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The Hamilton principle for fluid binary mixtures with two temperatures Henri Gouin 1 and Tommaso Ruggeri 2 In "Bollettino della Unione Matematica Italiana" vol. 9 II (2009) Abstract. -For binary mixtures of fluids without chemical reactions, but with components having different temperatures, the Hamilton principle of least action is able to produce the equation of motion for each component and a balance equation of the total heat exchange between components. In this nonconservative case, a Gibbs dynamical identity connecting the equations of momenta, masses, energy and heat exchange allows to deduce the balance equation of energy of the mixture. Due to the unknown exchange of heat between components, the number of obtained equations is less than the number of field variables. The second law of thermodynamics constrains the possible expression of a supplementary constitutive equation closing the system of equations. The exchange of energy between components produces an increasing rate of entropy and creates a dynamical pressure term associated with the difference of temperature between components. This new dynamical pressure term fits with the results obtained by classical thermodynamical arguments in [START_REF] Gouin | Identification of an average temperature and a dynamical pressure in multi-temperature mixture of fluids[END_REF] and confirms that the Hamilton principle can afford to obtain the equations of motions for multitemperature mixtures of fluids.

1. -Introduction.

The theory of mixtures considers generally two different kinds of continua: homogeneous mixtures (each component occupies the whole mixture volume) and heterogeneous ones (each component occupies only a part of the mixture volume). At least four approaches to the construction of two-fluids models are known. The first one for studying the heterogeneous two-flows is an averaging method (Ishii [START_REF] Ishii | Thermo-fluid dynamic theory of two-phase flows[END_REF]; Nigmatulin [START_REF] Nigmatulin | Dynamics of multiphase media[END_REF]). The averaged equations of motion are obtained by applying an appropriate averaging operator to the balance laws of mass, energy, etc..., valid inside each phase [START_REF] Drew | Mathematical modeling of two-phase flow[END_REF][START_REF] Biesheuvel | Two-phase flow equations for a dilute dispersion of gas bubbles in liquid[END_REF]. A second approach known as Landau method [START_REF] Bowen | Theory of mixtures[END_REF][START_REF] Landau | Fluid mechanics[END_REF] was used for the construction of a quantum liquid model and was purposed for the homogeneous mixtures of fluids [START_REF] Putterman | Superfluid hydrodynamics[END_REF]. For the total mixture, the method requires the balances of mass, momentum, energy, complemented with the Galilean invariance principle and the second law of thermodynamics [START_REF] Khalatnikov | Theory of superfluidity[END_REF]. A third approach is presented in extended thermodynamics; the mixtures are considered as a collection of different media co-existing in the physical space. This approach is done in the context of rational thermodynamics [START_REF] Truesdell | Series in Modern Applied Mathematics[END_REF] founded on the postulate that each constituent obeys the same balance laws as a single fluid [START_REF] Müller | Thermodynamics, Interaction of Mechanics and Mathematics Series[END_REF][START_REF] Müller | Rational extended thermodynamics[END_REF][START_REF] Ruggeri | On the hyperbolic system of a mixture of Eulerian fluids: a comparison between single and multi-temperature models[END_REF]. The thermodynamical processes must verify the second law of thermodynamics and it is possible to purpose phenomenological constitutive equations which allow to obtain the structure of constitutive or production terms (as Fick's law, Fourier's Law etc.) and to close the system of equations.

There exists a different approach based on the Hamilton principle which is used for the construction of conservative (non-dissipative) mathematical models of continua. The principle was initiated by Lin [START_REF] Lin | A new variational principle for isoenergetic flows[END_REF], Serrin [START_REF] Serrin | Mathematical principles of classical fluid mechanics[END_REF] and many others to obtain the governing equations of one component continua [START_REF] Serrin | Mathematical principles of classical fluid mechanics[END_REF][START_REF] Gouin | Thermodynamic form of the equation of motion for perfect fluids of grade n[END_REF][START_REF] Gouin | Variational principle involving the stress tensor in elastodynamics[END_REF] and involves an Hamilton action. The variations of the Hamilton action are constructed in terms of virtual motions of continua which may be defined both in Lagrangian and Eulerian coordinates [START_REF] Serrin | Mathematical principles of classical fluid mechanics[END_REF][START_REF] Gouin | Thermodynamic form of the equation of motion for perfect fluids of grade n[END_REF]. Here, we use variations in the case of fluid mixtures. The variational approach to the construction of two-fluid models has been used by many authors (Bedford & Drumheller [18]; Berdichevsky [START_REF] Berdichevsky | Variational principles of continuum mechanics[END_REF]; Geurst [START_REF] Geurst | Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures[END_REF]; Gouin [START_REF] Gouin | Variational theory of mixtures in continuum mechanics[END_REF]; Gavrilyuk & Gouin [START_REF] Gavrilyuk | A variational principle for two-fluid models[END_REF]; Gouin & Ruggeri [START_REF] Gouin | Mixture of fluids involving entropy gradients and acceleration waves in interfacial layers[END_REF]).

