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. On obtient des effets régularisants globaux uniformes par rapport à la longueur de l'intervalle et nous montrons que la solution du problème aux limites converge, lorsque la longueur de l'intervalle tend vers l'infini, vers la solution du problème posé sur le quart de plan t > 0, x > 0. Nous proposons un schéma aux différences finies très simple pour le problème sur [0, 1] et montrons sa stabilité.

. We obtain global smoothing effects that are uniform with respect to the size of the interval. This allows us to show that the solution of the boundary value problem converges, as the size of the interval converges to infinity, towards the solution of the quarter-plane problem. We also propose a simple finite differents scheme for the problem on [0, 1] and prove its stability.

1 Introduction and statements of the results

Introduction

The Korteweg-de Vries equation has been introduced in [START_REF] Korteweg | On the change of the form of long waves advancing in a rectangular canal and on a new type of long stationary waves[END_REF] in order to describe the propagation of long water waves in a channel. If u(x, t) denotes the elevation of the free surface of the flow with respect to the equilibrium position at time t and at the position x, this function satisfies u t + u x + uu x + u xxx = 0, for t > 0 and x ∈ IR.

The pure Cauchy problem on the whole line for this equation has been extensively studied, see for example [START_REF] Temam | Sur un problème non linéaire[END_REF], [START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF] for regular initial data. Recent results shows that the Cauchy problem is well-posed in L 2 [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations[END_REF] or even in negative order Sobolev spaces [START_REF] Kenig | A bilinear with estimate with applications to the KdV equation[END_REF]. In laboratory experiments, the wave is created by a "wave maker" at one of the extremities of the channel. In order to describe 1 this situation, J. L. Bona and R. Winther have considered the Korteweg-de Vries equation in a quarter-plane [START_REF] Bona | The Korteweg-de Vries equation, posed in a quarter-plane[END_REF], [START_REF] Bona | The Korteweg-de Vries equation in a quarter-plane, continuous dependence results[END_REF]:

     u t + u x + uu x + u xxx = 0, x ≥ 0, t ≥ 0,
u(0, t) = g(t), t ≥ 0, u(x, 0) = u 0 (x), x ≥ 0.

(1) One of the results that is obtained reads as follows:

Theorem 1 (J.L. Bona, R. Winther) Suppose u 0 in H 4 (IR + ) and g in H 2 loc (IR + ) satisfy the compatibility conditions u 0 (0) = g(0), g ′ (0) + (∂ x u 0 + u 0 ∂ x u 0 + ∂ 3

x u 0 )(0) = 0, then there exists a unique solution u ∞ in L ∞ loc (IR + , H 4 (IR + )) of (1).

In [START_REF] Colin | Un problème mixte pour l'équation de Korteweg-de Vries sur un intervalle borné[END_REF], [START_REF] Colin | An initial-boundary-value problem for the Korteweg-de Vries equation posed on a finite interval[END_REF], [START_REF] Colin | Un problème aux limites pour l'équation de Korteweg-de Vries sur un intervalle borné[END_REF], an initial-boundary-value problem for the Korteweg-de Vries equation is studied:

               u t + u x + uu x + u xxx = 0, x ∈ [0, L], t ∈ [0, T [, u(0, t) = g(t), t ∈ [0, T [, u x (L, t) = 0, t ∈ [0, T [, u xx (L, t) = 0, t ∈ [0, T [, u(x, 0) = u 0 (x), x ∈ [0, L], (2) 
where L > 0, T ∈]0, +∞[ and the following local existence theorem is established:

Theorem 2 (T. Colin, J.M. Ghidaglia) Let u 0 be in H 1 (0, L) and g be in C 1 (IR + ) satisfy the compatibility condition u 0 (0) = g(0). Then there exists T L > 0 and a function u L in L ∞ (0, T L ; H 1 (0, L)) ∩ C([0, T L ]; L 2 (0, L)) which solves [START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF]. Moreover, if |u 0 | H 1 and |g| H 1 (IR + ) are small enough, then T L = +∞. This result is proved by energy methods using a long-wave type regularisation introduced in [START_REF] Bona | The Korteweg-de Vries equation, posed in a quarter-plane[END_REF]. In [START_REF] Colin | An initial-boundary-value problem for the Korteweg-de Vries equation posed on a finite interval[END_REF], some parabolic type smoothing effects are also proved for [START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF] and this leads to a local existence theorem in L 2 for the nonlinear problem. These smoothing effects are obtain by multiplying the equation by xu and none of the results given in [START_REF] Colin | An initial-boundary-value problem for the Korteweg-de Vries equation posed on a finite interval[END_REF] are uniform with respect to the size of the interval. Note that these smoothing effects were also discovered for the quarter-plane by Bona and Winther [5].

The aim of this paper is to obtain a similar result but uniformly with respect to L ; that is existence of u L on [0, T L [ for u L 0 in L 2 ([0, L]) with T L → +∞ and u L → u ∞ when L tends towards +∞ provided that L 0 (1 + x 2 )(u L 0 ) 2 (x)dx is bounded independently of L and where u ∞ is the solution to the quarter-plane problem.

This paper is organized as follows. We first prove the existence of a time T min depending only on | g | H 1 and | u 0 | L 2 ((1+x 2 )dx) but not on L such that u L exists on [0, T min ] thanks to uniform (with respect to L) smoothing effects (section 2). This construction will also give uniform bounds on u L that will allow us to perform the limit L → +∞. We show that the existence time T L tends to +∞ as L tends towards +∞ (see section 3). A by-product of the proof is that the quarter-plane problem is globally well-posed in the space L 2 ((1 + x 2 )dx). In section 4, we present a finite different scheme for the initialboundary-value problem (2) ; we prove its stability and present some numerical experiments.

Our main result reads as follows (Theorem 5):

Theorem Consider a family of initial values u L 0 ∈ L 2 ([0, L]) such that sup L≥1 L 0 |u L 0 | 2 (x)(1 + x 2 )dx < +∞
and such that u L 0 tends towards u 0 in L 2 loc (IR + ) strongly. Then, for all T > 0, if L is large enough, u L (x, t) the solution of (2) with initial value u L 0 is defined on [0, T ] and u L tends towards u in L p (0, T ; L 2 loc (IR + )) strongly for all 1 ≤ p < +∞, where u(x, t) is a solution of (1) with initial data u 0 .

