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ABSTRACT

The extension of lattice based operators to multivariate im-
ages is still a challenging theme in mathematical morphol-
ogy. In this paper, we propose to explicitly construct com-
plete lattices and replace each element of a multivariate im-
age by its rank, creating a rank image suitable for classical
morphological processing. Manifold learning is considered
as the basis for the construction of a complete lattice after re-
ducing a multivariate image to its main data by Vector Quan-
tization. A quantitative comparison between usual ordering
criteria is performed and experimental results illustrate the
abilities of our proposal.

1. INTRODUCTION

Mathematical Morphology (MM) is a nonlinear approach
to image processing which relies on a fundamental struc-
ture, the complete lattice .2 [1]. A complete lattice .Z is
a nonempty set equipped with an ordering relation, such that
every non-empty subset % of . has a lower bound A% and
an upper bound V.%". In this context, images are modeled by
functions mapping their domain space €, into a complete lat-
tice .. With the acceptance of complete lattice theory, it is
possible to define morphological operators for any type of
image data once a proper ordering is established [2]. Within
this model, morphological operators are represented as map-
pings between complete lattices in combination with match-
ing patterns called structuring elements that are subsets of Q.
In particular, the two fundamental operators in Mathematical
Morphology, dilation and erosion, form the basis of many
other morphological processes [3] such as opening (Y = 0€),
closing (¢ = €0), etc. Erosion € and dilation 8 of a function
f € & for an element x € Q are defined by

e(f,xIB) ={f(y): f() =Af(2),z€Bx)} (1)
O(f,xIB) ={f(»): f(y) =Vf(z),z€B(x)} (2

where B denotes a structuring element that contains x and its
neighbours in Q. If Mathematical Morphology is well de-
fined for binary and gray scale images, there exist no general
extension which permits to perform basic operations on mul-
tivariate data since there is no natural ordering on vectors.
Several ordering have been reported in literature to consider
that problem but they are reduced to considering one specific
type of images (e.g. color images [4]). In this paper, we
propose to use a rank transformation with Manifold Learn-
ing for complete lattice creation. Our approach is mainly
illustrated on color images but the principle holds for any ar-
bitrary higher dimensions.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the concept of rank transformation for com-
plete lattice construction. Section 3 recalls Vector Quanti-
zation basics and explains how it can be used to construct a
rank transformation. Section 4 presents two Manifold Learn-
ing methods for codebook re-ordering. Section 5 presents
experimental results. Last Section concludes.

2. RANK TRANSFORMATION

In the sequel, we consider the general case of multivariate
images. A multivariate image can be represented by the map-
ping f: Q C Z! — R where [ is the image dimension and
p the number of channels. One way to define an ordering
relation between vectors is to use a transform [5] & from R”
to R? followed by the natural ordering on each dimension of
RY:

With i : R? — RY, and x — h(x) then 3

V(Xi,Xj)ERPXRF,X,'SX]'@}Z(X,')Sh(Xj) 3)
When £ is bijective, this corresponds to define a space fill-
ing curve that goes through each point of the R? space just
once and thus induces a total ordering. Therefore, there is
an equivalence: (total ordering on R”)<>(bijective applica-
tion & : R? — R)<(space filling curve in R”) [6]. Moreover,
another equivalence can be considered: (total ordering on
RP)<(rank transformation on R”) that means that the trans-
formation & can be seen as a rank tranformation. Indeed, to
create a total order for building the complete lattice structure
for MM operators, the images’ values are in fact not impor-
tant, only the rank position on the lattice structure is rele-
vant [7, 8, 9]. When the complete lattice is created, the MM
operators only need to perform comparisons between ranks.
Therefore, we can replace each element of a multivariate im-
age by its rank, creating a rank image. This rank image is the
lattice representation of the multivalued image according to
the ordering strategy and corresponds to a transformation £
from R? to N.

Definition 1. A rank transformation r : RP — N is a function
that associates to a vector x € RP the value r(x) € N where
r(x) is the rank position of x on a lattice L.

£ is the lattice associated to the rank transformation r
that creates a given total ordering. The lattice corresponds to
an ordered set of multivariate vectors. From this rank trans-
formation, a rank image can be created by associating its rank
to each pixel x € Q. The advantage is that this rank image



can then be used for classical MM processing (it is a scalar
image).

This formulation is general enough to represent all the
classical approaches for building a complete lattice [2]. In-
deed, with classical approaches, an ordering criterion is pro-
posed to induce the complete lattice. Once such an ordering
criterion is available, it is easy to sort all the multivariate
values of the image to define the rank transform that corre-
sponds to the complete lattice creation. Moreover, as it will
be discussed in Section 5, the rank transformation enables to
easily compare different multivariate data ordering criteria.