To study thermodynamical processes by the Hamilton principle, the entropy of the total mixture or the entropies of components are added to the field parameters instead of temperatures. The Lagrangian is the difference between the kinetic energy and an internal potential per unit volume depending on the densities, the entropies and the relative velocities of the mixture components (and a potential due to external forces). The internal potential per unit volume can be interpreted as a Legendre transformation of the internal energy. In this case, it is not necessary to distinguish molecular mixtures from heterogeneous fluids when each component occupies only a part of the mixture volume [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF][START_REF] Gavrilyuk | Hyperbolic models of homogeneous two-fluid mixtures[END_REF]. Consequently, the terms including interaction between different components of the mixture do not require constitutive postulates difficult to interpret experimentally. They come from the direct knowledge of the internal potential per unit volume.

The assumption of a common temperature for all the components is open to doubt for the suspensions of particles [START_REF] Lhuillier | From molecular mixtures to suspensions of particles[END_REF] as well as in the mixtures of gases in the early universe [START_REF] De Groot | Relativistic kinetic theory[END_REF]. By using the Hamilton principle, the existence of several temperatures (one temperature for each component) must be associated with the existence of several entropies (one specific entropy for each component). That will be the aim of this paper: the internal potential per unit volume is a function of the densities, the entropies and the difference of velocity between components. The plan of the article is as follows: In section 2, we formulate an extended form of the Hamilton principle of stationary action allowing to produce the governing equations of motion for each component of a binary mixture. From the invariance of time, we deduce an equation of the exchange of heat between components. With two temperatures (one temperature for each component), the system of governing equations together with the balance of masses is not closed: Hamilton's principle is not able to get a complete set of equations when exchange of energies occurs between components. In this case, we need an additive constitutive equation to close the system. In section 3, we obtain a Gibbs dynamical identity. This identity allows to obtain the equation of energy for the total mixture. The equation of motion for the total mixture and the equation of energy are in divergence form; as in [START_REF] Stewart | Two-phase flow: models and methods[END_REF], it is not the same for the component equations of motion. In section 4, we consider the case of weakly dissipative mixtures and introduce an average temperature of the total mixture. The average temperature corresponds to a local equilibrium different from the real state, with nonequal component temperatures but with the same total internal energy. The total pressure of the mixture in the real state is different from the pressure associated with the mixture at the local equilibrium [START_REF] Ruggeri | Mixture of gases with multi-temperature: Identification of a macroscopic average temperature[END_REF][START_REF] Ruggeri | Mixture of gases with multi-temperature: Maxwellian iteration[END_REF]. The entropy variation rate of the mixture must be in accordance with the second law of thermodynamics which implies an additive constitutive equation for the pressure. The constitutive equation depends on the physical properties of the two constituents and we focus on the fact that the new pressure term does not obey the same rule than the other terms due to dissipation. In section 5, as an example, we reconsider the special case of a mixture of perfect gases. Finally, we compare our results with the conclusions obtained in [START_REF] Gouin | Identification of an average temperature and a dynamical pressure in multi-temperature mixture of fluids[END_REF] by using classical arguments of rational thermodynamics.

-Governing equations in conservative cases.

In a Galilean system of coordinates, the motion of a two-fluid continuum can be represented by two diffeomorphisms

Z α = Φ α (z) , (α = 1, 2) or λ = t and X α = φ α (t, x),
where z = (t, x) denotes Eulerian coordinates in a four-dimensional domain ω in the time-space and Z α = (λ, X α ) denotes Lagrangian coordinates of the component α in a four-dimensional reference space ω α . The conservation of matter for each component requires that

ρ α det F a = ρ α0 (X α ) with F a = ∂x ∂X α , (1) 
where ρ α0 is the reference density in ω α and det (∂x/∂X α ) is the Jacobian determinant of the motion of the component α of density ρ α . In differentiable cases equations (1) are equivalent to the equations of density balances

∂ρ α ∂t + div(ρ α v α ) = 0, (2) 
where v α denotes the velocity of each component α.

The Lagrangian of the binary system is

L = 2 α=1 1 2 ρ α v 2 α -ρ α Ω α -η(ρ 1 , ρ 2 , s 1 , s 2 , u),
where the summation is taken over the fluid components (α = 1, 2) and s α are the specific entropies, u = v 2v 1 is the relative velocity of components, Ω α are the external force potentials, η is a potential per unit volume of the mixture. The Lagrangian L is a function of ρ α , v α , s α and we introduce the quantities

R α ≡ ∂L ∂ρ α = 1 2 v 2 α - ∂η ∂ρ α -Ω α , (3) 
k T α ≡ 1 ρ α ∂L ∂v α = v T α - (-1) α ρ α ∂η ∂u , (4) 
ρ α T α ≡ - ∂L ∂s α = ∂η ∂s α , (5) 
where T denotes the transposition and ∂L ∂v α , ∂η ∂u are linear forms. Equation ( 5)

defines the temperatures T α (α = 1, 2) which are dynamical quantities depending on ρ 1 , ρ 2 , s 1 , s 2 and u.

