲ * µa.(a ((x θ 1) ȳ)) and (θ 1 z 1) ⊲ * (a (z 1 ȳ)), where θ 1 = λz.(a (z ȳ)).

• (E 2 x) ȳ ⊲ * µa.(a ((x θ 1) ȳ)), (θ 1 z 1) ⊲ * (a ((x θ 2) ȳ)), and (θ 2 z 2) ⊲ * (a (z 1 ȳ)),

where θ 1 = λz 1 .(a ((x λz 2 .(a (z 1 ȳ))) ȳ)) and θ 2 = λz 2 .(a (z 1 ȳ)).

The following theorem describes the computational behavior of closed terms with type (¬X → X) → X.

Theorem 5.2 Let E be a closed term of type (¬X → X) → X, then, for each λ-variable x, for each finite sequence of λ-variables ȳ and for each sequence of λvariables (z i) i∈N * such that: x, y j are differents from any z i . There exist m ∈ N * and terms θ 1 , ..., θ m , such that we have:

• (E x)ȳ ⊲ * µ.(x θ 1) ȳ • (θ k z k) ⊲ * µ.(x θ k+1) ȳ for all 1 ≤ k ≤ m -1 • (θ m z m) ⊲ * µ.(z l ȳ) for some 1 ≤ l ≤ m
Proof.

Semantical proof: Let x be a λ-variable, ȳ a finite sequence of λ-variables and (z i) i∈N * a sequence of λ-variables as in the theorem above. Take S = {t /∀ r ≥ 0: Either [∃m ≥ 1, ∃θ 1 , ..., θ m , ∃ j: t ⊲ * µ.((x θ 1) ȳ), (θ k z k+r) ⊲ * µ.((x θ k+1) ȳ) for every 1 ≤ k ≤ m -1 and (θ m z m+r) ⊲ * µ.(z j ȳ)], or [∃j : t ⊲ * µ.(z j ȳ)]}, take also R = {ȳ} S.

It is clear that S is a µ-saturated set. Let M = A, S, R and an M-interpretation I such that I(X) = R. By the corollary 3.

1, E ∈ [(R S) R] ({ȳ} S). Let us check that x ∈ (R S) R.
For this, we take θ ∈ (R S) and we prove that (x θ) ∈ R, i.e, ((x θ) ȳ) ∈ S. By the definition of S, (z r ȳ) ∈ S for each r ≥ 0, hence z r ∈ R. Therefore (θ z r) ∈ S, so we have ∀r ′ ≥ 0:

1. Either ∃m ≥ 1, ∃θ 1 , ..., θ m , ∃j :

• (θ z r) ⊲ * µ.((x θ 1) ȳ) • (θ k z k+r ′) ⊲ * µ.((x θ k+1) ȳ) for every 1 ≤ k ≤ m -1 • (θ m z m+r ′) ⊲ * µ.(z j ȳ).
More generally, since this holds for any r ′ , take r ′ = r + 1, then, ∃m ≥ 1, ∃θ 1 , ..., θ m , ∃j :

• (θ z r) ⊲ * µ.((x θ 1) ȳ) • (θ k z k+1+r) ⊲ * µ.((x θ k+1) ȳ) for every 1 ≤ k ≤ m -1 • (θ m z m+1+r) ⊲ * µ.(z j ȳ).
Therefore take m ′ = m + 1, and the terms θ ′ 1 = θ, θ ′ 2 = θ 1 , ..., θ ′ m+1 = θ m , hence check easily that we have for any fixed r:

∃m ′ ≥ 1, ∃θ ′ 1 , ..., θ ′ m ′ , ∃j : • ((x θ) ȳ) ⊲ * µ.((x θ ′ 1) ȳ) • (θ ′ 1 z r) ⊲ * µ.((x θ ′ 2) ȳ) • (θ ′ k z k+r) ⊲ * µ.((x θ ′ k+1) ȳ) for every 1 ≤ k ≤ m ′ -1 • (θ ′ m ′ z m ′ +r) ⊲ * µ.(z j ȳ). 2. Or ∃j : (θ z r) ⊲ * µ.(z j ȳ), then ((x θ) ȳ) ⊲ * µ.((x θ ′ 1) ȳ) and (θ ′ 1 z r) ⊲ * µ.(z j ȳ) with m ′ = 1 and θ ′ 1 = θ. Therefore ((x θ) ȳ) ∈ S).
Thus ((x θ) ȳ) ∈ S which implies that ((E x) ȳ) ∈ S. By the fact that E is a closed term, the λ-variable x and the sequence ȳ are different from each z i , one can ensure that the assertion [∃j : ((E x) ȳ) ⊲ * µ.(z j ȳ)] can not hold. Then for r = 0, ∃m ≥ 1, ∃θ 1 , ..., θ m , ∃j such that:

• ((E x) ȳ) ⊲ * µ.((x θ 1) ȳ) • (θ k z k) ⊲ * µ.((x θ k+1) ȳ) for every 1 ≤ k ≤ m -1 • (θ m z m) ⊲ * µ.(z j ȳ)
for some 1 ≤ j ≤ m.