3. VECTOR QUANTIZATION

Usual approach to mathematical morphology do not explic-
itly construct the complete lattice: they first define a total or-
dering relation that induces a complete lattice. In this paper,
we take an opposite approach and we first build the complete
lattice from a multivariate image. Given the space where
multivariate data live, R”, the complete lattice is in fact a
manifold view of this space. Obviously, creating the lattice
directly from a multivariate image is computationally unfea-
sible. To alleviate this problem, we reduce the amount of
data of a multivariate image by Vector Quantization. Vector
Quantization (VQ) is a technique used for data compression.
VQ maps a vector x to another vector X’ that belongs to m’
prototype vectors the set of which is named a codebook. A
codebook D is built from a training set S of size m (m > m’).
A VQ algorithm has to produce a set D of prototypes X that
minimizes the distortion defined by

1 m
—Y min |x;—x]] 4)

mi= 1<j<m’

LBG [10] is one algorithm that can build such a codebook.
It is an iterative algorithm that produces 2% prototypes after
k iterates. Given a color image f, VQ: R? — R? is applied
to construct a color codebook D : N — R” and an encoder
E :R” —N. Anindex image g : Z! — N can be deduced from
D and E by applying g(x) = E(f(x)) to each vector f(x) =x
of the original color image f. The color image can be recon-
structed with loss from the index image and the color code-
book by D(g(x)). The latter color image is an approximation
of the initial color image with only 2¥ colors. Given this rep-
resentation, the color codebook corresponds to the complete
lattice since all the colors are ordered, and the index image
is the result of a rank transformation applied to the original
color image. The color codebook is only an approximation
of the whole complete lattice living on R? and therefore cor-
responds to a sub-manifold of the complete lattice. How-
ever, this is sufficient to perform mathematical morphology
operations because they are not intented for denoising but
extraction purposes. First row of Figure 1 presents the pro-
cess of VQ on a color image with, from left to right, the ini-
tial image, the quantized reconstructed image with 28 = 256
colors, its associated index image corresponding to the re-
sult of a rank transformation and the color codebook corre-
sponding to the complete lattice. The color codebook is pre-
sented here as a color image but colors are ordered and form
a complete lattice from the top-left to the bottom-right with
a raster scan. As it can be seen on Figure 1, there is no real
visual difference between the original and the quantized im-
age and the latter is sufficient for morphological processing.

Once a rank transformation has been applied to the original
image, the rank image is nothing more than a scalar image.
On this image, the classical scalar ordering holds, and clas-
sical mathematical morphology can be used (e.g. an erosion
€(g(x))). Then, one can reconstruct the corresponding color
image with the use of the color codebook (e.g. D(g(g(x)))).

This strategy enables simple multivariate mathematical
morphology. However, the color codebook obtained by VQ
is not necessarily an accurate total ordering of the colors (it
can be totally arbitrary) and reordering the colors of the code-
book can be interesting to have a more accurate rank image
with respect to the content of the color image. This is known
in literature as palette reordering [11]. Given any ordering
criterion, we can re-order the colors of the color codebook
and modify the rank image according to the re-ordering. For
instance, the classical ordering criteria used in MM can be
used to reorder the color codebook. This will be investi-
gated for comparison purposes between total ordering cri-
teria. Moreover, to enable further accurate morphological
processing, the level lines of the rank image (and therefore
its basic geometry) has to coincide with the level lines of the
vector-valued image level lines [12].

4. CODEBOOK REORDERING BY MANIFOLD
LEARNING

To re-order the codebook, we consider Manifold Learning
techniques [13]. Indeed, the color codebook being a sub-
manifold of the whole complete lattice, Manifold Learning is
a good candidate to perform the codebook re-ordering. In the
last few years, many unsupervised learning algorithms have
been proposed for Manifold Learning which share the use of
an eigen-decomposition for obtaining a lower-dimensional
embedding of the data. In this paper, we focus only on
two Graph-based methods for nonlinear dimensionality re-
duction: Diffusion Maps and Laplacian Eigenmaps. These
Manifold Learning techniques preserve the local proximity
between data points by first constructing a graph represen-
tation for the underlying manifold with vertices and edges.
The vertices represent the data points, and the edges connect-
ing the vertices, represent the similarities between adjacent
nodes. After representing the graph with a matrix, the spec-
tral properties of this matrix are used to embed the data points
into a lower dimensional space, and gain insight into the ge-
ometry of the dataset. Let {x1,x5, -+ ,X;} € R? be [ sample
vectors. Dimensionality reduction consists in searching for
a new representation {y;,y,,---,y;} withy; € R/, Given a
neighborhood graph G associated to these vectors, one con-
siders its adjacency matrix W where weights W;; are given by
2
a Gaussian kernel W;; = K(x;,x;) = e (—@) Let D
denote the diagonal matrix with elements D;; =} iWij and L
denote the un-normalized Laplacian defined by L =D —W.
Finally, let P = WD™! denote the transition matrix. In the
sequel, we consider that the neighbourhood graph is a fully
connected graph. Manifold Learning is achieved by finding
the eigenvectors of matrix L (named Laplacian Eigenmaps
[14]) or matrix P’ (named Diffusion Maps [15]). For Lapla-
cian Eigenmaps, the manifold representation can be found
by solving Ly = ADy. The eigenvectors corresponding to
the smallest nonzero eigenvalues form the manifold repre-
sentation. For Diffusion Maps, one considers P'Y = AY and
because the graph is fully connected, the largest eigenvalue



is trivial (4; = 1), and its eigenvector y; is thus discarded.
The manifold representation Y is given by the next eigenvec-
tors. Given the previous relations, Manifold Learning can be
obtained by considering the highest eigenvector except the
first one for Diffusion Maps or nonzero lowest eigenvectors
for Laplacian Eigenmaps. To perform the color codebook re-
ordering, a vertex is associated to each color and the graph is
fully connected. Then, we consider only the first eigenvector
of the obtained Manifold representation and re-arrange the
colors increasingly according to their value in the first eigen-
vector. To have a parameter free algorithm, o is set to the
maximum distance between the colors of the lattice.

