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Résumé - Nous continuons l’étude du problème de Cauchy et aux limites pour l’équation
de Korteweg-de Vries initiée dans [9]. On obtient des effets régularisants globaux uniformes
par rapport à la longueur de l’intervalle et nous montrons que la solution du problème aux
limites converge, lorsque la longueur de l’intervalle tend vers l’infini, vers la solution du
problème posé sur le quart de plan t > 0, x > 0. Nous proposons un schéma aux différences
finies très simple pour le problème sur [0, 1] et montrons sa stabilité.

Abstract - In this paper, we continue the study of the initial-boundary-value prob-
lem for the Korteweg-de Vries equation that has been initiated in [9]. We obtain global
smoothing effects that are uniform with respect to the size of the interval. This allows us to
show that the solution of the boundary value problem converges, as the size of the interval
converges to infinity, towards the solution of the quarter-plane problem. We also propose a
simple finite differents scheme for the problem on [0, 1] and prove its stability.

Keywords: Korteweg-de Vries, boundary conditions, smoothing effects,
quarter-plane.

1 Introduction and statements of the results

1.1 Introduction

The Korteweg-de Vries equation has been introduced in [12] in order to de-
scribe the propagation of long water waves in a channel. If u(x, t) denotes the
elevation of the free surface of the flow with respect to the equilibrium position
at time t and at the position x, this function satisfies

ut + ux + uux + uxxx = 0, for t > 0 and x ∈ IR.

The pure Cauchy problem on the whole line for this equation has been exten-
sively studied, see for example [13], [2] for regular initial data. Recent results
shows that the Cauchy problem is well-posed in L2 [7] or even in negative
order Sobolev spaces [11]. In laboratory experiments, the wave is created by
a ”wave maker” at one of the extremities of the channel. In order to describe
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this situation, J. L. Bona and R. Winther have considered the Korteweg-de
Vries equation in a quarter-plane [3], [4]:











ut + ux + uux + uxxx = 0, x ≥ 0, t ≥ 0,
u(0, t) = g(t), t ≥ 0,
u(x, 0) = u0(x), x ≥ 0.

(1)

One of the results that is obtained reads as follows:

Theorem 1 (J.L. Bona, R. Winther) Suppose u0 in H4(IR+) and g in H2
loc(IR

+)

satisfy the compatibility conditions u0(0) = g(0), g′(0) + (∂xu0 + u0∂xu0 +
∂3

xu0)(0) = 0, then there exists a unique solution u∞ in L∞
loc(IR

+, H4(IR+)) of
(1).

In [8], [9], [10], an initial-boundary-value problem for the Korteweg-de Vries
equation is studied:































ut + ux + uux + uxxx = 0, x ∈ [0, L], t ∈ [0, T [,
u(0, t) = g(t), t ∈ [0, T [,
ux(L, t) = 0, t ∈ [0, T [,
uxx(L, t) = 0, t ∈ [0, T [,
u(x, 0) = u0(x), x ∈ [0, L],

(2)

where L > 0, T ∈]0,+∞[ and the following local existence theorem is estab-
lished:

Theorem 2 (T. Colin, J.M. Ghidaglia) Let u0 be in H1(0, L) and g be in
C1(IR+) satisfy the compatibility condition u0(0) = g(0). Then there exists
TL > 0 and a function uL in L∞(0, TL;H1(0, L)) ∩ C([0, TL];L2(0, L)) which
solves (2). Moreover, if |u0|H1 and |g|H1(IR+) are small enough, then TL = +∞.

This result is proved by energy methods using a long-wave type regularisation
introduced in [3]. In [9], some parabolic type smoothing effects are also proved
for (2) and this leads to a local existence theorem in L2 for the nonlinear
problem. These smoothing effects are obtain by multiplying the equation by
xu and none of the results given in [9] are uniform with respect to the size
of the interval. Note that these smoothing effects were also discovered for the
quarter-plane by Bona and Winther [5].

The aim of this paper is to obtain a similar result but uniformly with respect
to L ; that is existence of uL on [0, TL[ for uL

0 in L2([0, L]) with TL → +∞ and
uL → u∞ when L tends towards +∞ provided that

∫ L
0 (1 + x2)(uL

0 )2(x)dx is
bounded independently of L and where u∞ is the solution to the quarter-plane
problem.

This paper is organized as follows. We first prove the existence of a time
Tmin depending only on | g |H1 and | u0 |L2((1+x2)dx) but not on L such that
uL exists on [0, Tmin] thanks to uniform (with respect to L) smoothing effects
(section 2). This construction will also give uniform bounds on uL that will
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allow us to perform the limit L → +∞. We show that the existence time
TL tends to +∞ as L tends towards +∞ (see section 3). A by-product of
the proof is that the quarter-plane problem is globally well-posed in the space
L2((1+x2)dx). In section 4, we present a finite different scheme for the initial-
boundary-value problem (2) ; we prove its stability and present some numerical
experiments.

Our main result reads as follows (Theorem 5):

Theorem Consider a family of initial values uL
0 ∈ L2([0, L]) such that

sup
L≥1

∫ L

0
|uL

0 |2(x)(1 + x2)dx < +∞

and such that uL
0 tends towards u0 in L2

loc(IR
+) strongly.

Then, for all T > 0, if L is large enough, uL(x, t) the solution of (2) with ini-
tial value uL

0 is defined on [0, T ] and uL tends towards u in Lp(0, T ;L2
loc(IR

+))
strongly for all 1 ≤ p < +∞, where u(x, t) is a solution of (1) with initial data
u0.

1.2 Notations and basic assumptions

Let X be a Banach space, 1 ≤ p ≤ +∞ and −∞ ≤ a < b ≤ +∞. The notation
Lp(a, b;X) denotes the Banach space of measurable functions u : (a, b) → X
whose norms are p th-power integrable (essentialy bounded if p = +∞). There

are endowed with the norm : | u |pLp(a,b;X)=
∫ b

a
| u(., t) |pX dt if p < +∞ and

| u |L∞(a,b;X)= sup
t∈(a,b)

| u(., t) |X if p = +∞.

In this paper, we assume that for 0 < L < +∞ the initial data u0 belongs
to L2(0, L) and that xu0 belongs to L2(0, L) and we introduce | . | which
denotes the L2((1 + x2)dx) norm :

| u0 |=| u0 |L2((1+x2)dx)=

√

∫ L

0
(1 + x2)u2

0(x)dx.

We introduce the space :

E := {f ∈ L1(0, T ;L2((1 + x2)dx)),
√
tf ∈ L2(0, T ;L2((1 + x2)dx))}

endowed with the norm :

| f |E=
∫ T

0

√

∫ L

0
(1 + x2)f 2(x, t)dxdt+

√

∫ T

0

∫ L

0
t(1 + x2)f 2(x, t)dxdt.

