
HAL Id: hal-00380641
https://hal.science/hal-00380641v2

Submitted on 29 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Limiting absorption principle for the dissipative
Helmholtz equation

Julien Royer

To cite this version:
Julien Royer. Limiting absorption principle for the dissipative Helmholtz equation. Communications
in Partial Differential Equations, 2010, 25 (8), p. 1458-1489. �10.1080/03605302.2010.490287�. �hal-
00380641v2�

https://hal.science/hal-00380641v2
https://hal.archives-ouvertes.fr


LIMITING ABSORPTION PRINCIPLE FOR THE DISSIPATIVE

HELMHOLTZ EQUATION

JULIEN ROYER

Abstract. Adapting Mourre’s commutator method to the dissipative setting, we
prove a limiting absorption principle for a class of abstract dissipative operators. A
consequence is the resolvent estimates for the high frequency Helmholtz equation when
trapped trajectories meet the set where the imaginary part of the potential is non-zero.
We also give the resolvent estimates in Besov spaces.

1. Introduction

We consider the following Helmholtz equation:

∆A(x) + k2
0(1 −N(x))A(x) + ik0a(x)A(x) = A0 (1.1)

This equation modelizes accurately the propagation of the electromagnetic field of a
laser in material medium. Here k0 is the wave number of the laser in the vacuum, N
and a are smooth nonnegative functions representing the electronic density of material
medium and the absorption coefficient of the laser energy by material medium, and
A0 is an incident known excitation (see [BLSS03]). Note that the laser wave cannot
propagate in regions where N(x) > 1, so it is assumed that 0 6 N(x) < 1. An
important application of this problem is the design of very high power laser device such
as the Laser Méga-Joule in France or the National Ignition Facility in the USA.

The oscillatory behaviour of the solution makes numerical resolution very expensive.
Fortunately, the wave length of the laser in the vacuum 2πk−1

0 is much smaller than the
scale of variation of N . It is therefore relevant to consider the high frequency limit k0 →
∞. The simplified model with a constant absorption coefficient has been studied in many
papers. This coefficient is either assumed to be positive (see [BCKP02, BLSS03, WZ06])
in order to be regularizing, or only nonnegative ([Wan07]), in which case the outgoing
(or incoming) solution has to be chosen for A, but in both cases the non-symmetric
part of the equation is in the spectral parameter, and what remains is a selfadjoint
Schrödinger operator. More precisely we are led to study an equation of the form:

(−h2∆ + V (x) − (E + iµh))uh = Sh

where h ∼ k−1
0 is a small parameter.

When the absorption is not assumed to be constant, it has to be in the operator itself
and the selfadjoint theory no longer applies. However, the anti-adjoint part is small
compared to the selfadjoint Schrödinger operator, so by perturbation theory we can see
that some results concerning the selfadjoint part still apply to the perturbed operator.

In this paper we study the limiting absorption principle for the following dissipative
Schrödinger operator:

Hh = −h2∆ + V1(x) − iν(h)V2(x)

on L2(Rn), where V1 is a real function, V2 is nonnegative and ν :]0, 1] →]0, 1]. Note that
ν(h) = h for the Helmholtz equation.
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In the first section, we prove a uniform and dissipative version of the abstract com-
mutator method introduced by E. Mourre in [Mou81] and developped in many papers
(see for instance [PSS81, JMP84, Jen85, DJ01, GGM04] and references therein). In par-
ticular we see that the anti-adjoint part with fixed sign allows us to weaken the Mourre
condition we need to prove uniform estimates and limiting absorption principle on the
upper half-plane. On the contrary, the result is not valid on the other side of the real
axis.

In section 2 we apply this abstract result to the dissipative Schrödinger operator in
the semi-classical setting, following the idea of C. Gérard and A. Martinez ([GM88], see
also [RT87] for the semi-classical limiting absorption principle). In particular we get
uniform estimates of the resolvent (Hh − z)−1 for h small enough, Im z > 0 and Re z
close to E > 0. In the selfadjoint case, the result is true if and only if E is a non-
trapping energy, that is if there is no bounded classical trajectory for the hamiltonian
flow associated to the symbol p(x, ξ) = ξ2 + V1(x) of Hh. In the dissipative case, the
weakened Mourre condition gives a weaker condition on the classical behaviour: we only
have to assume that any bounded trajectory of energy E meets the set where V2 > 0.
Note that it is consistent with the selfadjoint result. Section 3 is devoted to prove that
this condition is necessary (when ν(h) = h, which is the case we are mainly interested
in). To this purpose we use a selfadjoint dilation of the Schrödinger operator and we
prove a dissipative Egorov theorem.

Finally, we show that the estimates we have proved in weighted spaces can be extended
to estimates in Besov spaces, first for the abstract setting of section 2 and then for the
Schrödinger operator.

2. Commutator method for a family of dissipative operators

We first recall that an operator H of domain D(H) in the Hilbert space H is said to
be dissipative if:

∀ϕ ∈ D(H), Im 〈Hϕ,ϕ〉 6 0

2.1. Uniform conjugate operators. Let (Hh)h∈]0,1] be a family of dissipative opera-

tors on H. We assume that Hh is of the form Hh = Hh
0 − iVh where Hh

0 is selfadjoint
on a domain DH independant of h and Vh is selfadjoint, nonnegative and uniformly
Hh

0 -bounded with relative bound less than 1:

∃a ∈ [0, 1[,∃b ∈ R,∀h ∈]0, 1],∀ϕ ∈ DH , ‖Vhϕ‖ 6 a
∥

∥

∥Hh
0ϕ
∥

∥

∥+ b ‖ϕ‖ (2.1)

For any h ∈]0, 1] and ϕ ∈ DH , write: ‖ϕ‖Γh
=
∥

∥Hh
0ϕ
∥

∥ + ‖ϕ‖. Consider now a

family (Ah)h∈]0,1] of selfadjoint operators on a domain DA independant of h, J ⊂ R and
(αh)h∈]0,1] with αh ∈]0, 1].

Definition 2.1. The family (Ah) is said to be uniformly conjugate to (Hh) on J with
bounds (αh) if the following conditions are satisfied:

(a) For every h ∈]0, 1], DH ∩ DA is a core for Hh
0 .

(b) eitAh maps DH into itself for any t ∈ R, h ∈]0, 1], and:

∀ϕ ∈ DH , sup
h∈]0,1],|t|61

∥

∥eitAhϕ
∥

∥

Γh
<∞ (2.2)

(c) For every h ∈]0, 1], the quadratic forms i[Hh
0 , Ah] and i[Vh, Ah] defined on DH ∩DA

are bounded from below and closable. Moreover, if we denote by i[Hh
0 , Ah]0 and

i[Vh, Ah]0 their closures, then DH ⊂ D(i[Hh
0 , Ah]0) ∩ D(i[Vh, Ah]0) and there exists

c > 0 such that for h ∈]0, 1] and ϕ ∈ DH we have:
∥

∥

∥i[Hh
0 , Ah]0ϕ

∥

∥

∥+
∥

∥i[Vh, Ah]0ϕ
∥

∥ 6 c
√
αh ‖ϕ‖Γh

(2.3)
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(d) There exists c > 0 such that for all ϕ,ψ ∈ DH ∩ DA:
∣

∣

∣

〈

i[Hh
0 , Ah]0ϕ,Ahψ

〉

−
〈

Ahϕ, i[H
h
0 , Ah]0ψ

〉∣

∣

∣ 6 c αh ‖ϕ‖Γh
‖ψ‖Γh

(2.4)

and similar estimates hold for the forms [i[Vh, Ah], Ah] and [Vh, Ah].
(e) There exists CV > 0 such that for all h ∈]0, 1]:1J(Hh

0 )
(

i[Hh
0 , Ah]0 +CV Vh

) 1J(Hh
0 ) > αh1J(Hh

0 ) (2.5)

where 1J denotes the characteristic function of J and hence (1I(H
h
0 ))I⊂R is the set

of spectral projections for the selfadjoint operator Hh
0 .

