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An example of low Mach (Froude) number effects

for compressible flows with nonconstant density (height) limit

Didier Bresch 1, Marguerite Gisclon 2, Chi-Kun Lin 3

Abstract

The purpose of this work is to study an example of low Mach
(Froude) number limit of compressible flows when the initial density
(height) is almost equal to a function depending on x. This allows
us to connect the viscous shallow water equation and the viscous lake
equations. More precisely, we study this asymptotic with well prepared
data in a periodic domain looking at the influence of the variability of
the depth. The result concerns weak solutions. In a second part, we
discuss the general low Mach number limit for standart compressible
flows given in P.–L. Lions’s book that means with constant viscosity
coefficients.

Keywords: Compressible flows, Navier-Stokes equations, low Mach (Froude)

Number limit shallow-water equations, lake equations, nonconstant density

AMS subject classification: 35Q30.

1 Introduction.

This paper is devoted to the study of the so-called low Mach number limit
of compressible flows where the Mach number is given as the ratio between
the characteristic velocity of the flow and the sound velocity. From a Mathe-
matical point of view, this is the same that to study the low Froude number
limit of geophysical flows: for instance shallow water flows. The Froude
number being the ratio between the characteristic velocity of the flow and
the gravity. In [12], the authors have studied the motion of an incompressible
fluid confined to a shallow basin with a varying bottom topography. They
introduce appropriate scalings into a three dimensional anisotropic eddy vis-
cosity model to derive a two dimensional viscous lake model. Existence of
global weak solutions and existence of global strong solution are proved us-
ing the dissipation property coming from the eddy viscosity. For this, they
assume the bottom topography to be strictly positive. In [3], the motion
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of a viscous shallow water model which is of compressible type is studied.
The special structure of the diffusion is also used to get an existence result
of global weak solutions. The depth is now an unknown which is able to
vanish. They also study the convergence to the quasi-geostrophic equation
when the total depth asymptotically tends to a constant with the Rossby
and the Froude number tending to 0. The Rossby number being given by
Ro = U/ωℓ where U is the characteristic velocity, ℓ is the characteristic
length and ω is the frequency of the rotation of the earth.

Here the Rossby number is fixed and we perform the asymptotic when the
Froude number goes to 0 assuming the total depth converging to a function
depending on x. Using this asymptotic, we obtain the viscous lake equations
from the viscous compressible shallow water. This corresponds to the low
Mach number limit for compressible flows with nonconstant density limit
b(x) but now with a viscosity depending on this limit density b(x). All the
previous works (see [1], [6], [8], [2] and [7] for complete references) concern
the case where the initial density is ρ0 = c+ερ̃0 where ε is the Mach number
and c is a constant. In that way the paper will be divided in two parts. In the
first one, we will justify the asymptotic between the viscous shallow water
equations and the lake equations. This will give an answer of a question given
in [17]. Note that in the shallow water case, the model is degenerate since
the viscosity depends on the height and it may vanish for weak solutions.
Therefore we have to get some informations on the gradient of h. In the
second part, we will explain the low Mach number limit associated to the
standard compressible Navier-Stokes equations namely with a fixed viscosity
coefficient. This will concern strong solutions. The details will be given in
a forthcoming paper.

Shallow water and lake equations. In the first part of the paper, we consider
the flow in a two-dimensional periodic domain Ω = T 2. The viscous lake
model reads

{
∂tu

0 + (u0 · ∇)u0 + ∇π =2νb−1div(bD(u0)) − r0b
−1u0 − r1|u0|u0,

div(bu0) = 0,

(1.1)
supplemented by the initial condition

u0|t=0 = u0
0

where Di j(u) = (∂iuj + ∂jui)/2.
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The viscous shallow water equations read





∂t(hu) + div(hu ⊗ u) +
h∇(h − b)