We recall that the following well-known inequalities :
* | w |2L2((1+x)dx)≤ 3 | w |2L2((1+x2)dx) .

* | g |L∞(0,T )≤ (C +
√
T ) | g |H1(0,T ) .

* | G |L1(0,T ;L2((1+x2)dx))≤
√
T | G |L2(0,T ;L2((1+x2)dx)) .

* if w in H1(0, L), with w(0) = 0 then | w |2L∞(dx)≤ 2 | w |L2(dx)| wx |L2(dx) .
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2 Existence and uniqueness for the non homo-

geneous case (g 6= 0)

2.1 Local existence and uniqueness on [0, L], L < +∞
Let T > 0. We introduce the space :

XT := {w ∈ C([0, T ];L2((1 + x2)dx)), wx ∈ L2(0, T ;L2((1 + x)dx)),

√
twx ∈ L∞(0, T ;L2((1 + x)dx)),

√
twxx ∈ L2(0, T ;L2)}.

This space is endowed with the norm :

| w |X :=| w |L∞(0,T ;L2((1+x2)dx)) + | wx |L2(0,T ;L2((1+x)dx))

+ |
√
twx |L∞(0,T ;L2((1+x)dx)) + |

√
twxx |L2(0,T ;L2) .

For u0 in L2(0, L), the unique solution of the linear homogeneous system































ut + ux + uxxx = 0, x ∈ [0, L], t ∈ [0, T [,
u(0, t) = 0, t ∈ [0, T [,
ux(L, t) = 0, t ∈ [0, T [,
uxx(L, t) = 0, t ∈ [0, T [,
u(x, 0) = u0(x), x ∈ [0, L],

(3)

is denoted S(t)u0 (see [9], [10] for the construction of this semi-group). Let φ be
a smooth function defined over IR+ such that φ(0) = 1 and φ(x) = 0, ∀x ≥ 1.

The definition of a weak solution for the system (2) is the following :

Definition 1 A weak solution to (2) on [0, T ] is a function u(x, t) ∈ XT such
that

ũ(x, t) = u(x, t) − φ(x)g(t)

satisfy
ũ(x, t) = S(t)ũ0(x)−

∫ t

0
S(t− s){(ũ(x) + φ(x)g(s))(ũx(x, s) + φ′(x)g(s))

+g(s)(φ′(x) + φ′′′(x)) + φ(x)g′(s)}ds,
where ũ0(x) = u0(x) − φ(x)g(0).

The existence Theorem on [0, Tmin], Tmin being independent of L, depend-
ing only on | g |H1 and | u0 | reads as follows :

Theorem 3 Let u0 be in L2((1 +x2)dx), g be in H1
loc(IR

+) and 0 < L < +∞.
Then there exists a unique weak maximal solution defined over [0, TL[ to (2).
Moreover, there exists Tmin > 0 independent of L, depending only on | u0 |
and | g |H1 such that TL ≥ Tmin. The solution u depends continuously on
u0 and g in the following sense : let a sequence un

0 converging towards u0 in
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L2((1+x2)dx), let a sequence gn converging towards g in H1
loc(IR

+) and denote
by un the solution with data (un

0 , g
n) and T n

L its existence time. Then

lim inf
n→+∞

T n
L ≥ TL

and for all T < TL, un exists on the interval [0, T ] if n is large enough and un

tends towards u in XT .

In order to prove this result, we first state some smoothing effects for (3),
i.e. in the linear case (cf section 2.1.1). Then, in section 2.1.3, we use these
estimates in the non linear case in a fixed point procedure.

2.1.1 Uniform estimates on the solutions to the linear homogeneous
problem

In this section we consider the linear problem (3). The following proposition
gives more precise results that those of [9]:

Proposition 1 Let u0 be in L2(0, L). There exists a continuous function t 7→
c(t) such that

| u |L∞(0,T ;L2((1+x2)dx))≤ c(T ) | u0 |, (4)

| ux |L2(0,T ;L2((1+x)dx))≤ c(T ) | u0 |, (5)

| ux(0, t) |L2(0,T )≤ c(T ) | u0 |, (6)

|
√
tux |L∞(0,T ;L2)≤ c(T ) | u0 |, (7)

|
√
tux(0, t) |L2(0,T ) + |

√
tuxx(0, t) |L2(0,T )≤ c(T ) | u0 |, (8)

|
√
tux |L∞(0,T ;L2((1+x)dx))≤ c(T ) | u0 |, (9)

|
√
tuxx |L2(0,T ;L2)≤ c(T ) | u0 | . (10)

Proof : multiplying (3) by u, xu, x2u, one gets the estimates (4), (5), (6).
Let us recall how one obtains (5) which is the more surprising estimate since
it gives a smoothing effect. Multiplying (3) by u and integrating on [0, L] give

d

dt

∫ L

0
|u|2dx+ u2(L, t) + u2

x(0, t) = 0. (11)

Multiplying (3) by xu and integrating on [0, L] yield

1

2

d

dt

∫ L

0
x|u|2dx+

∫ L

0
xuxudx+

∫ L

0
xuxxxudx = 0.

Integrating by parts gives, using the boundary conditions:

d

dt

∫ L

0
x|u|2dx−

∫ L

0
|u|2dx+ 3

∫ L

0
u2

x + Lu2(L, t) = 0,
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which implies (5) thanks to (11). Taking the L2 inner product of (3) with uxx,
one obtains

d

dt

∫ L

0
u2

x(x, t)dx+ u2
x(0, t) + u2

xx(0, t) = 0. (12)

Multiplying (12) by s and integrating the resulting expression in the temporal
variable over (0, t), one obtains after integration by parts and by using (5) the
inequalities (7) and (8). Multiply (3) by xuxx leads to

d

dt

∫ L

0
xu2

x(x, t)dx+ 2ux(0, t)uxx(0, t) −
∫ L

0
u2

x(x, t)dx+ 3
∫ L

0
u2

xx(x, t)dx = 0.

(13)
Taking the product of (13) by s, integrating the resulting expression in the
temporal variable over (0, t), integrating by parts and using Cauchy-Schwarz
inequality give :

t
∫ L

0
xu2

x(x, t)dx+ 3
∫ t

0
s
∫ L

0
u2

xx(x, s)dxds ≤
∫ t

0

∫ L

0
xu2

x(x, t)dxds

+
∫ t

0
s
∫ L

0
u2

x(x, s)dxds+ 2

√

∫ t

0
su2

x(0, s)ds

√

∫ t

0
su2

xx(0, s)ds.