Let C+ = {z ∈ C : Im z > 0} and for J ⊂ R: CJ,+ = {z ∈ C+ : Re z ∈ J}.
2.2. Abstract limiting absorption principle. We first prove a version of the qua-
dratic estimates (see [Mou81, prop. II.5]) we need in our dissipative case:

Proposition 2.2. Let T = TR − iTI be a dissipative operator on H with TR selfadjoint
and TI nonnegative, selfadjoint and TR-bounded. Then for all z ∈ C+ the operator
(T − z) has a bounded inverse. Moreover if B is an operator such that B∗B 6 TI and
Q is a bounded selfadjoint operator, then we have:

∥

∥B(T − z)−1Q
∥

∥ 6
∥

∥Q(T − z)−1Q
∥

∥

1

2 (2.6)

Proof. Since TR is closed and TI is TR-bounded, T is closed. For z ∈ C+ and ϕ ∈ D(H0)
we have:

‖(T − z)ϕ‖ ‖ϕ‖ > |Im 〈(T − z)ϕ,ϕ〉| = 〈TIϕ,ϕ〉 + Im z ‖ϕ‖2
> Im z ‖ϕ‖2

So (T−z) is injective with closed range. We similarly prove that ‖(T ∗ − z)ϕ‖ > Im z ‖ϕ‖,
so Ran(T − z) is dense in H and hence equal to H, which proves that (T − z) has a
bounded inverse. Let ϕ ∈ H. We compute:

∥

∥B(T − z)−1Qϕ
∥

∥

2

=
〈

B∗B(T − z)−1Qϕ, (T − z)−1Qϕ
〉

6
〈

TI(T − z)−1Qϕ, (T − z)−1Qϕ
〉

+ Im z
〈

(T − z)−1Qϕ, (T − z)−1Qϕ
〉

6
1

2i

〈

Q(T ∗ − z)−1[(T ∗ − z) − (T − z)](T − z)−1Qϕ,ϕ
〉

6
∥

∥Q(T − z)−1Q
∥

∥ ‖ϕ‖2

�

Let 〈·〉 denote the function x 7→
√

1 + |x|2. We can now state and prove the main

theorem of this section:

Theorem 2.3. Let (Hh)h∈]0,1] be a family of dissipative operators of the form Hh =

Hh
0 − iVh as in section 2.1 and (Ah)h∈]0,1] a conjugate family to (Hh) on the open

interval J ⊂ R with bounds (αh)h∈]0,1]. Then for any closed subinterval I ⊂ J and all

s > 1
2 , there exists a constant c > 0 such that:

∀h ∈]0, 1],∀z ∈ CI,+,
∥

∥〈Ah〉−s (Hh − z)−1 〈Ah〉−s
∥

∥ 6
c

αh
(2.7)

Moreover, we have for all z, z′ ∈ CI,+:

∥

∥〈Ah〉−s
(

(Hh − z)−1 − (Hh − z′)−1
)

〈Ah〉−s
∥

∥ 6 c α
− 4s

2s+1

h

∣

∣z − z′
∣

∣

2s−1

2s+1 (2.8)

and for E ∈ J the limit:

〈Ah〉−s (Hh − (E + i0))−1 〈Ah〉−s = lim
µ→0+

〈Ah〉−s (Hh − (E + iµ))−1 〈Ah〉−s (2.9)

exists in L(H) and is a 2s−1
2s+1-Hölder continuous function of E.
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Remark 2.4. As in [Mou81], if we only need resolvent estimates for an operator H =
H0 − iV where H0 is selfadjoint and V is selfadjoint, nonnegative and H0-bounded, we
look for a conjugate operator which satifies the same assumptions as in definition 2.1
with a weaker Mourre condition:1J(H0)

(

i[H0, A]0 + CV V
) 1J(H0) > α1J (H0) + 1J(H0)K1J(H0)

where K is a compact operator on H. Indeed, for any E ∈ J ∩ σc(H0) (the continuous
spectrum of H0) we can find δ > 0 such that:1[E−δ,E+δ](H0)K1[E−δ,E+δ](H0) > −α

2
1[E−δ,E+δ](H0)

hence A is conjugate to H on [E − δ,E + δ] with bound α
2 in the sense of definition 2.1.

The proof of theorem 2.3 follows that of the selfadjoint analog:

Proof. Let I ⊂ J be a closed interval and s ∈
]

1
2 , 1
]

(the conclusions are weaker for
s > 1). Throughout the proof, c stands for a constant which may change but does not
depend on z ∈ CI,+, ε ∈]0, 1] and h ∈]0, 1].

1. Let φ ∈ C∞
0 (J, [0, 1]) with φ = 1 in a neighborhood of I. We set Ph = φ(Hh

0 ) and P ′
h =

(1 − φ)(Hh
0 ). We also define: ΘR,h = i[Hh

0 , Ah]0, ΘI,h = i[Vh, Ah]0, Θh = ΘR,h − iΘI,h

and ΘV
h = CV Vh + Θh, CV being given by assumption (e). Then by assumptions (c)

and (2.1), ΘV
h is Hh

0 -bounded and:

‖ΘhPh‖ + ‖PhΘh‖ 6 c
√
αh (2.10)

The operator Vh is Hh
0 -bounded and PhΘV

h Ph is bounded, so for all h, ε ∈]0, 1] we can

apply proposition 2.2 with TR = Hh
0 − εPhΘI,hPh and TI = Vh + εPh(CV Vh + ΘR,h)Ph.

Indeed by assumption (e) we have:

0 6 (
√
αhPh)2 = αhPh1J(Hh

0 )2Ph 6 Ph(CV Vh + ΘR,h)Ph (2.11)

and hence TI is nonnegative so Gz,h(ε) = (Hh− iεPhΘV
h Ph −z)−1 is well-defined for any

z ∈ C+.
Then we write Qh(ε) = 〈Ah〉−s 〈εAh〉s−1 and finally: Fz,h(ε) = Qh(ε)Gz,h(ε)Qh(ε).

By functional calculus we have:

‖Qh(ε)‖ 6 1 and ‖AhQh(ε)‖ = ‖Qh(ε)Ah‖ = εs−1 (2.12)

and the second part of proposition 2.2 with B =
√
Vh and Q = Qh(ε) for all h, ε ∈]0, 1]

gives :
∥

∥

∥

√

VhGz,h(ε)Qh(ε)
∥

∥

∥ 6 ‖Fz,h(ε)‖
1

2 (2.13)

2. By (2.11) and proposition 2.2 now applied with B =
√
αh

√
εPh, we also have:

‖PhGz,h(ε)Qh(ε)‖ 6
1√
αh

√
ε
‖Fz,h(ε)‖

1

2 (2.14)

On the other hand:

(1 +
√

Vh)P ′
hGz,h(ε)Qh(ε) = (1 +

√

Vh)P ′
h(Hh

0 − z)−1(1 + i(Vh + εPhΘV
h Ph)Gz,h(ε))Qh(ε)

= (1 +
√

Vh)P ′
h(Hh

0 − z)−1Qh(ε)

+ i(1 +
√

Vh)P ′
h(Hh

0 − z)−1VhGz,h(ε)Qh(ε)

+ iε(1 +
√

Vh)P ′
h(Hh

0 − z)−1PhΘhPhGz,h(ε)Qh(ε)

+ iεCV (1 +
√

Vh)P ′
h(Hh

0 − z)−1PhVhPhGz,h(ε)Qh(ε)
(2.15)

By functional calculus and (2.1) we have :
∥

∥

∥
(1 +

√

Vh)P ′
h(Hh

0 − z)−1(1 +
√

Vh)
∥

∥

∥
6 c
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With (2.13), (2.10) and (2.14), this proves that the first three terms of (2.15) are bounded

by c(1 + ‖Fz,h(ε)‖
1

2 ). For the last term, since Ph

√
Vh is uniformly bounded, it only

remains to estimate:

ε
∥

∥

∥

√

VhPhGz,h(ε)Qh(ε)
∥

∥

∥ 6 ε
∥

∥

∥

√

VhGz,h(ε)Qh(ε)
∥

∥

∥+ ε
∥

∥

∥

√

VhPhGz,h(ε)Qh(ε)
∥

∥

∥

6 ε ‖Fz,h(ε)‖
1

2 + ε
∥

∥

∥(1 +
√

Vh)P ′
hGz,h(ε)Qh(ε)

∥

∥

∥

For ε ∈]0, ε0], ε0 > 0 small enough, we finally obtain:

∥

∥P ′
hGz,h(ε)Qh(ε)

∥

∥+
∥

∥

∥

√

VhP
′
hGz,h(ε)Qh(ε)

∥

∥

∥ 6 c
(

1 + ‖Fz,h(ε)‖
1

2

)

(2.16)

Together with (2.14) this gives:

‖Fz,h(ε)‖ 6 ‖Gz,h(ε)Qh(ε)‖ 6 c

(

1 +
‖Fz,h(ε)‖

1

2

√
αh

√
ε

)

(2.17)

and hence:

‖Fz,h(ε)‖ 6
c

αhε
(2.18)

Note that by (2.1) we also have:

∥

∥

∥
Hh

0Gz,h(ε)Qh(ε)
∥

∥

∥
6

1

1 − a
‖HhGz,h(ε)Qh(ε)‖ +

b

1 − a
‖Gz,h(ε)Qh(ε)‖

6 c

(

1 +
‖Fz,h(ε)‖

1

2

√
αh

√
ε

) (2.19)

while (2.13) and (2.16) give:
∥

∥

∥

√

VhPGz,h(ε)Qh(ε)
∥

∥

∥
6 c

(

1 + ‖Fz,h(ε)‖
1

2

)

(2.20)

3. We now estimate the derivative of Fz,h with report to ε:

d

dε
Fz,h(ε) = iCVQh(ε)Gz,h(ε)PhVhPhGz,h(ε)Qh(ε)

= iQh(ε)Gz,h(ε)PhΘhPhGz,h(ε)Qh(ε)