Notations and basic assumptions

Let X be a Banach space, 1 ≤ p ≤ +∞ and -∞ ≤ a < b ≤ +∞. The notation L p (a, b; X) denotes the Banach space of measurable functions u : (a, b) → X whose norms are p th-power integrable (essentialy bounded if p = +∞). There are endowed with the norm :

| u | p L p (a,b;X) = b a | u(., t) | p X dt if p < +∞ and | u | L ∞ (a,b;X) = sup t∈(a,b) | u(., t) | X if p = +∞.
In this paper, we assume that for 0 < L < +∞ the initial data u 0 belongs to L 2 (0, L) and that xu 0 belongs to L 2 (0, L) and we introduce | . | which denotes the L 2 ((1 + x 2 )dx) norm :

| u 0 |=| u 0 | L 2 ((1+x 2 )dx) = L 0 (1 + x 2 )u 2 0 (x)dx.
We introduce the space :

E := {f ∈ L 1 (0, T ; L 2 ((1 + x 2 )dx)), √ tf ∈ L 2 (0, T ; L 2 ((1 + x 2 )dx))}
endowed with the norm :

| f | E = T 0 L 0 (1 + x 2 )f 2 (x, t)dxdt + T 0 L 0 t(1 + x 2 )f 2 (x, t)dxdt.
2 Existence and uniqueness for the non homogeneous case (g = 0)

2.1 Local existence and uniqueness on [0, L], L < +∞ Let T > 0. We introduce the space :

X T := {w ∈ C([0, T ]; L 2 ((1 + x 2 )dx)), w x ∈ L 2 (0, T ; L 2 ((1 + x)dx)), √ tw x ∈ L ∞ (0, T ; L 2 ((1 + x)dx)), √ tw xx ∈ L 2 (0, T ; L 2 )}.
This space is endowed with the norm :

| w | X :=| w | L ∞ (0,T ;L 2 ((1+x 2 )dx)) + | w x | L 2 (0,T ;L 2 ((1+x)dx)) + | √ tw x | L ∞ (0,T ;L 2 ((1+x)dx)) + | √ tw xx | L 2 (0,T ;L 2 ) .
For u 0 in L 2 (0, L), the unique solution of the linear homogeneous system

               u t + u x + u xxx = 0, x ∈ [0, L], t ∈ [0, T [, u(0, t) = 0, t ∈ [0, T [, u x (L, t) = 0, t ∈ [0, T [, u xx (L, t) = 0, t ∈ [0, T [, u(x, 0) = u 0 (x), x ∈ [0, L], (3) 
is denoted S(t)u 0 (see [START_REF] Colin | An initial-boundary-value problem for the Korteweg-de Vries equation posed on a finite interval[END_REF], [START_REF] Colin | Un problème aux limites pour l'équation de Korteweg-de Vries sur un intervalle borné[END_REF] for the construction of this semi-group). Let φ be a smooth function defined over IR + such that φ(0) = 1 and φ(x) = 0, ∀x ≥ 1.

The definition of a weak solution for the system (2) is the following :

Definition 1 A weak solution to (2) on [0, T ] is a function u(x, t) ∈ X T such that ũ(x, t) = u(x, t) -φ(x)g(t) satisfy ũ(x, t) = S(t)ũ 0 (x)- t 0 S(t -s){(ũ(x) + φ(x)g(s))(ũ x (x, s) + φ ′ (x)g(s)) +g(s)(φ ′ (x) + φ ′′′ (x)) + φ(x)g ′ (s)}ds,
where ũ0 (x) = u 0 (x) -φ(x)g(0).

The existence Theorem on [0, T min ], T min being independent of L, depending only on | g | H 1 and | u 0 | reads as follows :

Theorem 3 Let u 0 be in L 2 ((1 + x 2 )dx), g be in H 1 loc (IR + ) and 0 < L < +∞. Then there exists a unique weak maximal solution defined over [0, T L [ to (2). Moreover, there exists T min > 0 independent of L, depending only on | u 0 | and | g | H 1 such that T L ≥ T min . The solution u depends continuously on u 0 and g in the following sense : let a sequence u n 0 converging towards u 0 in L 2 ((1 + x 2 )dx), let a sequence g n converging towards g in H 1 loc (IR + ) and denote by u n the solution with data (u n 0 , g n ) and T n L its existence time. Then

lim inf n→+∞ T n L ≥ T L
and for all T < T L , u n exists on the interval [0, T ] if n is large enough and u n tends towards u in X T .

In order to prove this result, we first state some smoothing effects for (3), i.e. in the linear case (cf section 2.1.1). Then, in section 2.1.3, we use these estimates in the non linear case in a fixed point procedure.

Uniform estimates on the solutions to the linear homogeneous problem

In this section we consider the linear problem (3). The following proposition gives more precise results that those of [START_REF] Colin | An initial-boundary-value problem for the Korteweg-de Vries equation posed on a finite interval[END_REF]:

Proposition 1 Let u 0 be in L 2 (0, L). There exists a continuous function t → c(t) such that | u | L ∞ (0,T ;L 2 ((1+x 2 )dx)) ≤ c(T ) | u 0 |, (4) 
| u x | L 2 (0,T ;L 2 ((1+x)dx)) ≤ c(T ) | u 0 | , (5) 
| u x (0, t) | L 2 (0,T ) ≤ c(T ) | u 0 |, (6) 
| √ tu x | L ∞ (0,T ;L 2 ) ≤ c(T ) | u 0 |, (7) 
| √ tu x (0, t) | L 2 (0,T ) + | √ tu xx (0, t) | L 2 (0,T ) ≤ c(T ) | u 0 |, (8) 
| √ tu x | L ∞ (0,T ;L 2 ((1+x)dx)) ≤ c(T ) | u 0 |, (9) 
| √ tu xx | L 2 (0,T ;L 2 ) ≤ c(T ) | u 0 | . ( 10 
)
Proof : multiplying (3) by u, xu, x 2 u, one gets the estimates (4), ( 5), [START_REF] Bona | Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation[END_REF]. Let us recall how one obtains (5) which is the more surprising estimate since it gives a smoothing effect. Multiplying (3) by u and integrating on [0, L] give

d dt L 0 |u| 2 dx + u 2 (L, t) + u 2 x (0, t) = 0. (11) 
Multiplying (3) by xu and integrating on [0, L] yield 1 2

d dt L 0 x|u| 2 dx + L 0 xu x udx + L 0 xu xxx udx = 0.
Integrating by parts gives, using the boundary conditions:

d dt L 0 x|u| 2 dx - L 0 |u| 2 dx + 3 L 0 u 2 x + Lu 2 (L, t) = 0,
which implies (5) thanks to [START_REF] Kenig | A bilinear with estimate with applications to the KdV equation[END_REF]. Taking the L 2 inner product of (3) with u xx , one obtains d dt

L 0 u 2 x (x, t)dx + u 2 x (0, t) + u 2 xx (0, t) = 0. (12) 
Multiplying ( 12) by s and integrating the resulting expression in the temporal variable over (0, t), one obtains after integration by parts and by using (5) the inequalities [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations[END_REF] and [START_REF] Colin | Un problème mixte pour l'équation de Korteweg-de Vries sur un intervalle borné[END_REF]. Multiply (3) by xu xx leads to

d dt L 0 xu 2 x (x, t)dx + 2u x (0, t)u xx (0, t) - L 0 u 2 x (x, t)dx + 3 L 0 u 2 xx (x, t)dx = 0. ( 13 
) Taking the product of ( 13) by s, integrating the resulting expression in the temporal variable over (0, t), integrating by parts and using Cauchy-Schwarz inequality give :

t L 0 xu 2 x (x, t)dx + 3 t 0 s L 0 u 2 xx (x, s)dxds ≤ t 0 L 0 xu 2 x (x, t)dxds + t 0 s L 0 u 2 x (x, s)dxds + 2 t 0 su 2 x (0, s)ds t 0 su 2 xx (0, s)ds.
The two first terms on the right-hand side of the above inequality are bounded thanks to the inequality ( 5) and the last term thanks to the inequality ( 8). This gives inequalities ( 9) and (10).