The two first terms on the right-hand side of the above inequality are bounded
thanks to the inequality (5) and the last term thanks to the inequality (8).
This gives inequalities (9) and (10).

2.1.2 Non-homogeneous linear estimates

Thanks to standard duality technics, we obtain estimates that are independent
of L for the non homogeneous linear system































vt + vx + vxxx = f(x, t), x ∈ [0, L], t ∈ [0, T [,
v(0, t) = 0, t ∈ [0, T [,
vx(L, t) = 0, t ∈ [0, T [,
vxx(L, t) = 0, t ∈ [0, T [,
v(x, 0) = 0, x ∈ [0, L].

(14)

Proposition 2 There exists a continuous function t 7→ c(t) such that if f
belongs to E

| v |L∞(0,T ;L2((1+x2)dx))≤ c(T ) | f |L1(0,T ;L2((1+x2)dx)), (15)

| vx |L2(0,T ;L2((1+x)dx))≤ c(T ) | f |L1(0,T ;L2((1+x2)dx)), (16)

| vx(0, t) |L2(0,T )≤ c(T ) | f |L1(0,T ;L2((1+x2)dx)), (17)

|
√
tvx |L∞(0,T ;L2(1+x))≤ c(T ) | f |E, (18)

|
√
tvx(0, t) |L2(0,T )≤ c(T ) | f |E, (19)

|
√
tvxx(0, t) |L2(0,T )≤ c(T ) | f |E, (20)
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|
√
tvxx |L2(0,T ;L2(dx))≤ c(T ) | f |E, (21)

| vx |L∞(0,T ;L2((1+x)dx))≤ c(T ) | f |L2(0,T ;L2((1+x2)dx)), (22)

| vx(0, t) |L2(0,T ) + | vxx(0, t) |L2(0,T )≤ c(T ) | f |L2(0,T ;L2((1+x2)dx)), (23)

| vxx |L2(0,T ;L2(dx))≤ c(T ) | f |L2(0,T ;L2((1+x2)dx)) . (24)

Proof : estimates (15), (16), (17) are dual of (4) and (5) since one has

v(x, t) =
∫ t

0
S(t− s)f(x, s)ds.

The inequality (15) is an obvious consequence of inequality (4). In order to
prove the estimates (16) and (17), we introduce ψ(t) in L2(0, T ) and compute:

|
∫ T

0
| vx |L2((1+x)dx) ψ(t)dt |≤

∫ T

0

∫ t

0
| ∂xS(t− s)f(x, s) |L2((1+x)dx) ds | ψ(t) | dt

≤
∫ T

0

∫ T

s
| ψ(t) || ∂xS(t− s)f(x, s) |L2((1+x)dx) dtds

thanks to Fubini’s theorem

≤
∫ T

0

(

(
∫ T

0
| ψ(t) |2 dt

)1/2 (
∫ T

0
| ∂xS(t− s)f(x, s) |2L2((1+x)dx) dt

)1/2

ds

thanks to Cauchy-Schwarz inequality

≤ c

(

∫ T

0
| ψ(t) |2 dt

)1/2
∫ T

0
| f(., s) |L2((1+x2)dx) ds thanks to (5)

≤ c

(

∫ T

0
| ψ(t) |2 dt

)1/2

| f |L1(0,T ;L2((1+x2)dx)) .

Inequality (16) therefore follows. By an analogous argument, we have the
estimate (17). In order to obtain (18), (19), (20), (21) we multiply (14) by vxx:

d

dt

∫ L

0
v2

x(x, t)dx+ v2
x(0, t) + v2

xx(0, t) = −2
∫ L

0
f(x, t)vxx(x, t)dx. (25)

Multiplying (14) by xvxx gives

d

dt

∫ L

0
xv2

x(x, t)dx−
∫ L

0
v2

x(x, t)dx+ 3
∫ L

0
v2

xx(x, t)dx+ 2vx(0, t)vxx(0, t)

= −2
∫ L

0
vx(x, t)f(x, t)dx− 2

∫ L

0
xvxx(x, t)f(x, t)dx. (26)

The combination 2×(25)+(26) shows that

d
dt

∫ L

0
(2 + x)v2

x(x, t)dx+ v2
x(0, t) + v2

xx(0, t) + 2
∫ L

0
v2

xx(x, t)dx

≤ 2
∫ L

0
v2

x(x, t)dx+ c
∫ L

0
(1 + x2)f 2(x, t)dx.

(27)
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Multiplying (27) by s and integrate in the temporal variable over (0, t) leads
to the estimates (18), (19), (20), (21) thanks to the inequality (15).

We finally integrate (27) over (0, t) and inequalities (22), (23), (24) now
follow and the proposition 2 is proved.

2.1.3 Nonlinear case

We now prove in this section a local existence result for the nonlinear system
(2).

Proposition 3 Assume that L ≥ 1 and g(0) = u0(0) then there exists a time
T > 0 independent of L and an unique weak solution u of (2) on [0, T ].

Proof : the proof is splitted in three steps.
1. First, we make a relevement of the boundary data as follows. Recall

that φ is a smooth function over IR+ such that

φ(0) = 1, φ(x) = 0, ∀x ≥ 1

and let ũ be defined by

ũ(x, t) = u(x, t) − φ(x)g(t).

System (2) becomes































ũt + ũx + ũxxx = −F (ũ, ũx, g), x ∈ [0, L], t ∈ [0, T [,
ũ(0, t) = 0, t ∈ [0, T [,
ũx(L, t) = 0, t ∈ [0, T [,
ũxx(L, t) = 0, t ∈ [0, T [,

ũ(x, 0) = u0(x) − φ(x)g(0), x ∈ [0, L],

where
F (ũ, ũx, g) = (ũ+ φg)(ũx + φ′g) + g(φ′ + φ′′′) + φg′.

As a result, we have transformed the original problem (2) into a problem with
a Dirichlet boundary condition g = 0. In what follows, in order to simplify the
notations, we omit the tilde and we still denote the unknow by u instead of ũ.

2. We write u(x, t) = S(t)u0(x)−
∫ t

0
S(t− s)F (u, ux, g)(s)ds where S(t) is

the linear semi-group introduced in the section 2.1. We refer to section 2.1.1
for the part S(t)u0 and to section 2.1.2 for the part

∫ t
0 S(t− s)F (u, ux, g)(s)ds.

We introduce the following functional T defined by

T (u0, g, u) := S(t)u0(x) −
∫ t

0
S(t− s)F (u, ux, g)(s)ds.

One has
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Lemma 1 There exists a constant c(T ) depending on T , independent of L
such that for all u0 ∈ L2(0, L) :

| S(t)u0 |X≤ c(T ) | u0 |

and the map T 7→ c(T ) is continuous.