Fr2

= 2νdiv(hD(u)) − r0u − r1h|u|u,

∂th + div(hu) = 0,

(1.2)

where Fr =
√

Uℓ/g = ε > 0 denotes the Froude number, U being the
characteristic velocity, ℓ the characteristic depth and g the gravity. System
(1.1) is supplemented with initial conditions

h|t=0 = h0, (hu)|t=0 = m0

where h0 is assumed to be positive. This model is formally derived from
the three-dimensional Navier-Stokes equations with free surface, where the
normal stress is determined from the air pressure and no cappillarity effects,
see [10]. The drag terms r0u (r0 > 0) in the laminar case and r1h|u|u
(r1 > 0) in the turbulent regime are obtained from the friction condition on
the bottom, see [18].

In the sequel, we assume f = 0 without loss of generality since all the
analysis can be extended to the case of regular enough f . We will also
consider the gradient operator ∇u0 instead of D(u) since the study is the
same.

2 Existence results.

Before investigating the case of vanishing Froude or Mach number, we recall
the existence results of the systems obtained respectively in [12], [3].
The viscous shallow water equations. The energy inequality associated to
System (1.2) reads as

1

2

∫

Ω
(h|u|2 +

∣∣h − b

Fr

∣∣2) + ν

∫ T

0

∫

Ω
h|D(u)|2 + r0

∫ T

0

∫

Ω
|u|2 + r1

∫ T

0

∫

Ω
h|u|3

≤ 1

2

∫

Ω
(h0|u0|2 +

∣∣h0 − b

Fr

∣∣2).

The initial data are taken in such way that

h0 ∈ L2(Ω),
|m0|2
h0

∈ L1(Ω),
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∇
√

h0 ∈ (L2(Ω))2, −r0 log
−

h0 ∈ L1(Ω) (2.3)

where log
−

g = log min(g, 1). The initial height is assumed to be positive
and the function b(x) such that b(x) ≥ 0.

We say that (h, u) is a weak solution on (0, T ) of shallow-water equations
if the System (1.2) holds in (D′((0, T )×Ω))3 with h ≥ 0 a.e., the initial data
are satisfied in D′(Ω) and the energy inequality is satisfied for a.e. non
negative t. The following regularity properties are satisfied

∇
√

h ∈ L∞(0, T ; (L2(Ω))2),
√

hu ∈ L∞(0, T ; (L2(Ω))2),

√
hD(u) ∈ (L2(0, T ; (L2(Ω)))4, ∇h ∈ (L2(0, T ; (L2(Ω))))2,

√
r0u ∈ (L2(0, T ; (L2(Ω))))4, r

1/3
1 h1/3u ∈ (L3(0, T ; (L3(Ω))))2.

The following existence result has been proved in [3] with b = 0.

Theorem 2.1 Let m0, h0 satisfy (2.3) and assume r0, r1 > 0. Then there
exists a global weak solution of (1.2).

This results remains valid even if b ≥ 0 since the term hε∇b/Fr2 may be seen
as an exterior force and Fr is fixed. The reader interested by the shallow
water equations and its application in geophysics is referred to [18].
The viscous lake equations. The energy inequality associated to System (1.1)
reads as

1

2

∫

Ω
b|u0|2+ν

∫ T

0

∫

Ω
b|D(u0)|2+r0

∫ T

0

∫

Ω
|u0|2+r1

∫ T

0

∫

Ω
b|u0|3 ≤ 1

2

∫

Ω
b|u0

0|2.

The initial data u0
0 are taken in such way that

√
bu0

0 ∈ (L2(Ω))2 (2.4)

where bu0
0 = 0 on b−1({0}).

We say that u0 is a weak solution on (0, T ) of lake equations if the System
(1.1) holds in (D′((0, T )×Ω))3 with b ≥ 0 a.e., the initial data are satisfied
in D′(Ω) and the energy inequality is satisfied for a.e. non negative t. The
following regularity properties are satisfied

√
bu0 ∈ L∞(0, T ; (L2(Ω))2),

√
bD(u0) ∈ (L2(0, T ; (L2(Ω))4),

√
r0u

0 ∈ (L2(0, T ; (L2(Ω)))2, r
1/3
1 b1/3u0 ∈ L3(0, T ; (L3(Ω))2).