Non-homogeneous linear estimates

Thanks to standard duality technics, we obtain estimates that are independent of L for the non homogeneous linear system

               v t + v x + v xxx = f (x, t), x ∈ [0, L], t ∈ [0, T [, v(0, t) = 0, t ∈ [0, T [, v x (L, t) = 0, t ∈ [0, T [, v xx (L, t) = 0, t ∈ [0, T [, v(x, 0) = 0, x ∈ [0, L]. (14) 
Proposition 2 There exists a continuous function

t → c(t) such that if f belongs to E | v | L ∞ (0,T ;L 2 ((1+x 2 )dx)) ≤ c(T ) | f | L 1 (0,T ;L 2 ((1+x 2 )dx)) , (15) 
| v x | L 2 (0,T ;L 2 ((1+x)dx)) ≤ c(T ) | f | L 1 (0,T ;L 2 ((1+x 2 )dx)) , (16) 
| v x (0, t) | L 2 (0,T ) ≤ c(T ) | f | L 1 (0,T ;L 2 ((1+x 2 )dx)) , (17) 
| √ tv x | L ∞ (0,T ;L 2 (1+x)) ≤ c(T ) | f | E , (18) 
| √ tv x (0, t) | L 2 (0,T ) ≤ c(T ) | f | E , (19) 
| √ tv xx (0, t) | L 2 (0,T ) ≤ c(T ) | f | E , (20) 
| √ tv xx | L 2 (0,T ;L 2 (dx)) ≤ c(T ) | f | E , (21) 
| v x | L ∞ (0,T ;L 2 ((1+x)dx)) ≤ c(T ) | f | L 2 (0,T ;L 2 ((1+x 2 )dx)) , (22) 
| v x (0, t) | L 2 (0,T ) + | v xx (0, t) | L 2 (0,T ) ≤ c(T ) | f | L 2 (0,T ;L 2 ((1+x 2 )dx)) , (23) 
| v xx | L 2 (0,T ;L 2 (dx)) ≤ c(T ) | f | L 2 (0,T ;L 2 ((1+x 2 )dx)) . (24) 
Proof : estimates (15), ( 16), (17) are dual of ( 4) and ( 5) since one has

v(x, t) = t 0 S(t -s)f (x, s)ds.
The inequality ( 15) is an obvious consequence of inequality [START_REF] Bona | The Korteweg-de Vries equation in a quarter-plane, continuous dependence results[END_REF]. In order to prove the estimates ( 16) and ( 17), we introduce ψ(t) in L 2 (0, T ) and compute:

| T 0 | v x | L 2 ((1+x)dx) ψ(t)dt |≤ T 0 t 0 | ∂ x S(t -s)f (x, s) | L 2 ((1+x)dx) ds | ψ(t) | dt ≤ T 0 T s | ψ(t) || ∂ x S(t -s)f (x, s) | L 2 ((1+x)dx) dtds thanks to Fubini's theorem ≤ T 0 ( T 0 | ψ(t) | 2 dt 1/2 T 0 | ∂ x S(t -s)f (x, s) | 2 L 2 ((1+x)dx) dt 1/2 ds thanks to Cauchy-Schwarz inequality ≤ c T 0 | ψ(t) | 2 dt 1/2 T 0 | f (., s) | L 2 ((1+x 2 )dx) ds thanks to (5) ≤ c T 0 | ψ(t) | 2 dt 1/2 | f | L 1 (0,T ;L 2 ((1+x 2 )dx)) .
Inequality (16) therefore follows. By an analogous argument, we have the estimate (17). In order to obtain (18), ( 19), ( 20), (21) we multiply (14) by v xx :

d dt L 0 v 2 x (x, t)dx + v 2 x (0, t) + v 2 xx (0, t) = -2 L 0 f (x, t)v xx (x, t)dx. (25) 
Multiplying ( 14) by xv xx gives

d dt L 0 xv 2 x (x, t)dx - L 0 v 2 x (x, t)dx + 3 L 0 v 2 xx (x, t)dx + 2v x (0, t)v xx (0, t) = -2 L 0 v x (x, t)f (x, t)dx -2 L 0 xv xx (x, t)f (x, t)dx. ( 26 
)
The combination 2×(25)+(26) shows that

d dt L 0 (2 + x)v 2 x (x, t)dx + v 2 x (0, t) + v 2 xx (0, t) + 2 L 0 v 2 xx (x, t)dx ≤ 2 L 0 v 2 x (x, t)dx + c L 0 (1 + x 2 )f 2 (x, t)dx. (27) 
Multiplying ( 27) by s and integrate in the temporal variable over (0, t) leads to the estimates (18), ( 19), ( 20), (21) thanks to the inequality (15). We finally integrate (27) over (0, t) and inequalities ( 22), ( 23), (24) now follow and the proposition 2 is proved.

Nonlinear case

We now prove in this section a local existence result for the nonlinear system (2).

Proposition 3 Assume that L ≥ 1 and g(0) = u 0 (0) then there exists a time T > 0 independent of L and an unique weak solution u of (2) on [0, T ].

Proof : the proof is splitted in three steps. 1. First, we make a relevement of the boundary data as follows. Recall that φ is a smooth function over IR + such that

φ(0) = 1, φ(x) = 0, ∀x ≥ 1 and let ũ be defined by ũ(x, t) = u(x, t) -φ(x)g(t). System (2) becomes                ũt + ũx + ũxxx = -F (ũ, ũx , g), x ∈ [0, L], t ∈ [0, T [, ũ(0, t) = 0, t ∈ [0, T [, ũx (L, t) = 0, t ∈ [0, T [, ũxx (L, t) = 0, t ∈ [0, T [, ũ(x, 0) = u 0 (x) -φ(x)g(0), x ∈ [0, L],
where

F (ũ, ũx , g) = (ũ + φg)(ũ x + φ ′ g) + g(φ ′ + φ ′′′ ) + φg ′ .
As a result, we have transformed the original problem (2) into a problem with a Dirichlet boundary condition g = 0. In what follows, in order to simplify the notations, we omit the tilde and we still denote the unknow by u instead of ũ.