Proof : it is an obvious consequence of inequalities (4), (5), (9), (10).

For the non homogeneous problem the following lemma holds :

Lemma 2 There exists a constant c(T ) depending on T , independent of L
such that for all f in E

|
∫ t

0
S(t− s)f(s)ds |X≤ c(T ) | f |E

and the map T 7→ c(T ) is continous.

Proof : it is an obvious consequence of inequalities (15),(16), (18), (21).

3. Contraction procedure : we begin with a lemma :

Lemma 3 For all w in H1([0, L]) such that w(0) = 0, one has

|
√
xw |L∞≤ 5

(
√

| w |L2(1+x)

√

| wx |L2(1+x)+ | w |L2(1+x)

)

. (28)

Proof : first, one has

sup
0≤x≤1

|
√
xw |≤ sup

0≤x≤1
| w |≤| w |L∞≤

√
2
√

| w |L2

√

| wx |L2

since w(0, t) = 0.
Concerning x ≥ 1, one has :

sup
x≥1

|
√
xw |≤| w(1) | +

√
2
√

|
√
xw |L2

√

| ∂

∂x
(
√
xw) |L2 since w(0) = 0

≤
√

2
√

| w |L2

√

| wx |L2 +
√

2
√

|
√
xw |L2

√

| w |L2 + |
√
xwx |L2 because x ≥ 1.

Finally,

|
√
xw |L∞≤ 2

√
2
√

| w |L2

√

| wx |L2 +
√

2
√

|
√
xw |L2

√

| w |L2 +
√
xwx |L2

≤ 2
√

2
√

| w |L2(1+x)

√

| wx |L2(1+x)+
√

2
√

| w |L2(1+x)

√

| w |L2(1+x) + | wx |L2(1+x)

≤ 3
√

2
√

| w |L2(1+x)

√

| wx |L2(1+x) +
√

2 | w |L2(1+x)

≤ 5(
√

| w |L2(1+x)

√

| wx |L2(1+x)+ | w |L2(1+x)) (31).
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The following estimate is the keypoint of this section :

Proposition 4 Suppose that u0, v0 are in L2(0, L), g and h are in H1
loc(IR

+),
then there exists a continuous function t 7→ c(t) such that for all T in [0, T0],

| T (u0, g, u) − T (v0, h, v) |X≤

c(T ) | u0 − v0 | +c(T )
√
T (| g |H1(0,T ) + | h |H1(0,T ) +1+ | u |X) | g − h |H1(0,T )

+c(T )T 1/4 | u− v |X (| u |X + | v |X)

+c(T )
√
T | u− v |X (| h |H1(0,T ) + | u |X + | v |X).

Proof :
We have

T (u0, g, u)−T (v0, h, v) = S(t)(u0−v0)(x)−
∫ t

0
S(t−s)(F (u, ux, g)−F (v, vx, h))(s)ds.

We introduce the following quantities :

G(s) = F (u, ux, g)(s) − F (v, vx, h)(s) = Fc + Fl + Fnl,

Fc = φφ′(g2 − h2) + (g − h)(φ′ + φ′′′) + φ(g′ − h′),

Fl = (uφ′g − vφ′h) + (φgux − φhvx),

Fnl = uux − vvx.

Thanks to the lemma 1 and 2, one gets

| T (u0, g, u) − T (v0, h, v) |X≤ c(T ) | u0 − v0 |

+c(| G |L1(0,T ;L2(1+x2)) + |
√
tG |L2(0,T ;L2(1+x2))).

Now, we want to control G in L1(0, T ;L2(1 + x2)) and
√
tG in L2(0, T ;L2(1 +

x2)). We estimate separately the three parts of G : Fc, Fl and Fnl.
1. The term independent of u and v (i.e Fc):
On the one hand, one has

| Fc |L2((1+x2)dx)≤ c(1+ | g(t) | + | h(t) |) | g(t) − h(t) | +c | g′(t) − h′(t) |

since φ is compactly supported. On the other hand, one gets

| Fc |E≤
√
T | Fc |L2(0,T ;L2((1+x2)dx)

so that

| Fc |E≤ c
√
T (1+ | h |H1(0,T ) + | g |H1(0,T )) | g − h |H1(0,T )

since H1(0, T ) ⊂ L∞(0, T ).
2. The linear term Fl :

10



One has for the first term of Fl

| uφ′g − vφ′h |L2(0,T ;L2(1+x2)) ≤ | φ′u(g − h) |L2(0,T ;L2(1+x2))

+ | φ′(u− v)h) |L2(0,T ;L2(1+x2))

≤ c | g − h |L∞(0,T )| u |L2(0,T ;L2(1+x))

+c | h |L∞(0,T )| u− v |L2(0,T ;L2(1+x))

since φ is compactly supported

≤ c | g − h |H1(0,T )| u |X +c | h |H1(0,T )| u− v |X

≤ c(| u |X | g − h |H1(0,T ) + | u− v |X | h |H1(0,T )),

and for the second term of Fl we have :

| φ(uxg − vxh) |L2(0,T ;L2(1+x2)) ≤ | φux(g − h) |L2(0,T ;L2(1+x2))

+ | φ(ux − vx)h |L2(0,T ;L2(1+x2))

≤ c | g − h |L∞(0,T )| ux |L2(0,T ;L2(1+x))

+c | h |L∞(0,T )| ux − vx |L2(0,T ;L2(1+x))

since φ is compactly supported

≤ c | g − h |H1(0,T )| u |X +c | h |H1(0,T )| u− v |X .

We therefore obtain

| Fl |E≤ c
√
T (| u |X | g − h |H1(0,T ) + | u− v |X | h |H1(0,T )).

3. The nonlinear term Fnl :
in order to estimate

| uux − vvx |L1(0,T ;L2((1+x2)dx)) + |
√
t(uux − vvx) |L2(0,T ;L2((1+x2)dx)),

we write uux − vvx = (u − v)ux + v(ux − vx). For the first term, we want a
bound of UVx in L1(0, T ;L2((1 + x2)dx)) where U = u− v with V = u. First
one has,

| UVx |L1(0,T ;L2((1+x2)dx)) =
∫ T

0
| UVx |L2((1+x2)dx)) dt

=
∫ T

0

√

∫ L

0
(1 + x2)U2V 2

x dxdt

=
∫ T

0

√

∫ L

0
U2V 2

x dx+
∫ L

0
x2U2V 2

x dxdt

≤
√

2
∫ T

0
(

√

∫ L

0
U2V 2

x dx+

√

∫ L

0
x2U2V 2

x dx)dt.
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Moreover:

∫ L

0
U2V 2

x dx ≤| U |2L∞

∫ L

0
(1 + x)V 2

x dx ≤ 2 | U |L2(1+x)| Ux |L2(1+x)| Vx |2L2(1+x)

and

∫ L

0
x2U2V 2

x dx ≤| xU2 |L∞

∫ L

0
xV 2

x dx ≤|
√
xU |2L∞

∫ L

0
(1 + x)V 2

x dx.