The following existence result may be proved completed [12].
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Theorem 2.2 Let u0
0 satisfies (2.4) and assume r0, r1 > 0. Then there

exists a global weak solution u0 of (1.1) that means a solution such that the
regularity previously cited is obtained.

Under the assumption that b is strictly positive, we can prove the fol-
lowing regularity result that will be useful for the weak-strong convergence
result.

Theorem 2.3 Let b be regular enough with b ≥ c > 0. Let u0
0 be such that

u0
0 ∈ (H3(Ω))2. Then there exists a unique weak solution u0 of (1.1) such

that
u0 ∈ L∞(0, T ; (H3(Ω))2) ∩ L2(0, T ; (H4(Ω))2 ∩ V )),

∂tu
0 ∈ L2(0, T ; (H2(Ω))2) ∩ L∞(0, T ;V )

where V is the space of the function v which belong to H1 such that we have
div(bv) = 0.

The reader interested by the inviscid lake equations is referred to [11],
see also [17].

3 Main results.

In this paper, we are interested by the low Mach (Froude) number limit for
compressible Navier-Stokes equations with a nonconstant density limit.

In a first part, we give a physical example where such asymptotic occurs,
mainly the asymptotic between the shallow water equations and the viscous
lake equations.

We will prove the following asymptotic results in the well prepared case
assuming that b ≥ c > 0.

Theorem 3.1 Let us assume that u0
0 ∈ (H3(Ω))2 and

(uε
0, h

ε
0) → (u0

0, 0) in (L2(Ω))3, (hε
0 − b)/ε → 0 in L2(Ω)

as ε goes to 0. Then, denoting by (hε, uε) a global weak solution of (1.2),
then

uε → u0 in L∞(0, T ; (L2(Ω))2),

(hε − b)/ε → 0 in L∞(0, T ;L2(Ω)), ∇(hε/b) → 0 in L2(0, T ; (L2(Ω))2),

when ε → 0, where u0 is the global strong solution of the viscous lake equation
(1.1).

In the second part, we will describe the standard compressible Navier-
Stokes equations and give some comments on the asymptotic that will be
performed in a forthcoming paper.
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4 Formal asymptotic.

Let us denote Fr = ε. We use the following ansatz

uε = u0 + εu1 + ...., hε = h0 + εh1 + .....

Denoting Ψ(t, x) =
h − b(x)

ε
, System (1.2) reads





∂tu + u · ∇u +
∇Ψ

ε

=
2

h
νdiv(hD(u)) − 1

h
r0u − r1|u|u + f,

∂tΨ + div(Ψu) +
1

ε
div(bu) = 0.

(4.5)

Putting this ansatz in the shallow water equation, we get at order 1/ε
on the momentum equation and 1/ε on the height equation

h0 = b(x), div(bu0(t, x)) = 0.

Let us now look at order ε0. We obtain

∂tu
0 + (u0 · ∇)u0 + ∇Ψ1 =

2

b
νdiv(bD(u0)) − 1

h0
r0u

0 − r1|u0|u0.

Thus, we get the viscous lake equations.

5 Proof of the main result.

The convergence for well prepared data is not straightforward even if the
asymptotic is obtained using a standard weak-strong energy estimate since
the asymptotic solution is a little bit more regular than the initial solutions
of the shallow water equations. The height hε may vanish, then we have to
get some information about its gradient in order to be able to conclude.

