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Abstract. The technique of counterexample-guided abstraction refine-
ment (Cegar) has been successfully applied in the areas of software and
hardware verification. Automatic abstraction refinement is also desirable
for the safety verification of complex infinite-state models. This techre-
port investigates Cegar in the context of formal models of network pro-
tocols, in our case, the verification of fifo systems. Our main contribution
is the introduction of extrapolation-based path invariants for abstraction
refinement. We develop a range of algorithms that are based on this novel
theoretical notion, and which are parameterized by different extrapola-
tion operators. These are utilized as subroutines in the refinement step
of our Cegar semi-algorithm that is based on recognizable partition ab-
stractions. We give sufficient conditions for the termination of Cegar by
constraining the extrapolation operator. Our empirical evaluation con-
firms the benefit of extrapolation-based path invariants.

1 Introduction

Distributed processes that communicate over a network of reliable and un-
bounded fifo channels are an important model for the automatic verification of
client-server architectures and network protocols. As easy as this model seems
at a first glance, as hard is the verification of communication protocols in gen-
eral: distributed processes that run in parallel and that exchange messages in an
asynchronous way, therefore exhibiting complex interactions, allow for a gargan-
tuan (and sometimes infinite) number of possible—emergent—behaviors. Hence,
verifying these multitude of behaviors is far beyond any checking by hand and,
regarding the emergence of behaviors, not directly deducible from the originally
given set of simple processes; consequently, verification is not possible without
automatic methods and the support of algorithmic tools.

Fifo Systems

We focus on communicating fifo systems that consist of a set of finite automata
that model the processes, and a set of reliable, unbounded fifo queues that model

? This work was partly supported by ANR project AVERISS (ANR-06-SETIN-001).
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Fig. 1: Basic Steps of the Cegar Loop

the communication channels. This class of infinite-state systems is, unfortu-
nately, Turing-complete already in the case of one fifo queue [BZ83]. In general,
two approaches for the automatic verification of Turing-complete infinite-state
models have been considered in the literature: (a) exact semi-algorithms that
compute forward or backward reachability sets (e.g., [BG99, BH99, FIS03] for
fifo systems) but may not terminate, and (b) algorithms that always termi-
nate but only compute an over-approximation of these reachability sets (e.g.,
[LGJJ06, YBCI08] for fifo systems).

CEGAR

In the last decade, counterexample-guided abstraction refinement (Cegar) has
emerged as a powerful technique that bridges the gap between these two ap-
proaches [CGJ+03]. Cegar plays a prominent role in the automatic, iterative
approximation and refinement of abstractions and has been applied successfully
in the areas of software [BR01, HJMS02] and hardware verification [CGJ+03].
Briefly, the Cegar approach to the verification of a safety property ϕ for
an (infinite-state) model M , i.e., the decision whether M � ϕ, consists in an
abstract–check–refine loop that iterates the four following steps:

1. build a safety conservative, finite-state abstraction M ] of the model (e.g., a
predicate abstraction [GS97] which partitions the state space);

2. model-check the abstraction against the given safety property (check whether
M ] � ϕ): if the abstraction is safe, then so is the original model (return X),
otherwise a finite counterexample path π] is found in the abstraction;

3. symbolically simulate the abstract counterexample on the original model: if
the counterexample is feasible then the original model is unsafe (return  ),
otherwise it is spurious (i.e., a false negative) and

4. extract a refinement for M ] that rules out the spurious counterexample
before iterating this procedure (jump back to 1).
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The crucial part in Cegar-based verification is refinement, which must find
a new partition that is both (1) precise enough to rule out the spurious coun-
terexample and (2) computationally “simple”. In most techniques, refinement
is based on the generation of path invariants; these are invariants along the
spurious counterexample that prove its unfeasibility.

Our Contribution

We present several generic algorithms to obtain path invariants based on param-
eterized extrapolation operators. A path invariant is given by a series of recog-
nizable languages represented by Qdds [BG99], generated by an “extrapolation”
of the actual spurious counterexample. Our path invariant generation procedures
are fully generic with respect to the extrapolation; in our experiments, we im-
plemented those algorithms with two different extrapolation operators adapted
to fifo systems.

We formally present the resulting Cegar semi-algorithm, which uses the
path-invariants in order to refine the current partition. This operation consists
in splitting abstract states that occur on the counterexample with the generated
path invariant. We also give partial termination results that, in contrast to the
classical Cegar literature, do not rely on an “a priori finiteness condition” on
the set of all possible abstractions. Actually, our results depend mainly on our
generic extrapolation-based path invariant generation. In particular we show that
our semi-algorithm always terminates if (at least) one of these two conditions
is satisfied: (1) the fifo system under verification is unsafe, or (2) it has a finite
reachability set and the parameterized extrapolation has a finite image for each
value of the parameter. We cannot expect termination in general since safety
verification is known to be undecidable for fifo systems [BZ83].

We have implemented our approach as part of the Mcscm framework [McScM].
Our tool performs Cegar-based safety verification of fifo systems. Experimental
results on a suite of (small to medium size) network protocols allow for a first
discussion of our approach’s advantages.

Related Work

Exact semi-algorithms for reachability set computations of fifo systems usually
apply acceleration techniques [BG99, BH99, FIS03] that, intuitively, compute
the effect of iterating a given “control flow” loop. The tools Lash [Lash] (for
counter/fifo systems) and Trex [TReX] (for lossy fifo systems) implement these
techniques. However, recognizable languages equipped with Presburger formulas
(Cqdds [BH99]) are required to represent (and compute) the effect of counting
loops [BG99, FIS03]. Moreover such tools may only terminate when the fifo
system can be flattened into an equivalent system without nested loops. Our
experiments show that our approach can cope with both counting loops and
nested loops that cannot be flattened.

A totally different approach is presented in [VSVA04a] which combines a
learning based approach for over-approximating the set of reachable control
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states with safety verification. Even if this approach is shown to be only com-
plete when a given abstraction of the fifo system’s trace language is regular,
it nevertheless allows to derive counter-examples in a semi-algorithmic way. A
prototypical implementation can be found as part of [Lever].

The closest approach to ours is abstract regular model checking (Armc),
an extension of the generic regular model-checking framework based on the
abstract–check–refine paradigm [BHV04]. As in classical regular model-checking,
a system is modeled as follows: configurations are words over a finite alphabet
and the transition relation is given by a finite-state transducer. The analysis
consists in an over-approximated forward exploration (by Kleene iteration), fol-
lowed, in case of a non-empty intersection with the bad states, by an exact
backward computation along the reached sets. Two parametrized automata ab-
straction schemes are provided in [BHV04], both based on state merging. These
schemes fit in our definition of extrapolation, and therefore can also be used
in our framework. Notice that in Armc, abstraction is performed on the data
structures that are used to represent sets of configurations, whereas in our case
the system itself is abstracted. After each refinement step, Armc restarts (from
scratch) the approximated forward exploration from the refined reached set,
whereas our refinement is local to the spurious counterexample path. Moreover,
the precision of the abstraction is global in Armc, and may only increase (for the
entire system) at each refinement step. In contrast, our path invariant genera-
tion procedures only use the precision required for each spurious counterexample.
First benchmarks demonstrate the benefit of our local and adaptive approach
for the larger examples, where a “highly” precise abstraction is required only for
a few control loops. Last, our approach is not tied to words and automata. In
this work we only focus on fifo systems, but our framework is fully generic and
could be applied to other infinite-state systems (e.g., hybrid systems), provided
that suitable parameterized extrapolations are designed (e.g., on polyhedra).

Outline

We recapitulate fifo systems in Section 2 and define their partition abstractions in
Section 3. Refinement and extrapolation-based generation of path invariants are
developed in Section 4. The latter also provides an overview of the extrapolation
used in our implementation. In Sections 5 and 6, we present the general Ce-
gar semi-algorithm, and analyze its correctness and termination. Experimental
results are presented in Section 7, along with some perspectives.

For the sake of completeness, all results are proved in detail as necessary,
additional material can be found in the appendix. This technical report is the
detailed and enhanced version of the results presented at the SPIN workshop on
model checking software 2009 [HLS09].

Acknowledgments. We thank the anonymous reviewers of the primary pub-
lication for supporting and guiding the genesis of this publication, and we are
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2 Fifo Systems

This section presents basic definitions and notations for fifo systems that will be
used throughout the paper.

For any set S we write ℘(S) for the set of all subsets of S, and Sn for the
set of n-tuples over S (when n ≥ 1). For any i ∈ {1, . . . , n}, we denote by s(i)
the ith component of an n-tuple s. Given s ∈ Sn, i ∈ {1, . . . , n} and u ∈ S, we
write s[i← u] for the n-tuple s′ ∈ Sn defined by s′(i) = u and s′(j) = s(j) for
all j ∈ {1, . . . , n} with j 6= i.

Let Σ denote an alphabet (i.e., a non-empty set of letters). We write Σ∗ for
the set of all finite words (words for short) over Σ, and we let ε denote the empty
word. For any two words w,w′ ∈ Σ∗, we write w · w′ for their concatenation. A
language is any subset of Σ∗. For any language L, we denote by L∗ its Kleene
closure and we write L+ = L ·L∗. The alphabet of L, written alph(L), is the least
subset A of Σ such that L ⊆ A∗. For any word w ∈ Σ∗, the singleton language
{w} will be written simply as word w when no confusion is possible.

2.1 Safety Verification of Labeled Transition Systems

We will use labeled transition systems to formally define the behavioral semantics
of fifo systems. A labeled transition system is any triple LTS = 〈C, Σ,→〉 where
C is a set of configurations, Σ is a finite set of actions and →⊆ C × Σ × C is
a (labeled) transition relation. We say that LTS is finite when C is finite. For

simplicity, we will often write c
l−→ c′ in place of (c, l, c′) ∈→.

A finite path (path for short) in LTS is any pair π = (c, u) where c ∈ C,
and u is either the empty sequence, or a non-empty finite sequence of transi-
tions (c0, l0, c

′
0), . . . , (ch−1, lh−1, c

′
h−1) such that c0 = c and c′i−1 = ci for every

0 < i < h. We simply write π as c0
l0−→ · · · lh−1−−−→ ch. The natural number h

is called the length of π. We say that π is a simple path if ci 6= cj for all
0 ≤ i < j ≤ h. For any two sets Init ⊆ C and Bad ⊆ C of configurations, a

path from Init to Bad is any path c0
l0−→ · · · lh−1−−−→ ch such that c0 ∈ Init and

ch ∈ Bad. Observe that if c ∈ Init ∩Bad then c is a path (of zero length) from
Init to Bad. The reachability set of LTS from Init is the set of configurations c
such that there is a path from Init to {c}.

In this paper, we focus on the verification of safety properties on fifo sys-
tems. A safety property is in general specified as a set of “bad” configurations
that should not be reachable from the initial configurations. Formally, a safety
condition for a labeled transition system LTS = 〈C, Σ,→〉 is a pair (Init, Bad)
of subsets of C. We say that LTS is (Init, Bad)-unsafe if there is a path from
Init to Bad in LTS, which is called a counterexample. We say that LTS is
(Init, Bad)-safe when it is not (Init, Bad)-unsafe.
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Fig. 2: The Connection/Disconnection Protocol [JR86]

2.2 Fifo Systems

The asynchronous communication of distributed systems is usually modeled as
a set of local processes together with a network topology given by channels
between processes. Each process can be modeled by a finite-state machine that
sends and receives messages on the channels to which it is connected. Let us
consider a classical example, which will be used in the remainder of this paper
to illustrate our approach.

Example 2.1. The connection/disconnection protocol [JR86]—in the following
abbreviated as c/d protocol—between two hosts is depicted in Figure 2. This
model is composed of two processes, a client and a server, as well as two unidi-
rectional channels. The client can open a session by sending the message open

(abbreviated o) to the server and changing its state to 1 (session established).
Afterwards, he may close it either actively by sending the message c(lose),
or passively as a reaction to the d(disconnect) message from the server. The
server receives the request to establish a shared session by the message open and
thereupon enters its state 1 (session on server-side established). He as well can
either actively or passively close the session by sending a disconnect request or
by receiving a close. �

To simplify the presentation, we restrict our attention to the case of one
finite-state control process. The general case of multiple processes can be re-
duced to this simpler form by taking the asynchronous product of all processes.
For the connection/disconnection protocol, the asynchronous product of the two
processes is depicted in Figure 3. For instance, the global control state 11 com-
bines the local “session established” control state of both peers.

We assume that channels respect the fifo semantics for send and receive
actions, and, hence, we call them “queues” in the remainder of the paper.

Definition 2.2. A fifo system A is a 4-tuple 〈Q,M,n,∆〉 where:

– Q is a finite set of control states,

– M is a finite alphabet of messages,

– n ≥ 1 is the number of fifo queues,

– ∆ ⊆ Q×Σ ×Q is a set of transition rules,
where Σ = {1, . . . , n} × {!, ?} ×M is the set of fifo actions over n queues.
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Fig. 3: Fifo System Representing the Connection/Disconnection Protocol

Simplifying notation, fifo actions in Σ will be shortly written i!m and i?m
instead of (i, !,m) and (i, ?,m). The intended meaning of fifo actions is the
following: i!m represents the “sending of message m on queue i ” and i?m denotes
the “reception of message m from queue i ”. The operational semantics of a fifo
systemA is formally given by its associated labeled transition system JAK defined
below.

Definition 2.3. The operational semantics of a fifo system A = 〈Q,M,n,∆〉
is the labeled transition system JAK = 〈C, Σ,→〉 defined as follows:

– C = Q× (M∗)n is the set of configurations,
– Σ = {1, . . . , n} × {!, ?} ×M is the set of actions,
– the transition relation →⊆ C ×Σ × C is the set of triples ((q,w), l, (q′,w′))

such that (q, l, q′) ∈ ∆ and that satisfy the two following conditions:
• if l = i!m then w′(i) = w(i) ·m and w′(j) = w(j) for all j 6= i,
• if l = i?m then w(i) = m ·w′(i) and w′(j) = w(j) for all j 6= i.

The configurations of C can be seen as momentary snapshots of the whole
system: each configuration includes the current control state and the current
queue contents. The transition relation between configurations captures the ef-
fect of send and receive actions on queues, ensuring the fifo ordering of actions:
messages sent to a queue are received in the same order; further, a receive action
can only be taken if the appropriate message is at front of the queue.

Example 2.4. The fifo system A = 〈{00, 01, 10, 11}, {o, c, d}, 2, ∆〉 that corre-
sponds to the c/d protocol is displayed in Figure 3. Its operational semantics is
presented in Figure 4. The set of initial configurations is Init = {(00, ε, ε)}. A set
of bad configurations for this protocol is Bad = {00, 10}×(c·M∗×M∗). This set
contains configurations where the server is in local state 0 but the first message
in the first queue is close. This is the classical case of an undefined reception
which results in a (local) deadlock for the server. Setting the initial configura-
tion to c0 = (00, ε, ε), a counterexample to the safety condition ({c0}, Bad) is

the path (00, ε, ε)
1!o−−→ (10, o, ε)

1?o−−→ (11, ε, ε)
2!d−−→ (10, ε, d)

1!c−−→ (00, c, d) in JAK.
As can be deduced from Figure 4, no counterexample has less than four transi-
tions. Further, there is an infinite path that never visits the same configuration
twice nor reaches Bad, e.g., by alternating the actions 1!o and 1!c. �
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Fig. 4: Operational Semantics of the C/D Protocol [JR86] (Example 2.4)

3 Partition Abstraction for Fifo Systems

In the context of Cegar-based safety verification, automatic abstraction tech-
niques are usually based on predicates [GS97] or partitions [CGJ+03]. In this
work, we focus on partition-based abstraction and refinement techniques for
fifo systems. Still, our extrapolation-based path invariant generation techniques
could also be used in the context of predicate-based abstractions.