5. RESULTS

Figure 1 presents a visual comparison of the proposed
methodology (vector quantization of a color image followed
by a re-ordering of the color codebook with the associated
modification of the rank image). First line presents a color
image, its 256 colors quantized version and the correspond-
ing rank and lattice. Then, we re-order the codebook with
MM ordering criterion that correspond to total orderings and
enable to obtain complete lattices: lexicographic ordering
[16], lexicographic ordering in the IHSL color space [4],
a-trimmed lexicographic ordering [17], bit-mixing ordering
[6], pairwise ordering [18], majority ordering [8], and fi-
nally two manifold learning orderings, laplacian eigenmaps
[14] and diffusion maps [15]. All these experiments are per-
formed in the RGB color space except for the second used
ordering criterion [4]. The first element to notice is that the
obtained lattices can have large differences from one order-
ing criterion to another. It is difficult to conclude which or-
dering criteria is the best one with a visual analysis of the
obtained rank images. Therefore, to have a real quantita-
tive comparison of the different lattices, we follow the eval-
uation procedure used in palette re-ordering [11]. To com-
pare palete re-ordering methods, the assumption that differ-
ences of neighbouring pixels of rank images should follow
a Laplacian distribution is used. This is in accordance with
the JPEG-LS image coding standard, which also assumes a
Laplacian model for the prediction residuals and, therefore,
the compression ability of the rank image is a measure of
performance for re-ordering schemes. We used this princi-
ple to compare all the above-mentioned reordering criteria.
Three different databases from [11] that contained images
quantized in 256 colors have been used: their color codebook
has been reordered, the associated rank image modified and
compressed with JPEG-LS. Used datasets are composed of
images having different geometries: synthetic set contains 6
computer-generated images, naturall is composed of 92 nat-
ural images, natural2 is composed of 12 popular natural im-
ages [11]. Figure 2 presents JPEG-LS loss-less compression
results in bits per pixel, of the reordered index images (the
size of the corresponding codebooks are included in the pre-
sented values) on the three datasets and the average compres-
sion rate. It is easy to see that the quality of the re-ordering
methods can be roughly classified into four groups by de-
creasing quality: Manifold Leaning [14, 15], Lexicographic
[16, 17, 4], Pairwise [18], Bit-mixing [6], VQ, Majority [8]
and Graph Minimum Spanning Tree [9]. These results are
important because : 1) a quantitative way of comparing lat-
tice construction methods is provided, 2) all the recently pro-
posed ordering criteria do not outperform the classical lex-

icographic ordering for lattice construction, 3) lattice con-
struction by Manifold Learning methods does outperform all
the other methods proving the quality of our proposal. Fi-
nally, Figure 3 presents an example of MM processing with
the proposed strategy. The original color image is quantized
in 512 colors and its color codebook reordered by Diffusion
Maps. Then, MM operations are performed on the rank im-
age and the corresponding color image result is reconstructed
with the color codebook. One can see the quality of obtained
results. To show that our proposal is easily applicable to mul-
tivariate image, Figure 4 presents a sample segmentation re-
sult on a 20-channels multispectral image with a 1024 code-
book. Segmentation is performed by a watershed on a gra-
dient image obtained from an Alternate Sequential Filter on
the rank image.
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Figure 2: Loss-less compression results, in bits per pixel,
applied to the rank images after applying the following
re-ordering methods: Laplacian Eigenmaps (LM), Diffu-
sion Maps (DM), Lexicographic (LX), Lexicographic IHSL
(LXHSL), BitMixing (BM), Pairwise (PW), Graph Min-
imum Spanning Tree (GMST), a-trimmed Lexicographic
(ATLX), Majority (MJ), VQ (Vector Quantization).

ASF (7 iterations
with a square)

MM gradient
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Figure 4: MM Processing example of a 20-channels multi-
spectral barley grain image.
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Figure 1: Illustration of color-codebook reordering for lattice construction with the associated rank images (.Z designs the
obtained lattice, see text for details).
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Figure 3: Processing examples with a rank image obtained from Diffusion Maps with a 512 colors Vector Quantization.

6. CONCLUSION

In this paper, a new way of performing MM processing on
multivariate images has been proposed. Instead of defining a
new ordering criterion that induces a complete lattice with-
out its explicit construction, we construct the complete lattice
by reordering a codebook obtained by vector quantization.
Moreover, we have shown that Manifold Learning is the best
candidate to perform the lattice construction. However, since
the learned lattice is made on a codebook, it is only a sub-
manifold of the original color manifold. Future works will
address that issue.
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