Syntactical proof:

Now we give a syntactical proof of this result. Let Ō = O 1 , ..., O n be new constants, A = O 1 , ..., O n → ⊥ and ȳ = y 1 ...y n a sequence of variables. By the lemma 5.1 ⊢ Ō E : (¬A → A) → A, then, x : ¬A → A, (y i : O i) 1≤i≤n ⊢ Ō (E x)ȳ : ⊥. Therefore, (T x)ȳ ⊲ * τ , where τ is a normal term and x : ¬A → A, (y

i : O i) 1≤i≤n ⊢ Ō τ : ⊥.
Following the form of τ we have only one case to examine, the others give always contradictions. This case is τ = µ.(x U 1) t 1 ...t n where U 1 , t 1 , ..., t n are normal terms, x : ¬A → A, (y

i : O i) 1≤i≤n ⊢ Ō U 1 : ¬A ; (b j : ⊥) 1≤i≤m and for all 1 ≤ k ≤ n, x : ¬A → A, (y i : O i) 1≤i≤n ⊢ Ō t k : O k ; (b j : ⊥) 1≤j≤m .
We deduce, by the lemma 5.3, that, for all 1 ≤ k ≤ n, t k = y k .

We prove, by induction and using the lemma 5.3, that if x : ¬A → A, (y i :

O i) 1≤i≤n , (z k : A) 1≤k≤i-1 ⊢ Ō U i : ¬A ; (b j : ⊥) 1≤j≤m , then        (U i z i) ⊲ * µ.(x U i+1)ȳ and x : ¬A → A, (y i : O i) 1≤i≤n , (z k : A) 1≤k≤i ⊢ Ō U i+1 : ¬A ; (b j : ⊥) 1≤j≤m or ∃j : (1 ≤ j ≤ i), such that : (U i z i) ⊲ * µ.z j ȳ
The sequence (U i) i≥1 is not infinite, else the term ((E λx.µa.(x z))ȳ) is not normalizable, which is impossible, since x : ¬A, z : A, (y i : O i) 1≤i≤n ⊢ Ō ((E λx.µa.(x z))ȳ) : ⊥.

Corollary 5.2 Let E be a closed term of type (¬X → X) → X, then, for each term u, for each sequence w ∈ T <ω and for each sequence (v i) i∈N * of terms. There exist m ∈ N and terms θ 1 , ..., θ m such that we have:

• (E u) w ⊲ * µ.(u θ 1) w

• (θ i v i) ⊲ * µ.(u θ i+1) w for all 1 ≤ i ≤ m -1 • (θ m v m) ⊲ * µ.(v i w)
for some 1 ≤ i ≤ m

Proof. Immediate from the previous theorem and the lemma 2.1.

Remark 5.3

In the C programming language, there exist "escape" instructions which allow to manage errors without stopping the program. These are setjmp and longjmp. If we reduce (E 1 λy.h) w, we obtain µa.(a (h[y := θ 1] w)). When θ is executed with some value v, the environment is restored and we get (a.(v w)). In other words, in the term (E 1 λy.h), E 1 plays the role of the setjmp instruction and occurences of the variables y in h are the longjmp instruction. The corollary 5.2 says that every term of type (¬X → X) → X has the same operational behavior of E 1 but often in several steps (the sequence of θ i).

Future work

Through this work, we have seen that the propositional types of the system S µ are complete for the semantics defined previously.

1. What about the types of the second order typed λµ-calculus? We know that, for the system F , the ∀ + -types (types with positive quantifiers) are complete for a realizability semantics (see [START_REF] Farkh | Un résultat de complétude pour les types ∀ + du système F . CRAS[END_REF] and [START_REF] Labib-Sami | Typer avec (ou sans) types auxiliaires[END_REF]). But for the classical system F , we cannot generalize this result. We check easily that, if t = µa.(a λy 1 λzµb.(a λy 2 λx.z)) and A = ∀ Y {Y → ∀X(X → X)}, then t ∈ |A|, but t does not have the type A. This is due to the presence of ∀ in right-hand-side of →, hence, we need to add more restrictions on the positions of ∀ in the ∀ + -types to obtain a smallest class of type that we suppose can be proved complete.

