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The Hamilton principle for fluid binary mixtures with two temperatures

Henri Gouin1 and Tommaso Ruggeri 2

In ”Bollettino della Unione Matematica Italiana” vol. 9 II (2009)

Abstract. – For binary mixtures of fluids without chemical reactions, but with
components having different temperatures, the Hamilton principle of least action is
able to produce the equation of motion for each component and a balance equation of
the total heat exchange between components. In this nonconservative case, a Gibbs
dynamical identity connecting the equations of momenta, masses, energy and heat
exchange allows to deduce the balance equation of energy of the mixture. Due to the
unknown exchange of heat between components, the number of obtained equations is
less than the number of field variables. The second law of thermodynamics constrains
the possible expression of a supplementary constitutive equation closing the system
of equations. The exchange of energy between components produces an increasing
rate of entropy and creates a dynamical pressure term associated with the difference
of temperature between components. This new dynamical pressure term fits with
the results obtained by classical thermodynamical arguments in [1] and confirms
that the Hamilton principle can afford to obtain the equations of motions for multi-
temperature mixtures of fluids.
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1. – Introduction.

The theory of mixtures considers generally two different kinds of continua: ho-
mogeneous mixtures (each component occupies the whole mixture volume) and het-
erogeneous ones (each component occupies only a part of the mixture volume). At
least four approaches to the construction of two-fluids models are known.
The first one for studying the heterogeneous two-flows is an averaging method (Ishii
[2]; Nigmatulin [3]). The averaged equations of motion are obtained by applying
an appropriate averaging operator to the balance laws of mass, energy, etc..., valid
inside each phase [4, 5]. A second approach known as Landau method [6, 7] was
used for the construction of a quantum liquid model and was purposed for the ho-
mogeneous mixtures of fluids [8]. For the total mixture, the method requires the
balances of mass, momentum, energy, complemented with the Galilean invariance
principle and the second law of thermodynamics [9]. A third approach is presented
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in extended thermodynamics; the mixtures are considered as a collection of differ-
ent media co-existing in the physical space. This approach is done in the context of
rational thermodynamics [10] founded on the postulate that each constituent obeys
the same balance laws as a single fluid [11, 12, 13]. The thermodynamical pro-
cesses must verify the second law of thermodynamics and it is possible to purpose
phenomenological constitutive equations which allow to obtain the structure of con-
stitutive or production terms (as Fick’s law, Fourier’s Law etc.) and to close the
system of equations.

There exists a different approach based on the Hamilton principle which is used
for the construction of conservative (non-dissipative) mathematical models of con-
tinua. The principle was initiated by Lin [14], Serrin [15] and many others to obtain
the governing equations of one component continua [15, 16, 17] and involves an
Hamilton action. The variations of the Hamilton action are constructed in terms of
virtual motions of continua which may be defined both in Lagrangian and Eulerian
coordinates [15, 16].
Here, we use variations in the case of fluid mixtures. The variational approach to
the construction of two-fluid models has been used by many authors (Bedford &
Drumheller [18]; Berdichevsky [19]; Geurst [20]; Gouin [21]; Gavrilyuk & Gouin
[22]; Gouin & Ruggeri [23]).
To study thermodynamical processes by the Hamilton principle, the entropy of the
total mixture or the entropies of components are added to the field parameters in-
stead of temperatures. The Lagrangian is the difference between the kinetic energy
and an internal potential per unit volume depending on the densities, the entropies
and the relative velocities of the mixture components (and a potential due to exter-
nal forces). The internal potential per unit volume can be interpreted as a Legendre
transformation of the internal energy. In this case, it is not necessary to distinguish
molecular mixtures from heterogeneous fluids when each component occupies only a
part of the mixture volume [24, 25]. Consequently, the terms including interaction
between different components of the mixture do not require constitutive postulates
difficult to interpret experimentally. They come from the direct knowledge of the
internal potential per unit volume.
The assumption of a common temperature for all the components is open to doubt
for the suspensions of particles [26] as well as in the mixtures of gases in the early
universe [27]. By using the Hamilton principle, the existence of several tempera-
tures (one temperature for each component) must be associated with the existence
of several entropies (one specific entropy for each component). That will be the aim
of this paper: the internal potential per unit volume is a function of the densities,
the entropies and the difference of velocity between components.
The plan of the article is as follows:
In section 2, we formulate an extended form of the Hamilton principle of stationary
action allowing to produce the governing equations of motion for each component
of a binary mixture. From the invariance of time, we deduce an equation of the
exchange of heat between components. With two temperatures (one temperature
for each component), the system of governing equations together with the balance
of masses is not closed: Hamilton’s principle is not able to get a complete set of
equations when exchange of energies occurs between components. In this case, we
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need an additive constitutive equation to close the system.
In section 3, we obtain a Gibbs dynamical identity. This identity allows to obtain
the equation of energy for the total mixture. The equation of motion for the total
mixture and the equation of energy are in divergence form; as in [28], it is not the
same for the component equations of motion.
In section 4, we consider the case of weakly dissipative mixtures and introduce an
average temperature of the total mixture. The average temperature corresponds to
a local equilibrium different from the real state, with nonequal component temper-
atures but with the same total internal energy. The total pressure of the mixture in
the real state is different from the pressure associated with the mixture at the local
equilibrium [29, 30]. The entropy variation rate of the mixture must be in accor-
dance with the second law of thermodynamics which implies an additive constitutive
equation for the pressure. The constitutive equation depends on the physical prop-
erties of the two constituents and we focus on the fact that the new pressure term
does not obey the same rule than the other terms due to dissipation.
In section 5, as an example, we reconsider the special case of a mixture of perfect
gases.
Finally, we compare our results with the conclusions obtained in [1] by using classical
arguments of rational thermodynamics.