2. We write u(x, t) = S(t)u 0 (x) -t 0 S(t -s)F (u, u x , g)(s)ds where S(t) is the linear semi-group introduced in the section 2.1. We refer to section 2.1.1 for the part S(t)u 0 and to section 2.1.2 for the part t 0 S(t -s)F (u, u x , g)(s)ds. We introduce the following functional T defined by

T (u 0 , g, u) := S(t)u 0 (x) - t 0 S(t -s)F (u, u x , g)(s)ds.

One has

Lemma 1 There exists a constant c(T ) depending on T , independent of L such that for all u 0 ∈ L 2 (0, L) :

| S(t)u 0 | X ≤ c(T ) | u 0 |
and the map T → c(T ) is continuous.

Proof : it is an obvious consequence of inequalities ( 4), ( 5), ( 9), [START_REF] Colin | Un problème aux limites pour l'équation de Korteweg-de Vries sur un intervalle borné[END_REF].

For the non homogeneous problem the following lemma holds :

Lemma 2 There exists a constant c(T ) depending on T , independent of L such that for all f in

E | t 0 S(t -s)f (s)ds | X ≤ c(T ) | f | E and the map T → c(T ) is continous.
Proof : it is an obvious consequence of inequalities (15),( 16), ( 18), (21).

3. Contraction procedure : we begin with a lemma :

Lemma 3 For all w in H 1 ([0, L]) such that w(0) = 0, one has | √ xw | L ∞ ≤ 5 | w | L 2 (1+x) | w x | L 2 (1+x) + | w | L 2 (1+x) . (28) 
Proof : first, one has

sup 0≤x≤1 | √ xw |≤ sup 0≤x≤1 | w |≤| w | L ∞ ≤ √ 2 | w | L 2 | w x | L 2
since w(0, t) = 0. Concerning x ≥ 1, one has :

sup x≥1 | √ xw |≤| w(1) | + √ 2 | √ xw | L 2 | ∂ ∂x ( √ xw) | L 2 since w(0) = 0 ≤ √ 2 | w | L 2 | w x | L 2 + √ 2 | √ xw | L 2 | w | L 2 + | √ xw x | L 2 because x ≥ 1.
Finally,

| √ xw | L ∞ ≤ 2 √ 2 | w | L 2 | w x | L 2 + √ 2 | √ xw | L 2 | w | L 2 + √ xw x | L 2 ≤ 2 √ 2 | w | L 2 (1+x) | w x | L 2 (1+x) + √ 2 | w | L 2 (1+x) | w | L 2 (1+x) + | w x | L 2 (1+x) ≤ 3 √ 2 | w | L 2 (1+x) | w x | L 2 (1+x) + √ 2 | w | L 2 (1+x) ≤ 5( | w | L 2 (1+x) | w x | L 2 (1+x) + | w | L 2 (1+x) ) (31).
The following estimate is the keypoint of this section :

Proposition 4 Suppose that u 0 , v 0 are in L 2 (0, L), g and h are in H 1 loc (IR + ), then there exists a continuous function t → c(t) such that for all T in [0, T 0 ],

| T (u 0 , g, u) -T (v 0 , h, v) | X ≤ c(T ) | u 0 -v 0 | +c(T ) √ T (| g | H 1 (0,T ) + | h | H 1 (0,T ) +1+ | u | X ) | g -h | H 1 (0,T ) +c(T )T 1/4 | u -v | X (| u | X + | v | X ) +c(T ) √ T | u -v | X (| h | H 1 (0,T ) + | u | X + | v | X ).
Proof :

We have

T (u 0 , g, u)-T (v 0 , h, v) = S(t)(u 0 -v 0 )(x)- t 0 S(t-s)(F (u, u x , g)-F (v, v x , h))(s)ds.
We introduce the following quantities :

G(s) = F (u, u x , g)(s) -F (v, v x , h)(s) = F c + F l + F nl , F c = φφ ′ (g 2 -h 2 ) + (g -h)(φ ′ + φ ′′′ ) + φ(g ′ -h ′ ), F l = (uφ ′ g -vφ ′ h) + (φgu x -φhv x ), F nl = uu x -vv x .
Thanks to the lemma 1 and 2, one gets

| T (u 0 , g, u) -T (v 0 , h, v) | X ≤ c(T ) | u 0 -v 0 | +c(| G | L 1 (0,T ;L 2 (1+x 2 )) + | √ tG | L 2 (0,T ;L 2 (1+x 2 )) ).
Now, we want to control G in L 1 (0, T ; L 2 (1 + x 2 )) and √ tG in L 2 (0, T ; L 2 (1 + x 2 )). We estimate separately the three parts of G : F c , F l and F nl .

1. The term independent of u and v (i.e F c ): On the one hand, one has

| F c | L 2 ((1+x 2 )dx) ≤ c(1+ | g(t) | + | h(t) |) | g(t) -h(t) | +c | g ′ (t) -h ′ (t) |
since φ is compactly supported. On the other hand, one gets

| F c | E ≤ √ T | F c | L 2 (0,T ;L 2 ((1+x 2 )dx) so that | F c | E ≤ c √ T (1+ | h | H 1 (0,T ) + | g | H 1 (0,T ) ) | g -h | H 1 (0,T ) since H 1 (0, T ) ⊂ L ∞ (0, T ).
2. The linear term F l :

One has for the first term of

F l | uφ ′ g -vφ ′ h | L 2 (0,T ;L 2 (1+x 2 )) ≤ | φ ′ u(g -h) | L 2 (0,T ;L 2 (1+x 2 )) + | φ ′ (u -v)h) | L 2 (0,T ;L 2 (1+x 2 )) ≤ c | g -h | L ∞ (0,T ) | u | L 2 (0,T ;L 2 (1+x)) +c | h | L ∞ (0,T ) | u -v | L 2 (0,T ;L 2 (1+x)) since φ is compactly supported ≤ c | g -h | H 1 (0,T ) | u | X +c | h | H 1 (0,T ) | u -v | X ≤ c(| u | X | g -h | H 1 (0,T ) + | u -v | X | h | H 1 (0,T ) ),
and for the second term of F l we have :

| φ(u x g -v x h) | L 2 (0,T ;L 2 (1+x 2 )) ≤ | φu x (g -h) | L 2 (0,T ;L 2 (1+x 2 )) + | φ(u x -v x )h | L 2 (0,T ;L 2 (1+x 2 )) ≤ c | g -h | L ∞ (0,T ) | u x | L 2 (0,T ;L 2 (1+x)) +c | h | L ∞ (0,T ) | u x -v x | L 2 (0,T ;L 2 (1+x)) since φ is compactly supported ≤ c | g -h | H 1 (0,T ) | u | X +c | h | H 1 (0,T ) | u -v | X .
We therefore obtain