Therefore

| xUVx |L2 ≤ | √xU |L∞

√

∫ L
0 (1 + x)V 2

x dx

≤ 5(
√

| U |L2(1+x)

√

| Ux |L2(1+x)+ | U |L2(1+x)) | Vx |L2(1+x)

thanks to the lemma 2.

Hence,

| UVx |L1(0,T ;L2((1+x2)dx)≤
√

2
∫ T

0
| U |1/2

L2(1+x)| Ux |1/2
L2(1+x)| Vx |L2(1+x) dt

+5
∫ T

0

(

| U |1/2
L2(1+x))| Ux |1/2

L2(1+x) + | U |L2(1+x)

)

| Vx |L2(1+x) dt

≤ c
∫ T

0
| U |1/2

L2(1+x)| Ux |1/2
L2(1+x)| Vx |L2(1+x) dt

+5
∫ T

0
| U |L2(1+x))| Vx |L2(1+x) dt

≤ c | U |X
∫ T

0
| Ux |1/2

L2(1+x)| Vx |L2(1+x) dt

+5 | U |X
∫ T

0
| Vx |L2(1+x) dt

≤ c(
√
T + T 1/4) | U |X | V |X , .

This last result yields

| (u− v)ux |L1(0,T ;L2((1+x2)dx))≤ c(
√
T + T 1/4) | u− v |X | u |X .

We write U instead of v, V instead of u− v and we use the same technique for
the second term:

| UVx |L1(0,T ;L2((1+x2)dx))=| v(ux − vx) |L1(0,T ;L2((1+x2)dx))

≤ c(
√
T + T 1/4) | u− v |X | v |X .
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Hence, the estimate on | uux−vvx |L1(0,T ;L2((1+x2)dx)) is established. The second

step is to estimate |
√
tUVx |L2(0,T ;L2((1+x2)dx)), where U is successively u− v or

v with V = u or V = u− v. We write

|
√
xU

√
xVx |L2(dx)≤|

√
xU |L∞|

√
xVx |L2(dx)

≤ 5(
√

| U |L2(1+x)

√

| Ux |L2(1+x)+ | U |L2(1+x)) |
√
xVx |L2(dx)

thanks to (31)

≤ 5
√

| U |L2(1+x)

√

| Ux |L2(1+x) | Vx |L2((1+x)dx) +5 | U |L2(1+x)| Vx |L2((1+x)dx)

Then
|
√
t |

√
xU

√
xVx |L2(dx)|L2(0,T )≤

5
√

| U |L∞(0,T ;L2(1+x)) |
√
tVx |L∞(0,T ;L2(1+x))

√

| Ux |L2(0,T ;L2((1+x)dx))

√
T

+5 | U |L∞(0,T ;L2(1+x))|
√
tVx |L2(0,T ;L2((1+x)dx))

≤ c | U |1/2
X | V |X

√

| Ux |L2(0,T ;L2((1+x)dx))

√
T

+c | U |X
√
T | V |X

≤ c
√
T | U |X | V |X , ∀0 ≤ t ≤ T.

Finally |
√
tUVx |L2(0,T ;L2(1+x2))≤ c

√
T | U |X | V |X . Hence, the desired result

follows and proposition 4 is established.

Let T0 > 0. Take R = 2c(T0)(| u0 | +
√
T0(1+ | g |H1) | g |H1). We denote

by BR the ball of center 0 and of radius R in XT .

Proposition 5 Assume g in H1
loc(IR

+). Then, there exists a time T1 in ]0, T0]
such that the application u 7→ T (u0, g, u) maps the ball BR into itself.

Proof : applying proposition 4 with v0 = 0, h = 0, v = 0, one gets

| T (u0, g, u) |X≤ c(T0) | u0 | +

c
√
T (| u |X + | g |H1(0,T ) +1) | g |H1(0,T ) +c | u |2X T 1/4 + c

√
T | u |2X .

It follows

| T (u0, g, u) |X≤
R

2
+ c

√
T | u |X | g |H1 +c | u |2X T 1/4 + c

√
T | u |2X .

Then, if u ∈ BR then

| T (u) |X≤
R

2
+ c

√
TR | g |H1 +cT 1/4R2 + c

√
TR2.

Choosing T such that c(T 1/4R2 +
√
T | g |H1(0,T0) R +

√
TR2) ≤ R

2
, ensures

that u 7→ T (u0, g, u) maps the ball BR into itself and proposition 5 is proved.

13



Proposition 6 Assume g in H1
loc(IR

+). Then, there exists a time T2 in ]0, T1]
such that the application u 7→ T (u0, g, u) is a contraction over (BR, | . |X).

Proof : applying proposition 4 where v0 = u0, h = g yields

| T (u0, g, u) − T (u0, g, v) |X≤ cT 1/4 | u− v |X (| u |X + | v |X)

+c
√
T | u− v |X (| g |H1(0,T ) + | u |X + | v |X),

so that if u, v in BR then

| T (u0, g, u)− T (u0, g, v) |X≤ c | u− v |X (2RT 1/4 + 2R
√
T +

√
T | g |H1(0,T )).

So that, if T is small enough namely

c(2RT 1/4 + 2R
√
T +

√
T | g |H1(0,T )) < 1

then the application u 7→ T (u0, g, u) is a contraction over (BR, | . |X).

Proposition 7 There exists a unique u defined in XT , weak solution of (2).

Proof : to prove this proposition, it is enough to apply the Banach’s fixed
point theorem for u 7→ T (u0, g, u) on BR (which is a complete metric space)
which yields local existence and uniqueness. As usual, one can then speak of
maximal solutions.

2.1.4 Continuous dependance

Proposition 8 The solution u depends continuously on u0 in
L2((1 + x2)dx) and g in H1

loc(IR
+).

Proof : once again, this follows from Proposition 4 for small times. Namely,
applying proposition 4, one gets :

| u− v |X≤ c(T0) | u0 − v0 | +c
√
T (| g |H1 + | h |H1 +1+ | u |X) | g− h |H1(0,T )

+c
√
T | u− v |X (| h |H1 + | u |X + | v |X) + cT 1/4 | u− v |X (| u |X + | v |X)).