At the beginning, we proceed, classically, by a weak-strong estimation
procedure. The reader interested by similar study on various systems is
referred for instance to [14], [3] and references cited therein. Using the
energy inequality for weak solution of (1.2), the energy equality for the limit
solution, the momentum equations of weak solutions (1.2) tested against uε,
we get the following estimates

∫

Ω
hε |uε − u0|2

2
+

1

2

∫

Ω

∣∣∣
hε − b

ε

∣∣∣
2
+ ν

∫ t

0

∫

Ω
hε|∇(uε − u0)|2
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+

∫ t

0

∫

Ω
r0|uε − u0|2 +

∫ t

0

∫

Ω
(r1h

ε|uε|uε − r1h
ε|u0|u0)(uε − u0) ≤

4∑

i=1

Ii

where

I1 =

∫

Ω
hε

0

|uε
0 − u0

0|2
2

+
1

2

∫

Ω
(b − hε

0)|u0
0|2 +

1

2

∫

Ω

∣∣∣
hε

0 − b

ε

∣∣∣
2
,

I2 =

∫ t

0

∫

Ω
(b−hε)uε∂tu

0+ν

∫ t

0

∫

Ω
(b−hε)∇u0·∇uε−

∫ t

0

∫

Ω
hεuε·∇u0uε+

∫ t

0

∫

Ω
bu0·∇u0uε,

I3 = − 1

ε2

∫ t

0

∫

Ω
(hε−b)div((hε−b)u0)+

∫ t

0

∫

Ω
(b−hε)r1|u0|u0uε−

∫ t

0

∫

Ω
(divbuε)π

and

I4 =
1

2

∫

Ω
(hε − b)|u0|2 + ν

∫ t

0

∫

Ω
(hε − b)|∇u0|2 +

∫ t

0

∫

Ω
(hε − b)r1|u0|3.

We rewrite the last two nonlinear terms in I2,

I2 =

∫ t

0

∫

Ω
(b−hε)uε∂tu

0+ν

∫ t

0

∫

Ω
(b−hε)∇u0·∇uε−

∫ t

0

∫

Ω
hε(uε−u0)·∇u0(uε−u0)

−
∫ t

0

∫

Ω
hε(uε − u0) · ∇u0u0 +

∫ t

0

∫

Ω
(b − hε)u0 · ∇u0uε.

We now use the momentum equation satisfied by u0 and multiply it by
(b − hε)uε, we can rewrite I2 as

I2 = −
∫ t

0

∫

Ω
hε(uε − u0) · ∇u0(uε − u0) −

∫ t

0

∫

Ω
hε(uε − u0) · ∇u0u0

+ν

∫ t

0

∫

Ω
b∇

(hε

b

)
∇u0uε +

∫ t

0

∫

Ω
πdiv(uε b − hε

b
)

−r0u
0

b
(b − hε)uε − r1|u0|u0(b − hε)uε.

Let us assume for the moment that hε → b in L∞(0, T ;L2(Ω)), ∇(hε/b) →
0 in L2(0, T ; (L2(Ω))2) and let us prove the theorem, letting ε go to 0 in the
energy estimate. We know that I1 converges to 0 by assumptions on the
data. The group I4 converges to 0 since hε → b in L2(0, T ;L2(Ω)) and u0 is
smooth enough. In the group I2, the first term is controlled by a Gronwall’s
type argument since ∇u0 is smooth enough. The second term and the fourth
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terms converge to 0 since uε converges weakly to v such that div(bv) = 0,
div(hεuε) → 0 and hε → b in L∞(0, T ;L2(Ω)). The last term converges
since uε is uniformly bounded in L2(0, T ; (L2(Ω))2) and ∇(hε − b) → 0 in
L2(0, T ;L2(Ω)). Concerning the third quantity I3, the last two terms con-
verges to 0 since uε is uniformly bounded in L2(0, T ; (L2(Ω))2) and div(hεuε)
converges to 0. The first term is rewritten as follows

− 1

ε2

∫ t

0

∫

Ω
(hε − b)div((hε − b)u0) =

1

2ε2

∫ t

0

∫

Ω
(hε − b)2u0 · ∇ ln b.