2. – Governing equations in conservative cases.

In a Galilean system of coordinates, the motion of a two-fluid continuum can be
represented by two diffeomorphisms

Zα = Φα(z) , (α = 1, 2)

or
λ = t and Xα = φα(t,x),

where z = (t,x) denotes Eulerian coordinates in a four-dimensional domain ω in
the time-space and Zα = (λ,Xα) denotes Lagrangian coordinates of the component
α in a four-dimensional reference space ωα. The conservation of matter for each
component requires that

ρα det Fa = ρα0 (Xα) with Fa =
∂x

∂Xα

, (1)

where ρα0 is the reference density in ωα and det (∂x/∂Xα) is the Jacobian deter-
minant of the motion of the component α of density ρα. In differentiable cases
equations (1) are equivalent to the equations of density balances

∂ρα

∂t
+ div(ραvα) = 0, (2)

where vα denotes the velocity of each component α.
The Lagrangian of the binary system is

L =

2∑

α=1

(
1

2
ρα v2

α − ραΩα

)
− η(ρ1, ρ2, s1, s2,u),

3



where the summation is taken over the fluid components (α = 1, 2) and sα are the
specific entropies, u = v2 − v1 is the relative velocity of components, Ωα are
the external force potentials, η is a potential per unit volume of the mixture. The
Lagrangian L is a function of ρα,vα, sα and we introduce the quantities

Rα ≡
∂L

∂ρα

=
1

2
v2

α −
∂η

∂ρα

− Ωα, (3)

kT
α ≡

1

ρα

∂L

∂vα

= vT
α −

(−1)α

ρα

∂η

∂u
, (4)

ρα Tα ≡ −
∂L

∂sα

=
∂η

∂sα

, (5)

where T denotes the transposition and
∂L

∂vα

,
∂η

∂u
are linear forms. Equation (5)

defines the temperatures Tα (α = 1, 2) which are dynamical quantities depending
on ρ1, ρ2, s1, s2 and u.
To obtain the equations of component motions by means of the Hamilton principle,
we consider variations of particle motions in the form of surjective mappings,

Xα = Ξα(t,x;κα),

where scalars κα are defined in a neighborhood of zero; they are associated with a
two-parameter family of virtual motions. The real motions correspond to κα = 0
such that Ξα(t,x;0) = φα(t,x); the associated virtual displacements generalize what
is obtained for a single fluid [16, 24],

δαXα =
∂Ξα(t,x;κα)

∂κα

|
κα=0 . (6)

The Hamilton action is

a =

∫

ω

L dv dt.