+
dQh(ε)

dε
Gz,h(ε)Qh(ε) +Qh(ε)Gz,h(ε)

dQh(ε)

dε

Functional calculus gives:
∥

∥

∥

∥

dQh(ε)

dε

∥

∥

∥

∥

6 cεs−1

so the last two terms can be estimated by:

∥

∥

∥

∥

dQh(ε)

dε
Gz,h(ε)Qh(ε) +Qh(ε)Gz,h(ε)

dQh(ε)

dε

∥

∥

∥

∥

6 cεs−1

(

1 +
‖Fz,h(ε)‖

1

2

√
αh

√
ε

)

By (2.20) we have :

‖Qh(ε)Gz,h(ε)PhVhPhGz,h(ε)Qh(ε)‖ 6 c(1 + ‖Fz,h(ε)‖)

and for the second term we replace PhΘhPh by Θh − PhΘhP
′
h − P ′

hΘhPh − P ′
hΘhP

′
h,

which gives:

iQh(ε)Gz,h(ε)PhΘhPhGz,h(ε)Qh(ε) = D1 +D2 +D3 +D4
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with:
‖D2‖ =

∥

∥Qh(ε)Gz,h(ε)PhΘhP
′
hGz,h(ε)Qh(ε)

∥

∥

6 ‖Qh(ε)Gz,h(ε)‖ ‖PhΘh‖
∥

∥P ′
hGz,h(ε)Qh(ε)

∥

∥

6 c

(

1 +
1√
αh

√
ε
‖Fz,h(ε)‖

1

2

)

× c
√
αh ×

(

1 + ‖Fz,h(ε)‖
1

2

)

6 c

(

1 +
1√
ε
‖Fz,h(ε)‖

)

D3 is estimated similarly, while we use (2.19) for D4:

‖D4‖ =
∥

∥Qh(ε)Gz,h(ε)P ′
hΘhP

′
hGz,h(ε)Qh(ε)

∥

∥

6
∥

∥Qh(ε)Gz,h(ε)P ′
h

∥

∥

∥

∥

∥
Θh(Hh

0 − i)−1P ′
h

∥

∥

∥

∥

∥

∥
(Hh

0 + i)Gz,h(ε)Qh(ε)
∥

∥

∥

6 c

(

1 +
1√
ε
‖Fz,h(ε)‖

)

To estimate D1, we are going to use the choice of ΘR,h and ΘI,h as commutators with
Hh. By proposition II.6 in [Mou81], Gz,h(ε) maps DA into DH ∩DA, so we can compute,
in the sense of quadratic forms on DH ∩DA:

Qh(ε)Gz,h(ε)ΘhGz,h(ε)Qh(ε)

= iQh(ε)Gz,h(ε)[Hh, Ah]Gz,h(ε)Qh(ε)

= iQh(ε)Gz,h(ε)[Hh − z − iεPhΘV
h Ph, Ah]Gz,h(ε)Qh(ε)

−εQh(ε)Gz,h(ε)[PhΘV
h Ph, Ah]Gz,h(ε)Qh(ε)

= iQh(ε)[Ah, Gz,h(ε)]Qh(ε) (2.21)

−εQh(ε)Gz,h(ε)[PhΘV
h Ph, Ah]Gz,h(ε)Qh(ε)

For ϕ,ψ ∈ DH ∩ DA, we have:

|〈Gz,h(ε)Qh(ε)ϕ,AhQh(ε)ϕ〉| 6 c α
− 1

2

h εs−
3

2 ‖Fz,h(ε)‖
1

2 ‖ϕ‖ ‖ψ‖
according to (2.17) and (2.12).

By proposition II.6 in [Mou81], the quadratic form [PhΘV
h Ph, Ah] has the properties

of [ΘV
h , Ah] given by assumption (d). With (2.19) this proves:

ε
∣

∣

〈

[PhΘV
h Ph, Ah]Gz,h(ε)Qh(ε)ϕ,Gz,h(ε)∗Qh(ε)ψ

〉∣

∣

6 c αh ε ‖Gz,h(ε)Qh(ε)ϕ‖Γh
‖Gz,h(ε)Qh(ε)ψ‖Γh

6 c(1 + ‖Fz,h(ε)‖) ‖ϕ‖ ‖ψ‖
So both terms in (2.21) extend to bounded operators and:

‖D1‖ 6 c α
− 1

2

h εs−
3

2

(

1 + ‖Fz,h(ε)‖
1

2

)

+ c (1 + ‖Fz,h(ε)‖)

and hence we have proved:
∥

∥

∥

∥

d

dε
Fz,h(ε)

∥

∥

∥

∥

6 c+
c√
ε
‖Fz,h(ε)‖ +

cεs−
3

2

√
αh

‖Fz,h(ε)‖
1

2

which can also be written:
∥

∥

∥

∥

d

dε
αhFz,h(ε)

∥

∥

∥

∥

6 c+
c√
ε
‖αhFz,h(ε)‖ + cεs−

3

2 ‖αhFz,h(ε)‖
1

2 (2.22)

4. Using lemma 3.3 in [JMP84] with (2.18) and (2.22), we get that Fz,h(ε) can be con-
tinuously continued for ε = 0. Furthermore, the constants in this lemma do not depend
on the function but only on the estimates. Since (αhFz,h(ε)) and its derivative with
report to ε are estimated uniformly in h, we can conclude that αhFz,h(0) is uniformly
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bounded in h, which is exactly (2.7).

5. Since Fz,h(ε) is bounded as a function of ε, (2.22) becomes:
∥

∥

∥

∥

d

dε
Fz,h(ε)

∥

∥

∥

∥

6 c α−1
h εs−

3

2

and gives:

‖Fz,h(ε) − Fz,h(0)‖ 6 c α−1
h εs−

1

2 (2.23)

Moreover with (2.17) we get:
∥

∥

∥

∥

d

dz
Fz,h(ε)

∥

∥

∥

∥

6

∥

∥

∥Qh(ε)Gz,h(ε)2Qh(ε)
∥

∥

∥ 6 ‖Gz,h(ε)Qh(ε)‖2
6

c

α2
hε

and hence for z, z′ ∈ CI,+:

∥

∥Fz,h(ε) − Fz′,h(ε)
∥

∥ 6
c |z − z′|
α2

hε
(2.24)

Take now z, z′ ∈ CI,+ close enough, h ∈]0, 1] and ε = α
− 2

2s+1

h |z − z′|
2

2s+1 . Then (2.23)
and (2.24) give (2.8).

In particular, for E ∈ I the map µ 7→ FE+iµ,h(0) has a limit for µ → 0+, and taking
the limit µ → 0 in (2.8) with z = E + iµ and z′ = E′ + iµ shows that the limit is
Hölder-continuous with report to E and finishes the proof. �

Remark 2.5. We added the uniform estimate on [Vh, Ah] in assumptions (d) because we
had to put Vh in the ε-term of Gz,h(ε) in order to use the weak Mourre estimate (2.5).

But this assumption is useless if we can take CV = 0 in (2.5).1

3. Application to the dissipative Helmholtz equation

In this section we apply the abstract Mourre theory to the dissipative Schrödinger
operator. Let V1 ∈ C∞(Rn,R) with:

∀α ∈ N
n,∀x ∈ R

n, |∂αV1(x)| 6 Cα 〈x〉−ρ−|α| (3.1)

for some ρ > 0 and Cα > 0. Let V2 ∈ C∞(Rn,R) nonnegative, with bounded derivatives
(up to any order) and:

V2(x) −−−−→
|x|→∞

0 (3.2)

We consider on L2(Rn) the operator:

Hh = −h2∆ + V1 − iν(h)V2

where ν(h) ∈]0, 1]. We denote by Hh
1 = −h2∆ + V1(x) the selfadjoint part of Hh,

ν̃(h) = min(1, ν(h)/h) and:

O = {(x, ξ) ∈ R
2n : V2(x) > 0}

We also write Opw
h (a) for the Weyl-quantization of a symbol a (see [Rob87, Mar02, EZ]):

Opw
h (a)u(x) =

1

(2πh)n

∫

Rn

∫

Rn

e
i
h
〈x−y,ξ〉a

(

x+ y

2
, ξ

)

u(y) dy dξ

1 Initially, estimate
‚

‚Vh(Hh
0 + i)−1

‚

‚ = O(
√

αh) was also required in assumption (c). I thank Th.

Jecko for pointing out that this can be avoided.



8 JULIEN ROYER

3.1. Hamiltonian flow. Let p : (x, ξ) 7→ ξ2+V1(x) be the symbol ofHh
1 , and (x0, ξ0) 7→

φt(x0, ξ0) = (x(t, x0, ξ0), ξ(t, x0, ξ0)) ∈ R
2n the corresponding hamiltonian flow:











∂tx(t, x0, ξ0) = 2ξ(t, x0, ξ0)

∂tξ(t, x0, ξ0) = −∇V1(x(t, x0, ξ0))

φ0(x0, ξ0) = (x0, ξ0)

For I ⊂ R we introduce:

Ωb(I) = {w ∈ p−1(I) : {x(t, w)}t∈R is bounded}
Ω±
∞(I) = {w ∈ p−1(I) : |x(t, w)| −−−−→

t→±∞
∞}

We recall a few basic facts about this flow:

Proposition 3.1. (i) For a ∈ C∞(R2n) we have ∂t(a ◦ φt) = {p, a ◦ φt} where {·, ·}
is the Poisson bracket.