This term is a new term compared to the study made in [3], we will control
it by a Gronwall’s type argument since (hε − b)/ε is in the left-hand side.

Let us now prove the uniform bounds on ∇(hε/b)/ε. This will be done
following the calculations made in [3]. We remark that the new term in the
momentum equation compared to [3] is the term −hε∇b/ε2. If ε is fixed this
term may be seen as an external force and we obtain the same conclusion
as in [3] concerning the existence result using the equalities proved in [3].
These equalities are linked to the multiplier ∇hε/hε. But here, in order
to pass to the limit, the estimates have to be uniform with respect to ε,
therefore we have to adapt the test function. We will see that we are able
to conclude if we use the following test function ϕ = ∇(hε/b)/hε/b. The
natural one ∇(hε − b)/hε seems to be not sufficient. Indeed testing the
momentum equation by it gives the term

∫

Ω
u · ∇u∇b

to be estimate. The problem being that ∇u is not square integrable.
In the sequel, we will omit the indices ε for the sake of simplicity.

Lemma 5.1 We have the following equality

1

2

d

dt

∫

Ω
h
∣∣∇ ln

h

b

∣∣∣
2
+

∫

Ω
h∇u · ∇ ln(

h

b
)∇ ln(

h

b
)

+

∫

Ω
h∇u · ∇ ln b∇ ln

h

b
+

∫

Ω
hu · ∇∇ ln b∇ ln

h

b
+

∫

Ω
h∇divu∇ ln

h

b
= 0.

Proof. This Lemma is obtained following the calculation done in [3], looking
at the equation satisfied by lnh/b, differentiating with respect to the space
variable and multiplying by h∇ ln(h/b).
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More precisely, using the mass equation, we have

∂t(
h

b
) + u · ∇(

h

b
) +

hu · ∇b

b2
+

h

b
divu = 0.

Dividing by h/b, we get

∂t ln(
h

b
) + u · ∇ ln

h

b
+ u · ∇ ln b + divu = 0.

Deriving this equation with respect to xi, we obtain

∂t∇ ln(
h

b
)+u·∇∇ ln(

h

b
)+∇u·∇ ln(

h

b
)+∇u·∇ ln b+u·∇∇ ln b+∇divu = 0.

Multiplying this equation by h∇ ln(h/b) and using the mass equation, this
gives

1

2
[∂t(h|∇ ln(

h

b
)|2) + div(hu · ∇ ln(

h

b
)|2)] + h∇u∇ ln(

h

b
)∇ ln(

h

b
)

+h∇u∇ ln b∇ ln(
h

b
) + hu∇∇ ln b∇ ln(

h

b
) + h∇divu∇ ln(

h

b
) = 0.

Integrating with respect to the space variable, this gives the lemma.
We can prove now the following equality which generalizes the equality

derived in [3], Lemma 4 page 220.

Lemma 5.2

d

dt

(∫

Ω
h|u+ν∇ ln

(h

b

)
|2+

∣∣h − b

ε

∣∣2)−νr0
d

dt

∫

Ω
ln

h

b
+r0

∫

Ω
|u|2+ν

∫

Ω
b2

∣∣∇(h/b)

ε

∣∣2

+

∫

Ω
h|∇u|2 +

∫

Ω
r1h|u|3 = ν

∫

Ω
h∇u : t∇u − ν

∫

Ω
hu · (∇∇ ln b)u

−ν2

∫

Ω
hu∇∇ ln b∇ ln

h

b
− ν

∫

Ω
∇b

h − b

ε

∇(h/b)

ε

+r0ν

∫

Ω
u · ∇ ln b − r1ν

∫

Ω
|u|u · ∇h +

∫

Ω
νr1h|u|u · ∇ ln b.

Proof. This equality is obtained multiplying the momentum equation by
∇ ln(h/b) and using the equality coming from Lemma 1.