A partition of a set S is any set P of non-empty pairwise disjoint subsets of
S such that S =

⋃
p∈P p. Elements p of a partition P are called classes. For any

element s in S, we denote by [ s ]P the class in P containing s.

At the labeled transition system level, partition abstraction consists of merg-
ing configurations that are equivalent with respect to a given equivalence rela-
tion, or a given partition. In practice, it is often desirable to maintain different
partitions for different control states, to keep partition sizes relatively small (as
in predicate abstraction of programs, where predicates are local to each control
point). We follow this approach in our definition of partition abstraction for fifo
systems, by associating a partition of (M∗)n with each control state. To ease
notation, we write L = (M∗)n \L for the complement of any subset L of (M∗)n.

To effectively compute partition abstractions for fifo systems, we need a fam-
ily of finitely representable subsets of (M∗)n. A natural candidate is the class
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of recognizable subsets of (M∗)n, or, equivalently, of Qdd-definable subsets of
(M∗)n [BGWW97], since this class is effectively closed under Boolean opera-
tions. (The definition and main properties of Qdds are recalled in Appendix A.)
Recall Mezei’s theorem that states that a subset L of (M∗)n is recognizable if
(and only if) it is a finite union of subsets of the form L1×· · ·×Ln where each Li
is a regular language over M [Ber79]. We extend recognizability in the natural
way to subsets of the set C = Q × (M∗)n of configurations. A subset C ⊆ C is
recognizable if {w | (q,w) ∈ C} is recognizable for every q ∈ Q. We denote by
Rec ((M∗)n) the set of recognizable subsets of (M∗)n, and write P ((M∗)n) for
the set of all finite partitions of (M∗)n where classes are recognizable subsets of
(M∗)n.

Definition 3.1. Consider a fifo system A = 〈Q,M,n,∆〉 and a partition map
P : Q→ P ((M∗)n). The partition abstraction of JAK induced by P is the finite

labeled transition system JAK]P = 〈C]P , Σ,→
]
P 〉 defined as follows:

– C]P = {(q, p) | q ∈ Q and p ∈ P (q)} is the set of abstract configurations,
– Σ = {1, . . . , n} × {!, ?} ×M is the set of actions,

– the abstract transition relation →]
P ⊆ C

]
P × Σ × C]P is the set of triples

((q, p), l, (q′, p′)) such that (q,w)
l−→ (q′,w′) for some w ∈ p and w′ ∈ p′.

To relate concrete and abstract configurations, we define the abstraction function
αP : C → C]P , and its extension to ℘(C) → ℘(C]P ), as well as the concretization

function γP : C]P → C, extended to ℘(C]P )→ ℘(C), as expected:

αP ((q,w)) = (q, [w ]P (q))

γP ((q, p)) = {q} × p
αP (C) = {α(c) | c ∈ C}
γP (C]) =

⋃{
γ(c])

∣∣ c] ∈ C]}
To simplify notations, we shall drop the P subscript when the partition map

can easily be derived from the context. Intuitively, an abstract configuration
(q, p) of JAK] represents the set {q} × p of (concrete) configurations of JAK. The
abstract transition relation →] is the existential lift of the concrete transition
relation → to abstract configurations.

The following forward and backward language transformers will be used to
capture the effect of fifo actions. The functions post : Σ×℘((M∗)n)→ ℘((M∗)n)
and pre : Σ × ℘((M∗)n)→ ℘((M∗)n) are defined by:

post(i!m,L) = {w[i← u] | w ∈ L, u ∈M∗ and w(i) ·m = u}
post(i?m,L) = {w[i← u] | w ∈ L, u ∈M∗ and w(i) = m · u}

pre(i!m,L) = {w[i← u] | w ∈ L, u ∈M∗ and w(i) = u ·m}
pre(i?m,L) = {w[i← u] | w ∈ L, u ∈M∗ and m ·w(i) = u}

Obviously, post(l, L) and pre(l, L) are effectively recognizable subsets of (M∗)n

for any l ∈ Σ and any recognizable subset L ⊆ (M∗)n. Moreover, we may use post
and pre to characterize the abstract transition relation of a partition abstraction
JAK]P , as follows: for any rule (q, l, q′) ∈ ∆ and for any pair (p, p′) ∈ P (q)×P (q′),

we have (q, p)
l−→] (q′, p′) iff post(l, p) ∩ p′ 6= ∅ iff p ∩ pre(l, p′) 6= ∅.
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Lemma 3.2. For any fifo system A and partition map P : Q→ P ((M∗)n), JAK]
is effectively computable. For any recognizable subset C ⊆ C, α(C) is effectively
computable.

Proof. The lemma follows from (1) closure under intersection, complement and
post (or pre) of recognizable subsets of (M∗)n, and (2) decidability of emptiness
for recognizable subsets of (M∗)n. ut

We extend α to paths in the obvious way: α(c0
l0−→ · · · lh−1−−−→ ch) = α(c0)

l0−→]

· · · lh−1−−−→]
α(ch). Observe that α(π) is an abstract path in JAK] for any concrete

path π in JAK. We therefore obtain the following safety preservation property.

Proposition 3.3. Consider a fifo system A and a safety condition (Init, Bad)

for JAK. For any partition abstraction JAK] of JAK, if JAK] is (α(Init), α(Bad))-
safe then JAK is (Init, Bad)-safe.

Proof. If JAK is (Init, Bad)-unsafe then there is a path π in JAK from Init to

Bad, and hence α(π) is an abstract path from α(Init) to α(Bad) in JAK]. ut

The converse to this proposition does not hold in general. An abstract coun-
terexample π] is called feasible if there exists a concrete counterexample π such
that π] = α(π), and π] is called spurious otherwise.

Lemma 3.4. For any fifo system A, any partition map P : Q→ P ((M∗)n), and
any safety condition (Init, Bad) for JAK, feasibility of abstract counterexamples
is effectively decidable.

Proof. Given an abstract counterexample π] = (q0, p0)
l0−→] · · · lh−1−−−→]

(qh, ph),
we deduce from the definition of feasibility that π] is feasible iff the subset
L ⊆ (M∗)n defined below is non-empty:

L = ph ∩ post(lh−1, (ph−1 ∩ · · · ∩ post(l1, p1 ∩ post(l0, p0 ∩ Init)) · · · )) ∩Bad

Since L is an effectively computable recognizable subset of (M∗)n, we may ef-
fectively decide whether L is non-empty, which concludes the proof. ut

Example 3.5. Continuing the discussion of the c/d protocol, we consider the
partition abstraction induced by the following partition map:

q ∈ Q 00 10 01 11

P (q) ε× ε, ε× ε o∗ × ε, o∗ × ε M∗ ×M∗ M∗ ×M∗

The set of initial abstract configurations is α(Init) = {(00, ε × ε)}, and the
set of bad abstract configurations is α(Bad) = {(00, ε× ε), (10, o∗ × ε)}. The
resulting partition abstraction is the finite labeled transition system depicted in
Figure 5. A simple graph search reveals several abstract counterexamples, for

instance π] = (00, ε× ε) 1!o−−→] (10, o∗ × ε) 1!c−−→] (00, ε× ε). This counterexample
is spurious since the only concrete path that corresponds to π] (i.e., whose image

under α is π]) is π = (00, ε, ε)
1!o−−→ (10, o, ε)

1!c−−→ (00, oc, ε) /∈ Bad. �
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Bad

Init
(00, ε× ε)

(00, ε× ε)

(
10, o∗ × ε

)
(10, o∗ × ε)

(11,M∗ ×M∗)

(01,M∗ ×M∗)

1!o 1?c

1!c2?d

1!o

2!d1?c

1?o

1!c

1!o

1?c

1?o
2?d

1!c

1!o

2!d

1?c

1?o

2?d

Fig. 5: Example Partition Abstraction of the C/D Protocol (Example 3.5)

4 Counterexample-based Generation of Path Invariants

The abstraction-based verification of safety properties relies on refinement tech-
niques that gradually increase the precision of abstractions in order to rule out
spurious abstract counterexamples. Refinement for partition abstractions simply
consists in splitting some classes into a sub-partition.

4.1 Partition Refinement

Given two partitions P and P̃ of a set S, we say that P̃ refines P when each
class p̃ ∈ P̃ is contained in some class p ∈ P . Moreover we then write [ p̃ ]P for
the class p ∈ P containing p̃.

Let us fix, for the remainder of this section, a fifo system A = 〈Q,M,n,∆〉
and a safety condition (Init, Bad) for JAK. Given two partition maps P, P̃ : Q→
P ((M∗)n), we say that P̃ refines P if P̃ (q) refines P (q) for every control state

q ∈ Q. If P̃ refines P , then for any abstract path (q0, p̃0)
l0−→] · · · lh−1−−−→]

(qh, p̃h)

in JAK]
P̃

, it holds that (q0, [ p̃0 ]P (q0)
)
l0−→] · · · lh−1−−−→]

(qh, [ p̃h ]P (qh)
) is an abstract

path in JAK]P . This fact shows that, informally, refining a partition abstraction
does not introduce any new spurious counterexample.

When a spurious counterexample is found in the abstraction, the partition
map must be refined so as to rule out this counterexample. We formalize this

concept for an abstract path π] = (q0, p0)
l0−→] · · · lh−1−−−→]

(qh, ph) in JAK]P from

αP (Init) to αP (Bad) as follows: a refinement P̃ of P is said to rule out the
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abstract counterexample π] if there exists no path π̃] = (q0, p̃0)
l0−→] · · · lh−1−−−→]

(qh, p̃h) from αP̃ (Init) to αP̃ (Bad) in JAK]
P̃

satisfying p̃i ⊆ pi for all 0 ≤ i ≤ h.

Note that if π] is a feasible counterexample, then no refinement of P can rule it
out. Conversely, if P̃ is a refinement of P that rules out π] then any refinement
of P̃ also rules out π].

The main challenge in Cegar is the discovery of “suitable” refinements,
that are computationally “simple” but “precise enough” to rule out spurious
counterexamples. In this work, we focus on counterexample-guided refinements
based on path invariants.

Definition 4.1. Consider a partition map P and a spurious counterexample

π] = (q0, p0)
l0−→] · · · lh−1−−−→]

(qh, ph) in JAK]P . A path invariant for π] is any
sequence L0, . . . , Lh of recognizable subsets of (M∗)n such that:

(i) we have ({q0} × p0) ∩ Init ⊆ {q0} × L0, and
(ii) we have pi+1 ∩ post(li, pi ∩ Li) ⊆ Li+1 for every 0 ≤ i < h, and

(iii) we have ({qh} × (ph ∩ Lh)) ∩Bad = ∅

Observe that condition (ii) is more general than post(li, Li) ⊆ Li+1 which
is classically required for inductive invariants. With this relaxed condition, path
invariants are tailored to the given spurious counterexample, and therefore can
be simpler (e.g., be coarser or have more empty Li).

Proposition 4.2. Consider a partition map P and a simple spurious counterex-

ample π] = (q0, p0)
l0−→] · · · lh−1−−−→]

(qh, ph). Given a path invariant L0, . . . , Lh
for π], the partition map P̃ defined below is a refinement of P that rules out π]:

P̃ (q) = (P (q) \ {pi | i ∈ I(q)}) ∪
⋃

i∈I(q)

{
pi ∩ Li, pi ∩ Li

}
\ {∅}

where I(q) = {i | 0 ≤ i ≤ h, qi = q} for each control state q ∈ Q.

Proof. For any control sate q ∈ Q, since π] is simple, we have pi = pj ⇒ i = j

for every i, j ∈ I(q). The function P̃ defined in the proposition is therefore a

partition map that refines P by definition. We need to show that P̃ rules out π].

By contradiction, assume there exists a path π̃] = (q0, p̃0)
l0−→] · · · lh−1−−−→]

(qh, p̃h)

from αP̃ (Init) to αP̃ (Bad) in JAK]
P̃

satisfying p̃i ⊆ pi for all 0 ≤ i ≤ h.

We first show that p̃i ∈
{
pi ∩ Li, pi ∩ Li

}
for every 0 ≤ i ≤ h. Consider any

integer i with 0 ≤ i ≤ h. Observe that i ∈ I(qi). If p̃i ∈ P (qi) then p̃i = pi as

p̃i ⊆ pi. Hence, p̃i 6∈ (P (qi) \ {pj | j ∈ I(qi)}). Since p̃i ∈ P̃ (qi), we obtain that
p̃i ∈

{
pj ∩ Lj , pj ∩ Lj

}
for some j ∈ I(qi). Let us now prove that i = j. Remark

that qi = qj as j ∈ I(qi). Moreover, we get p̃i ⊆ pj , and hence p̃i ⊆ pi ∩ pj .
Therefore pi = pj since pi and pj are classes of the same partition P (qi). We
arrive at (qi, pi) = (qj , pj) which implies that i = j since π] is simple. We have
thus shown that p̃i ∈

{
pi ∩ Li, pi ∩ Li

}
for every 0 ≤ i ≤ h.
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Recall that L0, . . . , Lh is a path invariant for π]. We prove by induction on
i that p̃i = pi ∩ Li for every 0 ≤ i ≤ h. For the basis, we derive from item (i) of
Definition 4.1 that {q0}×(p0∩L0) is disjoint from Init. Since (q0, p̃0) ∈ αP̃ (Init),

we get that {q0} × p̃0 intersects Init. Therefore p̃0 6= p0 ∩ L0, and hence p̃0 =
p0 ∩L0. For the induction step, assume that p̃i = pi ∩Li for some 0 ≤ i < h. We
have pi+1∩post(li, p̃i) ⊆ Li+1 according to item (ii) of Definition 4.1. Therefore,

we get that pi+1∩Li+1 is disjoint from post(li, p̃i). Since (qi, p̃i)
li−→] (qi+1, p̃i+1) is

an abstract transition in JAK]
P̃

, we get that p̃i+1 intersects post(li, p̃i). Therefore

p̃i+1 6= pi+1 ∩ Li+1, and hence p̃i+1 = pi+1 ∩ Li+1.

We thus obtain that p̃h = ph ∩ Lh, and we derive from item (iii) of Defini-
tion 4.1 that {qh} × p̃h is disjoint from Bad, which contradicts the assumption
that (qh, p̃h) ∈ αP̃ (Bad). ut

4.2 Parametrized Extrapolation

We propose a generic approach to obtain path invariants by utilizing a parametri-
zed approximation operator for queue contents. The parameter (the k in the
definition below) is used to adjust the precision of the approximation.