| F l | E ≤ c √ T (| u | X | g -h | H 1 (0,T ) + | u -v | X | h | H 1 (0,T ) ).
3. The nonlinear term F nl : in order to estimate

| uu x -vv x | L 1 (0,T ;L 2 ((1+x 2 )dx)) + | √ t(uu x -vv x ) | L 2 (0,T ;L 2 ((1+x 2 )dx)) , we write uu x -vv x = (u -v)u x + v(u x -v x ).
For the first term, we want a bound of U V x in L 1 (0, T ; L 2 ((1 + x 2 )dx)) where U = u -v with V = u. First one has,

| U V x | L 1 (0,T ;L 2 ((1+x 2 )dx)) = T 0 | U V x | L 2 ((1+x 2 )dx)) dt = T 0 L 0 (1 + x 2 )U 2 V 2 x dxdt = T 0 L 0 U 2 V 2 x dx + L 0 x 2 U 2 V 2 x dxdt ≤ √ 2 T 0 ( L 0 U 2 V 2 x dx + L 0 x 2 U 2 V 2 x dx)dt.
Moreover:

L 0 U 2 V 2 x dx ≤| U | 2 L ∞ L 0 (1 + x)V 2 x dx ≤ 2 | U | L 2 (1+x) | U x | L 2 (1+x) | V x | 2 L 2 (1+x) and L 0 x 2 U 2 V 2 x dx ≤| xU 2 | L ∞ L 0 xV 2 x dx ≤| √ xU | 2 L ∞ L 0 (1 + x)V 2 x dx. Therefore | xU V x | L 2 ≤ | √ xU | L ∞ L 0 (1 + x)V 2 x dx ≤ 5( | U | L 2 (1+x) | U x | L 2 (1+x) + | U | L 2 (1+x) ) | V x | L 2 (1+x)
thanks to the lemma 2.

Hence,

| U V x | L 1 (0,T ;L 2 ((1+x 2 )dx) ≤ √ 2 T 0 | U | 1/2 L 2 (1+x) | U x | 1/2 L 2 (1+x) | V x | L 2 (1+x) dt +5 T 0 | U | 1/2 L 2 (1+x)) | U x | 1/2 L 2 (1+x) + | U | L 2 (1+x) | V x | L 2 (1+x) dt ≤ c T 0 | U | 1/2 L 2 (1+x) | U x | 1/2 L 2 (1+x) | V x | L 2 (1+x) dt +5 T 0 | U | L 2 (1+x)) | V x | L 2 (1+x) dt ≤ c | U | X T 0 | U x | 1/2 L 2 (1+x) | V x | L 2 (1+x) dt +5 | U | X T 0 | V x | L 2 (1+x) dt ≤ c( √ T + T 1/4 ) | U | X | V | X , .
This last result yields

| (u -v)u x | L 1 (0,T ;L 2 ((1+x 2 )dx)) ≤ c( √ T + T 1/4 ) | u -v | X | u | X .
We write U instead of v, V instead of u -v and we use the same technique for the second term:

| U V x | L 1 (0,T ;L 2 ((1+x 2 )dx)) =| v(u x -v x ) | L 1 (0,T ;L 2 ((1+x 2 )dx)) ≤ c( √ T + T 1/4 ) | u -v | X | v | X .
Hence, the estimate on

| uu x -vv x | L 1 (0,T ;L 2 ((1+x 2 )dx)) is established. The second step is to estimate | √ tU V x | L 2 (0,T ;L 2 ((1+x 2 )dx)) , where U is successively u -v or v with V = u or V = u -v. We write | √ xU √ xV x | L 2 (dx) ≤| √ xU | L ∞ | √ xV x | L 2 (dx) ≤ 5( | U | L 2 (1+x) | U x | L 2 (1+x) + | U | L 2 (1+x) ) | √ xV x | L 2 (dx) thanks to (31) ≤ 5 | U | L 2 (1+x) | U x | L 2 (1+x) | V x | L 2 ((1+x)dx) +5 | U | L 2 (1+x) | V x | L 2 ((1+x)dx) Then | √ t | √ xU √ xV x | L 2 (dx) | L 2 (0,T ) ≤ 5 | U | L ∞ (0,T ;L 2 (1+x)) | √ tV x | L ∞ (0,T ;L 2 (1+x)) | U x | L 2 (0,T ;L 2 ((1+x)dx)) √ T +5 | U | L ∞ (0,T ;L 2 (1+x)) | √ tV x | L 2 (0,T ;L 2 ((1+x)dx)) ≤ c | U | 1/2 X | V | X | U x | L 2 (0,T ;L 2 ((1+x)dx)) √ T +c | U | X √ T | V | X ≤ c √ T | U | X | V | X , ∀0 ≤ t ≤ T. Finally | √ tU V x | L 2 (0,T ;L 2 (1+x 2 )) ≤ c √ T | U | X | V | X .
Hence, the desired result follows and proposition 4 is established.

Let T 0 > 0. Take R = 2c(T 0 )(| u 0 | + √ T 0 (1+ | g | H 1 ) | g | H 1
). We denote by B R the ball of center 0 and of radius R in X T .

Proposition 5 Assume g in H 1 loc (IR + ). Then, there exists a time T 1 in ]0, T 0 ] such that the application u → T (u 0 , g, u) maps the ball B R into itself.

Proof : applying proposition 4 with v 0 = 0, h = 0, v = 0, one gets

| T (u 0 , g, u) | X ≤ c(T 0 ) | u 0 | + c √ T (| u | X + | g | H 1 (0,T ) +1) | g | H 1 (0,T ) +c | u | 2 X T 1/4 + c √ T | u | 2 X . It follows | T (u 0 , g, u) | X ≤ R 2 + c √ T | u | X | g | H 1 +c | u | 2 X T 1/4 + c √ T | u | 2 X . Then, if u ∈ B R then | T (u) | X ≤ R 2 + c √ T R | g | H 1 +cT 1/4 R 2 + c √ T R 2 .
Choosing T such that c(T

1/4 R 2 + √ T | g | H 1 (0,T 0 ) R + √ T R 2 ) ≤ R 2 , ensures
that u → T (u 0 , g, u) maps the ball B R into itself and proposition 5 is proved.

Proposition 6 Assume g in H 1 loc (IR + ). Then, there exists a time T 2 in ]0, T 1 ] such that the application u → T (u 0 , g, u) is a contraction over (B R , | . | X ).