We first consider the Hamilton principle in the form

δαa ≡

(
da

dκα

)

|κα=0

= δα

∫

ω

L dv dt = 0,

under constraints (1), with δαa being the variations of a associated with equation
(6).
From the definition of virtual motions, we obtain in Appendix A the values of
δαvα (x, t), δαρα (x, t) and δαsα (x, t) where δαυ(t,x) is the variation of υ at (t, x)
fixed. By taking into account the formulae in Appendix A and the definitions (3-5),
we get

δαa =

∫

ω

(
Rαδαρα + ρα kT

α δαvα − ραTαδαsα

)
dv dt

=

∫

ωα

(
Rα divα(ρα0 δαXα) − ρα0 kT

α Fα

∂

∂λ
(δαXα) − ρα0 Tα

∂sα0

∂Xα

δαXα

)
dvα dt,
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where divα is the divergence operator with respect to the coordinates Xα. In the
last expression all quantities are considered as functions of (t,Xα); the functions are
assumed to be smooth enough in the domain ωα and δαXα = 0 on its boundary.
Hence, we get

δαa =

∫

ωα

ρα0

(
−

∂Rα

∂Xα

+
∂

∂λ
(kT

α Fα) − Tα

∂sα0

∂Xα

)
δαXα dvα dt,

and we obtain the equations of component motions in Lagrangian coordinates,

∂

∂λ
(kT

α Fα) −
∂Rα

∂Xα

− Tα

∂sα0

∂Xα

= 0,

where kT
α is defined by equation (4).

By taking into account the identity
dαFα

dt
−

∂vα

∂x
Fα = 0 and for λ = t, we rewrite

the equations in Eulerian coordinates,

dαk
T
α

dt
+ kT

α

∂vα

∂x
=

∂Rα

∂x
+ Tα

∂sα

∂x
. (7)

The covector kT
α is an essential quantity; indeed, ραkα (and not ραvα ) is the

momentum for the component α of the mixture.
To obtain the equation of energy, we need a second variation of motions associ-

ated with the time parameter. The variation corresponds to a virtual motion in the
form

λ = ϕ(t; κ),

where scalar κ is defined in a neighborhood of zero. The real motion of the mixture
corresponds to κ = 0 such that ϕ(t; 0) = t; the associated virtual displacement is

δλ =
∂ϕ(t; κ)

∂κ
|κ=0 .

For a single fluid, the entropy is defined on a reference space ωo associated with
Lagrangian variables; in conservative motion the specific entropy is conserved along
the trajectories and in the reference space the entropy depends only on Lagrangian
variables X and not on λ.
In multi-component fluids, due to exchanges of energy between the components, the
entropies cannot be conserved along component paths; in the reference spaces ωα,
the specific entropies sα depend also on λ

sα = sα0 (λ,Xα) .

The variation of Hamilton’s action associated with the second family of virtual mo-

tions yields

δa ≡ δ

∫

ω

L dx dt =

∫

ω

∂L

∂λ
δλ dv dt = 0.
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From
∂L

∂λ
=

2∑

α=1

∂L

∂sα

∂sα0

∂λ
, we deduce when λ = t,

∂L

∂λ
= −

2∑

α=1

ραTα

dαsα

dt
, where

dαsα

dt
=

∂sα

∂t
+

∂sα

∂x
vα is the material derivative with respect to velocity vα. We

obtain for the total mixture

2∑

α=1

ραTα

dαsα

dt
= 0. (8)

Due to equations (2) we obtain the equivalent form

2∑

α=1

Qα = 0 with Qα =

(
∂ραsα

∂t
+ div(ραsαvα)

)
Tα. (9)

Equation (9) expresses that the exchange of energy between components has a null
total amount.

3. – Gibbs dynamical identity and equation of energy.

Let us prove that equation (9) leads to the equation of energy of the mixture.
We introduce the quantities Mα, Bα, S and E such that

MT
α = ρα

dαk
T
α

dt
+ ρα kT

α

∂vα

∂x
− ρα

∂Rα

∂x
− ρα Tα

∂sα

∂x
,

Bα =
∂ρα

∂t
+ div(ραvα),

S =

2∑

α=1

Qα,

E =

2∑

α=1

∂

∂t

(
ρα

(
1

2
v2

α + Ωα

)
+ η −

∂η

∂u
u

)
+ div

(
ραvα(kT

αvα − Rα)
)
− ρα

∂Ωα

∂t
,

where η −
∂η

∂u
u = f is the Legendre transformation of η with respect to u and

corresponds to the volume internal energy of the mixture. We prove in Appendix B
the following property:

Theorem: For any motion of the mixture, we have the algebraic identity

E −

(
2∑

α=1

MT
α vα + (kT

α vα − Rα + Tαsα) Bα

)
− S ≡ 0. (10)