(ii) If I ⊂ R
∗
+ is closed, there exists R0(I) > 0 such that for any R > R0(I), a

trajectory of energy in I which leaves Bx(R) (in the future or in the past) cannot
come back.

(iii) If I ⊂ R
∗
+, p−1(I) = Ωb(I) ∪ Ω+

∞(I) ∪ Ω−
∞(I).

(iv) If I ⊂ R
∗
+ is closed, then Ωb(I) is compact in R

2n.
(v) If I ⊂ R

∗
+ is open, then Ω+

∞(I) and Ω−
∞(I) are open.

3.2. Limiting absorption principle for the dissipative Schrödinger operator.

Theorem 3.2. Let E > 0 and s > 1
2 . If all bounded trajectories of energy E meet O,

then there exists c > 0, h0 > 0 and I = [E − δ,E + δ], δ > 0, such that:

(i) For all h ∈]0, h0]:

sup
z∈CI,+

∥

∥〈x〉−s (Hh − z)−1 〈x〉−s
∥

∥ 6
c

hν̃(h)
(3.3)

(ii) For all h ∈]0, h0] and z, z′ ∈ CI,+:
∥

∥〈x〉−s
(

(Hh − z)−1 − (Hh − z′)−1
)

〈x〉−s
∥

∥ 6 c (hν̃(h))−
4s

2s+1

∣

∣z − z′
∣

∣

2s−1

2s+1 (3.4)

(iii) For λ ∈ I and h ∈]0, h0] the limit:

〈x〉−s (Hh − (λ+ i0))−1 〈x〉−s = lim
µ→0+

〈x〉−s (Hh − (λ+ iµ))−1 〈x〉−s (3.5)

exists in L(L2(Rn)) and is a 2s−1
2s+1-Hölder continuous function of λ.

Remark 3.3. This condition that a damping perturbation of the Schrödinger operator
allows to weaken a non-trapping condition already appears in [AK07] where dispersive
estimates are obtained for the Schrödinger operator on an exterior domain.

Remark 3.4. We are mainly interested in the cases ν(h) = h (ν̃(h) = 1), as mentionned
in the introduction, and ν(h) = h2 (ν̃(h) = h) which appears in the study of the high
energy limit for the Schrödinger operator −∆ − iV2 − z, Re z ≫ 1 (see [AK07, §1.2]).
Remark 3.5. If E is a non-trapping energy, we have the usual estimate in O(h−1), no
matter how small the anti-adjoint part is.

The proof of theorem 3.2 follows that of the selfadjoint case given in [GM88]: we find
a conjugate family of operators using the quantization of an escape function and then
we check that this operators can be replaced by 〈x〉 in the results of theorem 2.3. The
only difference is that we need to prove a weaker Mourre estimate so we are allowed to
consider a function which is not an escape function where V2 is not zero. Let us denote:

Ah =
1

2
(x.hD + hD.x) (3.6)

the generator of dilations.
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Proposition 3.6. For any r ∈ C∞
0 (R2n,R) the operators ν̃(h)Fh = ν̃(h)(Ah + Opw

h (r))
are selfadjoint and satisfy assumptions (a) to (d) for a conjugate operator to Hh.

The proof of this proposition is not really changed by the imaginary part of V , so we
omit it. The important assumption is the Mourre estimate (e), for which we need to
chose r more carefully:

Proposition 3.7. Assume that every bounded trajectory of energy E goes through O,
then there exists ε > 0 and r ∈ C∞

0 (R2n,R) such that ν̃(h)Fh = ν̃(h)(Ah + Opw
h (r)) is

conjugate to Hh on J = [E − ε,E + ε] with bounds c0hν̃(h), where c0 > 0.

Proof. 1. We first remark that the assumption on bounded trajectories can be extended
to a neighborhood of E: there exists ε ∈ ]0, E/12] such that any bounded trajectory of
energy in [E − 3ε,E + 3ε] meets O. Indeed, assume that for any n ∈ N we can find wn

in the compact set Ωb([E/2, 2E]) such that p(wn) → E and wn /∈ Oφ where:

Oφ =
⋃

t∈R

φ−t(O)

Maybe after extracting a subsequence we can assume that wn → w ∈ Ωb([E/2, 2E]).
As p is continuous, we have p(w) = E, and hence w ∈ Oφ which is open. This gives a
contradiction. We set J =]E − ε,E + ε[, J2 =]E − 2ε,E + 2ε[ and J3 =]E − 3ε,E + 3ε[.

2. Let R > R0(J3) (given in proposition 3.1) so large that Ωb(J3) ⊂ Bx(R), where
Bx(R) = {(x, ξ) ∈ R

2n : |x| < R}, and:

|2V1(x) + x.∇V1(x)| 6
E

2
when |x| > R

Let b ∈ C∞(Rn) equal to x.ξ outside Bx(R + 1) and zero in a neighborhood of Bx(R).
Then, if p(x, ξ) ∈ J3 and |x| > R+ 1 we have:

{p, b}(x, ξ) = 2p(x, ξ) − 2V1(x) − x.∇V1(x) > E (3.7)

and {p, b} = 0 in Bx(R).

3. Let w ∈ Ωb(J3) and Tw ∈ R such that φTw(w) ∈ O. As φTw is continuous, we can
find γw > 0 and an open neighborhood Vw of w in R

2n such that for any z ∈ Vw we
have φTw(z) ∈ Oγw where Oγ stands for {(x, ξ) ∈ R

2n : V2(x) > γ}. Let Uw be another

neighborhood of w with Uw ⊂ Vw, gw ∈ C∞
0 (R2n, [0, 1]) be supported in Vw and equal

to 1 on Uw, and f ∈ C∞(R2n) defined for z ∈ R
2n by:

fw(z) =

∫ Tw

0
gw(φ−t(z)) dt

fw has been chosen to satisfy:

{p, fw}(z) =

∫ Tw

0
{p, gw ◦ φ−t}(z) dt = −

∫ Tw

0

d

dt
gw(φ−t(z)) dt

= gw(z) − gw(φ−Tw(z))

The first term is supported in Vw, nonnegative and equal to 1 on Uw while the support
of the second is in φTw(Vw) ⊂ Oγw . In particular {p, fw} is compactly supported,
nonnegative outside Oγw and equal to 1 in Uw \ Oγw .

As Ωb(J3) is compact, we can find w1, . . . , wN ∈ Ωb(J3) for some N ∈ N such that

Ωb(J3) ⊂ U := ∪N
j=1Uwj

. Let γ = min16j6N γwj
and f =

∑N
j=1 fwj

. Then {p, f} is

compactly supported, nonnegative outside Oγ and greater than or equal to 1 in U \Oγ .
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4. We can find a constant CV > 0 such that {p, f} + CV V2 > 1 on Oγ , so that
{p, f} + CV V2 is nonnegative on R

2n and at least 1 on U .

5. Let:

U± = Ω±
∞(J3) ∩Bx(R+ 2)

We have:

U+ ∪ U− ∪ U ∪ p−1(R \ J2) ∪
(

R
2n \Bx(R+ 1)

)

= R
2n

Considering a partition of unity for this open cover of R
2n provides two functions g± ∈

C∞
0 (R2n, [0, 1]) supported in U± such that g∞ = g+ + g− is equal to 1 in a neighborhood

of the compact set:

K∞ = p−1(J2) ∩Bx(R + 1) \ U
There exists T > 0 such that for any w ∈ R

2n we can find a neighborhood V of w and
τ± > 0 such that for any v ∈ V and t > 0 we have:

0 6 g±(φ±t(v)) 6 1[τ±,T+τ±](t)

As a consequence the functions:

f± = ∓
∫ +∞

0
(g± ◦ φ±t) dt

are well-defined, bounded (by T ) and C∞ on R
2n. The same calculation as for f shows

that {p, f±} = g± > 0. Hence we can find a constant C∞ > 0 such that for f∞ = f++f−
we have:

{p, b+ C∞f∞} > E on K∞ (3.8)

and we already know that {p, b+ C∞f∞} > {p, b} is nonnegative on p−1(J2) \K∞.
6. Let ζ ∈ C∞

0 (Rn) equal to 1 on B(R+ 2). Since we can replace ζ by x 7→ ζ(µx) with
µ small enough, we can assume that:

‖C∞f{p, ζ}‖L∞(p−1(J2))
6 2C∞T sup

p−1(J2)
|ξ.∇ζ(x)| 6

E

2

With (3.7) and (3.8) this gives:

{p, b+ ζf∞} >
E

2
on p−1(J2) \ U (3.9)

and {p, b + ζf∞} is still nonnegative on p−1(J2) since ∇ζ = 0 on U . Taking r(x, ξ) =
x.ξ − b(x, ξ) + C∞ζf∞ + f then r ∈ C∞

0 (R2n) and:

{p, x.ξ + r} + CV V2 > 2c0 on p−1(J2) with 2c0 = min

(

1,
E

2

)

7. Let Fh = Ah + Opw
h (r) = Opw

h (x.ξ + r). The principal symbol of the operator
ih−1[H1,h, Fh] is {p, x.ξ + r}. Let χ ∈ C∞

0 (R) supported in J2 and equal to 1 on J .