Then if u0 tends towards v0 in L2(1 + x2) and if g tends towards h in H1 one
gets that u tends towards v in XT . These results were obtained locally in time.
But, since the time interval where this result holds depends only on | u0 | and
| g |H1 , it can be extended as long the solution exists, which ends the proof of
Theorem 3.
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2.2 Global existence and uniqueness for the quarter-
plane problem (L = +∞)

We introduce the space :

X̃T := {w ∈ C([0, T ];L2(IR+, (1+x2)dx)), such that wx ∈ L2(0, T ;L2(IR+, (1+x)dx)),
√
twx ∈ L∞(0, T ;L2(IR+, (1 + x)dx)),

√
twxx ∈ L2(0, T ;L2(IR+, dx))}.

Theorem 4 Let u0 in L2(IR+, (1 + x2)dx), g in H1
loc(IR

+). Then, there exists
a unique u in C(IR+;L2(IR+, (1 + x2)dx)) solution of (1) such that u belongs
to X̃T for all T > 0. Moreover, for all t > 0, u belongs to C([t,+∞[;H2) and
for all t > 0, u(x, t) is the solution obtained by Bona and Winther.

Proof : All the estimates obtained in the previous section apply to the
quarter plane problem (L = +∞) since they are uniform with respect to L.
This gives local existence and uniqueness in the space X̃T . In order to prove
that the solution is global, we need to establish some energy estimate. For the
sake of simplicity, we compute them in the case g ≡ 0. The general case can
be handle as in [3] using the change of function v = u− g(t)e−x.
Multiplying the equation by u yields

d

dt

∫ +∞

0
| u |2 dx+ u2

x(0, t) = 0

namely | u |L2≤| u0 |L2 . Multiplying the equation by xu gives

d

dt

∫ +∞

0
x | u |2 dx−

∫ +∞

0
| u |2 dx− 2

3

∫ +∞

0
| u |3 dx+ 3

∫ +∞

0
u2

xdx = 0

so that
d

dt

∫ +∞

0
x | u |2 dx+ 3

∫ +∞

0
u2

xdx ≤ c+ c | ux |1/2
L2 .

And therefore
d

dt

∫ +∞

0
x | u |2 dx ≤ c,

and
∫ T

0

∫ +∞

0
u2

xdxdt ≤ cT. Multiplying by x2u leads to

d

dt

∫ +∞

0
x2 | u |2 dx−2

∫ +∞

0
x | u |2 dx−4

3

∫ +∞

0
x | u |3 dx+6

∫ +∞

0
x | ux |2 dx = 0,

which implies

d

dt

∫ +∞

0
x2 | u |2 dx+ 6

∫ +∞

0
xu2

xdx ≤ c+ c | ux |2L2 .

After integration in time, one obtains

∫ +∞

0
x2 | u |2 dx+ 6

∫ T

0

∫ +∞

0
x | ux |2 dxdt ≤ c+

∫ T

0

∫ +∞

0
u2

xdxdt.
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We therefore obtain global existence in the quarter plane. Since u(., t) in H2

for a.e. t, it is the solution of Bona and Winther.
- Now, we prove the uniqueness for the solution of (1) : we know that the

solutions u belong to L∞(0, T ;L2), that ux belong to L2(0, T ;L2), and that√
tuxx belong to L2(0, T ;L2). Let u and v be two solutions and we introduce :

w = u− v. This function satisfies wt + wx + wxxx + wux + vwx = 0. Multiply
by w and integrate the resulting expression with respect to the space variable
x on [0,+∞[, there appears :

d

dt

∫ +∞

0
w2(x, t)dx+w2

x(0, t)+2
∫ +∞

0
w2(x, t)ux(x, t)dx−

∫ +∞

0
w2(x, t)vx(x, t)dx,

namely

| ux |L∞≤
√

| ux |L2

√

| uxx |L2 = (
1

t
1

4

√

| ux |L2)(t
1

4

√

| uxx |L2).

But, we have | ux |
1

2

L2∈ L4
t , t

1

4

√

| uxx |L2 ∈ L4
t , t

−1

4 ∈ L4−ε
t then | ux |L∞∈

L1
t , ∀ε ∈]0, 1[ since 1

4−ε
+ 1

4
+ 1

4
< 1.

3 Convergence towards the solution of the quar-

ter plane problem for the homogeneous case

(g = 0) when L tends towards +∞
For the sake of simplicity, we restrict ourselves to the case g = 0. The result
is of course valid if we suppose that g belongs to H1(IR+). The aim of this
section is to prove the following result:

Theorem 5 Consider a family of initial values uL
0 ∈ L2([0, L], (1 + x2)dx)

such that

sup
L≥1

∫ L

0
|uL

0 |2(x)(1 + x2)dx < +∞

and such that uL
0 tends towards u0 in L2

loc(IR
+) strongly.

Then, for all T > 0, if L is large enough, uL(x, t) the solution of (2) with initial
value uL

0 is defined on [0, T ] and uL tends towards u in Lp(0, T ;L2
loc(IR

+))
strongly for all p < +∞, where u(x, t) is a solution of (1) with initial data u0.

In order to prove this theorem, we will perform some energy estimates on
the nonlinear equation. We therefore need more regular solutions:

Theorem 6 Suppose u0 in H3(0, L) and
∂3u0

∂x3
in L2((1 + x2)dx). Suppose g

in H2
loc(IR

+). Then u, the solution of (2) given by Theorem 3 satisfies uxxx ∈
XT , ∀T < TL where TL is the maximum existence time of u.
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Proof : one has to solve the integral equation T (u0, g, u) = u in the space
YT = {u ∈ XT , uxxx ∈ XT}. One finds a local in time solution, just as in
section 2. Once this local solution in YT is constructed, one shows that its
existence time as a solution in YT is the same as that as a solution in XT by
standard means. We omit the details.

3.1 Behavior of the existence time.

We prove :

Proposition 9 One has lim
L→+∞

TL = +∞.

In order to prove this result, we will use some estimates of u in L∞(0, T ;H1).
Since the initial value is not in H1, this is clearly not possible. However, for
allmost avery t > 0, the solution u(·, t) lies in H1. We therefore consider the
initial value problem at some new origine of time tL such that u(·, tL) ∈ H1.
An uniform control (with respect to L) of |u(·, tL)|H1 is given in the following
lemma:

Lemma 4 For all L > 0 there exists a time tL such that

∫ L

0
(1 + x)u2

x(x, tL)dx ≤ 4c

T2

,

where T2 is the existence time given in section 2. This time T2 is independent
of L.

This lemma is easily proven by contradiction using the fact that

∫ T2

0

∫ L

0
(1 + x)u2

x(x, t)dxdt

is bounded independently of L.