Relation (10) is the general expression of the Gibbs identity in dynamics. Analogous
identities were obtained earlier for thermocapillary mixtures [24] and bubbly liquids
[31]. Due to the equations of balance of masses (2), momenta (7) and energy (9),
deduced from Hamilton’s principle, which are respectively

Bα = 0, Mα = 0 (α = 1, 2) and S = 0,
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we obtain from identity (10):
Corollary: The motions of a mixture satisfy the equation of energy balance in the

form

2∑

α=1

∂

∂t

(
ρα

(
1

2
v2

α + Ωα

)
+ f

)
+ div

(
ραvα

(
kT

α vα − Rα

))
− ρα

∂Ωα

∂t
= 0 . (11)

Equation (11) appears as the equation of energy when f is the total internal energy.
The equations of component motions are not written in divergence form. Nev-

ertheless by summing equations (7) in the form MT
α = 0 and taking into account

equations (1) in the form Bα = 0, we obtain by a calculation similar as in [23, 24, 25]
the balance equation for the total momentum in a divergence form:

2∑

α=1

∂ρα vT
α

∂t
+ div

(
ρα vα kT

α +
(
ρα

∂η

∂ρα

− η
)

I

)
+ ρα

∂Ωα

∂x
= 0, (12)

where I is the identity tensor. In the following, ρv =

2∑

α=1

ραkα =

2∑

α=1

ραvα is the

total momentum and ρ =

2∑

α=1

ρα is the mixture density.

System ((2),(7),(11)), consequence of the Hamilton principle, is a non closed
system of equations. In a single conservative fluid, the system of motion equations
is closed by the entropy conservation. In case of mixtures with two entropies, the
Hamilton principle is not able to close the system of motion equations; we need
additional arguments to obtain the evolution equations for each entropy sα by con-
sidering the behaviors of Qα.
A possibility to close the system of equations is to consider the case when the mo-
menta and heat exchanges between the components are rapid enough to have a
common temperature. This case is connected with a conservative equation for the
total specific entropy [24].
Another possibility, used by Landau for quantum fluids [7], is to assume that the
total specific entropy s is convected along the first component trajectory

∂ρ1s

∂t
+ div (ρ1sv1) = 0.

In this case, the constitutive functions are ρ1, s,v1, ρ2,v2, where ρα (α = 1, 2) are
submitted to the constraints (2) and the case of Helium superfluid is a special case of
our study corresponding to s1 = s and s2 = 0. Such an hypothesis is not acceptable
for classical fluids. These assumptions are not valid for heterogeneous mixtures
where each phase has different pressures and temperatures [26, 27].
In the following we consider the case when the mixture is weakly out of equilibrium

such that the difference of velocities u and the difference of temperatures T2 − T1

are small enough with respect to the main field variables.
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4. – Mixtures weakly out of equilibrium.

For the sake of simplicity, we neglect the external forces. Generally, the volume
potential η is developed in the form [22, 31]3

η(ρ1, ρ2, s1, s2,u) = e(ρ1, ρ2, s1, s2) − b(ρ1, ρ2, s1, s2)u2,

where b is a positive function of ρ1, ρ2, s1, s2. Properties of convexity of the function η
are studied in [25]. When |u| is small enough, the equations of motions are hyperbolic
[25]. We consider the linear approximation when |u| is small with respect to |v1| and
|v2|. In linear approximation the volume potential is equal to the volume internal
energy e,

η(ρ1, ρ2, s1, s2,u) ≈ e(ρ1, ρ2, s1, s2) = ρ ε(ρ1, ρ2, s1, s2),

where ε denotes the internal energy per unit mass. Let us note that the diffusion
vector j = ρ1(v1−v) ≡ ρ2(v−v2) is a small momentum vector deduced respectively
from velocities and densities of the components. The equations of density balances
can be written in the form

dρ

dt
+ ρ div v = 0 and ρ

dc

dt
+ div j = 0, (13)

where c =
ρ1

ρ
denotes the concentration of component 1 and

d

dt
=

∂

∂t
+

∂

∂x
.v is

the material derivative with respect to the average velocity of the mixture.
The divergence of a linear operator A is the covector divA such that, for any constant
vector a, (div A) a = div (Aa) and we write vαv

T
α ≡ vα ⊗ vα.

Let us denote by hα ≡
∂e

∂ρα

the specific enthalpy of the component α.

For processes with weak diffusion, the equations of component motions get the form,

ρα Γα ≡
∂ραvα

∂t
+ div(ραvα ⊗ vα)T = ραTα grad sα − ρα grad hα.