By [Rob87] or [HR83] the operator χ(Hh
1 ) is a pseudo-differential operator of principal

symbol χ ◦ p. As a consequence the principal symbol of the operator:

i

h
χ(Hh

1 )[Hh
1 , Fh]χ(Hh

1 ) + CV V2 − 2c0χ(Hh
1 )2

is nonnegative, so by G̊arding inequality (see theorem 4.27 in [EZ]) there is C > 0 such
that, after multiplication by hν̃(h):

χ(Hh
1 )i
[

Hh
1 , ν̃(h)Fh

]

χ(Hh
1 ) + hν̃(h)CV V2 > 2hν̃(h)c0χ(Hh

1 )2 − Ch2ν̃(h)

Taking h small enough and multiplying by 1J(Hh
1 ) on both sides give:1J(Hh

1 )
(

i
[

Hh
1 , ν̃(h)Fh

]

+ hν̃(h)CV V2

)1J(Hh
1 ) > hν̃(h)c01J(Hh

1 )2
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Then (ν(h) − hν̃(h))1J (Hh
1 )CV V21J(Hh

1 ) > 0 so we have:1J(Hh
1 )
(

i
[

Hh
1 , ν̃(h)Fh

]

+ CV ν(h)V2

)1J(Hh
1 ) > hν̃(h)c01J(Hh

1 )2

which is the Mourre estimate we need. Note that if E is non-trapping we can take f = 0,
CV = 0, and use the estimate:1J(Hh

1 )i[Hh
1 , Fh]1J(Hh

1 ) > hc01J(Hh
1 )2

even if h > ν(h), which justifies remark 3.5. �

This proposition shows that for any closed subinterval I of J theorem 3.2 is true with
〈ν̃(h)Fh〉−s instead of 〈x〉−s. The operator 〈ν̃(h)Fh〉s 〈ν̃(h)Ah〉−s is bounded uniformly
in h (this is true for s = 0 and s = 1 hence for any s ∈ [0, 1] by complex interpolation),
so conclusions of theorem 3.2 are valid with 〈ν̃(h)Ah〉−s. Now write:

(Hh − z)−1 = (Hh − i)−1 − (z − i)(Hh − i)−2 + (z − i)2(Hh − i)−1(Hh − z)−1(Hh − i)−1

Since 〈ν̃(h)Ah〉s (Hh − i)−1 〈x〉−s is uniformly bounded (see [PSS81, lemma 8.2]), this
gives:

∥

∥〈x〉−s (Hh − z)−1 〈x〉−s
∥

∥

6 c+ c
∥

∥〈x〉−s (Hh − i)−1(Hh − z)−1(Hh − i)−1 〈x〉−s
∥

∥ (3.10)

6 c+ c
∥

∥〈x〉−s (Hh − i)−1 〈ν̃(h)Ah〉s
∥

∥

∥

∥〈ν̃(h)Ah〉−s (Hh − z)−1 〈ν̃(h)Ah〉−s
∥

∥

×
∥

∥〈ν̃(h)Ah〉s (Hh − i)−1 〈x〉−s
∥

∥

6
c

hν̃(h)

where c does not depend on z ∈ CI,+ with Im z 6 1. This is (3.3). Then (3.4) and hence
existence of the limit (3.5) follow similarly.

4. Necessity of the condition on trapped trajectories

We consider in this section the operator Hh = −h2∆ + V1 − ihV2 we introduced
to study the Helmholtz equation. We prove that our assumption that every bounded
trajectory of energy E should meet the open set O is actually necessary in order to have
the uniform estimates and the limiting absorption principle as in theorem 3.2. When
V2 = 0, this is proved in [Wan87].

Theorem 4.1. Assume that for some s ∈
]

1
2 ,

1+ρ
2

[

(ρ > 0 given by (3.1)), there exists

ε, h0 > 0 such that the limit:

〈x〉−s (Hh − (λ+ i0))−1 〈x〉−s

exists for all λ ∈ J =]E − ε,E + ε[ and h ∈]0, h0] with the estimates:
∥

∥〈x〉−s (Hh − z)−1 〈x〉−s
∥

∥ 6
c

h

uniformly in z ∈ CJ,+ and h ∈]0, h0], then every bounded trajectory of energy E goes
through O.

To prove this theorem we use the contraction semigroup generated by Hh (given by
Hille-Yosida theorem, see for instance theorem 3.5 in [EN06]):

Uh(t) = e−
it
h

Hh , t > 0

We first need a dissipative version of the Egorov theorem. Let q ∈ C∞(R+ × R
2n) be

defined by:

q(t, w) = exp

(

−2

∫ t

0
V2(φ

s(w)) ds

)

(where V2(x, ξ) means V2(x) for (x, ξ) ∈ R
2n).
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Theorem 4.2. Let a ∈ C∞(R2n) be a symbol whose derivatives are bounded (in L∞(Rn)).
Then for all t > 0 we have:

Uh(t)∗ Opw
h (a)Uh(t) = Opw

h

(

(a ◦ φt)q(t)
)

+ hR(t, h) (4.1)

where R is bounded in L(L2(Rn)) uniformly in h ∈]0, 1] and t in a compact subset of
R+.

Remark 4.3. More precisely, we prove that there exists a family (b(τ, h))τ>0 of classical
symbols with bounded derivatives (uniformly for τ in a compact subset of R+) such that
for all t > 0:

R(t, h) =

∫ t

0
Uh(τ)∗ Opw

h (b(τ, h))Uh(τ) dτ (4.2)

Remark 4.4. If we replace one of the Uh(t) by Uh
1 (t) = e−

it
h

Hh
1 in the left-hand side of

(4.1) then we have to replace q by

q1 : (x, ξ) 7→ exp

(

−
∫ t

0
V2(φ

s(w)) ds

)

(4.3)

in the right-hand side (with the two occurences of Uh(t) replaced by Uh
1 (t) and q replaced

by 1, theorem 4.2 is just the usual Egorov theorem).

Proof. We follow the proof of the usual Egorov theorem (see for instance [Rob87, § IV.4]).
Let t > 0. For τ ∈ [0, t] and w ∈ R

2n write:

ã(τ, w) = a(φt−τ (w)) exp(S(τ, w)) where S(τ, w) = −2

∫ t

τ

V2(φ
s−τ (w)) ds

and:

Bh(τ) = Uh(τ)∗ Opw
h (ã(τ))Uh(τ)

so that the estimate we have to prove is: Bh(t)−Bh(0) = O(h) in L(L2(Rn)). We have:

∂τ ã(τ) = −{p, a ◦ φt−τ} exp(S(τ)) + 2

(

V2 +

∫ t

τ

{p, V2 ◦ φs−τ} ds
)

ã(τ)

= −{p, a ◦ φt−τ} exp(S(τ)) + 2V2ã(τ) − {p, S(τ)} ã(τ)
= 2V2ã(τ) − {p, ã(τ)}

The function τ 7→ Bh(τ) is of class C1 in the weak sense and:

B′
h(τ) = Uh(τ)∗B̃h(τ)Uh(τ)

with:

B̃h(τ) =
i

h
[Hh

1 ,Opw
h (ã(τ))] − V2 Opw

h (ã(τ)) − Opw
h (ã(τ))V2 + Opw

h (∂τ ã(τ))

= Opw
h (c(τ, h))

for some classical symbol c(τ, h) =
∑

j∈N
hjcj(τ), and in particular:

c0(τ) = {p, ã(τ)} − V2ã(τ) − ã(τ)V2 + ∂τ ã(τ) = 0

Setting b = h−1c we get (4.1)-(4.2), in the weak sense and hence in L(L2(Rn)). �

Proposition 4.5. Assume that the assumptions of theorem 4.1 are satisfied. Then for
any χ ∈ C∞

0 (R) supported in J there exists c > 0 such that for all h ∈]0, h0] and z ∈ C+

we have:
∥

∥

∥〈x〉−s χ(Hh
1 )(Hh − z)−1χ(Hh

1 ) 〈x〉−s
∥

∥

∥ 6
c

h
(4.4)

Remark 4.6. We have similar estimates for (H∗
h − z)−1.



LIMITING ABSORPTION PRINCIPLE FOR THE DISSIPATIVE HELMHOLTZ EQUATION 13

Proof. First, we can find c > 0 such that estimate (4.4) holds for z ∈ CJ,+ by assumption

and uniform boundedness of 〈x〉∓s χ(Hh
1 ) 〈x〉±s with report to h (note that this last

statement holds for s = 0 by functional calculus and for s = 1, we use the fact that χ(Hh
1 )

is a pseudo-differential operator whose symbol has bounded derivatives and [x,Opw
h (b)] =

−ihOpw
h (∂ξb); then the claim follows for any s ∈ [0, 1] by complex interpolation).