Proof : applying proposition 4 where v

0 = u 0 , h = g yields | T (u 0 , g, u) -T (u 0 , g, v) | X ≤ cT 1/4 | u -v | X (| u | X + | v | X ) +c √ T | u -v | X (| g | H 1 (0,T ) + | u | X + | v | X ), so that if u, v in B R then | T (u 0 , g, u) -T (u 0 , g, v) | X ≤ c | u -v | X (2RT 1/4 + 2R √ T + √ T | g | H 1 (0,T ) ).
So that, if T is small enough namely

c(2RT 1/4 + 2R √ T + √ T | g | H 1 (0,T ) ) < 1 then the application u → T (u 0 , g, u) is a contraction over (B R , | . | X ).
Proposition 7 There exists a unique u defined in X T , weak solution of (2).

Proof : to prove this proposition, it is enough to apply the Banach's fixed point theorem for u → T (u 0 , g, u) on B R (which is a complete metric space) which yields local existence and uniqueness. As usual, one can then speak of maximal solutions.

Continuous dependance Proposition 8

The solution u depends continuously on u 0 in L 2 ((1 + x 2 )dx) and g in H 1 loc (IR + ).

Proof : once again, this follows from Proposition 4 for small times. Namely, applying proposition 4, one gets :

| u -v | X ≤ c(T 0 ) | u 0 -v 0 | +c √ T (| g | H 1 + | h | H 1 +1+ | u | X ) | g -h | H 1 (0,T ) +c √ T | u -v | X (| h | H 1 + | u | X + | v | X ) + cT 1/4 | u -v | X (| u | X + | v | X )).
Then if u 0 tends towards v 0 in L 2 (1 + x 2 ) and if g tends towards h in H 1 one gets that u tends towards v in X T . These results were obtained locally in time. But, since the time interval where this result holds depends only on | u 0 | and | g | H 1 , it can be extended as long the solution exists, which ends the proof of Theorem 3.

Global existence and uniqueness for the quarterplane problem (L = +∞)

We introduce the space :

XT := {w ∈ C([0, T ]; L 2 (IR + , (1+x 2 )dx)), such that w x ∈ L 2 (0, T ; L 2 (IR + , (1+x)dx)), √ tw x ∈ L ∞ (0, T ; L 2 (IR + , (1 + x)dx)), √ tw xx ∈ L 2 (0, T ; L 2 (IR + , dx))}.
Theorem 4 Let u 0 in L 2 (IR + , (1 + x 2 )dx), g in H 1 loc (IR + ). Then, there exists a unique u in C(IR + ; L 2 (IR + , (1 + x 2 )dx)) solution of ( 1) such that u belongs to XT for all T > 0. Moreover, for all t > 0, u belongs to C([t, +∞[; H 2 ) and for all t > 0, u(x, t) is the solution obtained by Bona and Winther.

Proof : All the estimates obtained in the previous section apply to the quarter plane problem (L = +∞) since they are uniform with respect to L. This gives local existence and uniqueness in the space XT . In order to prove that the solution is global, we need to establish some energy estimate. For the sake of simplicity, we compute them in the case g ≡ 0. The general case can be handle as in [START_REF] Bona | The Korteweg-de Vries equation, posed in a quarter-plane[END_REF] using the change of function v = u -g(t)e -x . Multiplying the equation by u yields

d dt +∞ 0 | u | 2 dx + u 2 x (0, t) = 0 namely | u | L 2 ≤| u 0 | L 2 .
Multiplying the equation by xu gives

d dt +∞ 0 x | u | 2 dx - +∞ 0 | u | 2 dx - 2 3 +∞ 0 | u | 3 dx + 3 +∞ 0 u 2 x dx = 0 so that d dt +∞ 0 x | u | 2 dx + 3 +∞ 0 u 2 x dx ≤ c + c | u x | 1/2 L 2 . And therefore d dt +∞ 0 x | u | 2 dx ≤ c, and 
T 0 +∞ 0 u 2 x dxdt ≤ cT. Multiplying by x 2 u leads to d dt +∞ 0 x 2 | u | 2 dx-2 +∞ 0 x | u | 2 dx- 4 3 +∞ 0 x | u | 3 dx+6 +∞ 0 x | u x | 2 dx = 0, which implies d dt +∞ 0 x 2 | u | 2 dx + 6 +∞ 0 xu 2 x dx ≤ c + c | u x | 2 L 2 .
After integration in time, one obtains

+∞ 0 x 2 | u | 2 dx + 6 T 0 +∞ 0 x | u x | 2 dxdt ≤ c + T 0 +∞ 0 u 2 x dxdt.
We therefore obtain global existence in the quarter plane. Since u(., t) in H 2 for a.e. t, it is the solution of Bona and Winther.

-Now, we prove the uniqueness for the solution of (1) : we know that the solutions u belong to L ∞ (0, T ; L 2 ), that u x belong to L 2 (0, T ; L 2 ), and that √ tu xx belong to L 2 (0, T ; L 2 ). Let u and v be two solutions and we introduce : w = u -v. This function satisfies w t + w x + w xxx + wu x + vw x = 0. Multiply by w and integrate the resulting expression with respect to the space variable x on [0, +∞[, there appears :

d dt +∞ 0 w 2 (x, t)dx+w 2 x (0, t)+2 +∞ 0 w 2 (x, t)u x (x, t)dx- +∞ 0 w 2 (x, t)v x (x, t)dx, namely | u x | L ∞ ≤ | u x | L 2 | u xx | L 2 = ( 1 
t 1 4 | u x | L 2 )(t 1 4 | u xx | L 2 ). But, we have | u x | 1 2 L 2 ∈ L 4 t , t 1 4 | u xx | L 2 ∈ L 4 t , t -1 4 ∈ L 4-ε t then | u x | L ∞ ∈ L 1 t , ∀ε ∈]0, 1[ since 1 4-ε + 1 4 + 1 4 < 1.
3 Convergence towards the solution of the quarter plane problem for the homogeneous case (g = 0) when L tends towards +∞

For the sake of simplicity, we restrict ourselves to the case g = 0. The result is of course valid if we suppose that g belongs to H 1 (IR + ). The aim of this section is to prove the following result:

Theorem 5 Consider a family of initial values u L 0 ∈ L 2 ([0, L], (1 + x 2 )dx) such that sup L≥1 L 0 |u L 0 | 2 (x)(1 + x 2 )dx < +∞
and such that u L 0 tends towards u 0 in L 2 loc (IR + ) strongly. Then, for all T > 0, if L is large enough, u L (x, t) the solution of (2) with initial value u L 0 is defined on [0, T ] and u L tends towards u in L p (0, T ; L 2 loc (IR + )) strongly for all p < +∞, where u(x, t) is a solution of (1) with initial data u 0 .