The equation of total momentum (12) is reduced to

∂ρv

∂t
+ div

(
2∑

α=1

(ραvα ⊗ vα) − t

)T

= 0,

where t =
∑2

α=1 tα is the total stress tensor such that

tανγ = −pα δνγ , with pα = ρραε,ρ
α

= ραe,ρ
α

−
ραe

ρ
, p =

2∑

α=1

pα .

The equation of energy (11) writes in the simpler form

∂

∂t

(
e +

2∑

α=1

1

2
ραv

2
α

)
+ div

(
e v +

2∑

α=1

(
1

2
ραv

2
α − tα

)
vα

)
= 0.

3In [1], the internal energy is the sum of the internal energies of the components(
ρ ε =

∑
2

α=1
ρ

α
εα(ρ

α
, sα)

)
.
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The internal energy is a natural function of densities and entropies. Due to equation
(5),

ρ1 T1 = ρ
∂ε

∂s1

(ρ1, ρ2, s1, s2) and ρ2 T2 = ρ
∂ε

∂s2

(ρ1, ρ2, s1, s2). (14)

Let us denote by ε the expression of the specific internal energy as a function of
ρ, c, s1, s2 such that ε(ρ, c, s1, s2) = ε(ρ1, ρ2, s1, s2); we get

ρ
dε

dt
= ρ

∂ε

∂ρ

dρ

dt
+ ρ

∂ε

∂c

dc

dt
+ ρ

∂ε

∂s1

ds1

dt
+ ρ

∂ε

∂s2

ds2

dt
.

Due to the fact that ρ2 ∂ε

∂ρ
= p and

∂ε

∂c
= h1 − h2, we obtain

ρ
dε

dt
=

p

ρ

dρ

dt
+ ρ (h1 − h2)

dc

dt
+ ρ1 T1

ds1

dt
+ ρ2 T2

ds2

dt
. (15)

By taking into account that

dαsα

dt
=

dsα

dt
+

∂sα

∂x
(vα − v)

and by using equations (8), (13), equation (15) yields

ρ
dε

dt
+ p div v + (h1 − h2) div j + (T1 grad s1 − T2 grad s2)

T j = 0. (16)

Due to equations (14), the internal energy can be expressed as a function of
densities and temperatures of components

ǫ̃(ρ1, ρ2, T1, T2) = ε(ρ1, ρ2, s1, s2).

As we did in [1], we define the average temperature T associated with T1 and T2

through the implicit solution of the equation

ǫ̃(ρ1, ρ2, T, T ) = ǫ̃(ρ1, ρ2, T1, T2). (17)

We denote by Θα = Tα − T the difference between component and average tem-
peratures which are non-equilibrium thermodynamical variables. Near equilibrium,
equation (17) can be expanded to the first order; then

2∑

α=1

cα
v Θα = 0 with cα

v =
∂ǫ̃

∂Tα

(ρ1, ρ2, T, T ). (18)

Due to the fact that

ρ dε =
2∑

α=1

ρα Tα dsα +
pα

ρα

dρα,

then

ρ c1
v = T

2∑

α=1

ρα

∂sα

∂T1
(ρ1, ρ2, T, T ) and ρ c2

v = T

2∑

α=1

ρα

∂sα

∂T2
(ρ1, ρ2, T, T ). (19)
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The definition of the total entropy s of the mixture is

ρ s =
2∑

α=1

ραsα(ρ1, ρ2, T1, T2). (20)

The first order expansion of equation (20) yields

ρ s =

2∑

α=1

ραsα(ρ1, ρ2, T, T ) + ραsα

∂sα

∂T1
(ρ1, ρ2, T, T ) Θ1 + ραsα

∂sα

∂T2
(ρ1, ρ2, T, T ) Θ2.

Due to Relations (18), (19)

ρ s =

2∑

α=1

ραsα(ρ1, ρ2, T, T )

and the specific entropy s does not depend on Θ1 and Θ2 but only on ρ1, ρ2 and T .
We denote by ε̂ the internal specific energy as a function of ρ, c, T :

ε̂(ρ, c, T ) = ǫ̃(ρ1, ρ2, T, T ),

which satisfies the Gibbs equation

Tds = dε̂ −
po

ρ2
dρ + (µ2 − µ1) dc

where po (ρ, c, T ) is the equilibrium pressure at temperature T and µ2−µ1, difference
of component chemical potentials, is the chemical potential of the whole mixture.
By taking into account of equation (13), we get

ρ
dε̂

dt
+ po div v + (µ1 − µ2) div j − ρ T

ds

dt
= 0.