Definition 4.3. A (parametrized) extrapolation is any function ∇ from N to
Rec ((M∗)n) → Rec ((M∗)n) that satisfies, for any L ∈ Rec ((M∗)n), the two
following conditions (with ∇(k) written as ∇k):

(i) we have L ⊆ ∇k(L) for every k ∈ N,

(ii) there exists kL ∈ N such that L = ∇k(L) for every k ≥ kL.

Our definition of extrapolation is quite general, in particular, it does not re-
quire monotonicity in k or in L, but it is adequate for the design of path invariant
generation procedures. The most simple extrapolation is the identity extrapola-
tion λk .(λL.L) that maps each k ∈ N to the identity on Rec ((M∗)n). For exam-
ple, the parametrized automata approximations of [BHV04] and [LGJJ06] (the
latter is in the principal scope of the following discussions and of Appendix B)
also satisfy the requirements of Definition 4.3.

Remark 4.4. Extrapolations are closed under various operations, such as func-
tional composition, functional union and intersection, as well as round-robin
combination. Formally, for any finite sequence ∇0, . . . ,∇m of extrapolations, the
functions λk .

(
∇0
k ◦ · · · ◦ ∇mk

)
, λk .

(
λL.

⋃m
i=0∇ik(L)

)
and λk .

(
λL.

⋂m
i=0∇ik(L)

)
are extrapolations. Moreover, for any infinite sequence (µk, νk)k∈N of pairs in

{0, . . . ,m} × N such that (νk)k∈N diverges to infinity, the function λk .∇µ(k)ν(k) is

an extrapolation. Notice also that any function f : Rec ((M∗)n)→ Rec ((M∗)n)
that is extensive (i.e., L ⊆ f(L)) can be turned into an extrapolation as follows:
∇0 = f and ∇k = λL.L for all k ≥ 1.
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4.3 Extrapolation based on Bounded-Depth Bisimulation

We briefly introduce an extrapolation similar to the widening operator intro-
duced in [LGJJ06]. This extrapolation assumes an automata representation of
recognizable subsets of (M∗)n, and relies on bounded-depth bisimulation over
the states of the automata. For simplicity, we focus on fifo systems with a single
queue, i.e., n = 1. In this simpler case, recognizable subsets of (M∗)n are regular
languages over M , which can directly be represented by finite automata over
M . The general case of n ≥ 2, which is discussed in detail in Appendices A
and B, requires the use of Qdds. More precisely, we consider finite automata
over M with a set Q of states. As in abstract regular model checking [BHV04], we
use quotienting under equivalence relations on Q to obtain over-approximations
of the automaton. However, we follow the approach of [LGJJ06], and focus on
bounded-depth bisimulation equivalence.

Given a priori an equivalence relation col on Q, also called “coloring”, and a
bound k ∈ N, the colored bisimulation equivalence of depth k is the equivalence
relation ∼colk on Q defined as: ∼col0 = col and two states are equivalent for ∼colk+1

if (1) they are ∼colk -equivalent and (2) they have ∼colk -equivalent m-successors
for each letter m ∈ M . The ultimately stationary sequence ∼col0 ⊇ ∼col1 ⊇
· · · ⊇ ∼colk ⊇ ∼colk+1 ⊇ · · · of equivalence relations on Q leads to the colored
bisimulation-based extrapolation.

We define a coloring std, called standard coloring, by (q1, q2) ∈ std if either
q1 and q2 are both final states or q1 and q2 are both non-final states. The bisim-
ulation extrapolation is the function ρ from N to Rec (M∗)→ Rec (M∗) defined
by ρk(L) = L/∼stdk , where L is identified to the minimal deterministic finite
automaton accepting it. Notice that ρ is shown to be restricted extrapolation
(as introduced later in Definition 4.3). �
Remark 4.5. We could also choose other colorings for the above extrapolation
or define the sequence of equivalences in a different way. For instance, better
results are sometimes obtained in practice with the extrapolation ρ′ that first
(for k = 0) applies a quotienting with respect to the equivalence relation Q×Q
(i.e., all states are merged), and then behaves as ρk−1 (for k ≥ 1). Analogously,
the extrapolation ρ′′ defined by ρ′′0 = ρ′0 and ρ′′k = ρk for k ≥ 1 is used in
Examples 4.10 and 5.2. The variants ρ′ and ρ′′ are also formally defined for the
general case of n ≥ 2 in Remark B.10 (page 41).

Example 4.6. Consider the regular language L = {aac, baaa} over the alphabet
M = {a, b, c, d, e}, represented by the automaton FAL of Figure 6a. The previ-
ously defined bisimulation-based extrapolation ρ applies to L as follows: ρ0 splits
the states of FAL according to std, hence, ρ0(L) = {a, b, c}∗ · {a, c} (viz. Fig-
ure 6c). Then ρ1 merges the states that are bisimulation equivalent up to depth
1, i.e., the states of FAL (Figure 6d). As all states of FAL are non equivalent
for ∼stdk with k ≥ 2, we have ρk(L) = L (again Figure 6a). The variants ρ′ and
ρ′′ mentioned previously would lead to ρ′0(L) = ρ′′0(L) = (alph(L))

∗
= {a, b, c}∗

(viz. Figure 6b). �
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Fig. 6: Finite Automata Representations for Extrapolating L (Example 4.6)

4.4 Extrapolation-based Path Invariant Generation

We now present two extrapolation-based path invariant generation procedures
(Figure 7). Recall that the parameter k of an extrapolation intuitively indicates
the desired precision of the approximation. The first algorithm, UPInv, performs
an approximated post computation along the spurious counterexample, and it-
eratively increases the precision k of the approximation until a path invariant is
obtained. The applied precision in UPInv is uniform along the counterexample.
Due to its simplicity, the termination analysis of Cegar in Section 6 will refer
to UPInv. The second algorithm, APInv, first performs an exact pre computation
along the spurious counterexample to identify the “bad” coreachable subsets Bi.
The path invariant is then computed with a forward traversal that uses the Split
subroutine to simplify each post image while remaining disjoint from the Bi.
The precision used in Split is therefore tailored to each post image, which may
lead to simpler path invariants. Naturally, both algorithms may be “reversed” to
generate path invariants backwards (more precisely, the complement of a path
invariant would be generated with the reversed version).

Observe that if the extrapolation∇ is effectively computable, then all steps in
the algorithms UPInv, Split and APInv are effectively computable. We now prove
correctness and termination of these algorithms. Let us fix, for the remainder of
this section, an extrapolation ∇ and a partition map P : Q → P ((M∗)n), and
assume that Init and Bad are recognizable.

Proposition 4.7. For any spurious abstract counterexample π], the execution
of UPInv (∇, Init, Bad, π]) terminates and returns a path invariant for π].

Proof. Consider a spurious counterexample π] = (q0, p0)
l0−→] · · · lh−1−−−→]

(qh, ph).
Let us define the sequence R0, . . . , Rh of subsets of (M∗)n by R0 = p0 ∩
{w | (q0,w) ∈ Init} and Ri = post(li−1, pi−1 ∩ Li−1) for all 1 ≤ i ≤ h. Notice
that ({qh}×(ph∩Rh))∩Bad = ∅ since π] is spurious. According to Definition 4.3,
there exists kR ∈ N such that ∇kR(Ri) = Ri for every 0 ≤ i ≤ h. Consequently,
the while-loop of the algorithm UPInv (lines 2–11) is re-iterated at most kR
times. Indeed, if k = kR at some iteration of the while-loop, then, for this itera-
tion, Li ∈ {∅, Ri} for each 0 ≤ i ≤ h, and, therefore, ({qh}×(ph∩Lh))∩Bad = ∅.
We conclude that the execution of UPInv (∇, Init, Bad, π]) terminates.

Let (L0, . . . , Lh) denote the value returned by UPInv (∇, Init, Bad, π]). It
obviously holds that ({qh} × (ph ∩ Lh)) ∩ Bad = ∅. Recall that, according to
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UPInv (∇, Init, Bad, π])

Input: extrapolation∇, recognizable subsets Init, Bad of Q×(M∗)n, spurious

counterexample π] = (q0, p0)
l0−→] · · ·

lh−1−−−→]
(qh, ph)

1 k ← 0
2 do
3 L0 ← ∇k (p0 ∩ {w | (q0,w) ∈ Init})
4 for i from 1 upto h
5 Fi ← post(li−1, pi−1 ∩ Li−1)
6 if pi ∩ Fi = ∅
7 Li ← ∅
8 else
9 Li ← ∇k(Fi)

10 k ← k + 1
11 while ({qh} × (ph ∩ Lh)) ∩Bad 6= ∅
12 return (L0, . . . , Lh)

Split (∇, L0, L1)

Input: extrapolation ∇, disjoint recognizable subsets L0, L1 of (M∗)n

1 k ← 0
2 while ∇k(L0) ∩ L1 6= ∅
3 k ← k + 1
4 return ∇k(L0)

APInv (∇, Init, Bad, π])

Input: extrapolation∇, recognizable subsets Init, Bad of Q×(M∗)n, spurious

counterexample π] = (q0, p0)
l0−→] · · ·

lh−1−−−→]
(qh, ph)

1 Bh ← ph ∩ {w | (qh,w) ∈ Bad}
2 i← h
3 while Bi 6= ∅ and i > 0
4 i← i− 1
5 Bi ← pi ∩ pre(li, Bi+1)
6 if Bi 6= ∅
7 I ← p0 ∩ {w | (q0,w) ∈ Init}
8 L0 ← Split (∇, I, B0)
9 else

10 (L0, . . . , Li)← ((M∗)n, . . . , (M∗)n)
11 for j from i+ 1 upto h
12 Fj ← post(lj−1, pj−1 ∩ Lj−1)
13 if pj ∩ Fj = ∅
14 Lj ← ∅
15 else
16 Lj ← Split (∇, Fj , Bj)
17 return (L0, . . . , Lh)

Fig. 7: Extrapolation-based Path Invariant Generation Algorithms



Extrapolation-based Path Invariants for Abstraction Refinement 17

Definition 4.3, we have L ⊆ ∇k(L) for every L ∈ Rec ((M∗)n) and k ∈ N.
We deduce from the definition of the while-loop (lines 2–11) that L0 ⊇ p0 ∩
{w | (q0,w) ∈ Init} and Li ⊇ pi ∩ post(li−1, pi−1 ∩ Li−1) for all 1 ≤ i ≤ h. We
conclude that (L0, . . . , Lh) is a path invariant. ut

Lemma 4.8. For any two recognizable subsets L0, L1 of (M∗)n, if L0 ∩ L1 = ∅
then Split (∇, L0, L1) terminates and returns a recognizable subset L of (M∗)n

that satisfies L0 ⊆ L ⊆ L1.

Proof. Consider any two disjoint recognizable subsets L0, L1 of (M∗)n. Accord-
ing to Definition 4.3, we have L = ∇kL(L) for some kL ∈ N, and therefore
Split (∇, L0, L1) terminates. There exists k ∈ N such that the returned value L
satisfies L = ∇k(L0) and ∇k(L0) ∩ L1 = ∅. Since L0 ⊆ ∇k(L0) from Defini-
tion 4.3, we obtain that L0 ⊆ L ⊆ L1. ut

Proposition 4.9. For any spurious abstract counterexample π], the execution
of APInv (∇, Init, Bad, π]) terminates and returns a path invariant for π].

Proof. Consider a spurious counterexample π] = (q0, p0)
l0−→] · · · lh−1−−−→]

(qh, ph).
Let us define the sequence R0, . . . , Rh of subsets of (M∗)n by Rh = ph ∩
{w | (qh,w) ∈ Bad} and Ri = pi ∩ pre(li, Ri+1) for all 0 ≤ i < h. This se-
quence satisfies the following disjointness property: for any subset L ⊆ (M∗)n

and for any 0 ≤ i < h, if L ⊆ Ri then post(li, pi ∩ L) ⊆ Ri+1. Remark that
({q0} ×R0) ∩ Init = ∅ since π] is spurious.

As the variable i remains nonnegative along the execution of APInv (∇, Init,
Bad, π]), the while-loop (lines 3–5) and the for-loop (lines 11–16) both perform
at most h iterations. Hence the execution terminates if each call to Split (lines 8
and 16) terminates. Let us write i6 the value of the variable i at line 6. Remark
that, at line 6 onwards, it holds that 0 ≤ i = i6 ≤ h and Bj = Rj for each
i6 ≤ j ≤ h. Define I = p0 ∩ {w | (q0,w) ∈ Init}. We consider two cases:

– if Bi6 = ∅ then the execution takes the else branch (line 10) and therefore
Lj = (M∗)n for all 0 ≤ j ≤ i6 at line 11 onwards. Moreover, as Bi6 = ∅, it
holds that Rj = ∅ for all 0 ≤ j ≤ i6.

– otherwise, Bi6 6= ∅, which implies that i6 = 0, and the execution proceeds
through lines 7–8. Since B0 = R0, we get that I∩B0 = ∅ at line 8. According
to Lemma 4.8, the call to Split at line 8 terminates and L0 satisfies I ⊆ L0 ⊆
B0.

We obtain in both cases that, before the for-loop at line 11, we have: I ⊆ L0

and pj ∩ post(lj−1, pj−1 ∩ Lj−1) ⊆ Lj ⊆ Rj for each 0 < j ≤ i6. We now turn
our attention to the for-loop (lines 11–16). Consider an iteration i6 < j ≤ h
of the for-loop, and assume that Lj−1 ⊆ Rj−1. We deduce from the above
mentioned disjointness property that Fj = post(lj−1, pj−1 ∩ Lj−1) is disjoint
from Rj = Bj . Therefore, the call to Split at line 16 (if any) terminates, and,
moreover, pj ∩ post(lj−1, pj−1 ∩ Lj−1) ⊆ Lj ⊆ Rj at the end of this iteration
(using Lemma 4.8 for line 16). We conclude that the execution terminates, and
that I ⊆ L0, Lh ⊆ Rh and pj+1 ∩ post(lj , pj ∩ Lj) ⊆ Lj+1 for each 0 ≤ j < h,
which precisely means that (L0, . . . , Lh) is a path invariant. ut
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Example 4.10. Consider again the c/d protocol, and assume an extrapolation
∇ satisfying ∇0(L × ε) = (alph(L))

∗ × ε for all L ⊆ M∗, and ∇1(u × ε) =
u× ε for each u ∈ {ε, o, oc}, e.g., the extrapolation ρ′′ presented in Remark 4.5.

The UPInv algorithm, applied to the spurious counterexample (00, ε × ε) 1!o−−→]

(10, o∗ × ε)
1!c−−→] (00, ε× ε) of Example 3.5, would perform two iterations of

the while-loop and produce the path invariant (ε × ε, o × ε, oc × ε). These
iterations are detailed in the table below. The marksu andd indicate whether
the condition at line 11 is satisfied or not.