Then, there exists δ > 0 such that for all z ∈ CR\J,+ we have d(z, suppχ) > δ. As

a consequence, the operator χ(Hh
1 )(Hh

1 − z)−1 is bounded uniformly in z ∈ CR\J,+ and
h ∈]0, h0]. Hence, using twice the resolvent equation, we can write:

∥

∥

∥χ(Hh
1 )(Hh − z)−1χ(Hh

1 )
∥

∥

∥

6 c+ h2
∥

∥

∥χ(Hh
1 )(Hh

1 − z)−1V2(Hh − z)−1V2(H
h
1 − z)−1χ(Hh

1 )
∥

∥

∥

6 c
(

1 + h
∥

∥

∥

√

hV2(Hh − z)−1
√

hV2

∥

∥

∥

)

6 c

where the last step is given by proposition 2.2 applied with T = Hh = Hh
1 − ihV2 and

B = Q =
√
hV2. �

Proposition 4.7. Assume that the assumptions of theoreme 4.1 are satisfied. Then for
any χ ∈ C∞

0 (R) supported in J there exists Cχ > 0 such that for all ψ ∈ L2(Rn) and
h ∈]0, h0] we have:

∫ +∞

0

∥

∥

∥
〈x〉−s χ(Hh

1 )Uh(t)ψ
∥

∥

∥

2
dt 6 Cχ ‖ψ‖2 (4.5)

Proof. Let Kh be the selfadjoint dilation of Hh on the Hilbert space K ⊃ L2(Rn)
given in appendix A. Let P be the orthogonal projection of K on L2(Rn) and Ah =
〈x〉−s χ(Hh

1 ) ∈ L(K), where operators on L2(Rn) are extended by 0 on L2(Rn)⊥ ⊂ K.
Let ϕ = (ϕ0, ϕ⊥) ∈ K = L2(Rn) ⊕ L2(Rn)⊥. For z ∈ C+ we have:

∣

∣

〈

A∗
hϕ,

(

(Kh − z)−1 − (Kh − z)−1
)

A∗
hϕ
〉

K
∣

∣

=

∣

∣

∣

∣

〈

ϕ0, 〈x〉−s χ(Hh
1 )
(

(Hh − z)−1 − (H∗
h − z)−1

)

χ(Hh
1 ) 〈x〉−s ϕ0

〉

L2(Rn)

∣

∣

∣

∣

6
2c

h
‖ϕ0‖2

L2(Rn) 6
2c

h
‖ϕ‖2

K

where c is given by proposition 4.5. The same applies if Im z < 0, so by theorem XIII.25
in [RS79], where h-dependance has to be checked for our semiclassical setting, this proves
that Ah is Kh-smooth and:

sup
h∈]0,h0]

sup
‖ϕ‖=1

∫

R

∥

∥

∥
Ahe

− it
h

Khϕ
∥

∥

∥

2

L(K)
dt <∞ (4.6)

But for ψ ∈ L2(Rn) (which we identify with (ψ, 0) ∈ K), h ∈]0, h0] and t > 0 we have:
∥

∥

∥〈x〉−s χ(Hh
1 )Uh(t)ψ

∥

∥

∥

L(L2(Rn))
=
∥

∥

∥〈x〉−s χ(Hh
1 )Pe−

it
h

KhPψ
∥

∥

∥

L(K)
=
∥

∥

∥Ahe
− it

h
Khψ

∥

∥

∥

L(K)

so (4.6) gives (4.5). �

Proposition 4.8. Let T > 0 and χ ∈ C∞
0 as in proposition 4.5. There exists hT > 0

and C ′
χ > 0 such that for any ψ ∈ L2(Rn) and h ∈]0, hT ] we have:

∫ T

0

∥

∥

∥〈x〉−s χ(Hh
1 )Uh

1 (t)Qh(T )ψ
∥

∥

∥

2
dt 6 C ′

χ ‖ψ‖2 (4.7)

where Qh(T ) = Opw
h (q1(T )), q1 being defined in (4.3).
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Proof. According to Egorov theorem applied with the symbol a(x, ξ) = 1 we have:

Uh
1 (−t)Uh(t) = Qh(t) + hR(t, h)

where R is bounded in L(L2(Rn)) uniformly for h ∈]0, 1] and t ∈ [0, T ]. On the other

hand, writing Qh(t, T ) = Opw
h (q1(t, T )) with q1(t, T ) =

(

e−
R T

t
V2◦φτ dτ

)

for t ∈ [0, T ] we

have by theorem 5.1 in [EZ]:

‖Qh(t, T )‖ 6 C + O
h→0

(
√
h) and Qh(T ) = Qh(t, T )Qh(t) + O

h→0
(h)

where C does not depend on t, T and h, and the sizes of the remainders in L(L2(Rn))
depend on T but can be estimated uniformly on t ∈ [0, T ]. Then if ‖ψ‖ = 1 we have:

∫ T

0

∥

∥

∥
〈x〉−s χ(Hh

1 )Uh
1 (t)Qh(T )ψ

∥

∥

∥

2
dt

6

∫ T

0

∥

∥

∥〈x〉−s χ(Hh
1 )Uh

1 (t)Qh(t, T )Qh(t)ψ
∥

∥

∥

2
dt+ O

h→0
(h)

6

∫ T

0

∥

∥

∥
〈x〉−s χ(Hh

1 )Q(2t, T + t)Uh
1 (t)Qh(t)ψ

∥

∥

∥

2
dt + O

h→0
(h)

6

∫ T

0

∥

∥

∥Q(2t, T + t) 〈x〉−s χ(Hh
1 )Uh(t)ψ

∥

∥

∥

2
dt + O

h→0
(h)

6

(

C + O
h→0

(
√
h)

)∫ T

0

∥

∥

∥
〈x〉−s χ(Hh

1 )Uh(t)ψ
∥

∥

∥

2
dt+ O

h→0
(h)

6 CCχ + O
h→0

(
√
h)

where Cχ is given by proposition 4.7. The remainder is uniformly bounded in ψ so
we can chose hT > 0 small enough to make it less than 1 and the result follows with
C ′

χ = CCχ + 1. �

We can now prove theorem 4.1 as in [Wan87]:

Proof of theorem 4.1. Let Ah be the generator of dilations defined in (3.6) and χ,ϕ, ψ ∈
C∞

0 (R) supported in J such that χ(E) = 1 and χ(λ) = λϕ(λ)ψ(λ) for all λ ∈ R. We
have:

Hh
1U

h
1 (T ) =

1

2T

(

[Ah, U
h
1 (T )] +

∫ T

0
Uh

1 (T − t)W (x)Uh
1 (t) dt

)

where W (x) = −2V1(x)−x.∇V1(x) and hence there exists c > 0 such that for all T > 0
and h ∈]0, hT ] (hT > 0 depends on T ):

∥

∥

∥〈x〉−sQh(T )χ(Hh
1 )Uh

1 (T )Qh(T ) 〈x〉−s
∥

∥

∥ (4.8)

=
∥

∥

∥〈x〉−sQh(T )ϕ(Hh
1 )Hh

1U
h
1 (T )ψ(Hh

1 )Qh(T ) 〈x〉−s
∥

∥

∥

6
c

T
(1 + ‖Fh(T )‖)

where:

Fh(T ) =

∫ T

0
〈x〉−sQh(T )ϕ(Hh

1 )Uh
1 (T − t)W (x)Uh

1 (t)ψ(Hh
1 )Qh(T ) 〈x〉−s dt

Indeed, we have ‖Qh(T )‖ 6 C +O(
√
h), hence for h ∈]0, hT ] with hT > 0 small enough

we have ‖Qh(T )‖ 6 2C. Furthermore Ah is uniformly Hh
1 -bounded, so we have:

∥

∥

∥
〈x〉−sQh(T )ϕ(Hh

1 )[Ah, U
h
1 (T )]ψ(Hh

1 )Qh(T ) 〈x〉−s
∥

∥

∥
6 c

uniformly in T > 0 and h ∈]0, hT ].
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Let us now chose θ ∈ C∞
0 (Rn) with support in B(0, 2) and equal to 1 on B(0, 1), and

define W1(T, x) = W (x)θ(x/T ), W2(T, x) = W (x)−W1(T, x) and F h
j (T ) with the same

expression as Fh(T ) with W replaced by Wj (j = 1, 2). As W decays like V1 (see (3.1)),

there exists c > 0 such that for all T > 0 and h ∈]0, hT ] we have
∥

∥F h
2 (T )

∥

∥ 6 cT 1−ρ. To

estimate F h
1 we compute, for ‖f‖L2(Rn) = ‖g‖L2(Rn) = 1:

∣

∣

∣

〈

F h
1 (T )f, g

〉∣

∣

∣
6

∫ T

0

∥

∥

∥
〈x〉−s Uh

1 (t)ψ(Hh
1 )Qh(T ) 〈x〉−s f

∥

∥

∥

∥

∥

∥
〈x〉2sW1(t, x)