To obtain the equations of component motions by means of the Hamilton principle, we consider variations of particle motions in the form of surjective mappings,

X α = Ξ α (t, x;κ α ),
where scalars κ α are defined in a neighborhood of zero; they are associated with a two-parameter family of virtual motions. The real motions correspond to κ α = 0 such that Ξ α (t, x;0) = φ α (t, x); the associated virtual displacements generalize what is obtained for a single fluid [START_REF] Gouin | Thermodynamic form of the equation of motion for perfect fluids of grade n[END_REF][START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF],

δ α X α = ∂Ξ α (t, x;κ α ) ∂κ α | κα=0 . (6) 
The Hamilton action is a = ω L dv dt.

We first consider the Hamilton principle in the form

δ α a ≡ da dκ α | κα=0 = δ α ω L dv dt = 0,
under constraints (1), with δ α a being the variations of a associated with equation ( 6).

From the definition of virtual motions, we obtain in Appendix A the values of δ α v α (x, t), δ α ρ α (x, t) and δ α s α (x, t) where δ α υ(t, x) is the variation of υ at (t, x) fixed. By taking into account the formulae in Appendix A and the definitions (3-5), we get

δ α a = ω R α δ α ρ α + ρ α k T α δ α v α -ρ α T α δ α s α dv dt = ω α R α div α (ρ α0 δ α X α ) -ρ α0 k T α F α ∂ ∂λ (δ α X α ) -ρ α0 T α ∂s α0 ∂X α δ α X α dv α dt,
where div α is the divergence operator with respect to the coordinates X α . In the last expression all quantities are considered as functions of (t, X α ); the functions are assumed to be smooth enough in the domain ω α and δ α X α = 0 on its boundary. Hence, we get

δ α a = ωα ρ α0 - ∂R α ∂X α + ∂ ∂λ (k T α F α ) -T α ∂s α0 ∂X α δ α X α dv α dt,
and we obtain the equations of component motions in Lagrangian coordinates,

∂ ∂λ (k T α F α ) - ∂R α ∂X α -T α ∂s α0 ∂X α = 0,
where k T α is defined by equation ( 4). By taking into account the identity d α F α dt -∂v α ∂x F α = 0 and for λ = t, we rewrite the equations in Eulerian coordinates,

d α k T α dt + k T α ∂v α ∂x = ∂R α ∂x + T α ∂s α ∂x . (7) 
The covector k T α is an essential quantity; indeed, ρ α k α (and not ρ α v α ) is the momentum for the component α of the mixture.

To obtain the equation of energy, we need a second variation of motions associated with the time parameter. The variation corresponds to a virtual motion in the form λ = ϕ(t; κ), where scalar κ is defined in a neighborhood of zero. The real motion of the mixture corresponds to κ = 0 such that ϕ(t; 0) = t; the associated virtual displacement is

δλ = ∂ϕ(t; κ) ∂κ | κ=0 .
For a single fluid, the entropy is defined on a reference space ω o associated with Lagrangian variables; in conservative motion the specific entropy is conserved along the trajectories and in the reference space the entropy depends only on Lagrangian variables X and not on λ.

In multi-component fluids, due to exchanges of energy between the components, the entropies cannot be conserved along component paths; in the reference spaces ω α , the specific entropies s α depend also on λ

s α = s α0 (λ, X α ) .
The variation of Hamilton's action associated with the second family of virtual motions yields

δa ≡ δ ω L dx dt = ω ∂L ∂λ δλ dv dt = 0. From ∂L ∂λ = 2 α=1 ∂L ∂s α ∂s α0 ∂λ , we deduce when λ = t, ∂L ∂λ = - 2 α=1 ρ α T α d α s α dt
, where

d α s α dt = ∂s α ∂t + ∂s α ∂x v α
is the material derivative with respect to velocity v α . We obtain for the total mixture

2 α=1 ρ α T α d α s α dt = 0. ( 8 
)
Due to equations ( 2) we obtain the equivalent form

2 α=1 Q α = 0 with Q α = ∂ρ α s α ∂t + div(ρ α s α v α ) T α . (9) 
Equation ( 9) expresses that the exchange of energy between components has a null total amount.

-Gibbs dynamical identity and equation of energy.

Let us prove that equation ( 9) leads to the equation of energy of the mixture. We introduce the quantities M α , B α , S and E such that

M T α = ρ α d α k T α dt + ρ α k T α ∂v α ∂x -ρ α ∂R α ∂x -ρ α T α ∂s α ∂x , B α = ∂ρ α ∂t + div(ρ α v α ), S = 2 α=1 Q α , E = 2 α=1 ∂ ∂t ρ α 1 2 v 2 α + Ω α + η - ∂η ∂u u + div ρ α v α (k T α v α -R α ) -ρ α ∂Ω α ∂t ,
where η -∂η ∂u u = f is the Legendre transformation of η with respect to u and corresponds to the volume internal energy of the mixture. We prove in Appendix B the following property:

Theorem: For any motion of the mixture, we have the algebraic identity

E - 2 α=1 M T α v α + (k T α v α -R α + T α s α ) B α -S ≡ 0. ( 10 
)
Relation [START_REF] Truesdell | Series in Modern Applied Mathematics[END_REF] is the general expression of the Gibbs identity in dynamics. Analogous identities were obtained earlier for thermocapillary mixtures [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF] and bubbly liquids [START_REF] Gavrilyuk | A new form of governing equations of fluids arising from Hamilton's principle[END_REF]. Due to the equations of balance of masses (2), momenta [START_REF] Landau | Fluid mechanics[END_REF] and energy [START_REF] Khalatnikov | Theory of superfluidity[END_REF], deduced from Hamilton's principle, which are respectively

B α = 0, M α = 0 (α = 1, 2
) and S = 0, we obtain from identity [START_REF] Truesdell | Series in Modern Applied Mathematics[END_REF]:

Corollary: The motions of a mixture satisfy the equation of energy balance in the form

2 α=1 ∂ ∂t ρ α 1 2 v 2 α + Ω α + f + div ρ α v α k T α v α -R α -ρ α ∂Ω α ∂t = 0 . ( 11 
)
Equation ( 11) appears as the equation of energy when f is the total internal energy.

The equations of component motions are not written in divergence form. Nevertheless by summing equations [START_REF] Landau | Fluid mechanics[END_REF] in the form M T α = 0 and taking into account equations (1) in the form B α = 0, we obtain by a calculation similar as in [START_REF] Gouin | Mixture of fluids involving entropy gradients and acceleration waves in interfacial layers[END_REF][START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF][START_REF] Gavrilyuk | Hyperbolic models of homogeneous two-fluid mixtures[END_REF] the balance equation for the total momentum in a divergence form:

2 α=1 ∂ρ α v T α ∂t + div ρ α v α k T α + ρ α ∂η ∂ρ α -η I + ρ α ∂Ω α ∂x = 0, ( 12 
)
where I is the identity tensor. In the following,

ρ v = 2 α=1 ρ α k α = 2 α=1 ρ α v α is the total momentum and ρ = 2 α=1
ρ α is the mixture density.

System (( 2),( 7),( 11)), consequence of the Hamilton principle, is a non closed system of equations. In a single conservative fluid, the system of motion equations is closed by the entropy conservation. In case of mixtures with two entropies, the Hamilton principle is not able to close the system of motion equations; we need additional arguments to obtain the evolution equations for each entropy s α by considering the behaviors of Q α . A possibility to close the system of equations is to consider the case when the momenta and heat exchanges between the components are rapid enough to have a common temperature. This case is connected with a conservative equation for the total specific entropy [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF]. Another possibility, used by Landau for quantum fluids [START_REF] Landau | Fluid mechanics[END_REF], is to assume that the total specific entropy s is convected along the first component trajectory

∂ρ 1 s ∂t + div (ρ 1 s v 1 ) = 0.
In this case, the constitutive functions are ρ 1 , s, v 1 , ρ 2 , v 2 , where ρ α (α = 1, 2) are submitted to the constraints (2) and the case of Helium superfluid is a special case of our study corresponding to s 1 = s and s 2 = 0. Such an hypothesis is not acceptable for classical fluids. These assumptions are not valid for heterogeneous mixtures where each phase has different pressures and temperatures [START_REF] Lhuillier | From molecular mixtures to suspensions of particles[END_REF][START_REF] De Groot | Relativistic kinetic theory[END_REF].

In the following we consider the case when the mixture is weakly out of equilibrium such that the difference of velocities u and the difference of temperatures T 2 -T 1 are small enough with respect to the main field variables.

-Mixtures weakly out of equilibrium.

For the sake of simplicity, we neglect the external forces. Generally, the volume potential η is developed in the form [START_REF] Gavrilyuk | A variational principle for two-fluid models[END_REF][START_REF] Gavrilyuk | A new form of governing equations of fluids arising from Hamilton's principle[END_REF] 

3 η(ρ 1 , ρ 2 , s 1 , s 2 , u) = e(ρ 1 , ρ 2 , s 1 , s 2 ) -b(ρ 1 , ρ 2 , s 1 , s 2 ) u 2 ,
where b is a positive function of ρ 1 , ρ 2 , s 1 , s 2 . Properties of convexity of the function η are studied in [START_REF] Gavrilyuk | Hyperbolic models of homogeneous two-fluid mixtures[END_REF]. When |u| is small enough, the equations of motions are hyperbolic [START_REF] Gavrilyuk | Hyperbolic models of homogeneous two-fluid mixtures[END_REF]. We consider the linear approximation when |u| is small with respect to |v 1 | and |v 2 |. In linear approximation the volume potential is equal to the volume internal energy e, η(ρ

1 , ρ 2 , s 1 , s 2 , u) ≈ e(ρ 1 , ρ 2 , s 1 , s 2 ) = ρ ε(ρ 1 , ρ 2 , s 1 , s 2 ),
where ε denotes the internal energy per unit mass. Let us note that the diffusion

vector j = ρ 1 (v 1 -v) ≡ ρ 2 (v -v 2
) is a small momentum vector deduced respectively from velocities and densities of the components. The equations of density balances can be written in the form dρ dt

+ ρ div v = 0 and ρ dc dt + div j = 0, (13) 
where c = ρ 1 ρ denotes the concentration of component 1 and

d dt = ∂ ∂t + ∂ ∂x . v is
the material derivative with respect to the average velocity of the mixture. The divergence of a linear operator A is the covector divA such that, for any constant vector a, (div A) a = div (A a) and we write v α v T α ≡ v α ⊗ v α . Let us denote by h α ≡ ∂e ∂ρ α the specific enthalpy of the component α.