L0 L1 L2 Line 11

k = 0 ε× ε o∗ × ε {o, c}∗ × ε d

k = 1 ε× ε o× ε oc× ε u

Following Proposition 4.2, the partition map would be refined to:

q ∈ Q 00 10 01, 11

P (q) ε× ε, oc× ε, (ε ∪ oc)× ε o× ε, (ε ∪ (o · o+))× ε, o∗ × ε M∗ ×M∗

This refined partition map clearly rules out the spurious counterexample. �

5 Safety Cegar Semi-Algorithm for Fifo Systems

We are now equipped with the key ingredients to present our Cegar semi-
algorithm for fifo systems in Figure 8. The semi-algorithm takes as input a fifo
system A, a recognizable safety condition (Init, Bad), an initial partition map
P0, and a path invariant generation procedure PathInv. The initial partition map
may be the trivial one, mapping each control state to (M∗)n. We may use any
path invariant generation procedure, such as the ones presented in the previous
section. The semi-algorithm iteratively refines the partition abstraction until
either the abstraction is precise enough to prove that JAK is (Init, Bad)-safe
(line 10), or a feasible counterexample is found (line 4).

The semi-algorithm maintains the current partition map in variable P . At
each iteration of the while-loop, the partition abstraction JAK]P is finite, and
any standard graph exploration algorithm may be used to search for an abstract
counterexample (lines 1–2). If there is none then JAK]P is (α(Init), α(Bad))-safe,
and the semi-algorithm returns that JAK is (Init, Bad)-safe (X). Otherwise, an
arbitrary simple abstract counterexample is chosen depending on an underlying
graph search strategy (e.g., breadth-first or depth-first). If this abstract coun-
terexample is feasible then the semi-algorithm returns that JAK is (Init, Bad)-
unsafe ( ). Or else, a path invariant is generated from the spurious abstract
counterexample, and is used to refine the partition. The new partition map ob-
tained after the foreach loop (lines 8–9) is precisely the partition map P̃ from
Proposition 4.2, and hence it rules out this abstract counterexample. Recall that



Extrapolation-based Path Invariants for Abstraction Refinement 19

CEGAR (A, Init, Bad, P0,PathInv)

Input: fifo system A = 〈Q,M,n,∆〉, recognizable subsets Init, Bad of Q ×
(M∗)n, partition map P0 : Q→ P ((M∗)n), procedure PathInv

1 while JAK]P is (αP (Init), αP (Bad))-unsafe

2 pick a simple abstract counterexample π] in JAK]P
3 if π] is a feasible abstract counterexample
4 return  
5 else

6 write π] as the abstract path (q0, p0)
l0−→] · · ·

lh−1−−−→]
(qh, ph)

7 (L0, . . . , Lh) ← PathInv (Init, Bad, π])
8 foreach i ∈ {0, . . . , h}
9 P (qi)← (P (qi) \ {pi}) ∪

({
pi ∩ Li, pi ∩ Li

}
\ {∅}

)
10 return X

Fig. 8: Generic Cegar Algorithm

Lemmata 3.2 and 3.4 ensure that the steps at lines 1 and 3 are effectively com-
putable.

Let us fix, for the remainder of this section, a fifo system A, two recognizable
subsets Init, Bad ofQ×(M∗)n, an initial partition map P0 : Q→ P ((M∗)n), and
a path invariant generation procedure PathInv. The correctness of the CEGAR
semi-algorithm is expressed by the following proposition, which directly follows
from Proposition 3.3 and from the definition of feasible abstract counterexam-
ples.

Proposition 5.1. For any terminating execution of CEGAR (A, Init, Bad, P0,
PathInv), if the execution returns X (resp.  ) then JAK is (Init, Bad)-safe (resp.
(Init, Bad)-unsafe).

Example 5.2. We show a full execution of CEGAR on the c/d protocol with initial
partition map P0 defined by P0(q) = {M∗ ×M∗} for every q ∈ Q. Recall that
Init = {(00, ε, ε)} and Bad = {00, 10} × (c · M∗ × M∗). Let us assume an
extrapolation ∇ that fulfills the following requirements (e.g., the bisimulation-
based extrapolation ρ′′ previously presented in Remark 4.5): ∇0(L) = (alph ({w(1) | w ∈ L}))∗ × (alph ({w(2) | w ∈ L}))∗

∇1(u× ε) = u× ε for each u ∈ {ε, o, oc, oco}
∇1(ococ× ε) = (oc)+ × ε

We present below the successive iterations of CEGAR. For each iteration, we
give the abstract counterexample, the path invariant computed by UPInv, and
the refined partition map. We detail the executions of UPInv by providing the
potential path invariant at each iteration of the while-loop; the marksu andd
indicate whether the condition at line 11 of UPInv is satisfied or not. The abstract
counterexamples picked at line 2 of CEGAR are obtained by a breadth-first search
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of the partition abstraction. All abstract counterexamples are spurious except
for the last one which is feasible, and hence the execution of CEGAR returns  .

Remark that the partition abstraction obtained at the end of iteration 1
is precisely the one of Example 3.5, and iteration 2 was already presented in
Example 4.10.

(0) π] is the empty path (00,M∗ ×M∗).

UPInv: k = 0 (ε× ε) u

q 00 10, 01, 11

P (q) ε× ε, ε× ε M∗ ×M∗

(1) π] : (00, ε× ε) 1!o−−→] (10,M∗ ×M∗)

UPInv: k = 0 (ε× ε, o∗ × ε) u

00 10 01, 11

ε× ε, ε× ε o∗ × ε, o∗ × ε M∗ ×M∗

(2) π] : (00, ε× ε) 1!o−−→] (10, o∗ × ε) 1!c−−→] (00, ε× ε)

UPInv:
k = 0 (ε× ε, o∗ × ε, {o, c}∗ × ε) d
k = 1 (ε× ε, o× ε, oc× ε) u

00 10 01, 11

ε× ε, oc× ε, (ε ∪ oc)× ε o× ε, (ε ∪ (o · o+))× ε, o∗ × ε M∗ ×M∗

(3) π] : (00, ε× ε) 1!o−−→] (10, o× ε) 1!c−−→] (00, oc)
1!o−−→] (10, o∗ × ε)

UPInv:
k = 0 (ε× ε, o∗ × ε, {o, c}∗ × ε, {o, c}∗ × ε) d
k = 1 (ε× ε, o× ε, oc× ε, oco× ε) u

00 ε× ε, oc× ε, (ε ∪ oc)× ε
10 o× ε, (ε ∪ (o · o+))× ε, oco× ε, (o∗ ∪ oco)× ε

01, 11 M∗ ×M∗

(4) π] : (00, ε×ε) 1!o−−→] (10, o×ε) 1?o−−→] (11,M∗×M∗) 1?c−−→] (10, (o∗ ∪ oco)× ε)

UPInv: k = 0 (ε× ε, o∗ × ε, ε× ε, ∅) u
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00 ε× ε, oc× ε, (ε ∪ oc)× ε
10 o× ε, (ε ∪ (o · o+))× ε, oco× ε, (o∗ ∪ oco)× ε
01 M∗ ×M∗

11 ε× ε, ε× ε

(5) π] : (00, ε× ε) 1!o−−→] (10, o× ε) 1?o−−→] (11, ε× ε) 2!d−−→] (10, (o∗ ∪ oco)× ε)

UPInv: k = 0 (ε× ε, o∗ × ε, ε× ε, ε× d∗) u

00 ε× ε, oc× ε, (ε ∪ oc)× ε
10 o× ε, (ε ∪ (o · o+))× ε, oco× ε, ε× d+, ((o∗ ∪ oco)× ε) ∪ (ε× d+)

01 M∗ ×M∗

11 ε× ε, ε× ε

(6) π] : (00, ε × ε) 1!o−−→] (10, o × ε) 1!c−−→] (00, oc × ε) 1!o−−→] (10, oco × ε) 1!c−−→]

(00, (ε ∪ oc)× ε)

UPInv:
k = 0 (ε× ε, o∗ × ε, {o, c}∗ × ε, {o, c}∗ × ε, {o, c}∗ × ε) d
k = 1 (ε× ε, o× ε, oc× ε, oco× ε, (oc)+ × ε) u

00 ε× ε, oc× ε, (oc · (oc)+)× ε, (oc)∗ × ε
10 o× ε, (ε ∪ (o · o+))× ε, oco× ε, ε× d+, ((o∗ ∪ oco)× ε) ∪ (ε× d+)

01 M∗ ×M∗

11 ε× ε, ε× ε

(7) π] : (00, ε × ε) 1!o−−→] (10, o × ε) 1!c−−→] (00, oc × ε) 1?o−−→] (01,M∗ ×M∗) 2!d−−→]

(00, (oc)∗ × ε). This abstract counterexample is feasible. �

Remark 5.3. The general benefits of the bisimulation extrapolation (already in-
troduced in Section 4.3) for the abstraction of fifo systems were already discussed
in [LGJJ06]. The above iteration (6) of the CEGAR algorithm shows that this
extrapolation can, in some common cases, discover exact repetitions of message
sequences in queues, without the need for additional acceleration techniques.

Let us consider the first queue only. The application of acceleration techniques

on the path (00, ε)
1!o−−→ 1!c−−→ (00, oc)

1!o−−→ 1!c−−→ (00, ococ) · · · produces the set of
queue contents (oc)+. The bisimulation extrapolation ρ applied to the singleton
language {ococ}, represented by the obvious automaton, produces the following
results for the first two parameters: ρ0({ococ}) = {o, c}∗ · c and ρ1({ococ}) =
(oc)+.

Termination of the CEGAR semi-algorithm cannot be assured as, otherwise,
it would solve the general reachability problem (given any two configurations c
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and c′ in C, decide whether there exists a path from c to c′), which is known to
be undecidable for fifo systems [BZ83]. However, (Init, Bad)-unsafety is semi-
decidable for fifo systems by forward or backward symbolic exploration when Init
and Bad are recognizable [BG99]. Moreover, this problem becomes decidable for
fifo systems having a finite reachability set from Init.

6 Termination Analysis of the CEGAR Semi-Algorithm

We investigate in this section the termination of the CEGAR semi-algorithm
when A is (Init, Bad)-unsafe or has a finite reachability set from Init. In con-
trast to other approaches where abstractions are refined globally (e.g., predicate
abstraction [GS97]), partition abstractions [CGJ+03] are refined locally by split-
ting abstract configurations along the abstract counterexample (viz. lines 8 – 9
of the CEGAR semi-algorithm). The abstract transition relation only needs to
be refined locally around the abstract configurations which have been split, and,
hence, its refinement can be computed efficiently. However, this local nature of
refinement complicates the analysis of the algorithm.

6.1 Characterization of Non-Terminating Executions of CEGAR

First we introduce some additional notations. For any set L of subsets of (M∗)n,
we denote by Ψ(L) the set of equivalence classes of the equivalence relation ∼L
on (M∗)n defined by: w ∼L w′ if for every L ∈ L, we have w ∈ L if and only if
w′ ∈ L. Intuitively, Ψ(L) is the partition “generated” by L. Notice that if L is
finite then so is Ψ(L).

Given an execution of CEGAR (A, Init, Bad, P0,PathInv), and for each itera-
tion θ ∈ {0, 1, 2, . . .} of the while-loop (only considering iterations that do not
return at line 4), we take a “snapshot” between lines 7 and 8, and remember

the current partition map as Pθ, the simple abstract counterexample as π]θ and
its length as hθ, and the path invariant as (Lθ0, . . . , L

θ
hθ

). Moreover we shortly

write JAK]θ, C
]
θ and αθ instead of JAK]Pθ , C

]
Pθ

and αPθ , respectively. We also define

Init]θ = αθ(Init) and Bad]θ = αθ(Bad). For any bound b ∈ N, we let Reach≤bθ
denote the set of abstract configurations (q, p) ∈ C]θ such that there exists in

JAK]θ a path of length at most b from Init]θ to (q, p).

Lemma 6.1. Consider any execution of CEGAR (A, Init, Bad, P0,PathInv). For

any iteration θ and for any (q, p) ∈ C]θ, it holds that p ∈ Ψ(Lθ(q)) where:

Lθ(q) = P0(q) ∪ {Lηi | 0 ≤ η < θ and 0 ≤ i ≤ hη}

Proof. We prove the lemma by induction on θ. The basis is trivial, since p ∈ P0(q)

for every (q, p) ∈ C]0. Assume that the lemma holds for the iteration θ and let us

show that the lemma also holds for the iteration θ+1. Let (q, p) ∈ C]θ+1. If (q, p) ∈
C]θ, then we get that p ∈ Ψ(Lθ(q)). Since Lθ(q) ⊆ Lθ+1(q), we obtain that p ∈
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Ψ(Lθ+1(q)). Assume now that (q, p) 6∈ C]θ. Since p ∈ Pθ+1(q) \Pθ(q), we get that
p was added to P (q) during the iteration θ at line 9. We deduce from line 9 that

p ∈
{
p′ ∩ L, p′ ∩ L

}
for some (q′, p′) ∈ C]θ and L ∈

{
Lθi
∣∣ 0 ≤ i ≤ hθ

}
. We deduce

from the induction hypothesis p′ ∈ Ψ(Lθ(q)) and therefore p ∈ Ψ(Lθ+1(q)). ut

Proposition 6.2. For any non-terminating execution of CEGAR (A, Init, Bad,
P0,PathInv), the set

{
Lθi
∣∣ θ ∈ N and 0 ≤ i ≤ hθ

}
is infinite.

Proof. Consider a non-terminating execution and let us show that the set L ={
Lθi
∣∣ θ ∈ N, 0 ≤ i ≤ hθ

}
is infinite. We get from Lemma 6.1 that for every q ∈ Q

and θ ∈ N, we have Pθ(q) ⊆ Ψ(P0(q) ∪ L). According to line 9 of the CEGAR
semi-algorithm, Pθ+1 refines Pθ for every θ ∈ N, and moreover Pθ+1 6= Pθ since
Pθ+1 rules out π]θ. We deduce that there exists q ∈ Q such that the nondecreasing
sequence (|Pθ(q)|)θ∈N diverges. Since P0(q) is finite and Pθ(q) ⊆ Ψ(P0(q) ∪ L),
we conclude that L is infinite. ut

6.2 Properties of Breadth-First Executions of CEGAR

To obtain termination results in the unsafe case, we will, unsurprisingly, restrict
ourselves to breadth-first explorations of the partition abstractions. Formally, a
breadth-first execution of the CEGAR semi-algorithm is any execution where, at
each iteration θ, the abstract counterexample π]θ picked at line 2 is among the
shortest ones.

Lemma 6.3. Consider any breadth-first execution of CEGAR (A, Init, Bad, P0,

PathInv). For any iteration θ ≥ 1 and for any (q, p) ∈ Init]θ\Init
]
θ−1, there exists

p0 ∈ Pθ−1(q) such that p = p0 ∩ Lθ−10 and ({q} × p0) ∩ Init = ({q} × p) ∩ Init.

Proof. Consider an iteration θ + 1 (with θ ∈ N) and let (q, p) be any abstract

configuration in Init]θ+1 \ Init
]
θ. Observe that ({q} × p) ∩ Init is non-empty,

and therefore (q, p) 6∈ C]θ since otherwise we would have (q, p) ∈ Init]θ. Since
p ∈ Pθ+1(q) \ Pθ(q), we get that p was added to P (q) during the iteration θ at

line 9. Let us write π]θ as π]θ = (q0, p0)
l0−→] · · · lh−1−−−→]

(qh, ph). We deduce from

line 9 that p ∈
{
pi0 ∩ Lθi0 , pi0 ∩ L

θ
i0

}
for some 0 ≤ i0 ≤ h such that q = qi0 .