Let us look at each term of the momentum equation tested against
∇∇(h/b). Using the mass equation, we deduce that
∫

Ω
h(∂tu+u·∇u)·∇ ln(

h

b
) =

d

dt

∫

Ω
[bu·∇(

h

b
)]+

∫

Ω
bu·∇[

div(hu)

b
]+

∫

Ω
bu·∇u∇(

h

b
).
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Rewritting the two last terms, this reads
∫

Ω
h(∂tu+u·∇u)·∇(

h

b
)
b

h
=

d

dt

∫

Ω
[bu·∇(

h

b
)]−

∫

Ω
h∇u : t∇u+

∫

Ω
hu·∇(∇ ln b)u.

Now we look at the diffusive term, we have

−ν

∫

Ω
div(h∇u)∇ ln(

h

b
) = ν

∫

Ω
b∇u : ∇∇(

h

b
) − ν

∫

Ω
h∇u · ∇ ln(

h

b
)∇ ln(

h

b
).

Concerning now, the pressure term, we write

∫

Ω
h
∇(h − b)

ε2
∇ ln(

h

b
) =

∫

Ω

∇b

ε2
· ∇(

h

b
)(h − b) +

∫

Ω

b2

ε2

∣∣∣∇(
h

b
)
∣∣∣
2

It remains now the drag terms, they give
∫

Ω
r0u · ∇ ln(

h

b
) = −r0

d

dt

∫

Ω
ln(

h

b
) − r0

∫

Ω
u · ∇ ln b

and ∫

Ω
r1h|u|u · ∇ ln(

h

b
) =

∫

Ω
r1|u|u∇h −

∫

Ω
r1h|u|u · ∇ ln b.

We now remark that

−
∫

Ω
b∇u : ∇∇h

b
−

∫

Ω
h∇divu · ∇ ln

h

b
−

∫

Ω
h∇u∇ ln b∇ ln

h

b
= 0.

Collecting all the previous equalities and using the equality given in the
preceding Lemma, we get the desired equality.
Proof of the convergence. Let us prove that we control all the terms in
the right-hand side in the equality given in Lemma 5.2. The first term is
easily controlled since

∫ T

0
|J1| ≤

∫ T

0

∫

Ω
h|∇u|2 ≤ c1.

If b ≥ c > 0 and b ∈ W 2,∞(Ω), the second term is also controlled by

∫ T

0
|J2| ≤

∫ T

0

∫

Ω
h|u|2 ≤ c2.

If h ∈ W 2,∞(Ω) then

∫ T

0
|J3| ≤ cε‖u‖2

L2(QT ) +
1

ε
‖∇h‖L2(QT ).
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The fourth term is controlled as follows
∫ T

0
|J4| ≤ ‖h − b

ε
‖2

L2(0,T ;L2(Ω)) +
ν2

2ε2
‖∇b∇h

b
‖2

L2(0,T ;L2(Ω)).

The last terms are easily controlled using the bounds on (h, u). Collecting
all the information and using strongly that b ≥ c > 0, Lemma 5.2 gives the
desired convergence used in the proof of the main theorem.

Remark. The case where b is assumed to vanish on the shore is an inter-
esting difficult subject which will be discussed in a forthcoming paper. The
proof used in the previous section does not seems to be easily adaptable to
such configurations even in simpler cases.

6 Low Mach number limit for compressible flows
with nonconstant density limit.

We now look at the asymptotic when the Mach number goes to zero on the
following compressible Navier-Stokes system

∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) − ν∆u − (λ + ν)λ∇divu + ρ
∇Π(ρ, ρ)

ε2(γ − 1)
= ρf

where

Π(ρ, ρ) =

∫ ρ

ρ

P (s)

s2
ds +

P (ρ)

ρ
− P (ρ)

ρ
.

The reference density ρ depends on x. We first remark that systems mathe-
matically studied during these last years assume the reference density to be
equal to a constant ρ = 1 in the barotropic case P (ρ) = aργ . In this case

ρ∇Π(ρ, ρ) = a∇ργ .