For processes with weak diffusion, the equations of component motions get the form,

ρ α Γ α ≡ ∂ρ α v α ∂t + div(ρ α v α ⊗ v α ) T = ρ α T α grad s α -ρ α grad h α .
The equation of total momentum ( 12) is reduced to

∂ρv ∂t + div 2 α=1 (ρ α v α ⊗ v α ) -t T = 0,
where t = 2 α=1 t α is the total stress tensor such that

t ανγ = -p α δ νγ , with p α = ρρ α ε ,ρ α = ρ α e ,ρ α - ρ α e ρ , p = 2 α=1 p α .
The equation of energy [START_REF] Müller | Thermodynamics, Interaction of Mechanics and Mathematics Series[END_REF] writes in the simpler form

∂ ∂t e + 2 α=1 1 2 ρ α v 2 α + div e v + 2 α=1 1 2 ρ α v 2 α -t α v α = 0.
3 In [START_REF] Gouin | Identification of an average temperature and a dynamical pressure in multi-temperature mixture of fluids[END_REF], the internal energy is the sum of the internal energies of the components

ρ ε = 2 α=1 ρ α ε α (ρ α , s α ) .
The internal energy is a natural function of densities and entropies. Due to equation ( 5),

ρ 1 T 1 = ρ ∂ε ∂s 1 (ρ 1 , ρ 2 , s 1 , s 2 ) and ρ 2 T 2 = ρ ∂ε ∂s 2 (ρ 1 , ρ 2 , s 1 , s 2 ). ( 14 
)
Let us denote by ε the expression of the specific internal energy as a function of ρ, c, s 1 , s 2 such that ε(ρ, c, s 1 , s 2 ) = ε(ρ 1 , ρ 

ρ dε dt = p ρ dρ dt + ρ (h 1 -h 2 ) dc dt + ρ 1 T 1 ds 1 dt + ρ 2 T 2 ds 2 dt . ( 15 
)
By taking into account that

d α s α dt = ds α dt + ∂s α ∂x (v α -v)
and by using equations ( 8), [START_REF] Ruggeri | On the hyperbolic system of a mixture of Eulerian fluids: a comparison between single and multi-temperature models[END_REF], equation ( 15) yields

ρ dε dt + p div v + (h 1 -h 2 ) div j + (T 1 grad s 1 -T 2 grad s 2 ) T j = 0. ( 16 
)
Due to equations ( 14), the internal energy can be expressed as a function of densities and temperatures of components

ǫ(ρ 1 , ρ 2 , T 1 , T 2 ) = ε(ρ 1 , ρ 2 , s 1 , s 2 ).
As we did in [START_REF] Gouin | Identification of an average temperature and a dynamical pressure in multi-temperature mixture of fluids[END_REF], we define the average temperature T associated with T 1 and T 2 through the implicit solution of the equation

ǫ(ρ 1 , ρ 2 , T, T ) = ǫ(ρ 1 , ρ 2 , T 1 , T 2 ). ( 17 
)
We denote by Θ α = T α -T the difference between component and average temperatures which are non-equilibrium thermodynamical variables. Near equilibrium, equation ( 17) can be expanded to the first order; then

2 α=1 c α v Θ α = 0 with c α v = ∂ ǫ ∂T α (ρ 1 , ρ 2 , T, T ). ( 18 
)
Due to the fact that

ρ dε = 2 α=1 ρ α T α ds α + p α ρ α dρ α , then ρ c 1 v = T 2 α=1 ρ α ∂s α ∂T 1 (ρ 1 , ρ 2 , T, T ) and ρ c 2 v = T 2 α=1 ρ α ∂s α ∂T 2 (ρ 1 , ρ 2 , T, T ). ( 19 
)
The definition of the total entropy s of the mixture is

ρ s = 2 α=1 ρ α s α (ρ 1 , ρ 2 , T 1 , T 2 ). ( 20 
)
The first order expansion of equation [START_REF] Geurst | Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures[END_REF] yields

ρ s = 2 α=1 ρ α s α (ρ 1 , ρ 2 , T, T ) + ρ α s α ∂s α ∂T 1 (ρ 1 , ρ 2 , T, T ) Θ 1 + ρ α s α ∂s α ∂T 2 (ρ 1 , ρ 2 , T, T ) Θ 2 .
Due to Relations ( 18), ( 19)

ρ s = 2 α=1 ρ α s α (ρ 1 , ρ 2 , T, T )
and the specific entropy s does not depend on Θ 1 and Θ 2 but only on ρ 1 , ρ 2 and T . We denote by ε the internal specific energy as a function of ρ, c, T :

ε(ρ, c, T ) = ǫ(ρ 1 , ρ 2 , T, T ),
which satisfies the Gibbs equation

T ds = dε - p o ρ 2 dρ + (µ 2 -µ 1 ) dc
where p o (ρ, c, T ) is the equilibrium pressure at temperature T and µ 2 -µ 1 , difference of component chemical potentials, is the chemical potential of the whole mixture. By taking into account of equation ( 13), we get