Observe that (qi0 , pi0) ∈ Init]θ since we have p ⊆ pi0 and ({q} × p) ∩ Init 6= ∅.
We come to i0 = 0 since the abstract counterexample π]θ is among the shortest

ones. Hence, we get that q = q0 and p ∈
{
p0 ∩ Lθ0, p0 ∩ Lθ0

}
. Since (Lθ0, . . . , L

θ
h)

is a path invariant for π]θ, we have ({q0} × p0) ∩ Init ⊆ {q0} × Lθ0 and hence

{q0}× (p0 ∩Lθ0) is disjoint from Init. We deduce that p = p0 ∩Lθ0 and moreover
we get that ({q} × p0) ∩ Init = ({q} × p) ∩ Init. ut

Lemma 6.4. Consider any breadth-first execution of CEGAR (A, Init, Bad, P0,

PathInv). For any iteration θ, for any b ∈ N and for any (q, p) ∈ Reach≤bθ , we
have p ∈ Ψ

(
Lbθ(q)

)
where:

Lbθ(q) = P0(q) ∪ {Lηi | 0 ≤ η < θ, i ≤ hθ and i ≤ b}
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Proof. For any iteration θ and for any b ∈ N, let use denote by (Hb
θ) the property:

for any (q, p) ∈ C]θ, if there exists in JAK]θ a path of length at most b from Init]θ
to (q, p), then p ∈ Ψ

(
Lbθ(q)

)
. We prove by double induction on θ and b that (Hb

θ)
holds for any iteration θ and for any b ∈ N.

Let us prove the basis ∀b (Hb
0) of the induction on θ. Observe that Lb0(q) =

P0(q) for every q ∈ Q. Therefore p ∈ P0(q) = Ψ(P0(q)) for any (q, p) ∈ C]0,
and we conclude that the basis obviously holds. We now prove the induction
step ∀θ

(
∀b (Hb

θ) =⇒ ∀b (Hb
θ+1)

)
of the induction on θ. Consider an iteration

θ + 1 (with θ ∈ N) and assume that (Hb
θ) holds for every b ∈ N. We prove

by induction on b that (Hb
θ+1) holds for any b ∈ N. Observe that the basis

(H0
θ+1) may equivalently be rephrased as: for any (q, p) ∈ Init]θ+1, we have

p ∈ Ψ
(
L0
θ+1

)
. Let (q, p) ∈ Init]θ+1. If (q, p) ∈ Init]θ then we deduce from (H0

θ )

that p ∈ Ψ
(
L0
θ

)
. Since L0

θ ⊆ L0
θ+1 we obtain that p ∈ Ψ

(
L0
θ+1

)
. Otherwise, we

obtain from Lemma 6.3 that p = p0 ∩ Lθ0 for some p0 ∈ Pθ(q). We deduce from
(H0

θ ) that p0 ∈ Ψ
(
L0
θ

)
and therefore p ∈ Ψ

(
L0
θ+1

)
. We therefore have proved

that the basis (H0
θ+1) of the induction on b holds.

Let us now show the induction step ∀b
(
(Hb

θ+1) =⇒ (Hb+1
θ+1)

)
of the induction

on b. Consider any bound b ∈ N and assume that (Hb
θ+1) holds. Recall that (Hc

θ)

holds for every c ∈ N. Let (q, p) be any abstract configuration in C]θ+1 such that

there is in JAK]θ+1 a path π] of length at most b+1 from Init]θ+1 to (q, p). We show

that p ∈ Ψ
(
Lb+1
θ+1(q)

)
. Recall that Pθ+1(q) refines Pθ(q) and define p̂ = [ p ]Pθ(q),

i.e. p̂ is the class in Pθ(q) that contains p. Observe that (q, p̂) is an abstract

configuration in C]θ. The “lift” of π] to Pθ yields a path of length at most b+ 1

in JAK]θ from Init]θ to (q, p̂). We deduce from (Hb+1
θ ) that p̂ ∈ Ψ

(
Lb+1
θ (q)

)
. Since

Lb+1
θ ⊆ Lb+1

θ+1 we obtain that p̂ ∈ Ψ
(
Lb+1
θ+1

)
. If p ∈ Pθ(q) then p = p̂ ∈ Ψ

(
Lb+1
θ (q)

)
.

Otherwise, p ∈ Pθ+1(q) \ Pθ(q) and we get that p was added to P (q) during the

iteration θ at line 9. Let us write π]θ as π]θ = (q0, p0)
l0−→] · · · lh−1−−−→]

(qh, ph). We

deduce from line 9 that p ∈
{
pi0 ∩ Lθi0 , pi0 ∩ L

θ
i0

}
for some 0 ≤ i0 ≤ h such that

q = qi0 . Moreover pi0 = p̂ since pi0 and p̂ both contain p. Remark that we may

replace in π]θ the prefix (q0, p0)
l0−→] · · ·

li0−1−−−→]
(qi0 , p̂) with the “lift” of π] to

Pθ. The resulting abstract path is also an abstract counterexample in JAK]θ, and

its length is h − i0 + (b + 1). Since π]θ is among the shortest ones, we get that

i0 ≤ b+ 1. As pi0 = p̂ ∈ Ψ
(
Lb+1
θ (q)

)
, we conclude that p ∈ Ψ

(
Lb+1
θ (q)

)
. ut

Lemma 6.5. Consider any breadth-first execution of CEGAR (A, Init, Bad, P0,

PathInv), and define Iθ =
{
p ∩ {w | (q,w) ∈ Init}

∣∣∣ (q, p) ∈ Init]θ
}

for any it-

eration θ. It holds that Iθ ⊆ Iθ−1 for any iteration θ ≥ 1.

Proof. Consider an iteration θ ≥ 1 and let L ∈ Iθ. There exists (q, p) ∈ Init]θ
such that L = p∩{w | (q,w) ∈ Init}. Notice that {q}×L = ({q}×p)∩Init 6= ∅.
If (q, p) ∈ Init]θ−1 then L ∈ Iθ−1. Otherwise, we obtain from Lemma 6.3 that
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({q} × p0) ∩ Init = ({q} × p) ∩ Init for some p0 ∈ Pθ−1(q). We thus come to

L = p0 ∩ {w | (q,w) ∈ Init}. Since L 6= ∅, we get that (q, p0) ∈ Init]θ−1 and we
conclude that L ∈ Iθ−1. ut

6.3 Termination of CEGAR for Unsafe fifo Systems with UPInv (∇)

To our knowledge, there is currently no general result on the termination of
Cegar for infinite transition systems that are unsafe. In the following, we present
an answer for a particular setting with respect to our case.

For the rest of this section, we fix an extrapolation ∇ and we focus on the
path invariant generation procedure UPInv presented in Section 4.

The following proposition shows that for any bound b, there is an iteration
after which the abstract configurations that are reachable from Init] by a path
of length at most b are never split, or, put differently, the “reachability set up
to depth b” of the abstraction remains constant.

Proposition 6.6. For any b ∈ N and for any non-terminating breadth-first ex-
ecution of CEGAR (A, Init, Bad, P0,UPInv (∇)), the two following sets are finite:⋃

θ∈N
Reach≤bθ and

{
Lθi
∣∣ θ ∈ N, i ≤ hθ and i ≤ b

}
Proof. We prove the proposition by induction on b. Let us first show the basis.
For any θ ∈ N, define Iθ as in Lemma 6.5. We infer from Lemma 6.5 that Iθ ⊆ I0.
We derive from the definition of the algorithm UPInv that for any iteration θ ∈ N,
there exists (q, p) ∈ Init]θ and k ∈ N such that Lθ0 = ∇k (p ∩ {w | (q,w) ∈ Init}),
and therefore Lθ0 = ∇k(L) for some L ∈ Iθ. Recall that according to Defi-
nition 4.3, the set {∇k(L) | k ∈ N} is finite for any recognizable subset L of
(M∗)n. Since I0 is finite, we obtain that {∇k(L) | L ∈ I0, k ∈ N} is finite. Con-
sequently, the set

{
Lθ0
∣∣ θ ∈ N

}
is finite. Moreover, according to Lemma 6.4, we

have p ∈ Ψ
(
P0(q) ∪

{
Lθ0
∣∣ θ ∈ N

})
for every (q, p) ∈ Reach≤0θ . We deduce that⋃

θ∈N Reach≤0θ is finite.

Let us now show the induction step. Assume that the proposition holds for

some bound b ∈ N. Let us defineH =
{
p ∩ Lθb

∣∣∣ θ ∈ N, b ≤ hθ, (q, p) ∈ Reach≤bθ

}
.

The sets
⋃
θ∈N Reach≤bθ and

{
Lθb
∣∣ θ ∈ N, b ≤ hθ

}
are both finite according to

the induction hypothesis, and therefore H is finite. We derive from the defi-
nition of the algorithm UPInv that for any iteration θ ∈ N with hθ ≥ b + 1,
if Lθb+1 is non-empty then there exists (q, p) ∈ Reach≤bθ , l ∈ Σ and k ∈ N
such that Lθb+1 = ∇k

(
post(l, p ∩ Lθb)

)
, and therefore Lθb+1 = ∇k (post(l, L)) for

some L ∈ H. Recall that according to Definition 4.3, the set {∇k (L) | k ∈ N}
is finite for any subset L of (M∗)n. Since H and Σ are both finite, we ob-
tain that {∇k (post(l, L)) | l ∈ Σ,L ∈ H, k ∈ N} is finite. We deduce that the
set

{
Lθb+1

∣∣ θ ∈ N, b+ 1 ≤ hθ
}

is finite, and we get from the induction hypoth-

esis that
{
Lθi
∣∣ θ ∈ N, i ≤ hθ, i ≤ b+ 1

}
is also finite. Moreover, according to

Lemma 6.4, we have p ∈ Ψ
(
P0(q) ∪

{
Lθi
∣∣ θ ∈ N, i ≤ hθ, i ≤ b+ 1

})
for every

(q, p) ∈ Reach≤b+1
θ . We deduce that

⋃
θ∈N Reach≤b+1

θ is finite. ut
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Fig. 9: Fifo System of Example 6.9 Showing Non-Termination of CEGAR

Proposition 6.7. For any breadth-first execution of CEGAR (A, Init, Bad, P0,
UPInv (∇)), if the execution does not terminate then the sequence (hθ)θ∈N of
lengths of counterexamples picked at line 2 is nondecreasing and diverges.

Proof. Consider a non-terminating breadth-first execution and let us show that
the sequence (hθ)θ∈N is nondecreasing and diverges. Let η, θ ∈ N such that η < θ,

and observe that the partition map Pθ refines Pη. The “lift” of π]θ to Pη yields

a counterexample in JAK]η. Since π]η is a counterexample in JAK]η among the
shortest ones, we get that its length hη satisfies hη ≤ hθ. This concludes the
proof that (hθ)θ∈N is nondecreasing.

By contradiction, assume that there exists b, θ1 ∈ N such that hθ = b for every
θ ≥ θ1. We obtain from Proposition 6.6 that

⋃
θ∈N Reach≤bθ is finite. Therefore,

there exists θ2 ≥ θ1 such that Reach≤bθ2 = Reach≤bθ2+1. Let us write π]θ2 as π]θ2 =

(q0, p0)
l0−→] · · · lb−1−−−→]

(qb, pb). Note that (qi, pi) ∈ Reach≤bθ2+1 for every 0 ≤ i ≤ b.
We deduce that π]θ2 is also a counterexample in JAK]θ2+1, which contradicts the

fact that Pθ2+1 is a refinement of Pθ2 that rules out π]θ2 . We conclude that the
sequence (hθ)θ∈N diverges. ut

Corollary 6.8. If JAK is (Init, Bad)-unsafe then any breadth-first execution of
CEGAR (A, Init, Bad, P0,UPInv (∇)) terminates.

Proof. Assume that there exists in JAK a path π from Init to Bad and let b
denote the length of π. Consider any breadth-first execution of CEGAR (A, Init,
Bad, P0,UPInv (∇)). Observe that for any iteration θ, αθ(π) is an abstract coun-

terexample of length b in JAK]θ. Hence, we have hθ ≤ b for every iteration θ ∈ N,
and we conclude with Proposition 6.7 that the execution terminates. ut

6.4 Termination of CEGAR for Finite fifo Systems with UPInv (∇)

It would also be desirable to obtain termination of the CEGAR semi-algorithm
when A has a finite reachability set from Init. However, the following example
shows that this condition is not sufficient to guarantee that CEGAR (A, Init,
Bad, P0,UPInv (∇)) has a terminating execution.



Extrapolation-based Path Invariants for Abstraction Refinement 27

Example 6.9. Consider the fifo system A depicted in Figure 9. This fifo system
has a single message a and a single queue. The safety condition (Init, Bad) is de-
fined by the recognizable subsets Init = {(0, ε)} and Bad = {0}× ({a} · {aa}∗).
Notice that the reachability set from Init is equal to Init, which is finite when
the initial set of configurations is given as before, and hence JAK is (Init, Bad)-
safe.

Define the initial partition map P0 by P0(q) = {{a}∗} for all q ∈ {0, 1, 2, 3}.
We consider the extrapolation ∇ defined by ∇0({ε}) = {ε, aa} and ∇k(L) = L
if k > 0 or L 6= {ε}. Let us now detail the first iterations of an execution of
CEGAR (A, Init, Bad, P0,UPInv (∇)).

(0) π]0 is the empty path (0, {a}∗), and UPInv (∇, Init, Bad, π]0) returns the path
invariant ({ε, aa}).

(1) π]1 is the path (0, {ε, aa}) 1?a−−→] (1, {a}∗) 1!a−−→] (2, {a}∗) 1!a−−→] (3, {a}∗) 1!a−−→]

(0, {ε, aa}), and the path invariant is ({ε, aa}, {a}, {aa}, {a3}, {a4}).
(2) π]2 is the path (0, {ε, aa}) 1?a−−→] (1, {a}) 1!a−−→] (2, {aa}) 1!a−−→] (3, {a3}) 1!a−−→]

(0, {a4}) 1?a−−→] (1, {a}) 1!a−−→] (2, {aa}) 1!a−−→] (3, {a3}) 1!a−−→] (0, {ε, aa, a4}),
and the path invariant returned by UPInv (∇, Init, Bad, π]2) is the sequence
({ε, aa}, {a}, {a2}, {a3}, {a4}, {a3}, {a4}, {a5}, {a6}).