Moreover,

ρ
ds

dt
=

2∑

α=1

ρα

dαsα

dt
+ div [(s2 − s1)j ]. (21)

Equation (21) yields the relation between the material derivatives of entropy s
and entropies s1 and s2. By taking into account of these results in equation (16)
and ε̂(ρ, c, T ) = ε(ρ1, ρ2, s1, s2), we obtain

T

2∑

α=1

ρα

dαsα

dt
+ (p − po) div v +

(
(h1 − h2) − (µ1 − µ2) + T (s2 − s1)

)
div j

+
(
Θ1 grad s1 − Θ2 grad s2

)T
j = 0. (22)

The differences of temperatures Θ1 ≡ T1 − T and Θ2 ≡ T2 − T are small with
respect to T and j is a small diffusion term with respect to the mixture momentum
ρv; consequently, in an approximation to the first order, the term

(
Θ1 grad s1 − Θ2 grad s2

)T
j
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is negligible. Let us consider

K ≡
(
(h1 − h2) − (µ1 − µ2) + T (s2 − s1)

)
div j ;

we get

K =
((

h1 − T1s1

)
−
(
h2 − T2s2

)
− (µ1 − µ2) + Θ1s1 + Θ2s2

)
div j .

In an approximation to the first order, the term
(
Θ1s1 + Θ2s2

)
div j is negligible.

Due to the fact that µα(ρ1, ρ2, T1, T2) = hα − Tαsα is the chemical potential of the
component α, when j is a small diffusion velocity with respect to average velocity
v, the term
(
µ1(ρ1, ρ2, T1, T2) − µ2(ρ1, ρ2, T1, T2) −

(
µ1 (ρ1, ρ2, T, T ) − µ2 (ρ1, ρ2, T, T )

))
div j

is vanishing in an approximation to the first order.
Consequently, in an approximation to the first order, equation (22) reduces to

2∑

α=1

ρα

dαsα

dt
= −

1

T
(p − po) div v. (23)

The exchange of energy between components must obey the second law of thermo-
dynamics: the total entropy rate is an increasing function of time and we consider
the second law of thermodynamics in the form

2∑

α=1

(
∂ραsα

∂t
+ div(ραsαvα)

)
≥ 0 (24)

Due to relations (2) the Clausius-Duhem inequality (24) is equivalent to

2∑

α=1

ρα

dαsα

dt
≥ 0 .

Relation (23) implies that the second member must be positive. Therefore, as usual
in thermodynamics of irreversible processes, the entropy inequality requires

π ≡ p − po = −Λ divv . (25)

This expression defines the Lagrange multiplier Λ of proportionality such that Λ ≥ 0.
The dynamical pressure π is the difference between the pressure in the process out of
equilibrium with different temperatures for the components and the pressure of the
mixture assumed in local thermodynamical equilibrium with the common average
temperature T . Let us notice that equations (9,25) allow to obtain Qα values. In
fact,

ρ1T (T2 − T1)
d1s1

dt
= Λ T2 (div v)2 and ρ2T (T1 − T2)

d2s2

dt
= Λ T1 (div v)2

and the system of field equations is closed.
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5. – Special case of mixture of perfect gases [13].

The internal energy of the mixture is the sum of the internal energies of the
different gas components. We represent these energies as function of density and
temperature of components

ε̃(ρ1, ρ2, T1, T2) = ρ1 ε̃1(ρ1, T1) + ρ2 ε̃2(ρ2, T2).

Then,
p = p1(ρ1, T1) + p2(ρ2, T2),

where p1 and p2 are the pressures associated with ε̃1 and ε̃2. An expansion to the
first order in T1 − T = Θ1 and T2 − T = Θ2 yields

p = p1(ρ1, T ) + p2(ρ2, T ) +
∂p1

∂T1

(ρ1, T ) Θ1 +
∂p2

∂T2

(ρ2, T ) Θ2.

From the definition of the average temperature T we obtain as in [29],

ρ1 ε̃1(ρ1, T ) + ρ2 ε̃2(ρ2, T ) = ρ1 ε̃1(ρ1, T1) + ρ2 ε̃2(ρ2, T2).