In order to prove this theorem, we will perform some energy estimates on the nonlinear equation. We therefore need more regular solutions:

Theorem 6 Suppose u 0 in H 3 (0, L) and ∂ 3 u 0 ∂x 3 in L 2 ((1 + x 2 )dx). Suppose g in H 2
loc (IR + ). Then u, the solution of (2) given by Theorem 3 satisfies u xxx ∈ X T , ∀T < T L where T L is the maximum existence time of u.

Proof : one has to solve the integral equation T (u 0 , g, u) = u in the space Y T = {u ∈ X T , u xxx ∈ X T }. One finds a local in time solution, just as in section 2. Once this local solution in Y T is constructed, one shows that its existence time as a solution in Y T is the same as that as a solution in X T by standard means. We omit the details.

3.1 Behavior of the existence time. In order to prove this result, we will use some estimates of u in L ∞ (0, T ; H 1 ). Since the initial value is not in H 1 , this is clearly not possible. However, for allmost avery t > 0, the solution u(•, t) lies in H 1 . We therefore consider the initial value problem at some new origine of time t L such that u(•, t L ) ∈ H 1 . An uniform control (with respect to L) of |u(•, t L )| H 1 is given in the following lemma:

Lemma 4 For all L > 0 there exists a time t L such that

L 0 (1 + x)u 2 x (x, t L )dx ≤ 4c T 2 ,
where T 2 is the existence time given in section 2. This time T 2 is independent of L.

This lemma is easily proven by contradiction using the fact that

T 2 0 L 0 (1 + x)u 2 x (x, t)dxdt
is bounded independently of L.

In order to show that T L tends toward +∞, we will consider problem (2) with initial data u(•, t L ). For the sake of simplicity, we still note t = 0 and u 0 = u(•, t L ).

We now adapt the method used in [START_REF] Colin | An initial-boundary-value problem for the Korteweg-de Vries equation posed on a finite interval[END_REF] for global existence for small data and we introduce the time dependent function X :

X(t) = sup( t 0 | (1 + √ x)u | 4 L ∞ (s)ds, 1).
We remark that X(t) is nondecreasing and X(t) ≥ 1.

We also introduce the fonction Y defined by

Y (t) = L 0 (1 + x)(u 2 x -u 2 -u 3 /3)dx.
The idea of the proof is to show that X(t) controls the norm |u| of the solution. Then one proves that X(t) also controls Y (t) which itself controls

|(1 + (x))u x | L 2 .
We therefore obtain an inequality for X(t) in which the coefficients of the nonlinear terms are always proportionnal to some positive power of 1/L.

Estimates on X:

We consider the IBVP (2) with g = 0. Multiplying by u gives

d dt L 0 u 2 (x, t)dx + u 2 (L, t) + 2 3 u 3 (L, t) + u 2 x (0, t) = 0.
Integrate in the temporal variable leads to

L 0 u 2 (x, t)dx - L 0 u 2 0 (x)dx + t 0 u 2 x (0, s)ds ≤ 1 L 3/2 t 0 | (1 + √ x)u | 3 L ∞ (s)ds.
Thanks to the Cauchy-Schwarz inequality, one gets

L 0 u 2 (x, t)dx + t 0 u 2 x (0, s)ds ≤ c 0 + t 1/4 L 3/2 X(t) 3/4 , (29) 
where c 0 = L 0 u 2 0 (x)dx. Multiplying by xu leads to

d dt L 0 xu 2 dx - L 0 u 2 dx + Lu 2 (L, t) + 2 3 Lu 3 (L, t) - 2 3 L 0 u 3 dx + 3 L 0 u 2 x dx = 0.
We control

L 0 u 3 dx by |u| L 2 |u| L ∞ ≤ C|u| 5/2 L 2 |u x | 1/2 L 2 ≤ |u x | 2 L 2 + C|u| 10 L 2
in order to obtain with (29)

d dt L 0 xu 2 dx + 2 L 0 u 2 x dx ≤ C + C t 1/2 L 3/2 X 5/3 - 2 3 Lu 3 (L, t).
Integrate this expression over (0, t) and since the function X(t) is non decreasing, one gets

L 0 xu 2 (x, t)dx + 2 t 0 L 0 u 2 x (x, s)dxds ≤ c + ct + ct 1/2 √ L X 5/3 (t). ( 30 
)
Multiplying the equation by the flux u

+ u 2 /2 + u xx gives d dt L 0 (u 2 x -u 2 -u 3 /3)dx + u 2 xx (0, t) ≤ 2u 2 (L, t) + u 4 (L, t).
Multiplying the equation by x(u

+ u 2 /2 + u xx ) leads to d dt L 0 x(u 2 x -u 2 -u 3 /3)dx ≤ (u + 1 2 u 2 ) 2 (L, t). Therefore Y ′ (t) ≤ 2(u + 1 2 u 2 ) 2 (L, t)
and by integration in time, it follows

Y (t) ≤ 4 t 1/2 L X(t) 1/2 + 2 L 2 X(t). Plugging in this last expression the value of Y (t) gives L 0 (1 + x)u 2 x (x, t)dx ≤ C + C t 1/2 L X(t) + L 0 (1 + x)(u 2 + u 3 3 )(x, t)dx.
Using (29) and (30) leads to

L 0 (1+x)u 2 x (x, t)dx ≤ C +C t 1/2 L X(t)+Ct+C t 1/2 L 1/2 X 5/3 +|u x | 1/2 L 2 |(1+ √ x)u| 5/2 L 2 .
Using Young's inequality in this last expression yields:

L 0 (1 + x)u 2 x (x, t)dx ≤ C + C t + t 1/2 √ L X 5/3 10/3 . (31) 
On the other hand, the definition of X implies (using (29), ( 30) and ( 31))

X ′ (t) ≤| (1 + √ x)u | 4 L ∞ ≤ C 1 + t + t 1/2 √ L X 5/3 13/3
.

Integrating this inequality in the temporal variable yields :

X(t) ≤ 1 + C 1 + t + t 1/2 √ L X 5/3 13/3
, that is

X(t) ≤ C 1 + t 6 + t 4 L 2 X 8 . (32) 
We are now able to prove proposition 9. Note first that function X(t) controls the norm |u| of the solution. Therefore, in order to conclude, we only need to prove that X(t) is bounded on a time interval which length tends to infinity as L → +∞.

Take T > 0 and let R = 2C(1 + T ) 6 . It follows from X(0) = 1 by continuation the existence of T ′ in ]0, T ] such that sup

t∈[0,T ′ ] X(t) ≤ R, hence (32) implies sup t∈[0,T ′ ] X(t) ≤ R 2 + CT 4 R 8 /L 2 .
Choosing T such that CT 4 R 7 /L 2 ≤ 1/4 leads to sup t∈[0,T ′ ] X(t) ≤ 3R/4. This condition is fullfilled as soon as T 4 2 7 C 7 (1 + T 6 ) 7 /L 2 ≤ 1/4 which is satisfied if T ∼ L α for some α > 0. By continuation, it follows T ′ = T. Hence, the existence time T L tends towards +∞ when L tends towards +∞.