These first iterations suggest that the execution may not terminate, and we
can actually prove that it necessarily does not terminate. Consider any execu-
tion of CEGAR (A, Init, Bad, P0,UPInv (∇)). For any iteration θ, the path in-
variant (Lθ0, . . . , L

θ
hθ

) computed by UPInv (∇) satisfies Lθ0 = {ε, aa} and Lθ4i =

{a4 · a2(i−1)} for any 1 ≤ i ≤ hθ
4 . We deduce that, for each iteration θ, there

exists a finite subset Fθ of {a}∗ such that {{ε, aa}, Fθ} ⊆ Pθ(0). Observe that

(0, {ε, aa}) ∈ Init]θ and (0, Fθ) ∈ Bad]θ. Moreover, for every i ≥ 1, there is a
concrete path in JAK from (0, aa) to (0, a2i). Hence, there is an abstract path

in JAK]θ from (0, {ε, aa}) to (0, Fθ). We obtain that JAK]θ is (Init], Bad])-unsafe
for every iteration θ, which, combined with Proposition 5.1, implies that the
execution does not terminate since JAK is (Init, Bad)-safe. �

It turns out that termination of the CEGAR semi-algorithm can be guaranteed
for fifo systems with a finite reachability set when ∇k has a finite image for every
k ∈ N. This apparently strong requirement, formally specified in Definition 6.10,
is satisfied by the extrapolations presented in [BHV04] and [LGJJ06], which are
based on state equivalences up to a certain depth (see Appendix B).

Definition 6.10. An extrapolation ∇ is restricted if for every k ∈ N, the set
{∇k(L) | L ∈ Rec ((M∗)n)} is finite.

Remark that the extrapolation used in Example 6.9 was not restricted. The
path invariants obtained in this example only used ∇0, as the while-loop of
the algorithm UPInv was never repeated. The use of restricted extrapolations
prevents this kind of executions. Indeed, as a consequence of Proposition 6.2,
we obtain that if ∇ is restricted then for any execution of CEGAR (A, Init, Bad,
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P0,UPInv (∇)), the execution terminates if and only if the number of iterations
of the while-loop of the algorithm UPInv is bounded.(Remark that this bound
is not a bound on the length of abstract counterexamples.) As shown by the
following proposition, if moreover JAK has a finite reachability set from Init
then the execution necessarily terminates.

Proposition 6.11. Assume that ∇ is restricted. If JAK has a finite reachabil-
ity set from Init, then any execution of CEGAR (A, Init, Bad, P0, UPInv (∇))
terminates.

Proof. Assume that JAK has a finite reachability set from Init, and consider
any execution of CEGAR (A, Init, Bad, P0,UPInv (∇)). For each q ∈ Q, let us
write RS(q) the finite set of w ∈ (M∗)n such that there is a path in JAK from
Init to (q,w). Define L =

⋃
q∈QRS(q) and remark that L is finite. Recall that

according to Definition 4.3, for any recognizable subset L of (M∗)n, there exists
kL ∈ N such that L = ∇k(L) for every k ≥ kL. Since L is finite, we infer that
there exists K ∈ N such that L = ∇k(L) for every k ≥ K and L ⊆ L. Let us
define H = ℘(L) ∪ {∇k(L) | k < K,L ∈ Rec ((M∗)n)}. Observe that H is finite
since ∇ is restricted.

We show that Lθi ∈ H for any iteration θ and for any 0 ≤ i ≤ hθ. Consider

an iteration θ, and let us write π]θ as π]θ = (q0, p0)
l0−→] · · · lh−1−−−→]

(qh, ph), with
h = hθ. Notice that (qi−1, li−1, qi) is a transition rule in ∆ for each 1 ≤ i ≤ h.
Let us define R0 = p0 ∩ {w | (q0,w) ∈ Init} and Ri = post(li−1, pi−1 ∩ Lθi−1)
for every 1 ≤ i ≤ h. We derive from the definition of the algorithm UPInv that
there exists k ∈ N such that: Lθ0 = ∇k(R0), and Li = ∅ or Li = ∇k(Ri) for every
1 ≤ i ≤ h. If k < K then we get that Lθi ∈ H for every 0 ≤ i ≤ h. Otherwise, we
have k ≥ K and therefore Li = Ri for every 0 ≤ i ≤ h. An immediate induction
on i shows that Ri ⊆ RS(qi) for every 0 ≤ i ≤ h. We deduce that Lθi ⊆ L and
hence Lθi ∈ H for every 0 ≤ i ≤ h.

We obtain that
{
Lθi
∣∣ θ ∈ N and 0 ≤ i ≤ hθ

}
⊆ H. Since H is finite, we con-

clude with Proposition 6.2 that the execution terminates. ut

Remark 6.12. Our notion of restricted extrapolation is related to Jhala and
McMillan’s restricted interpolation, introduced in [JM06] to derive partial com-
pleteness results of Cegar for predicate abstraction. Indeed, given a restricted
extrapolation ∇, the finite subsets Lk = {∇i(L) | i ≤ k, L ∈ Rec ((M∗)n)} of
Rec ((M∗)n) are analogous to the finite languages Lk of predicates that re-
strict interpolants in [JM06]. However, in contrast to the Cegar semi-algorithm
of [JM06] where the restricted languages of predicates are enlarged globally, the
parameter k is tailored to each abstract counterexample in our CEGAR semi-
algorithm combined with UPInv (∇) or APInv (∇).

7 Experimental Evaluation

We implemented our ideas in the framework Mcscm that includes prototypical
tools implementing our previous ideas. Mcscm is written in Ocaml and relies
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on a library by Le Gall and Jeannet [SCM] for the classical finite automata and
Qdd operations, the fifo post/pre symbolic computations, as well as the colored
bisimulation-based extrapolation. The standard coloring with final and non-final
states is used by default in our tool (see Section 4.3), but several other variants
are available in addition.

We implemented the CEGAR semi-algorithm of Section 5 as a generic Ocaml
functor, that is parameterized by a symbolic representation of the model to be
verified. This should allow us to transfer the ideas of this paper to other classes
of infinite-state models such as counter automata, hybrid automata, etc. The
initial partition map of the CEGAR semi-algorithm is fixed to the trivial one
λq .(M∗)n, hence, the initial partition abstraction is “isomorphic” to the “control
flow graph” of the input fifo system.

We tested the prototype on a suite of protocols that includes the classical
alternating bit protocol (Abp) [AJ96], a simplified version of Tcp—also in the
setting of one server with two clients that interfere on their shared channels, a
sliding window protocol, as well as protocols for leader election due to Peterson
and token passing in a ring topology. Further, we provide certain touchstones
for our approach: an enhancement of the c/d protocol with nested loops for the
exchange of data, and a protocol with a non-recognizable reachability set. A
detailed presentation of the protocols is provided in Appendix C. Except for the
c/d protocol, which is unsafe, all other examples are safe.

To increase confidence in the results, an independent module, that can per-
form inductive invariant checking and feasibility checking, verifies the result of
the Cegar implementation.

All following results were obtained by our checker implemented in the Mcscm
framework (version 1.0, [McScM]) on an off-the-shelf computer (3.2 GHz Intel
i7-965, 64-bit system).

7.1 Benchmark

Section 4 introduces the two path invariant generation algorithms UPInv and
APInv (both in “forward” direction, abbreviated ¸ in the following) based on
forward-bisimulation-based extrapolation (Definition 4.3). As already mentioned,
we can also reverse both invariant generation algorithms (noted µ). In the fol-
lowing, we compare the four invariant generation algorithms and additionally
include backward-bisimulation-based extrapolation. Figure 10 shows for each of
our protocols the best and worst combination with respect to running time. The
first columns introduce the protocol, the size of its control structure, and whether
the protocol is bounded (denoted “b”) or not (ω). The last rows give the number
of refinement loops and the size of the final abstract transition system.

When comparing the different path invariant generation procedures of Fig-
ure 10, we are not able to deduce a favorable method; for example, the adaptive
algorithm in its µ variant together with forward bisimulation-based extrapola-
tion seems encouraging after the first examples, whereas it does not lead to a
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protocol states/trans. B pinv-gen/bisim time [s] mem [MiB] loops states]/trans]

ABP 16/64 ω
APInv µ/ fwd 0.25 3.94 47 90/528
APInv µ/ bwd 1.28 5.88 220 301/1931

c/d 5/17 ω
APInv µ/ fwd 0.00 2.97 6 11/34
UPInv µ/ bwd 0.02 2.97 6 12/47

nested c/d 6/17 ω
APInv µ/ fwd 0.43 3.94 65 81/313
APInv ¸/ fwd 13.85 16.53 244 261/1173

non-regular 9/18 b
APInv µ/ fwd 0.01 2.97 8 21/47
UPInv ¸/ bwd 0.03 2.97 19 31/39

Peterson 10k/57k b
APInv ¸/ bwd 0.53 38.81 33 10689/56802
UPInv ¸/ fwd 499.52 251.94 10641 25548/206681

(simplified) Tcp 196/588 ω
APInv ¸/ fwd 0.25 3.94 98 323/987
UPInv µ/ fwd (> 1h) — — —

server/2 clients 255/2160 ω
UPInv ¸/ bwd 4.81 9.75 398 714/7192
APInv µ/ fwd (> 1h) — — —

token ring 625/4500 b
APInv ¸/ fwd 0.49 9.75 132 760/5267
UPInv µ/ bwd 79.79 109.53 14527 18640/88598

sliding window 225/2010 b
APInv ¸/ fwd 0.50 5.88 162 399/2420
UPInv µ/ bwd 48.54 39.78 3727 5113/19650

BRP 100/510 ω
UPInv ¸/ fwd 1.59 6.84 149 310/1892
APInv µ/ bwd (> 1h) — — —

POP3 460/2018 b
UPInv ¸/ bwd 0.38 5.88 86 564/2245
APInv ¸/ fwd (> 1h) — — —

Fig. 10: Benchmark Comparing Path Invariant Generation Algorithms (Excerpt)

result after 1h in the case of the extended TCP protocol where two clients in-
terfere. Analogous considerations hold for all other combinations. However, our
approach was able to allow safety verfication for our set of example protocols
using relatively few ressources (time and memory).

Comparison to Armc
Notice that in Armc, abstraction is performed on the data structures that are
used to represent sets of configurations, whereas in our case the system itself
is abstracted. After each refinement step, Armc restarts (from scratch) the ap-
proximated forward exploration from the refined reachability set, whereas our
refinement is local to the spurious counterexample path. Moreover, the preci-
sion of the abstraction is global in Armc, and may only increase (for the entire
system) at each refinement step. In contrast, our path invariant generation pro-
cedures only uses the precision required to rule out each found spurious coun-
terexample. Preliminary benchmarks demonstrate the benefit of our local and
adaptive approach for the larger examples, where a “highly” precise abstraction
is required only for a small part of the model and the remaining model can be
coarsely abstracted. Last, our approach is not tied to words and automata. In
this work we only focus on fifo systems, but our framework is fully generic and
could be applied to other infinite-state systems (e.g., hybrid systems), provided
that suitable parametrized extrapolations are designed (e.g., on polyhedra).
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Rerunning the previous benchmark on our own re-implementation of Armc
suggests that the latter seems to be advantageous for some small protocols. How-
ever, larger examples confirm that our local and adaptive refinement approach
outperforms a global refinement one in protocols that demand a “highly” precise
abstraction only for a few control loops (e.g., Peterson’s leader election and token
ring). Further, our Armc reimplementation was not able to treat the non-regular
protocol nor the case of the server with 2 clients.

Comparison to AbsInt
An orthogonal approach to ours is abstract interpretation which was imple-
mented for fifo systems in [LGJJ06]. This publication is the origin of the previ-
ously applied bisimulation-based extrapolation which was introduced as widen-
ing. The proposed AbsInt approach is also a semi-algorithm, since we increse
the parameter of the widening until the sytem is proven to be safe. Obviously,
this semi-algorithm cannot terminate if the system is unsafe and does not lead
to counterexamples. Our tool provides an interface to AbsInt that is able to
verify all safe protocols in seconds. Some additional experiments where we in-
troduced errors in the originally safe protocols confirmed that AbsInt is an
ideal preprocessing step to test whether the protocol is safe, but searching for
counterexamples should be done with our Cegar approach.

Comparison to Other Tools

We compared our tool with Trex, which is, to the best of our knowledge, the
sole publicly available (see [TReX]) and directly usable model-checker for the
verification of unbounded fifo systems. Note, however, that the comparison is
biased as Trex focuses on lossy channels. We applied Trex to the first six pro-
tocols of our benchmark (see Figure 10). Trex has an efficient implementation
based on simple regular expressions (and not general Qdds as we do), and needs
for our examples less than 1 second to build the reachability set for the protocols
in the upper part of the previous table. (Given the reachability set, deciding the
reachability of bad configurations becomes a simple additional look-up.) Further,
Trex implements communicating timed and counter automata that are—at this
stage—beyond the focus of our framework. Nonetheless, Trex assumes a lossy
fifo semantics, and, therefore, is not able to verify all reliable fifo examples cor-
rectly (e.g., when omitting the disconnect messages in the c/d protocol, Trex
is still able to reach Bad due to the possible loss of messages, albeit the protocol
is safe).

Our tool also allows to handle lossy channels. However, it does not include
an optimized symbolic representation like Trex. Yet one can easily mix lossy
and reliable channels in the same model.

Moreover, Trex suffers (as would also a symbolic model checker based on the
Lash library [Lash]) from the main drawback of acceleration techniques, which
in general cannot cope with nested loops, whereas these loops seem to have
no adverse effect on our tool (viz. nested c/d protocol on which Trex did not
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finish after one hour). Our tool can also handle a simple non-regular protocol
(with a counting loop) that is beyond the Qdd-based approaches [BG99], as
the representation of the reachability set would require recognizable languages
equipped with Presburger formulas (i.e., cQdds [BH99]).

The highly optimized model checker Spin [SPIN] is an alternative due to
its importance in practice. Even tough it is based on an underlying semantic
model of communicating automata (with global variables, dynamic process gen-
eration,. . . ), it is strongly limited as it demands bounded channels. Engineering
folklore states that most errors can already be found within a small bound on
the size of the channels, hence Spin is useful due to its thorough search of
the resulting finite transition system for counterexamples. On the other hand,
Spin can only give the guarantee that the system is safe under the additional
assumption that the channels are a priori bounded and cannot prove general
safety for infinite state systems as demanded by our basic domain. Nonethe-
less, the memory consumption of Spin rises drastically, if one goes beyond small
channel bounds, even for trivial protocols like the previous ones. For example,
running the nested version of the c/d protocol with a channel bound of 30 leads
to a model of 9227463 states and 1854922 transitions that can exhaustively be
searched in 19s but with a memory consumption of around 1.4GB (Spin 6.0.1
on same machine as above). An interesting approach is to marry Spin with
symbolic techniques or abstraction [dMGMMP02] which, however, never gained
wider attention. Then again, also our approach could benefit from partial order
exploration and state-space reduction techniques as applied in Spin.

A different approach relies on the application of machine learning techniques
to state space exploration [VSVA04a, VSVA04b]. The basic idea is to apply
Angluin’s L∗ algorithm [Ang87] to generate a deterministic finite automata rep-
resenting an abstraction of the set of reachable configurations (by regular traces)
which is then combined with a classical abstract-check-refine algorithm. The pre-
viously cited articles were accompanied by a prototypical implementation in the
Lever tool. Regrettably, the current public version does not further support fifo
automata but only parametrized systems that communicate over shared variables
(over a finite domain), such that no direct comparison is possible.