2. The problem is not the same when we consider the propositional classical natural deduction system with the connectives ∧ and ∨. In previous works [START_REF] Nour | A Semantics of Realizability for the Classical Propositional Natural Deduction[END_REF] and [START_REF] Nour | A semantical proof of strong normalization theorem for full propositional classical natural deduction[END_REF], we define interpretations of ∧ and ∨ according to the functional constructors and respectively as follows:

• K L = {t ∈ T / (t π 1) ∈ K and (t π 2) ∈ L}

• K L = {t ∈ T / for each u, v if (for each r ∈ K, s ∈ L : u[x := r] ∈ S and v[y := s] ∈ S), then (t [x.u, y.v]) ∈ S} These interpretations allow to obtain a correctness result. We can easily check that the term µa.(a µb.(a λx.x, µc.(b λy.λz.z)), λx.x) belongs to the interpretation of the type A = (X → X) ∧ (X → X) but it does not have the type A. The treatment of the disjunction is even a delicate matter, so we think that to circumventing this difficulties, and if we hope a completeness theorem, some deep modifications should be brought to our semantics.

 1 and b is a new variable which belongs to C and not free in u 1 (there is always such variable because C is infinite). Let v ∈ (I(A)) ⊥ and δ = σ + [b := * v]. By induction hypothesis, v 1 δ ∈ S, and by the definition of S, we have, µb.v 1 δ ∈ S. Since (µb.v 1 σ v) ⊲ * µb.v 1 δ, then, µb.v 1 σ ∈ I(A), i.e, vσ ∈ I(A). ⊥: In this case u = (a u 1), then, v = (b v 1) where u 1 ֒→ C v 1 such that the free variable a was replaced by b in u 1 and b / ∈ F v(u 1) is new variable which belongs to C. Let δ = σ + [b := * v] where v ∈ (I(A)) ⊥ , by induction hypothesis, v 1 δ ∈ I(A), hence (v 1 δ v) ∈ S. Therefore, by the definition of S, (b (v 1 δ v)) ∈ S, finally vσ ∈ S.

Corollary 3 . 1

 31 Let A be a type and t a closed term. If ⊢ t : A, then, t ∈ |A|.

Definition 4 . 1 (

 41 and notation) 1.

6 .

 6 The notation G ⊢ u : C; D means that G u ⊢ u : C; D u , we denote G ⊢ * u : C; D iff there exists a term u ′ , such that u ⊲ * u ′ and G ⊢ u ′ : C; D. 7. Let C = {a j / (a j : ⊥) ∈ D} and S = {t / G ⊢ * t :⊥; D}.

Lemma 4 . 4

 44 Let A be a type and t a term.1. If G ⊢ * t : A ; D, then t ∈ I(A).

2 .

 2 If t ∈ I(A), then G ⊢ * t : A ; D.

 Let u ∈ I(B). By induction hypothesis (2), we have G ⊢ * u : B ; D, this implies that u ⊲ * u ′ and G ⊢ u ′ : B ; D. Hence G ⊢ (t ′ u ′) : C ; D, so, by the fact that (t u) ⊲ * (t ′ u ′), we have G ⊢ * (t u) : C ; D, then, by induction hypothesis (1), (t u) ∈ I(C). Therefore t ∈ I(B → C).

 (a) If t ⊲ * (x u 1) u 2 ...u n with u i normal terms, then G ⊢ (x u 1) u 2 ...u n y :C ; D, x : E 1 , E 2 , ..., E n → (B → C) ∈ G, G ⊢ u i : E i ; D and G ⊢ y : B ; D. Therefore G ⊢ (x u 1) u 2 ...u n : B → C ; D, finally G ⊢ * t : B → C ; D.(b) If t ⊲ * λx.u where u is a normal term, then, since G contains an infinite number of declarations for each type, let y be a λ-variable such that (y : B) ∈ G and y / ∈ F v(u). We have (t y) ⊲ * u[x := y] and G ⊢ u[x := y] : C ; D, hence G ⊢ λy.u[x := y] : B → C ; D and, by the fact that y / ∈ F v(u), λy.u[x := y] = λx.u. Therefore G ⊢ λx.u : B → C ; D, finally G ⊢ * t : B → C ; D. (c) If t ⊲ * µa.u where u is a normal term, then let y be a λ-variable such that (y : B) ∈ G and y / ∈ F v(u). We have (t y) ⊲ * µa.u[a := * y] ⊲ * µa.u ′ where u ′ is the normal form of u[a := * y], so we have G , y : B ⊢ µa.u ′ : C ; D. By the lemma 4.3, we obtain G ⊢ µa.u : B → C ; D, finally G ⊢ * t : B → C ; D.