∥

∥

∥

×
∥

∥

∥
〈x〉−s Uh

1 (T − t)ϕ(Hh
1 )Qh(T ) 〈x〉−s g

∥

∥

∥
dt

6 cT 2s−ρ

∫ T

0

∥

∥

∥
〈x〉−s ψ(Hh

1 )Uh
1 (t)Qh(T ) 〈x〉−s f

∥

∥

∥

2
dt

×
∫ T

0

∥

∥

∥
〈x〉−s ϕ(Hh

1 )Uh
1 (T − t)Qh(T ) 〈x〉−s g

∥

∥

∥

2
dt

6 c T 2s−ρ

where c is independant of T > 0 and h ∈]0, hT ]. Finally we have:

‖Fh(T )‖ 6 cT 1−δ (4.9)

with δ = min(1 + ρ− 2s, ρ) > 0 and c > 0 independant of T > 0 and h ∈]0, hT ].
Let (z, ζ) ∈ Ωb(E) (if Ωb(E) is empty then there is nothing to prove) and T > 0. Let

Wh(z, ζ) = exp
(

ih−
1

2 (ζ.x− z.D)
)

(see [Wan85, § 3.1]) and:

Gh(T ) = Wh(z, ζ)∗
〈

h
1

2x
〉−s

Rh(T )χ(P h
1 )Vh(T )Rh(T )

〈

h
1

2x
〉−s

Vh(−T )Wh(z, ζ)

where P h
1 = −h∆ + V1(h

1

2x), Vh(T ) = exp
(

− iT
h
P h

1

)

and Rh(T ) = q1(T )w(h
1

2x, h
1

2 ξ).

These three operators are conjugate to Hh
1 , Uh(T ) and Qh(T ) by the unitary trans-

formation f 7→
(

x 7→ h
n
4 f(h

1

2x)
)

, so for T > 0 and h ∈]0, hT ] we have by (4.8) and

(4.9):

‖Gh(T )‖ =
∥

∥

∥

〈

h
1

2x
〉−s

Rh(T )χ(P h
1 )Vh(T )Rh(T )

〈

h
1

2x
〉−s
∥

∥

∥

=
∥

∥

∥〈x〉−sQh(T )χ(Hh
1 )Uh

1 (T )Qh(T ) 〈x〉−s
∥

∥

∥

6 cT−δ

where c does not depend on T and h ∈]0, hT ]. On the other hand, using [Wan85, lemma
3.1] and [Wan86, theorem 4.2] we have:

G(T ) =
〈

h
1

2x+ z
〉−s

q1(T )w(h
1

2x+ z, h
1

2D + ζ) (χ ◦ p)w(h
1

2x+ z, h
1

2D + ζ)

×Wh(z, ζ)∗Vh(T )q1(T )w(h
1

2x, h
1

2D)
〈

h
1

2x
〉−s

Vh(−T )Wh(z, ζ) + O
h→0

(h)

−−−→
h→0

〈z〉−s q1(T, z, ζ)χ(p(z, ζ))q1(T, φ
T (z, ζ)) 〈x(T, z, ζ)〉−s

This proves:

〈z〉−s q1(T, z, ζ)q1(T, φ
T (z, ζ)) 〈x(T, z, ζ)〉−s

6 cT−δ

where c does not depend on T , but x(T, z, ζ) stays in a bounded subset of R
n, so we

must have:

q1(T, z, ζ)q1(T, φ
T (z, ζ)) −−−−−→

T→+∞
0

which, by definition of q1, cannot be true unless the classical trajectory starting from
(z, ζ) goes through O (see (4.3)). �
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5. Uniform resolvent estimates in Besov spaces

In order to obtain in Besov spaces the resolvent estimates we proved in weighted
spaces, we need another resolvent estimate (see proposition 5.2). We begin with a
lemma which turns properties on Gz,h(ε) = (Hh − iεPhΘV

h Ph − z)−1 (see section 2) into

properties on (Hh − iεΘV
h − z)−1:

Lemma 5.1. With assumptions and notations of theorem 2.3, for all h, ε ∈]0, 1] and
z ∈ CJ,+ the operator (Hh− iεΘV

h −z) has a bounded inverse (denoted by G1
z,h(ε)) which

satisfies the following estimates:
∥

∥G1
z,h(ε)

∥

∥+
∥

∥

∥
Hh

0G
1
z,h(ε)

∥

∥

∥
6

c

αhε
(5.1)

∥

∥

∥
G1

z,h(ε) 〈Ah〉−1
∥

∥

∥
+
∥

∥

∥
Hh

0G
1
z,h(ε) 〈Ah〉−1

∥

∥

∥
6

c

αh

√
ε

(5.2)

∥

∥

∥

√

VhG
1
z,h(ε)

∥

∥

∥ 6
c√
αh

√
ε

(5.3)

∥

∥

∥

√

VhG
1
z,h(ε) 〈Ah〉−1

∥

∥

∥
6 c (5.4)

where c is independant of ε, h ∈]0, 1] and z ∈ CI,+ for some closed subinterval I of J .

Proof. We keep all the notations of the proof of theorem 2.3, in particular Ph = φ(Hh
0 ),

P ′
h = 1 − Ph, Gz,h(ε) = (Hh − iεPhΘV

h Ph)−1,. . . Applying proposition 2.2 with B =√
αh

√
εPh and Q = Ph gives:

‖PhGz,h(ε)Ph‖ 6
1

αhε

Calculations (2.15)-(2.16) with Qh(ε) replaced by Ph and P ′
h show:

∥

∥P ′
hGz,h(ε)Ph

∥

∥ 6
c√
αh

√
ε
,
∥

∥P ′
hGz,h(ε)P ′

h

∥

∥ 6 c (5.5)

We also have ‖PhGz,h(ε)P ′
h‖ 6 c√

αh

√
ε

and hence:

‖Gz,h(ε)‖ +
∥

∥

∥Hh
0Gz,h(ε)

∥

∥

∥ 6
c

αhε
(5.6)

Now three applications of proposition 2.2 with B =
√
Vh give:

∥

∥

∥

√

VhGz,h(ε) 〈Ah〉−1
∥

∥

∥+
∥

∥

∥

√

VhGz,h(ε)P ′
h

∥

∥

∥ 6 c,
∥

∥

∥

√

VhGz,h(ε)
∥

∥

∥ 6
c√
αh

√
ε

(5.7)

Then, as in [JMP84], we prove that:

G′
z,h(ε) = Gz,h(ε) + iεGz,h(ε)P ′

h(1 − iεΘV
h PhGz,h(ε)P ′

h)−1ΘV
h PhGz,h(ε)

is well-defined for ε small enough and is a bounded inverse of (Hh − iεΘV
h Ph) which

satisfies estimates (5.5)-(5.7) as Gz,h(ε). Then it remains to define:

G1
z,h(ε) = G′

z,h(ε) + iεG′
z,h(ε)ΘV

h (1 − iεP ′
hG

′
z,h(ε)ΘV

h )−1P ′
hG

′
z,h(ε)

for ε small enough and check the conclusions of the lemma. �

Proposition 5.2. Let s > 1 and I a closed subinterval of J . Then there exists c > 0
such that for all z ∈ CI,+ and h ∈]0, 1]:

∥

∥1R−
(Ah)(Hh − z)−1 〈Ah〉−s

∥

∥ 6
c

αh

(5.8)

Proof. We follow the proof of theorem 2.3 in [JMP84]. Let

F̃z,h(ε) = 1R−
(Ah) exp(εAh)G1

z,h(ε) 〈Ah〉−s
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By (5.2) we already know that:
∥

∥

∥
F̃z,h(ε)

∥

∥

∥
6

c

αh

√
ε

(5.9)

Then we compute in the sense of quadratic forms on DH ∩ DA:

d

dε
F̃z,h(ε) = 1R−

(Ah)eεAhAhG
1
z,h(ε) 〈Ah〉−s

+ i1R−
(Ah)eεAhG1

z,h(ε)(CV Vh + i[Hh, Ah])G1
z,h(ε) 〈Ah〉−s

= 1R−
(Ah)eεAhG1

z,h(ε)Ah 〈Ah〉−s

+ iCV 1R−
(Ah)eεAhG1

z,h(ε)VhG
1
z,h(ε) 〈Ah〉−s

− iε1R−
(Ah)eεAhG1

z,h(ε)[ΘV
h , A]G1

z,h(ε) 〈Ah〉−s

We use complex interpolation to estimate the first term:
∥

∥

∥1R−
(Ah)eεAhG1

z,h(ε) 〈Ah〉1−s
∥

∥

∥

6
∥

∥1R−
(Ah)eεAhG1

z,h(ε) 〈Ah〉−s
∥

∥

1− 1

s
∥

∥1R−
(Ah)eεAhG1

z,h(ε)
∥

∥

1

s

6 c α
− 1

s

h ε−
1

s

∥

∥

∥F̃z,h(ε)
∥

∥

∥

1− 1

s

For the second term we write:
∥

∥χ−(Ah)eεAhG1
z,h(ε)VhG

1
z,h(ε) 〈Ah〉−s

∥

∥ 6

∥

∥

∥G1
z,h(ε)