8 Conclusion and Perspectives

Our prototypical implementation confirms our expectations that the proposed
Cegar framework with extrapolation-based path invariants is a promising al-
ternative approach to the automatic verification of fifo systems.

Our approach relies on partition abstractions where equivalence classes are
recognizable languages of queue contents. Our main contribution is the design
of generic path invariant generation algorithms based on parameterized extrap-
olation operators for queue contents. Because of the latter, our CEGAR semi-
algorithm enjoys additional partial termination properties.
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The framework developed in this paper is not specific to fifo systems, and
we intend to investigate its practical relevance to other families of infinite-state
models. Future work also includes the safety verification of more complex fifo
systems that would allow the exchange of unbounded numerical data over the
queues, or include parameterization (e.g., over the number of clients). Several
decidable classes of fifo systems have emerged in the literature (in particular
lossy fifo systems) and we intend to investigate termination of our CEGAR semi-
algorithm (when equipped with the path invariant generation algorithms de-
veloped in this paper) for these classes. A fully automatic approach to safety
verification would further demand an appropriate heuristics with respect to dif-
ferent classes of communication protocols, in order to choose the appropriate
path invariant generation algorithm, graph search method, etc.
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Appendix

A Queue Decision Diagrams

Boigelot and Godefroid introduced queue decision diagrams (Qdds) for the sym-
bolic verification of infinite-state communication protocols [BG99], and an im-
plementation of Qdds is provided in the Lash toolset [Lash]. We recall in this
section the definition and main properties of Qdds. We adapt the original def-
inition of [BG99, BGWW97], which assumed disjoint queue alphabets, to our
framework where a single alphabet is used for all queues. Moreover, to simplify
the presentation of extrapolations in the next section, we will w.l.o.g. restrict
our attention to trim Qdds, which have no useless transitions. This restriction is
important to determine easily the dimension of a Qdd, i.e. the number of queue
content it represents.

A finite automaton is any 5-tuple D = 〈Q,Σ,→, I, F 〉 where 〈Q,Σ,→〉 is a
finite labeled transition system whose configurations are called states, I ⊆ Q is a
set of initial states, and F ⊆ Q is a set of final states. A word w = l0 · · · lh−1 ∈ Σ∗

is accepted by D if there is a run q0
l0−→ · · · lh−1−−−→ qh such that q0 ∈ I and qh ∈ F .

The accepted language of a finite automaton D, written L(D), is the set of all
words accepted by D. We say that D is trim when every state q ∈ Q occurs on
some accepting run (from I to F ). Remark that if D is trim then: L(D) = ∅
if and only if D has an empty set of states. In the remainder of this paper, we
assume that all finite automata in the following are always trim.

For any letter a ∈ Σ and word w ∈ Σ∗, we let |w|a denote the number of
occurences of a in w.

Consider a finite alphabet M of messages and an integer n ≥ 1 denoting
the number of queues. We use the classical encoding of n-tuples w ∈ (M∗)n by
words over M ∪ {¤} where ¤ 6∈M is a new letter used as separator. Formally,
we define the function η : (M∗)n → (M ∪ {¤})∗ by η(w) = w(1)¤ · · ·¤w(n).
Let us write E(M,n) for the set of all words w ∈ (M ∪{¤})∗ with |w|¤ = n−1.
Notice that η is a bijection between (M∗)n and E(M,n).

Definition A.1. An n-dim queue decision diagram for M is any (trim) finite
automaton D = 〈Q,M ∪ {¤},→, I, F 〉 such that L(D) ⊆ E(M,n).

We denote by Qdd (M,n) the set of all n-dim queue decision diagrams for M .
For notational convenience, we write JDK for the subset of (M∗)n represented
by a queue decision diagram D ∈ Qdd (M,n), defined by JDK = η−1(L(D)). The
subsets of (M∗)n that are representable by queue decision diagrams coincide
exactly with the recognizable subsets, formally:

Theorem A.2 ([BGWW97]). For any finite alphabet M and integer n ≥ 1,
the following equality holds:

Rec ((M∗)n) = {JDK | D ∈ Qdd (M,n)}
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B Quotient-based Extrapolations

In this section, we show how well-known behavioral equivalences on labeled tran-
sition systems can be turned into extrapolations (that satisfy the requirements
of Definition 4.3).

Consider a finite alphabet M and an integer n ≥ 1. Recall that recognizable
subsets of (M∗)n are in bijection with languages accepted by Qdds. We assume
for the remainder of this section a function χ from Rec ((M∗)n) to Qdd (M,n)
such that L = Jχ(L)K for every L ∈ Rec ((M∗)n). With the help of the func-
tion η of Section A, this function χ could be defined for instance by mapping
each recognizable subset L of (M∗)n to the minimal deterministic finite automa-
ton accepting η(L). Thanks to the function χ, the design of extrapolations for
recognizable subsets can be reduced to the design of extrapolations for Qdds.

Definition B.1. A (parametrized) Qdd-extrapolation is any function ∇ from
N to Qdd (M,n) → Qdd (M,n) that satisfies, for any D ∈ Qdd (M,n), the two
following conditions (with ∇(k) written as ∇k):

(i) we have L(D) ⊆ L(∇k(D)) for every k ∈ N,
(ii) there exists kD ∈ N such that L(D) = L(∇k(D)) for every k ≥ kD.

Definition B.2. A Qdd-extrapolation ∇ is restricted if for every k ∈ N, the
set {∇k(D) | D ∈ Qdd (M,n)} is finite up to automata isomorphism.

For any Qdd-extrapolation ∇, the function ∇χ = λk .(λL.J∇k(χ(L))K) is an
extrapolation (in the sense of Definition 4.3). Moreover, if ∇ is restricted then
∇χ is restricted (in the sense of Definition 6.10). We thus focus on the design of
(restricted) Qdd-extrapolations for the remainder of this section.

The quotient D/≡ of a finite automaton D = 〈Q,Σ,→, I, F 〉 by an equiva-
lence relation ≡ on Q is the finite automaton 〈Q≡, Σ,→≡, I≡, F≡〉 where:

Q≡ = Q/≡ I≡ = {[ q ]≡ | q ∈ I}
→≡ =

{
([ q ]≡ , l, [ q

′ ]≡)
∣∣∣ q l−→ q′

}
F≡ = {[ q ]≡ | q ∈ F}

With this definition, D/≡ is trim whenever D is trim. Moreover, it holds that
L(D) ⊆ L(D/≡1) ⊆ L(D/≡2) for any two equivalence relations ≡1 and ≡2 on
Q such that ≡1 ⊆ ≡2.

Given an n-dim queue decision diagram D = 〈Q,M ∪ {¤},→, I, F 〉 for M ;
we define a set Qi ⊆ Q for 1 ≤ i ≤ n: q ∈ Q if there exist q0 ∈ I and qh ∈ F such

that there exists a path q0
l0−→ . . .

li−1−−→ qi
li−→ . . .

lh−1−−−→ qh with li ∈ M ∪ {¤}
for 0 ≤ i < h such that |l0 · · · li−1|¤ = i− 1 and |li · · · lh−1|¤ = n− i. Clearly, if
Q 6= ∅ then {Qi}ni=1 is a partition of Q since D is trim.

We define the equivalence relation ≈D on Q as follows: if Q = ∅ then ≈D = ∅,
otherwise ≈D =

⋃n
i=1Qi ×Qi. The following two propositions show that ≈D is

the coarsest equivalence relation on Q under which the quotient of D is also a
Qdd.
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Proposition B.3. For any n-dim queue decision diagram D for M , the quotient
D/≈D is an n-dim queue decision diagram for M . Moreover, if JDK 6= ∅ then
JD/≈DK = N∗1 ×· · ·×N∗n where Ni = alph ({w(i) | w ∈ JDK}) for all 1 ≤ i ≤ n.

Proof. Let us write D = 〈Q,M ∪ {¤},→, I, F 〉. If Q is empty then D/≈D = D
and hence D/≈D is also in Qdd (M,n). Assume now that Q is non-empty. We first
give an explicit characterization of D/≈D. Observe that I ⊆ Q1 and F ⊆ Qn.

Consider any two integers i, j in {1, . . . , n} and assume that there is a tran-

sition r
l−→ r′ in D with r ∈ Qi and r′ ∈ Qj . Since D is trim, there exists in D

two paths q
l0−→ · · · lh−1−−−→ r and r′

l′0−→ · · ·
l′
h′−1−−−→ q′ such that q ∈ I and q′ ∈ F .

Note that |l0 · · · lh−1|¤ = i− 1 since r ∈ Qi. Two cases arise:

– if l = ./ then we obtain that r′ ∈ Qi+1 since q
l0−→ · · · lh−1−−−→ r

¤−→ r′ is a path
in D and |l0 · · · lh−1¤ |¤ = i. We deduce that j = i+ 1.

– if l ∈ M then we obtain that r′ ∈ Qi since q
l0−→ · · · lh−1−−−→ r

l−→ r′ is a path
in D and |l0 · · · lh−1l|¤ = i− 1. We deduce that j = i. Moreover, we have
l ∈ Ni since the n-tuple w = η−1(l0 · · · lh−1 · l · l′0 · · · l′h′−1) satisfies w ∈ JDK
and w(i) ∈M∗ · l ·M∗.

Conversely, since JDK 6= ∅, there exists w ∈ L(D). We may write w as w =
l10 · · · l1h1−1¤ · · ·¤ln0 · · · lnhn−1 with li0 · · · lihi−1 ∈ M

∗ for all 1 ≤ i ≤ n. Therefore,

there exists in D a path q10
l10−→ · · ·

l1
h1−1−−−→ q1h1

¤−→ · · · ¤−→ qn0
ln0−→ · · ·

lnhn−1−−−−→ qnhn
with q10 ∈ I and qnhn ∈ F . We get that qi0 and qihi are in Qi for all 1 ≤ i ≤ n,

and moreover qihi
¤−→ qi+1

0 for all 1 ≤ i < n. We deduce that for every 1 ≤ i < n,

there exists in D a transition q
¤−→ q′ with q ∈ Qi and q′ ∈ Qi+1.

Consider now any i ∈ {1, . . . , n} and let l ∈ Ni. There exists w ∈ JDK such
that w(i) ∈M∗ · l ·M∗. Since η(w) = w(1)¤ · · ·¤w(n) ∈ L(D), there exists in

D a path q0
l0−→ · · · lh−1−−−→ qh

l−→ qh+1 with q0 ∈ I and |l0 · · · lh−1|¤ = i− 1. We

deduce that there exists in D a transition q
l−→ q′ with q, q′ ∈ Qi.

We have thus shown that the quotient D/≈D is the trim finite automaton
〈Q≈, Σ,→≈, I≈, F≈〉 where:

Q≈ = {Qi | 1 ≤ i ≤ n}
→≈ = {(Qi, l, Qi) | 1 ≤ i ≤ n, l ∈ Ni} ∪ {(Qi,¤, Qi+1) | 1 ≤ i < n}
I≈ = {Q1}
F≈ = {Qn}

We derive that L(D/≈D) = N∗1¤ · · ·¤N∗n ⊆ E(M,n), which entails that D/≈D
is an n-dim queue decision diagram for M . Moreover, we also get that JD/≈DK =
η−1(N∗1¤ · · ·¤N∗n) = N∗1 × · · · ×N∗n. ut

It follows from the previous proposition that for any equivalence relation≡ ⊆ ≈D,
the quotient D/≡ is also an n-dim queue decision diagram for M . The following
proposition shows that the converse also holds.
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Proposition B.4. Let D = 〈Q,M ∪ {¤},→, I, F 〉 be an n-dim queue decision
diagram for M . For any equivalence relation ≡ on Q, if the quotient D/≡ is an
n-dim queue decision diagram for M then it holds that ≡ ⊆ ≈D.

Proof. Assume that ≡ 6⊆ ≈D and let us prove that D/≡ = 〈Q≡, Σ,→≡, I≡, F≡〉
is not an n-dim queue decision diagram for M . Note that Q 6= ∅ since otherwise
≡ and ≈D would be empty. Moreover, we deduce from ≡ 6⊆ ≈D that there exists
1 ≤ i < j ≤ n and (r, r′) ∈ Qi × Qj such that r ≡ r′. Since D is trim, there

exists in D two paths q
l0−→ · · · lh−1−−−→ r and r′

l′0−→ · · ·
l′
h′−1−−−→ q′ such that q ∈ I and

q′ ∈ F . Therefore, [ q ]≡
l0−→ · · · lh−1−−−→ [ r ]≡ = [ r′ ]≡

l′0−→ · · ·
l′
h′−1−−−→ [ q′ ]≡ is a path

in D/≡ from I≡ to F≡. Hence the word w = l0 · · · lh−1l′0 · · · l′h′−1 is accepted by
D/≡. Since r ∈ Qi and r′ ∈ Qj , we get that |w|¤ = (i− 1) + (n− j). As i 6= j,
we conclude that w 6∈ E(M,n) and hence L(D/≡) 6⊆ E(M,n), which entails
that D/≡ is not in Qdd (M,n). ut

Regarding the algorithms UPInv and APInv of Section 4, we focus on quotient-
based Qdd-extrapolations that lead to suitable path invariant generation algo-
rithms for fifo systems. Natural candidates are bounded-depth behavioral equiv-
alences such as bounded languages equivalence and bisimulation equivalence.
The former was used in [BHV04] to over-approximate finite automata in abstract
regular model checking. The latter was used in [LGJJ06] to derive a widening
operator in abstract interpretation of fifo systems with Qdds.

B.1 Colored Bisimulation-based Extrapolation

We recall in this subsection the extrapolation underlying the widening operator
introduced in [LGJJ06]. This extrapolation relies on bounded-depth bisimula-
tion based on an initial coloring that partitions the set of states. The extrapola-
tion presented in [LGJJ06] relied on minimal deterministic automata. Requiring
minimization at each extrapolation step may adversely affect performance in
practice. We extend in this subsection the approach of [LGJJ06] to arbitrary
automata.

Definition B.5. Let D = 〈Q,Σ,→, I, F 〉 be a finite automaton, and let col be
an equivalence relation on Q. For every k ∈ N, the bisimulation equivalence of
depth k is the relation ∼colk on Q defined inductively by:

q1 ∼col0 q2 if (q1, q2) ∈ col

q1 ∼colk+1 q2 if


q1 ∼colk q2

∀l ∈ Σ,∀q′1 ∈ Q : q1
l−→ q′1 ⇒

(
∃q′2 ∈ Q : q′1 ∼colk q′2 ∧ q2

l−→ q′2

)
∀l ∈ Σ,∀q′2 ∈ Q : q2

l−→ q′2 ⇒
(
∃q′1 ∈ Q : q′1 ∼colk q′2 ∧ q1

l−→ q′1

)
The relations ∼colk (for k ∈ N) are obviously equivalence relations on Q. The
following lemma states well-known facts that are useful for the design of the
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bisimulation-based extrapolation. Knuth’s up-arrow notation is used in item
(iii) to denote iterated exponentials: for any a, k ∈ N, (a ↑↑ k) is the function
fk = f ◦ · · · ◦ f︸ ︷︷ ︸

k times

where f : N→ N is the function defined by f(x) = ax.