In order to show that TL tends toward +∞, we will consider problem (2)
with initial data u(·, tL). For the sake of simplicity, we still note t = 0 and
u0 = u(·, tL).

We now adapt the method used in [9] for global existence for small data
and we introduce the time dependent function X :

X(t) = sup(
∫ t

0
| (1 +

√
x)u |4L∞ (s)ds, 1).

We remark that X(t) is nondecreasing and X(t) ≥ 1.
We also introduce the fonction Y defined by

Y (t) =
∫ L

0
(1 + x)(u2

x − u2 − u3/3)dx.
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The idea of the proof is to show that X(t) controls the norm |u| of the so-
lution. Then one proves that X(t) also controls Y (t) which itself controls

|(1 +
√

(x))ux|L2 . We therefore obtain an inequality for X(t) in which the
coefficients of the nonlinear terms are always proportionnal to some positive
power of 1/L.

Estimates on X:
We consider the IBVP (2) with g = 0. Multiplying by u gives

d

dt

∫ L

0
u2(x, t)dx+ u2(L, t) +

2

3
u3(L, t) + u2

x(0, t) = 0.

Integrate in the temporal variable leads to

∫ L

0
u2(x, t)dx−

∫ L

0
u2

0(x)dx+
∫ t

0
u2

x(0, s)ds ≤
1

L3/2

∫ t

0
| (1 +

√
x)u |3L∞ (s)ds.

Thanks to the Cauchy-Schwarz inequality, one gets

∫ L

0
u2(x, t)dx+

∫ t

0
u2

x(0, s)ds ≤ c0 +
t1/4

L3/2
X(t)3/4, (29)

where c0 =
∫ L

0
u2

0(x)dx. Multiplying by xu leads to

d

dt

∫ L

0
xu2dx−

∫ L

0
u2dx+Lu2(L, t)+

2

3
Lu3(L, t)− 2

3

∫ L

0
u3dx+3

∫ L

0
u2

xdx = 0.

We control
∫ L

0
u3dx by

|u|L2|u|L∞ ≤ C|u|5/2
L2 |ux|1/2

L2 ≤ |ux|2L2 + C|u|10L2

in order to obtain with (29)

d

dt

∫ L

0
xu2dx+ 2

∫ L

0
u2

xdx ≤ C + C
t1/2

L3/2
X5/3 − 2

3
Lu3(L, t).

Integrate this expression over (0, t) and since the function X(t) is non decreas-
ing, one gets

∫ L

0
xu2(x, t)dx+ 2

∫ t

0

∫ L

0
u2

x(x, s)dxds ≤ c+ ct+
ct1/2

√
L
X5/3(t). (30)

Multiplying the equation by the flux u+ u2/2 + uxx gives

d

dt

∫ L

0
(u2

x − u2 − u3/3)dx+ u2
xx(0, t) ≤ 2u2(L, t) + u4(L, t).

Multiplying the equation by x(u+ u2/2 + uxx) leads to

d

dt

∫ L

0
x(u2

x − u2 − u3/3)dx ≤ (u+
1

2
u2)2(L, t).
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Therefore

Y ′(t) ≤ 2(u+
1

2
u2)2(L, t)

and by integration in time, it follows

Y (t) ≤ 4
t1/2

L
X(t)1/2 +

2

L2
X(t).

Plugging in this last expression the value of Y (t) gives

∫ L

0
(1 + x)u2

x(x, t)dx ≤ C + C
t1/2

L
X(t) +

∫ L

0
(1 + x)(u2 +

u3

3
)(x, t)dx.

Using (29) and (30) leads to

∫ L

0
(1+x)u2

x(x, t)dx ≤ C+C
t1/2

L
X(t)+Ct+C

t1/2

L1/2
X5/3+ |ux|1/2

L2 |(1+
√
x)u|5/2

L2 .

Using Young’s inequality in this last expression yields:

∫ L

0
(1 + x)u2

x(x, t)dx ≤ C + C

(

t+
t1/2

√
L
X5/3

)10/3

. (31)

On the other hand, the definition of X implies (using (29), (30) and (31))

X ′(t) ≤| (1 +
√
x)u |4L∞≤ C

(

1 + t+
t1/2

√
L
X5/3

)13/3

.

Integrating this inequality in the temporal variable yields :

X(t) ≤ 1 + C

(

1 + t+
t1/2

√
L
X5/3

)13/3

,

that is

X(t) ≤ C

(

1 + t6 +
t4

L2
X8

)

. (32)

We are now able to prove proposition 9.
Note first that function X(t) controls the norm |u| of the solution. There-

fore, in order to conclude, we only need to prove that X(t) is bounded on a
time interval which length tends to infinity as L→ +∞.

Take T > 0 and let R = 2C(1 + T )6. It follows from X(0) = 1 by con-
tinuation the existence of T ′ in ]0, T ] such that sup

t∈[0,T ′]
X(t) ≤ R, hence (32)

implies

sup
t∈[0,T ′]

X(t) ≤ R

2
+ CT 4R8/L2.

Choosing T such that CT 4R7/L2 ≤ 1/4 leads to sup
t∈[0,T ′]

X(t) ≤ 3R/4. This

condition is fullfilled as soon as T 427C7(1 + T 6)7/L2 ≤ 1/4 which is satisfied
if T ∼ Lα for some α > 0. By continuation, it follows T ′ = T. Hence, the
existence time TL tends towards +∞ when L tends towards +∞.
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3.2 End of proof of Theorem 5

Proof : let us take T > 0. Thanks to the preceeding proposition, if L is
large enough, uL is defined at least on [0, T ] and is bounded in L2(0, T ;H1

loc).
Moreover ∂tu

L is bounded in L2(0, T ;H−2
loc ). Therefore standard compactness

argument yields convergence in C([0, T ];H−s) ∩ Lp(0, T ;L2
loc) strongly for all

s > 0 and p < +∞ and in L2(0, T ;H1) weakly towards some function u(x, t)
lying in the same space. Therefore, u(0, t) and u(x, 0) make sense and are
equal respectively to g(t) and u0(x). Thanks to the strong compactness, it
is straightforward that u satisfies the Korteweg-de Vries equation. Therefore,
u is solution to the quaterplane problem. Since the limit is unique, all the
sequence uL converges towards u.

4 Numerical approximation.

The aim of this section is to present a very simple finite-difference scheme for
problem (2) on the space interval [0, 1].

4.1 Description of the scheme and proof of its stability.

We take a time-step δt and a space-step δx. We denote by yn
i the approximate

value of the solution at time nδt and at the point iδx.
We denote by XN the following space of finite sequences

XN = {y = (y0, y1, · · · , yN) ∈ IRN+1, with y0 = 0 and yN = yN−1 = yN−2}

endowed with the following inner product

∀(y, z) ∈ X2
N , (y, z) = δx

N−2
∑

i=1

yizi

and by the associated norm

|y| = (y, y)1/2.