Proof:

1 δx (D + z, z) = N -2 i=1 z i+1 -z i δx z i = - 1 2 N -2 i=1 z 2 i -z 2 i+1 δx - 1 2δx (z i+1 -z i ) 2 ,
where we have used the inequality

(a -b)a = 1 2 (a 2 -b 2 ) + 1 2 (a -b) 2 . (35) 
The lemma follows.

Proposition 10 is then obtained thanks to (34) and lemma 6.

The following estimate shows that the scheme (S) is l 2 -stable Proposition 11 For any y n satisfying (S), one has

|y n | 2 + δt n k=0 δt y k+1 -y k δt 2 + n k=0 δt|(D -y k ) 1 | 2 + δx n k=0 δt|D + D -y k | 2 = |y 0 | 2 .
Proof: Take the inner product of (S) with y n+1 , apply proposition 33 and equality 35.

In order to obtain the unconditionnal stability for the nonlinear version of the scheme, we will find a discrete estimates that is equivalent to that of u x in L 2 (0, T ; L 2 ) in the continuous case. Let us denote by x the sequence x i = iδx.

One has:

Proposition 12 For all y n satisfying (S), one has

|y n | 2 + δt n k=0 δt √ x y k+1 -y k δt 2 +δt n k=0 3|z k | 2 + δx N -3 i=2 δx(i -1)δx|(D + z k ) i | 2 + δx(N -2)(z k N -1 -z k N -2 ) 2 + δx(z k 2 -z k 1 ) 2 = |y 0 | 2 , where z k = D -y k .
Proof: As in the continuous case, one takes the inner product of (S) with xy n+1 . We omit the details. where |y| 1 = |D + y|.

We therefore have obtained

Since X N endowed with the norm |y| X = |y| + |y| 1 is an algebra, i.e. there exists C independent of δx such that ∀y, z ∈ X N , |yz| X ≤ C|y| X |z| X the existence proof of the continuous case of [START_REF] Colin | An initial-boundary-value problem for the Korteweg-de Vries equation posed on a finite interval[END_REF] applies in the discret nonlinear case for any discretisation of the nonlinear part, for example f n = 1 2 D -(y n ) 2 or y n D -y n . One gets Theorem 7 Let y 0,δx ∈ X N be such that lim sup This result means that independently of the discretization of the nonlinear term, the scheme is unconditionnally stable.

Some numerical results.

We have implemented the scheme (S) using Scilab. The discretization used for the nonlinear term is explicit and is y n D + y n . Performing a change of variables, we have solved the initial boundary value problem on [0, L] with L = 10:

u t + 1 L uu x + 1 L 3 u xxx = 0.
We have taken δt = 2, 5.10 -5 , δx = 5.10 -5 . We compute the solution during 4800 iterations in time, that is on the time interval [0, T ] with T = 0.12. The initial value is u 0 (x) = α cosh 2 (βL(x -1/2)) + 4α cosh 2 (4βL(x -1/4))

.

with α = 12β 2 and β = 2. This correspond to the superposition of two solitons with different speeds. The biggest one (which is also the fastest) is at the begining behind the smallest. In fig. 1 we have represented the solution at time t i = iT /8 for i = 0, • • • , 8. The result is correct since one obtains the nonlinear interaction. However, it is less precise than the results obtained in [START_REF] Bona | Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation[END_REF] (or [START_REF] Gisclon | Conservative high order schemes for Korteweg-de Vries systems[END_REF] for systems) in the periodic framework with higher order schemes.

Here, our scheme is obviously of order one in time and space. These simultations show that this kind of boundary conditions can be used in order to compute solutions to the KdV equation without beeing in the periodic framework.

Proposition 9

 9 One has lim L→+∞ T L = +∞.

Proposition 13 |y k | 2 1 ≤

 131 There exists a constant C > 0 (independent of δx and δt) such that any solution(y n ) n=0,•••,p ∈ X p+1 N to y n+1 -y n δt + D + D + D -y n+1 = 0 satisfies sup k=0,•••,p |y k | 2 + δt p k=0 C|y 0 | 2 .

δx→0 |y 0 1 ≤

 01 ,δx | < +∞. There exists ε 0 > 0 such that if δt ≤ ε 0 , there exists T > 0 and a unique solution(y n,δx,δt ) n=0,•••,[T /δt] to y n+1 -y n δt + D + D + D -y n+1 = f nMoreover, there exits a constant C independent of δt and δx such that sup k=0,•••,p |y k,δx,δt | 2 + δt p k=0 |y k,δt,δx | 2 C|y 0 | 2 .

Figure 1 :

 1 Figure 1: Interaction of two solitons.

End of proof of Theorem 5

Proof : let us take T > 0. Thanks to the preceeding proposition, if L is large enough, u L is defined at least on [0, T ] and is bounded in L 2 (0, T ; H 1 loc ). Moreover ∂ t u L is bounded in L 2 (0, T ; H -2 loc ). Therefore standard compactness argument yields convergence in C([0, T ]; H -s ) ∩ L p (0, T ; L 2 loc ) strongly for all s > 0 and p < +∞ and in L 2 (0, T ; H 1 ) weakly towards some function u(x, t) lying in the same space. Therefore, u(0, t) and u(x, 0) make sense and are equal respectively to g(t) and u 0 (x). Thanks to the strong compactness, it is straightforward that u satisfies the Korteweg-de Vries equation. Therefore, u is solution to the quaterplane problem. Since the limit is unique, all the sequence u L converges towards u.

Numerical approximation.

The aim of this section is to present a very simple finite-difference scheme for problem (2) on the space interval [0, 1].

Description of the scheme and proof of its stability.

We take a time-step δt and a space-step δx. We denote by y n i the approximate value of the solution at time nδt and at the point iδx. We denote by X N the following space of finite sequences

endowed with the following inner product

and by the associated norm

We also introduce the classical difference operators:

We first consider the linear problem asociated to (2):

The scheme associated to (33) reads:

(S) y n+1 -y n δt + D + D + D -y n+1 = 0, that is :

One first has

Proposition 10 For all y ∈ X N , one has:

Before to prove this result, we remark that Corollary 1 For any y n ∈ X N there exists an unique y n+1 satisfying (S).

Proof: It is straightforward from proposition 10, since the matrix I+δtD + D + D - is clearly definite, positive.

We return now to the proof of proposition 10. We first prove:

Lemma 5 For all sequences z and y such that z N -1 = 0 and y 0 = 0, one has

This formula is well-known, we omit the proof.

It follows that, applying lemma 5 with z = D + D -y: 

In order to conclude, we need:

Lemma 6 For any sequence z, one has