ρ dε dt + p o div v + (µ 1 -µ 2 ) div j -ρ T ds dt = 0.
Moreover,

ρ ds dt = 2 α=1 ρ α d α s α dt + div [(s 2 -s 1 )j ]. (21) 
Equation ( 21) yields the relation between the material derivatives of entropy s and entropies s 1 and s 2 . By taking into account of these results in equation ( 16) and ε(ρ, c, T ) = ε(ρ 1 , ρ 2 , s 1 , s 2 ), we obtain

T 2 α=1 ρ α d α s α dt + (p -p o ) div v + (h 1 -h 2 ) -(µ 1 -µ 2 ) + T (s 2 -s 1 ) div j + Θ 1 grad s 1 -Θ 2 grad s 2 T j = 0. ( 22 
)
The differences of temperatures Θ 1 ≡ T 1 -T and Θ 2 ≡ T 2 -T are small with respect to T and j is a small diffusion term with respect to the mixture momentum ρv; consequently, in an approximation to the first order, the term

Θ 1 grad s 1 -Θ 2 grad s 2 T j is negligible. Let us consider K ≡ (h 1 -h 2 ) -(µ 1 -µ 2 ) + T (s 2 -s 1 ) div j ;
we get

K = h 1 -T 1 s 1 -h 2 -T 2 s 2 -(µ 1 -µ 2 ) + Θ 1 s 1 + Θ 2 s 2 div j .
In an approximation to the first order, the term Θ 1 s 1 + Θ 2 s 2 div j is negligible. Due to the fact that µ α (ρ 1 , ρ 2 , T 1 , T 2 ) = h α -T α s α is the chemical potential of the component α, when j is a small diffusion velocity with respect to average velocity v, the term

µ 1 (ρ 1 , ρ 2 , T 1 , T 2 ) -µ 2 (ρ 1 , ρ 2 , T 1 , T 2 ) -µ 1 (ρ 1 , ρ 2 , T, T ) -µ 2 (ρ 1 , ρ 2 , T, T ) div j
is vanishing in an approximation to the first order. Consequently, in an approximation to the first order, equation ( 22) reduces to

2 α=1 ρ α d α s α dt = - 1 T (p -p o ) div v. (23) 
The exchange of energy between components must obey the second law of thermodynamics: the total entropy rate is an increasing function of time and we consider the second law of thermodynamics in the form

2 α=1 ∂ρ α s α ∂t + div(ρ α s α v α ) ≥ 0 (24) 
Due to relations (2) the Clausius-Duhem inequality ( 24) is equivalent to

2 α=1 ρ α d α s α dt ≥ 0 .
Relation [START_REF] Gouin | Mixture of fluids involving entropy gradients and acceleration waves in interfacial layers[END_REF] implies that the second member must be positive. Therefore, as usual in thermodynamics of irreversible processes, the entropy inequality requires

π ≡ p -p o = -Λ div v . (25) 
This expression defines the Lagrange multiplier Λ of proportionality such that Λ ≥ 0. The dynamical pressure π is the difference between the pressure in the process out of equilibrium with different temperatures for the components and the pressure of the mixture assumed in local thermodynamical equilibrium with the common average temperature T . Let us notice that equations [START_REF] Khalatnikov | Theory of superfluidity[END_REF][START_REF] Gavrilyuk | Hyperbolic models of homogeneous two-fluid mixtures[END_REF] allow to obtain Q α values. In fact,

ρ 1 T (T 2 -T 1 ) d 1 s 1 dt = Λ T 2 (div v) 2 and ρ 2 T (T 1 -T 2 ) d 2 s 2 dt = Λ T 1 (div v) 2
and the system of field equations is closed.

5. -Special case of mixture of perfect gases [START_REF] Ruggeri | On the hyperbolic system of a mixture of Eulerian fluids: a comparison between single and multi-temperature models[END_REF].

The internal energy of the mixture is the sum of the internal energies of the different gas components. We represent these energies as function of density and temperature of components

ε(ρ 1 , ρ 2 , T 1 , T 2 ) = ρ 1 ε 1 (ρ 1 , T 1 ) + ρ 2 ε 2 (ρ 2 , T 2 ). Then, p = p 1 (ρ 1 , T 1 ) + p 2 (ρ 2 , T 2 ),
where p 1 and p 2 are the pressures associated with ε 1 and ε 2 . An expansion to the first order in T 1 -T = Θ 1 and T 2 -T = Θ 2 yields

p = p 1 (ρ 1 , T ) + p 2 (ρ 2 , T ) + ∂p 1 ∂T 1 (ρ 1 , T ) Θ 1 + ∂p 2 ∂T 2 (ρ 2 , T ) Θ 2 .
From the definition of the average temperature T we obtain as in [START_REF] Ruggeri | Mixture of gases with multi-temperature: Identification of a macroscopic average temperature[END_REF],