We also introduce the classical difference operators:

(D+y)i =
yi+1 − yi

δx
and (D−y)i =

yi − yi−1

δx

We first consider the linear problem asociated to (2):































ut + uxxx = 0, x ∈ [0, 1], t ≥ 0,

u(0, t) = ux(1, t) = uxx(1, t) = 0 for t ≥ 0,

u(x, 0) = u0(x), for x ∈ [0, 1]

(33)
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The scheme associated to (33) reads:

(S)
yn+1 − yn

δt
+D+D+D−yn+1 = 0,

that is :

yn+1
i − yn

i

δt
+



















































































3yn+1
1 − 3yn+1

2 + yn+1
3

δx3
for i = 1

yn+1
i+2 − 3yn+1

i+1 + 3yn+1
i − yn+1

i−1

δx3
for i = 2, · · · , N − 4

−2yn+1
N−2 + 3yn+1

N−3 − yn+1
N−4

δx3
, for i = N − 3

yn+1
N−2 − yn+1

N−3

δx3
, for i = N − 2



















































































= 0.

One first has

Proposition 10 For all y ∈ XN , one has:

(D+D+D−y, y) =
1

2
(D−y)2

1 +
δx

2
|D+D−y|2.

Before to prove this result, we remark that

Corollary 1 For any yn ∈ XN there exists an unique yn+1 satisfying (S).

Proof: It is straightforward from proposition 10, since the matrix I+δtD+D+D−

is clearly definite, positive.
We return now to the proof of proposition 10. We first prove:

Lemma 5 For all sequences z and y such that zN−1 = 0 and y0 = 0, one has

(D+z, y) = −(z,D−y).

This formula is well-known, we omit the proof.

It follows that, applying lemma 5 with z = D+D−y:

∀y ∈ XN , (D+D+D−y, y) = −(D+D−y,D−y). (34)

In order to conclude, we need:

Lemma 6 For any sequence z, one has

(D+z, z) =
1

2
z2

N−1 −
1

2
z2
1 −

δx

2
|D+z|2.
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Proof:
1

δx
(D+z, z) =

N−2
∑

i=1

zi+1 − zi

δx
zi

= −1

2

N−2
∑

i=1

z2
i − z2

i+1

δx
− 1

2δx
(zi+1 − zi)

2,

where we have used the inequality

(a− b)a =
1

2
(a2 − b2) +

1

2
(a− b)2. (35)

The lemma follows.

Proposition 10 is then obtained thanks to (34) and lemma 6.

The following estimate shows that the scheme (S) is l2-stable

Proposition 11 For any yn satisfying (S), one has

|yn|2 + δt
n
∑

k=0

δt

∣

∣

∣

∣

∣

yk+1 − yk

δt

∣

∣

∣

∣

∣

2

+
n
∑

k=0

δt|(D−yk)1|2 + δx
n
∑

k=0

δt|D+D−yk|2 = |y0|2.

Proof: Take the inner product of (S) with yn+1, apply proposition 33 and
equality 35.

In order to obtain the unconditionnal stability for the nonlinear version of
the scheme, we will find a discrete estimates that is equivalent to that of ux in
L2(0, T ;L2) in the continuous case. Let us denote by x the sequence xi = iδx.
One has:

Proposition 12 For all yn satisfying (S), one has

|yn|2 + δt
n
∑

k=0

δt

∣

∣

∣

∣

∣

√
x

(

yk+1 − yk

δt

)
∣

∣

∣

∣

∣

2

+δt
n
∑

k=0

(

3|zk|2 + δx
N−3
∑

i=2

δx(i− 1)δx|(D+zk)i|2+

δx(N − 2)(zk
N−1 − zk

N−2)
2 + δx(zk

2 − zk
1 )2
)

= |y0|2,

where zk = D−yk.

Proof: As in the continuous case, one takes the inner product of (S) with
xyn+1. We omit the details.
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We therefore have obtained

Proposition 13 There exists a constant C > 0 (independent of δx and δt)
such that any solution (yn)n=0,···,p ∈ Xp+1

N to

yn+1 − yn

δt
+D+D+D−yn+1 = 0

satisfies

sup
k=0,···,p

|yk|2 + δt
p
∑

k=0

|yk|21 ≤ C|y0|2.

where |y|1 = |D+y|.

Since XN endowed with the norm |y|X = |y| + |y|1 is an algebra, i.e. there
exists C independent of δx such that

∀y, z ∈ XN , |yz|X ≤ C|y|X |z|X

the existence proof of the continuous case of [9] applies in the discret nonlinear
case for any discretisation of the nonlinear part, for example fn = 1

2
D−(yn)2

or ynD−yn. One gets

Theorem 7 Let y0,δx ∈ XN be such that lim sup
δx→0

|y0,δx| < +∞. There ex-

ists ε0 > 0 such that if δt ≤ ε0, there exists T > 0 and a unique solution
(yn,δx,δt)n=0,···,[T/δt] to

yn+1 − yn

δt
+D+D+D−yn+1 = fn

Moreover, there exits a constant C independent of δt and δx such that

sup
k=0,···,p

|yk,δx,δt|2 + δt
p
∑

k=0

|yk,δt,δx|21 ≤ C|y0|2.

This result means that independently of the discretization of the nonlinear
term, the scheme is unconditionnally stable.

4.2 Some numerical results.

We have implemented the scheme (S) using Scilab. The discretization used
for the nonlinear term is explicit and is ynD+yn.
Performing a change of variables, we have solved the initial boundary value
problem on [0, L] with L = 10:

ut +
1

L
uux +

1

L3
uxxx = 0.
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We have taken δt = 2, 5.10−5, δx = 5.10−5. We compute the solution during
4800 iterations in time, that is on the time interval [0, T ] with T = 0.12. The
initial value is

u0(x) =
α

cosh2(βL(x− 1/2))
+

4α

cosh2(4βL(x− 1/4))
.

with α = 12β2 and β = 2. This correspond to the superposition of two
solitons with different speeds. The biggest one (which is also the fastest) is
at the begining behind the smallest. In fig.1 we have represented the solution
at time ti = iT/8 for i = 0, · · · , 8. The result is correct since one obtains the
nonlinear interaction. However, it is less precise than the results obtained in
[6] (or [1] for systems) in the periodic framework with higher order schemes.
Here, our scheme is obviously of order one in time and space.

Figure 1: Interaction of two solitons.

These simultations show that this kind of boundary conditions can be used in
order to compute solutions to the KdV equation without beeing in the periodic
framework.
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