√

Vh

∥

∥

∥

∥

∥

∥

√

VhG
1
z,h(ε) 〈Ah〉−s

∥

∥

∥

6
c

αh

√
ε

and finally, by assumption (d) and (5.1)-(5.2):

ε
∥

∥G1
z,h(ε)[ΘV

h , A]G1
z,h(ε) 〈Ah〉−s

∥

∥ 6 c εαh

∥

∥G1
z,h(ε)

∥

∥

Γh

∥

∥G1
z,h(ε) 〈Ah〉−s

∥

∥

Γh

6
c

αh

√
ε

This gives:
∥

∥

∥

∥

d

dε
αhF̃z,h(ε)

∥

∥

∥

∥

6 c

(

ε−
1

s

∥

∥

∥αhF̃z,h(ε)
∥

∥

∥

1− 1

s
+ ε−

1

2

)

which, together with (5.9), gives the result. �

Let Ω0 =] − 1, 1[ and Ωj =
{

λ ∈ R : 2j−1 6 |λ| < 2j
}

for j ∈ N
∗. For a selfadjoint

operator F on H and s > 0, the abstract Besov space Bs(F ) is defined by:

Bs(F ) =
{

u ∈ H : ‖u‖Bs(F ) <∞
}

where:

‖u‖Bs(F ) =
∑

j∈N

2js
∥

∥1Ωj
(F )u

∥

∥

H

The norm of its dual space B∗
s (F ) with respect to the scalar product on H is:

‖v‖B∗
s

= sup
j∈N

2−js
∥

∥1Ωj
(F )v

∥

∥

H

When F is the multiplication by x on L2(Rn) we recover the usual Besov spaces Bs and
B∗

s and the norm we have just defined for B∗
s is equivalent to the usual one:

sup
R>1

R−s

(

∫

|x|<R

|v(x)|2 dx
)

1

2
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Theorem 5.3. Let (Hh) be an abstract family of dissipative operators as in section 2,
(Ah) a conjugate family for (Hh) on J with bounds (αh) as in definition 2.1 and s > 1

2 .
Then for all closed subinterval I of J there exists c > 0 such that for any z ∈ CI,h and
h ∈]0, 1] we have:

∥

∥(Hh − z)−1
∥

∥

Bs(Ah)→B∗
s (Ah)

6
c

αh

Now that we have theorem 2.3 and proposition 5.2, we can follow word by word
the proof of the analog theorem for selfadjoint operators (see theorem 2.2 in [Wan07]).
Applied to our dissipative Schrödinger Hh = −h2∆ + V1(x) − iν(h)V2(x), this gives:

Theorem 5.4. Let E > 0 and s > 1
2 . If all bounded trajectories of energy E meet O,

then there exists ε, h0 > 0 and c > 0 such that with J = [E − ε,E + ε] we have for all
z ∈ CJ,+ and h ∈]0, h0]:

∥

∥(Hh − z)−1
∥

∥

Bs→B∗
s

6
c

hν̃(h)

(we recall that ν̃(h) = min(1, ν(h)/h)).

Proof. We already have a conjugate family (ν̃(h)Fh) for (Hh). So we only have to apply
the abstract theorem 5.3, (3.10), and the estimate:

∥

∥(Hh − i)−1
∥

∥

Bs→Bs(Fh)
6 c (5.10)

with a similar estimate for dual spaces. To prove (5.10), we use the idea given in [Hör84,
14.1]. For any u ∈ Bs(F ) and k ∈ N, since the 1Ωj

(F )u for j ∈ N are pairwise orthogonal
we have:

‖u‖Bs(Fh)

=
∑

06j6k

2js
∥

∥1Ωj
(Fh)u

∥

∥+
∑

j>k

2−js
∥

∥22js1Ωj
(Fh)u

∥

∥

6





∑

j6k

22js





1

2




∑

j6k

∥

∥1Ωj
(Fh)u

∥

∥

2





1

2

+





∑

j>k

2−2js





1

2




∑

j>k

∥

∥22js1Ωj
(Fh)u

∥

∥

2





1

2

6 cs2
ks ‖u‖ + cs2

−ks
∥

∥

∥
〈Fh〉2s u

∥

∥

∥

and hence, for ϕ ∈ Bs, using the fact that the operator 〈Fh〉2s (Hh − i)−1 〈x〉−2s is
bounded in L(L2(Rn)) uniformly in h we have:
∥

∥(Hh − i)−1ϕ
∥

∥

Bs(Fh)
6
∑

k∈N

∥

∥(Hh − i)−11Ωk
(x)ϕ

∥

∥

Bs(Fh)

6 cs
∑

k∈N

2ks
∥

∥(Hh − i)−11Ωk
(x)ϕ

∥

∥ + cs
∑

k∈N

2−ks
∥

∥

∥
〈X〉2s 1Ωk

(x)ϕ
∥

∥

∥

6 cs
∑

k∈N

2ks ‖1Ωk
(x)ϕ‖ + cs

∑

k∈N

2−ks
∥

∥

∥
〈X〉2s 1Ωk

(x)ϕ
∥

∥

∥

6 cs ‖ϕ‖Bs
+ cs

∑

k∈N

2ks ‖1Ωk
(x)ϕ‖

6 cs ‖ϕ‖Bs

�

Appendix A. Unitary dilations and dissipative Schrödinger operators

In order to use the selfadjoint theory to study dissipative operators, we have mostly
used the assumption that H is a perturbation of its selfadjoint part H1. However, by
the theory of unitary dilations, there are other selfadjoint operators we can use:
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Definition A.1. Let T be a bounded operator of the Hilbert space H. A bounded
operator U on a Hilbert space K is said to be a dilation of T if H ⊂ K and for all
ϕ,ψ ∈ H and n ∈ N we have:

〈Unϕ,ψ〉K = 〈T nϕ,ψ〉H
The theory of unitary dilations for a contraction is developped in the book of B.S.-

Nagy and C. Foias ([NF67]). In particular, we know that every contraction has a unitary
dilation. This also holds for semigroups of contractions: if (T (t))t>0 is a semigroup of
contractions on H, there exists a unitary group (U(t))t∈R on K ⊃ H such that U(t) is
a dilation of T (t) for all t > 0. Then, if H is a dissipative operator on H, there is a
unitary group of dilations (U(t)) on K ⊃ H for the semigroup (e−itH) generated by H.
The unitary group (U(t)) is generated by a selfadjoint operator K on K, the properties
of which we can use to study the dissipative operator H. Note that K is usually said to
be a selfadjoint dilation of H but is not a dilation of H in the sense of definition A.1.

Much is said on the abstract theory in [NF67], but there is an explicit study of the
dissipative Schrödinger operator case in [Pav77]. In particular an exemple of dilation is
given. Here we recall this example in the semiclassical setting:

Proposition A.2. Let −h2∆ + V1 − ihV2 be a dissipative Schrödinger operator on
L2(Rn) as in section 3, Wh =

√
2hV2, Ω = suppV2, K = L2(R−, L2(Ω)) ⊕ L2(Rn) ⊕

L2(R+, L
2(Ω)) and P the orthogonal projection of K on L2(Rn). Then the operator:

Kh : ϕ = (ϕ−, ϕ0, ϕ+) 7→
(

−iϕ′
−,H

h
1ϕ0 −

Wh

2
(ϕ−(0) + ϕ+(0)),−iϕ′

+

)

with domain:

D(Kh) =
{

(ϕ−, ϕ0, ϕ+) : ϕ± ∈ H1(R±, L
2(Ω)) and ϕ+(0) − ϕ−(0) = iWhϕ0

}

⊂ K
(where H1 is the Sobolev space of L2-functions with first derivative in L2) is a selfadjoint
operator which satisfies:

∀z ∈ C+, P (Kh − z)−1
∣

∣

L2(Rn)
= (Hh − z)−1

∀z ∈ C+, P (Kh − z)−1
∣

∣

L2(Rn)
= (H∗

h − z)−1

∀t > 0, P e−
it
h

Kh

∣

∣

∣

L2(Rn)
= e−

it
h

Hh

∀t 6 0, P e−
it
h

Kh

∣

∣

∣

L2(Rn)
= e−

it
h

H∗
h

Proof. The proof of the proposition is straightforward calculations. We first have to
check that K is symmetric, that D(K∗) ⊂ D(K) and then that for z ∈ C+ we have
(ψ−, ψ0, ψ+) = (K − z)−1(ϕ−, ϕ0, ϕ+) where:

ψ−(r) = i

∫ r

−∞
eiz(r−s)ϕ−(s) ds

ψ0 = (Hh − z)−1(ϕ0 +Whψ−(0))

ψ+(r) = (ψ−(0) + iWhψ0)e
izr + i

∫ r

0
eiz(r−s)ϕ+(s) ds

and an analog for (K−z)−1. To prove the last statement, we show that the generator of

the semigroup t 7→ Pe−
it
h

Kh

∣

∣

∣

L2(Rn)
must be H using the result on the resolvent. Details

are given in [Pav77]. �
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