ρ 1 ε 1 (ρ 1 , T ) + ρ 2 ε 2 (ρ 2 , T ) = ρ 1 ε 1 (ρ 1 , T 1 ) + ρ 2 ε 2 (ρ 2 , T 2 ).
Consequently, from equation ( 25), we get

π = ∂p 1 ∂T 1 (ρ 1 , T ) Θ 1 + ∂p 2 ∂T 2 (ρ 2 , T ) Θ 2 .
Let T 1 = T + β Θ, T 2 = T + (1 + β) Θ, where Θ = T 2 -T 1 , an expansion of equation [START_REF] Gouin | Variational principle involving the stress tensor in elastodynamics[END_REF] to the first order yields the value of β

C (1) v (ρ 1 , T ) β Θ + C (2) v (ρ 2 , T ) (1 + β) Θ = 0, with C (α) v = ∂ ε α ∂T α (ρ α , T).
Consequently, when p α = k α ρ α T α , we obtain

π = ρ 1 ρ 2 ρ 1 C (1) v + ρ 2 C (2) v (k 2 C (1) v -k 1 C (2) v ) Θ
In accordance with results obtained by Ruggeri & Simić [START_REF] Ruggeri | Mixture of gases with multi-temperature: Maxwellian iteration[END_REF] and Gouin & Ruggeri [START_REF] Gouin | Mixture of fluids involving entropy gradients and acceleration waves in interfacial layers[END_REF], to verify the Clausius-Duhem inequality [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF], Θ must be in the form

Θ = L T (γ 1 -γ 2 ) div v with L T = M ρ 1 C (1) v ρ 2 C (2) v (ρ 1 C (1) v + ρ 2 C (2) v ) and M ≥ 0
where γ α is the ratio of specific heats of component α.

-Conclusion.

The method by Hamilton can be easily extended to multi-component mixtures with multi-temperatures. We obtain the equations of component motions and the equation of the total mixture energy. The entropy is not conserved and the second law of thermodynamics reveals the existence of a new dynamical pressure term.

As diffusion is a property of fluid mixtures with different component velocities, the dynamical pressure term is a property of fluid mixtures with different component temperatures. The dynamical pressure can be measured with the change of volume. In the special case of mixture of gases, the dynamical pressure term comes from the fact the gases are molecularly different. The Hamilton principle points out that the dynamical pressure can be obtained by neglecting viscosity, friction or external heat fluxes. This is a main property of mixtures with multi-temperatures and this fact may have some applications in plasma of gases and in the evolution of the early universe [START_REF] Weinberg | Entropy generation and the survival of protogalaxies in an expanding universe[END_REF]. In Appendix C, we highlight that constitutive equations for diffusion, viscosity and heat flux for mixtures without chemical reaction are consequence of dissipative terms whereas the dynamical pressure term can exist with different component temperatures even if the bulk viscosity is null. The results are in complete accordance with the ones by Ruggeri & Simic [START_REF] Ruggeri | Mixture of gases with multi-temperature: Maxwellian iteration[END_REF] and Gouin & Ruggeri [START_REF] Gouin | Identification of an average temperature and a dynamical pressure in multi-temperature mixture of fluids[END_REF]. This is an important verification of the fact that the Hamilton principle can be extended to nonconservative mixture motions when components have different temperature. A difference with classical thermodynamics methods is that the volume internal energy is not necessary the sum of the volume internal energies of the components. In this paper, the volume internal energy is a nonseparate function of densities and entropies (or temperatures) and is consequently more general than in [START_REF] Gouin | Identification of an average temperature and a dynamical pressure in multi-temperature mixture of fluids[END_REF] and [START_REF] Ruggeri | Mixture of gases with multi-temperature: Maxwellian iteration[END_REF].

Appendix A.

The definition of Lagrangian coordinates X α implies ∂X α ∂t + ∂X α ∂x v α = 0. By taking the derivative with respect to κ α , we obtain the following equation for virtual displacements (equation ( 6)) associated with the first virtual motion family

∂δ α X α ∂t + ∂δ α X α ∂x v α + ∂X α ∂x δ α v α = 0.
Then, we get

δ α v α (x, t) = -F α d α dt (δ α X α ).
Equation (1) yields

δ α ρ α (x, t) det F α (x, t) + ρ α δ α (det F α ) = ∂ρ α0 ∂X α δ α X α . (26) 
By using the Euler-Jacobi identity

δ α (det F α ) = det F α (x, t) tr F -1 α δ α F α with δ α F α (x, t) = -F α (x, t) δ α F -1 a (x, t) F α (x, t)
and

δ α F -1 a (x, t) = ∂δ α X α ∂x , we deduce δ α (det F α ) = -det F α tr δ α F -1 a F α = -det F α tr ∂ δ α X α ∂X α , or, δ α (det F α ) = -det F α div α (δ α X α ). (27) 
By substituting equation ( 27) into equation ( 26), we obtain

δ α ρ α (x, t) = ρ α div α (δ α X α ) + ρ α ρ α0 ∂ρ α0 ∂X α δ α X α = div α (ρ α0 δ α X α ) detF α , δ α s α (x, t) = ∂s α0 ∂X α δ α X α . Appendix B.
The proof of the Gibbs identity is obtained by summing the following algebraic identities ae, For the external potentials Ω α , a.