Corollary 4 . 2

 42 Let A be a type and t a term. 1. If t ∈ |A|, then t is normalizable. 2. If t ∈ |A|, then there exists a closed term t ′ such that t ≃ t ′ . 3. |A| is closed under equivalence. Proof. (1) and (2) are direct consequences of theorem 4.1. (3) can be deduced from the theorem 4.1 and the lemma 3.3.

5. 1 Definition 5 . 1

 151 The system S µ Ō Let Ō = O 1 , ..., O n be a sequence of fresh propositional constants.

5. 3 Example 5 . 2

 352 Terms of type (¬X → X) → X Let the terms E 1 = λx.µa.(a (x λz.(a z))) and E 2 = λx.µa.(a (x (λz 1 .(a(x λz 2 .(a z 1)))))), we have:

 Theorem 2.1 (Confluence result) If t ⊲ * t 1 and t ⊲ * t 2 , then there exists t 3 such that t 1 ⊲ * t 3 and t 2 ⊲ * t 3

	Theorem 2.2 (Subject reduction) If Γ ⊢ t : A; ∆ and t ⊲ Theorem 2.3 (Strong normalization) If Γ ⊢ t : A; ∆, then t is strongly nor-
	malizable.

* t ′ then Γ ⊢ t ′ : A; ∆.

 Lemma 4.2 Let y be a λ-variable, σ = [(x i := y) 1≤i≤n , (a i := * y) 1≤j≤m] a substitution and t a term.1. If (tσ y) is normalizable, then t is normalizable. 2. If tσ is normalizable, then t is normalizable.Proof. By a simultaneous induction on t, we use the standardization theorem of the λµ-calculus[START_REF] Py | Confluence en λµ-calcul[END_REF].1. We examine the case where t = λx.u. Then (tσ y) = (λx.uσ y) is normalizable, this implies that uσ[x := y] is normalizable, hence by (2), u is normalizable, therefore t is normalizable too.2. We examine the case where t = (a u). Then tσ = (a (uσ y)) is normalizable, this implies that (uσ y) is normalizable, hence by (1), u is normalizable, therefore t is normalizable too.

Corollary 4.1 Let t by a term and y a λ-variable. If (t y) is normalizable, then, t is also normalizable. Proof. Immediate from the previous lemma. Lemma 4.3 Let t and τ be two normal terms, y a λ-variable such that y / ∈ F v(t), (t y) ⊲ * τ , A and B types, and Γ, y : A ⊢ τ : B; ∆. Then Γ ⊢ t : A → B; ∆. Proof. See the appendix.

Proofs are presented in natural deduction system with two conclusions, such that formulas in the left-hand-side of ⊢ are indexed by λ-variables and those in right-hand-side of ⊢ are indexed by µ-variables, except one which is indexed by a term.

Acknowledgements:

We wish to thank R. Matthes and P. De Groote for helpful discussions.

Appendix

This part is devoted to the proof of the lemma 4.3. Notation 7.1 Let y be a λ-variable. The expression u ⊲ βy v (resp u ⊲ µy v) means that we reduce in u only a β (resp µ)-redex where y is the argument, i.e, a redex in the form (λz.u y) (resp (µb.u y)). We denote by ⊲ y the union of ⊲ βy and ⊲ µy and ⊲ * y (resp ⊲ * βy , ⊲ * µy) the transitive and reflexive closure of ⊲ y (resp ⊲ βy , ⊲ µy).

Lemma 7.1 Let t be a normal term, σ = [(a i := * y) 1≤i≤n] and τ the normal form of tσ, then, tσ ⊲ * y τ .

Proof. By induction on the normal term t, the important case is the one where t = (a i u) and u a normal term, the others are direct consequences of induction hypothesis. Let us examine the different forms of the normal term u, here there are two important subcases u = λx.v and u = µb.v with v a normal term (these are the two cases where there is creation of redexes after substitution).

1. If u = λx.v, then, uσ = λx.vσ and tσ = (a i (λx.vσ y)) ⊲ βy (a i v{σ+[x := y]}).

By induction hypothesis, vσ ⊲ * y v ′ where v ′ is the normal form of vσ, hence

) which is the normal form of tσ. Proof. By induction on t, we examine how t ⊲ βy τ (resp t ⊲ µy τ). The proof is similar to the proof of (2) of the lemma 4.4.