Consequently, from equation (25), we get

π =
∂p1

∂T1

(ρ1, T ) Θ1 +
∂p2

∂T2

(ρ2, T ) Θ2.

Let T1 = T +β Θ, T2 = T +(1+β) Θ, where Θ = T2 −T1, an expansion of equation
(17) to the first order yields the value of β

C(1)
v (ρ1, T ) β Θ + C(2)

v (ρ2, T ) (1 + β) Θ = 0, with C(α)
v =

∂ε̃α

∂Tα

(ρα,T).

Consequently, when pα = kαραTα, we obtain

π =
ρ1ρ2

ρ1C
(1)
v + ρ2 C

(2)
v

(k2 C(1)
v − k1C

(2)
v ) Θ

In accordance with results obtained by Ruggeri & Simić [30] and Gouin & Ruggeri
[23], to verify the Clausius-Duhem inequality (24), Θ must be in the form

Θ = LT (γ1 − γ2) div v with LT = M
ρ1C

(1)
v

ρ2C
(2)
v

(ρ1C
(1)
v + ρ2C

(2)
v ) and M ≥ 0

where γα is the ratio of specific heats of component α.

6. – Conclusion.

The method by Hamilton can be easily extended to multi-component mixtures
with multi-temperatures. We obtain the equations of component motions and the
equation of the total mixture energy. The entropy is not conserved and the sec-
ond law of thermodynamics reveals the existence of a new dynamical pressure term.

12



As diffusion is a property of fluid mixtures with different component velocities, the
dynamical pressure term is a property of fluid mixtures with different component
temperatures. The dynamical pressure can be measured with the change of volume.
In the special case of mixture of gases, the dynamical pressure term comes from the
fact the gases are molecularly different.
The Hamilton principle points out that the dynamical pressure can be obtained by
neglecting viscosity, friction or external heat fluxes. This is a main property of mix-
tures with multi-temperatures and this fact may have some applications in plasma
of gases and in the evolution of the early universe [32].
In Appendix C, we highlight that constitutive equations for diffusion, viscosity and
heat flux for mixtures without chemical reaction are consequence of dissipative terms
whereas the dynamical pressure term can exist with different component tempera-
tures even if the bulk viscosity is null.
The results are in complete accordance with the ones by Ruggeri & Simic [30] and
Gouin & Ruggeri [1]. This is an important verification of the fact that the Hamilton
principle can be extended to nonconservative mixture motions when components
have different temperature. A difference with classical thermodynamics methods
is that the volume internal energy is not necessary the sum of the volume internal
energies of the components. In this paper, the volume internal energy is a nonsepa-
rate function of densities and entropies (or temperatures) and is consequently more
general than in [1] and [30].

Appendix A.

The definition of Lagrangian coordinates Xα implies
∂Xα

∂t
+

∂Xα

∂x
vα = 0. By

taking the derivative with respect to κα, we obtain the following equation for virtual
displacements (equation (6)) associated with the first virtual motion family

∂δαXα

∂t
+

∂δαXα

∂x
vα +

∂Xα

∂x
δαvα = 0.

Then, we get

δαvα (x, t) = − Fα

dα

dt
(δαXα).

Equation (1) yields

δαρα (x, t) det Fα (x, t) + ρα δα (det Fα) =
∂ρα0

∂Xα

δαXα. (26)

By using the Euler-Jacobi identity

δα(det Fα) = det Fα (x, t) tr

(
F−1

α δαFα

)

with
δαFα (x, t) = − Fα (x, t) δαF−1

a (x, t) Fα (x, t)
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and

δαF−1
a (x, t) =

∂δαXα

∂x
,

we deduce

δα(det Fα ) = − det Fα tr

(
δαF−1

a Fα

)
= − det Fα tr

(
∂ δαXα

∂Xα

)
,

or,
δα(det Fα) = − det Fα divα(δαXα). (27)

By substituting equation (27) into equation (26), we obtain

δαρα(x, t) = ρα divα(δαXα) +
ρα

ρα0

∂ρα0

∂Xα

δαXα =
divα(ρα0 δαXα)

detFα

,

δαsα (x, t) =
∂sα0

∂Xα

δαXα.

Appendix B.

The proof of the Gibbs identity is obtained by summing the following algebraic identities

a − e,

For the external potentials Ωα,
a.