∂ ρ α Ω α ∂t + div (ρ α Ω α v α ) -ρ α ∂Ω α ∂x v α -B α Ω α -ρ α ∂Ω α ∂t ≡ 0 
For the velocity fields v α , b.

∂ ∂t

1 2 ρ α v 2 α + div ρ α v α v 2 α - 1 2 v 2 α -B α v 2 α - 1 2 v 2 α -ρ α d α v T α dt + ρ α v T α ∂v α ∂x -ρ α ∂ ∂x 1 2 v 2 α v α ≡ 0 Let us introduce i T = - ∂η ∂u . Then ∂ ∂t η - ∂η ∂u u = ∂ i T ∂t u + 2 α=1 ∂η ∂ρ α ∂ρ α ∂t + ρ α T α ∂s α ∂t
and the three following identities ce prove the formula c.

∂η ∂ρ α ∂ρ α ∂t + div ∂η ∂ρ α ρ α v α -ρ α ∂ ∂x ∂η ∂ρ α v α - ∂η ∂ρ α ∂ρ α ∂t + div (ρ α v α ) ≡ 0, d. ρ α T α ∂s α ∂t + ρ α T α ∂s α ∂x v α -ρ α T α d α s α dt ≡ 0, e. ∂i T ∂t η + 2 α=1 div (-1) α i T ρ α v α ρ α v α -ρ α d α dt (-1) α i T ρ α + ρ α (-1) α i T ρ α ∂v α ∂x v α -(-1) α i T ρ α v α ∂ρ α ∂t + div (ρ α v α ) ≡ 0. Appendix C.
We consider a more general case of a mixture when the Hamilton principle cannot be applied. This case consists of a weak dissipative process with diffusion, viscosity and heat transfers. The balance of masses, momenta and energy are simply expressed by adding dissipative terms to the expressions obtained in section 4 B α = 0, M d α = 0 (α = 1, 2) and E d = 0, [START_REF] Stewart | Two-phase flow: models and methods[END_REF] such that

B α = ∂ρ α ∂t + div(ρ α v α ), M d α = M α -(div σ d α ) T -m α , E d = E + 2 α=1 div q α -σ d α v α .
On the right hand side, q α is the heat flux vector, m α is the momentum production and σ d α is the viscous part of the stress tensor of constituent α. Due to the total conservation of momentum of the mixture, 2 α=1 m α = 0 [START_REF] Müller | Rational extended thermodynamics[END_REF]. The dynamics Gibbs identity [START_REF] Truesdell | Series in Modern Applied Mathematics[END_REF] can be transformed as

S d + 2 α=1 M d T α v α - 1 2 v 2 α -h α + T α s α B α ≡ E d ,
with

S d = S + div q + 2 α=1 m T α v α -tr (σ d α D α ),
where D α = 1 2

∂v α ∂x + ∂v α ∂x T and q = 2 α=1 q α .
The second law of thermodynamics is expressed in the form

2 α=1 ρ α d α s α dt + div q α T α ≥ 0. ( 29 
)
In the second order approximation, with small external heat fluxes q α and small difference of temperature T 1 -T 2 , equation ( 29) is equivalent to is the entropy production. Classical methods of thermodynamics of irreversible process (TIP ) yield equation ( 25) for the dynamical pressure term together with Fourier and Navier-Stokes laws [START_REF] Müller | Thermodynamics, Interaction of Mechanics and Mathematics Series[END_REF]. Term m T u yields the coefficient χ of proportionality such that χ ≥ 0 and

m = -χ u ≡ χ (v 1 -v 2 ).
For slow isothermal motions, the difference between the components of equations ( 28) 2 yields in an approximation to the first order

M 1 ρ 1 - M 2 ρ 2 = grad(µ 1 -µ 2 ).
Here µ α = ∂η ∂ρ α -T α s α denotes the chemical potential of component α at temperature T .

By neglecting the viscous terms, we obtain grad µ = ρ ρ 1 ρ 2 m (µ = µ 1µ 2 ) or grad µ = -κ u with κ = ρ ρ 1 ρ 2 χ,

which is an expression of the Fick law. Therefore, in this formulation, our results coincide with the ones obtained by arguments of classical thermodynamics [START_REF] Gouin | Identification of an average temperature and a dynamical pressure in multi-temperature mixture of fluids[END_REF].

2 α=1 ρ α d α s α dt + div q T ≥ 0 .

 20 If we write m = m 1 = -m 2 , we obtain by calculations similar to section 4 p -p o ) div v + q T grad Tm T u -2 α=1 tr (σ d α D α ) ≤ 0

  2 , s 1 , s 2 ); we get

	ρ	dε dt	= ρ	∂ε ∂ρ	dρ dt	+ ρ	∂ε ∂c	dc dt	+ ρ	∂ε ∂s 1	ds 1 dt	+ ρ	∂ε ∂s 2	ds 2 dt	.
	Due to the fact that ρ 2 ∂ε ∂ρ	= p and	∂ε ∂c	= h 1 -h 2 , we obtain
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