Remark. The Saint-Venant equations correspond to the case ρ = b and
P (ρ) = 1

2ρ2.

Formal calculations. The energy inequality gives the following informa-
tion on the density

d

dt

∫

Ω
F (ρ, ρ) ≤ 0

where

F (s1, s2) = s2

∫ s1

s2

P (s)

s2
ds − P (s1)

s1
(s2 − s1).
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Thus assuming that F (s1, s2) satisfies

F (s1, s2) ≥ c|s1 − s2|γ

for some power of γ we get that

(ρ − ρ)/ε is uniformly bounded in L∞(0, T ;Lγ(Ω))

and thus ρ → ρ in C(0, T ;Lγ(Ω)). Let ε go to zero, then the mass equation
gives

div(ρu0) = 0.

Using now the momentum equation, we get at the main order

ρ(∂tu + u · ∇u) − µ∆u − (λ + µ)∇divu + ρ∇p = ρf.

Mathematical justification. Several asymptotic analysis concerning the zero
Mach number limit of classical solutions to the compressible Euler equations
for non-isentropic fluids in a domain Ω of Rd have been performed. For Ω an
exterior domain, the asymptotic has been recently mathematically proven
in [1] extending the results of [15], [16] which concerned Ω = Rd. The case
Ω = T d is completely open. Only formal results have been performed in
[4] and partial answer have been made in [16]. We can say that the studies
when the density converges to a nonconstant density will follow exactly the
same lines and difficulties since it involves the same kind of wave equation
depending on the density. For instance in the case Ω = T d, we can think
that, in the ill prepared case, an extra term will be obtained formally in the
limit of the momentum equation. Namely, we will get

ρ(∂tu + u · ∇u) − µ∆u − (λ + µ)∇divu + ρ∇P + ∇q = ρf.

The term ∇q being obtained from the oscillating part of the velocity. Details
will be given in a forthcoming paper.

Remark. Note that in our case, the extra term coming from the wave prop-
agation is of the form ρ∇p2 +∇q as in the nonisentropic case. But here the
exchange in the energy between waves and mean velocity is given through
∇q since u satisfies here div(ρu) = 0.
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by a Rhône-Alpes fellowship obtained in 2004 on problems related to vis-
cous shallow water equations and by the ”ACI jeunes chercheurs 2004” du
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ible. Séminaire École Polytechnique (France), Exposé no III, 2000.
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Séminaire Bourbaki (France), no 926, 2003.

[9] E. Grenier. Oscillatory perturbations of the Navier-Stokes equations
J. Math. Pures et Appl. 76, (1997), 477–498.

13



[10] J.F. Gerbeau, B. Perthame. Derivation of viscous Saint-Venant sys-
tem for laminar Shallow water; Numerical results. Discrete and Con-
tinuous Dynamical Systems - Series B, 1, (2001), 89–102.

[11] C.D. Levermore, M. Oliver, E.S. Titi Global well-posedness for
a models of shallow water in a basin with a varying bottom. Indiana
Univ. Math. J., 45, (1996), 479–510.

[12] C.D. Levermore, M. Sammartino. A shallow water model with
eddy viscosity for basins with varying bottom topography. Nonlinearity,
14, (2001), 1493–1515.

[13] P.-L. Lions. Mathematical topics in fluid dynamics, Vol.2, Compress-
ible models. Oxford Science Publication, Oxford, 1998.

[14] P.-L. Lions, N. Masmoudi. Incompressible limit for a viscous com-
pressible fluids. J. Math. Pures Appl., 77, (1998), 585–627.

[15] G. Métivier, S. Schochet. The incompressible limit of the non-
isentropic Euler equations. Arch. Rational Mech. Anal. 158:61–90,
(2001).

[16] G. Métivier, S. Schochet. The incompressible limit of the non-
isentropic Euler equations, in Séminaire Équations aux Dérivées Par-
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