∂ ραΩα

∂t
+ div (ραΩαvα) − ρα

∂Ωα

∂x
vα − BαΩα − ρα

∂Ωα

∂t
≡ 0

For the velocity fields vα,

b.
∂

∂t

(
1

2
ρα v2

α

)
+ div

(
ρα vα

(
v2

α −
1

2
v2

α

))

− Bα

(
v2

α −
1

2
v2

α

)
−

(
ρα

dαvT
α

dt
+ ρα vT

α

∂vα

∂x
− ρα

∂

∂x

(
1

2
v2

α

))
vα ≡ 0

Let us introduce iT = −
∂η

∂u
. Then

∂

∂t

(
η −

∂η

∂u
u

)
=

∂ iT

∂t
u +

2∑

α=1

(
∂η

∂ρα

∂ρα

∂t
+ ρα Tα

∂sα

∂t

)

and the three following identities c − e prove the formula
c.

∂η

∂ρα

∂ρα

∂t
+ div

(
∂η

∂ρα

ρα vα

)
− ρα

∂

∂x

(
∂η

∂ρα

)
vα −

∂η

∂ρα

(
∂ρα

∂t
+ div (ρα vα)

)
≡ 0,

d.

ρα Tα
∂sα

∂t
+ ρα Tα

∂sα

∂x
vα − ρα Tα

dαsα

dt
≡ 0,
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e.

∂iT

∂t
η +

2∑

α=1

div

(
(−1)α

(
iT

ρα

vα

)
ραvα

)
−

(
ρα

dα

dt

(
(−1)α

iT

ρα

)
+ ρα(−1)α

iT

ρα

∂vα

∂x

)
vα

− (−1)α
(

iT

ρα

vα

) (
∂ρα

∂t
+ div (ρα vα)

)
≡ 0.

Appendix C.

We consider a more general case of a mixture when the Hamilton principle cannot be
applied. This case consists of a weak dissipative process with diffusion, viscosity and heat
transfers. The balance of masses, momenta and energy are simply expressed by adding
dissipative terms to the expressions obtained in section 4

Bα = 0, Md
α = 0 (α = 1, 2) and Ed = 0, (28)

such that

Bα =
∂ρα

∂t
+ div(ραvα),

Md
α = Mα − (div σd

α)T − mα,

Ed = E +

2∑

α=1

div qα − σd
αvα.

On the right hand side, qα is the heat flux vector, mα is the momentum production and
σd

α is the viscous part of the stress tensor of constituent α. Due to the total conservation
of momentum of the mixture,

∑2
α=1 mα = 0 [12].

The dynamics Gibbs identity (10) can be transformed as

Sd +
2∑

α=1

Md T
α vα −

(
1

2
v2

α − hα + Tαsα

)
Bα ≡ Ed,

with

Sd = S + div q +

2∑

α=1

mT
α vα − tr (σd

α Dα),

where Dα =
1

2

(
∂vα

∂x
+

(
∂vα

∂x

)T
)

and q =
2∑

α=1

qα.

The second law of thermodynamics is expressed in the form

2∑

α=1

ρα

dαsα

dt
+ div

qα

Tα

≥ 0. (29)

In the second order approximation, with small external heat fluxes qα and small difference
of temperature T1 − T2, equation (29) is equivalent to

2∑

α=1

ρα

dαsα

dt
+ div

q

T
≥ 0.
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If we write m = m1 = −m2, we obtain by calculations similar to section 4

T

[
2∑

α=1

ρα

dαsα

dt
+ div

q

T

]
+ Σ = 0,

where

Σ = (p − po) divv +
q

T
grad T −mTu−

2∑

α=1

tr (σd
α Dα) ≤ 0

is the entropy production.
Classical methods of thermodynamics of irreversible process (TIP) yield equation (25) for
the dynamical pressure term together with Fourier and Navier-Stokes laws [11].
Term mTu yields the coefficient χ of proportionality such that χ ≥ 0 and

m = −χu ≡ χ (v1 − v2).

For slow isothermal motions, the difference between the components of equations (28)2
yields in an approximation to the first order

M1

ρ1

−
M2

ρ2

= grad(µ1 − µ2).

Here µα =
∂η

∂ρα

− Tαsα denotes the chemical potential of component α at temperature T .

By neglecting the viscous terms, we obtain

grad µ =
ρ

ρ1ρ2

m (µ = µ1 − µ2) or grad µ = −κu with κ =
ρ

ρ1ρ2

χ,

which is an expression of the Fick law.

Therefore, in this formulation, our results coincide with the ones obtained by arguments

of classical thermodynamics [1].
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