Lemma B.6. For any finite automaton D = 〈Q,Σ,→, I, F 〉 and equivalence
relation col on Q, the three following assertions hold:

(i) we have ∼colk = ∼col|Q| for every k ≥ |Q|.
(ii) if col satisfies (q, q′) ∈ col⇒ (q ∈ F ⇔ q′ ∈ F ) then L(D/∼col|Q|) = L(D).

(iii) for every k ∈ N, we have |Q/∼colk | ≤ (2|Σ|+1 ↑↑k)(|Q/col|).

Proof. Let us first prove (i). We derive from Definition B.5 that ∼colk ⊇ ∼colk+1,

hence, |Q/∼colk | ≤ |Q/∼colk+1| for every k ∈ N. Since 1 ≤ |Q/∼colk | ≤ |Q| for all

k ∈ N, we obtain that there exists k ≤ |Q| such that |Q/∼colk | = |Q/∼colk+1|. We

arrive at ∼colk 6⊃ ∼colk+1 and hence ∼colk = ∼colk+1. We deduce from Definition B.5

that ∼colk = ∼colk′ for all k′ ≥ k, which concludes the proof of (i) as k ≤ |Q|.
Let us now prove assertion (ii). Assume that for each (q, q′) ∈ col, it holds

that q ∈ F if and only if q′ ∈ F . Let us shortly write ∼ in place of ∼col|Q|.
Since L(D) ⊆ L(D/∼), we only have to show that L(D/∼) ⊆ L(D). Consider
any word l0 · · · lh−1 accepted by D/∼. There exists q0, . . . , qh ∈ Q such that

[ q0 ]∼
l0−→ · · · lh−1−−−→ [ qh ]∼ is a path in D/∼ and such that q0 ∈ I and qh ∈ F .

Remark that for any q, q′ ∈ Q and any l ∈ Σ, if [ q ]∼
l−→ [ q′ ]∼ is a transition in

D/∼ then there exists q′′ ∈ [ q′ ]∼ such that q
l−→ q′′ is a transition in D. Indeed,

if [ q ]∼
l−→ [ q′ ]∼ then we have r

l−→ r′ for some r ∈ [ q ]∼ and r′ ∈ [ q′ ]∼. Since
∼ = ∼col|Q| = ∼col|Q|+1, we get from Definition B.5 that there exists q′′ ∈ [ q′ ]∼ such

that q
l−→ q′′. An immediate induction along the path π shows that there exists

q′0 ∈ [ q0 ]∼ , . . . , q
′
h ∈ [ qh ]∼ such that q′0

l0−→ · · · lh−1−−−→ q′h is a path in D with
q′0 = q0. Since qh ∼ q′h, we get that (qh, q

′
h) ∈ col and hence q′h ∈ F . We deduce

that l0 · · · lh−1 is accepted by D. We have thus shown that L(D/∼) ⊆ L(D).

To prove (iii), we first introduce some additional notations. Define the func-

tion pre : Σ × ℘(Q)→ ℘(Q) by pre(l, U) =
{
q ∈ Q

∣∣∣ ∃u ∈ U : q
l−→ u
}

. For any

U ⊆ ℘(Q), the equivalence relation ∼U on Q “generated” by U is defined by:
q1 ∼U q2 if for every U ∈ U , we have q1 ∈ U if and only if q2 ∈ U . It follows
from Definition B.5 that, for every k ∈ N, the following equality holds:

∼colk+1 = ∼colk ∩ ∼Uk where Uk =
{

pre(l, U)
∣∣ l ∈ Σ,U ∈ Q/∼colk }

Let us write sk = |Q/∼colk | for all k ∈ N. We deduce from the above equality
that sk+1 ≤ sk · |Q/∼Uk | for every k ∈ N. Since |Uk| ≤ Σ · sk, we get that ∼Uk
has at most 2|Σ|·sk equivalence classes, and we derive that sk+1 ≤ sk ·2|Σ|·sk . We
obtain that sk+1 ≤ 2(|Σ|+1)·sk =

(
2|Σ|+1

)sk
for every k ∈ N. As s0 = |Q/col|, we

arrive at sk ≤ (2|Σ|+1 ↑↑k)(|Q/col|) for all k ∈ N. ut
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Remark that for every k ∈ N, the relation ∼colk is an equivalence relation on
Q that is contained in col. It follows from Proposition B.3 that for any n-dim
queue decision diagram D for M and for any equivalence relation col on Q with
col ⊆ ≈D, the quotient D/∼colk is an n-dim queue decision diagram for M .

The last ingredient to obtain an extrapolation is the choice of an adequate
equivalence relation col. Items (i) and (ii) of Lemma B.6 suggest that col should
satisfy (q, q′) ∈ col ⇒ (q ∈ F ⇔ q′ ∈ F ). We therefore consider the coloring
defined as follows, which will be the standard equivalence relation col in our
discussion. Given an n-dim queue decision diagram D = 〈Q,M ∪ {¤},→, I, F 〉
for M , we define for every 1 ≤ i ≤ n the sets Ii and Fi by:

I1 = I Ii =
{
q ∈ Qi

∣∣∣ ∃q′ ∈ Q : q′
¤−→ q

}
(for i > 1)

Fn = F Fi =
{
q ∈ Qi

∣∣∣ ∃q′ ∈ Q : q
¤−→ q′

}
(for i < n)

Intuitively, the sets Ii and Fi are respectively the sets of initial and final states
for the queue i. The standard coloring for D is the equivalence relation std
“generated” by the sets Qi and Fi, formally defined by:

(q, q′) ∈ std if ∀i ∈ {1, . . . , n} : (q ∈ Qi ⇔ q′ ∈ Qi) ∧ (q ∈ Fi ⇔ q′ ∈ Fi)

Our definition of standard coloring is a variant of the one in [LGJJ06], where it
was defined as the equivalence relation “generated” by the sets Qi, Ii and Fi.
Note that the quotient D/∼stdk is in Qdd (M,n) for every k ∈ N, since std ⊆ ≈D.
We arrive at the following definition.

Definition B.7. The bisimulation extrapolation is the function ρ from N to the
function set Qdd (M,n)→ Qdd (M,n) defined by ρk(D) = D/∼stdk .

Proposition B.8. The function ρ is a restricted Qdd-extrapolation.

Proof. Let D = 〈Q,M ∪ {¤},→, I, F 〉 be an n-dim queue decision diagram for
M . For every k ∈ N, the relation ∼stdk is an equivalence relation on Q. Therefore,
the quotient ρk(D) = D/∼stdk satisfies L(D) ⊆ L(ρk(D)), which proves condition
(i) of Definition B.1. Observe that the standard coloring std satisfies (q, q′) ∈
std ⇒ (q ∈ F ⇔ q′ ∈ F ). According to Lemma B.6, it holds that L(ρk(D)) =
L(D) for all k ≥ |Q|, which proves condition (ii) of Definition B.1. We have thus
shown that ρ is a Qdd-extrapolation.

Notice that the standard coloring std satisfies |Q/std| ≤ 2n for every n-dim
queue decision diagram 〈Q,M ∪ {¤},→, I, F 〉 for M . For any bound b ∈ N, the
set of all finite automata D = 〈Q,Σ,→, I, F 〉 with |Q| ≤ b and Σ = M ∪ {¤}
is finite up to automata isomorphism. We deduce from item (iii) of Lemma B.6
that ρ is restricted. ut

Remark B.9. The proof of the previous proposition only relies on the two fol-
lowing properties of the standard coloring: |Q/std| is uniformly bounded and
(q, q′) ∈ std ⇒ (q ∈ F ⇔ q′ ∈ F ). Therefore, any equivalence relation con-
tained in ≈D and satisfying these two properties may be used in place of std
(for instance, the standard coloring of [LGJJ06]).
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Remark B.10. We mentioned in Remark 4.4 page 13 that extrapolations are
closed under round-robin combination. Consider in particular the functions ρ′

and ρ′′ from N to the function set Qdd (M,n)→ Qdd (M,n) defined by ρ′0(D) =
ρ′′0(D) = D/≈D, ρ′k = ρk−1 and ρ′′k = ρk for all k ≥ 1. The functions ρ′ and
ρ′′ are also restricted Qdd-extrapolations. Compared to the extrapolation ρ of
Definition B.7, the extrapolations ρ′ and ρ′′ provide the coarsest quotient-based
Qdd approximation when the parameter k is zero.

B.2 Bounded Languages-based Extrapolation

We present in this subsection the extrapolation underlying the automata ab-
straction function based on finite-length languages introduced in [BHV04] for
minimal deterministic automata. We extend in this subsection the automata ab-
straction function based on finite-length languages of [BHV04] to arbitrary finite
automata and to Qdds.

We first introduce some additional notations. Consider a finite automaton
D = 〈Q,Σ,→, I, F 〉. We write |w| for the length of any word w ∈ Σ∗. Given
a bound b ∈ N, the accepted language of D up to b is the set L≤b(D) of all
words w ∈ L(D) of length at most b, formally L≤b(D) = {w ∈ L(D) | |w| ≤ b}.
For any state q ∈ Q and for any subset S ⊆ Q, we denote by D[q, S] the finite
automaton D[q, S] = 〈Q,Σ,→, {q}, S〉, and we shortly write L≤b(D, q, S) in
place of L≤b(D[q, S]).

Definition B.11. Let D = 〈Q,Σ,→, I, F 〉 be a finite automaton, the language
equivalence of depth k is the relation ∼k on Q defined by:

q1 ∼k q2 if L≤k(D, q1, F ) = L≤k(D, q2, F )

The relation ∼k (for k ∈ N) is obviously an equivalence relation on Q. Notice
that ∼k+1⊆∼k for every k ∈ N. The following two lemmata state well-known
properties that are useful for the design of the extrapolation based on bounded
languages.

Lemma B.12. Consider a finite automaton D = 〈Q,Σ,→, I, F 〉. For every
k ∈ N and q ∈ Q, it holds that:

L≤k(D, q, F ) = L≤k
(
D/∼k, [ q ]∼k , {[ qf ]∼k | qf ∈ F

)
Proof. We proceed by mutual inclusion. If Q′ ⊆ Q, we denote by Q̃′k the set

{[ q′ ]∼k | q
′ ∈ Q′}. The inclusion L≤k(D, q, F ) ⊆ L≤k(D/∼k, [ q ]∼k , F̃k) follows

from the fact that [ q0 ]∼k
l0−→ · · · lh−1−−−→ [ qh ]∼k is a path in D/∼k for any path

q0
l0−→ · · · lh−1−−−→ qh in D. To prove the reverse inclusion, we show by induction on

k that L≤k(D, q, F ) ⊇ L≤k(D/∼k, [ q ]∼k , F̃k) for every q ∈ Q.

We first prove the basis; let k = 0 and let q ∈ Q. By definition q ∈ F iff
[ q ]∼0

∈ F̃k iff L≤0(D, q, F ) = {ε} = L≤0(D/∼0, [ q ]∼0
, F̃0).
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We now prove the induction step. Consider any k ∈ N and assume that
L≤k(D, q, F ) ⊇ L≤k(D/∼k, [ q ]∼k , F̃k)) for every q ∈ Q. Let q ∈ Q and let

w ∈ L≤k+1(D/∼k+1, [ q ]∼k+1
, F̃k+1)) of length h. There exists q0, . . . , qh ∈ Q

such that [ q0 ]∼k+1

l0−→ · · · lh−1−−−→ [ qh ]∼k+1
is a path in D/∼k+1 and such that

w = l0 · · · lh−1, q0 ∼k+1 q and qh ∈ F . Since ∼k+1 ⊆ ∼k, we obtain that

[ q0 ]∼k
l0−→ · · · lh−1−−−→ [ qh ]∼k is a path in D/∼k. Therefore, if |w| ≤ k then

w ∈ L≤k(D/∼k, [ q ]∼k , F̃k)), and we deduce from the induction hypothesis that

w ∈ L≤k(D, q, F ), hence, w ∈ L≤k+1(D, q, F ).

Let us now assume that |w| = h = k + 1. Since [ q0 ]∼k+1

l0−→ [ q1 ]∼k+1
, there

exists q′0 ∈ [ q0 ]∼k+1
and q′1 ∈ [ q1 ]∼k+1

such that q′0
l0−→ q′1 is a transition in D.

Let w′ = l1 · · · lk. Recall that [ q1 ]∼k
l1−→ · · · lk−→ [ qk+1 ]∼k is a path in D/∼k with

q1 ∼k q′1 and qk+1 ∈ F . Therefore, we have w′ ∈ L≤k(D/∼k, [ q′1 ]∼k , F̃k)) and it

follows from the induction hypothesis that w′ ∈ L≤k(D, q′1, F ). We deduce that
w ∈ L≤k+1(D, q′0, F ). Moreover, L≤k+1(D, q, F ) = L≤k+1(D, q′0, F ) as q ∼k+1

q0 ∼k+1 q
′
0. We conclude that w ∈ L≤k+1(D, q, F ). ut

Lemma B.13. For any finite automaton D = 〈Q,Σ,→, I, F 〉, there exists K ∈
N such that the two following assertions hold:

(i) we have ∼k = ∼K for every k ≥ K.

(ii) L(D/∼K) = L(D).

Proof. It follows from Definition B.5 that ∼k ⊇ ∼k+1 for every k ∈ N. Since
there are only finitely many equivalence relations on Q, we get that there is K
in N such that ∼k = ∼K for every k ≥ K.

Since L(D) ⊆ L(D/∼), we only have to show that L(D/∼) ⊆ L(D). Consider
any word w accepted by D/∼. Let k = max(|w|,K). There exists qi ∈ I and
qf ∈ F such that w ∈ L≤k(D/∼, [ qi ]∼ , {[ qf ]∼}). Let q̃f = [ qf ]0 and remark

that q̃f ⊆ F . Note that w ∈ L≤k(D/∼, [ qi ]∼ , F̃k). Since k ≥ K, it holds that
∼k = ∼ and we deduce from Lemma B.12 that w ∈ L≤k(D, qi, q̃f ). As qi ∈ I
and q̃f ⊆ F , we come to w ∈ L(D). ut

When defining this extrapolation for a n-dim queue decision diagram D =
〈Q = Q1 ]Q2 ] · · · ]Qn, Σ,→, I, F 〉, we ensure that states of the different parts
of the automaton do not merge. Moreover, if the size of D is far greater than
k, The relation ∼k does not distinguish states that belongs to the “beginning”
of D, i.e. states of Q1, Q2, etc. That is why we consider not only the global
language equivalence of depth k, but also n local language equivalence of depth
k, one for each queue number. The global language equivalence is the relation ∼k
defined like before. The local language equivalence ∼i,k has the same definition
when the automaton is restricted to Qi, in other words we consider, for any state
q ∈ Qi, the language L≤k(Di, qi, Fi) where Di = 〈Qi, Σ,→i, Ii, Fi〉,→i being the
restriction of → to Qi ×Σ ×Qi.
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We thus define the relation ∼Qddk on states of D as:

q1 ∼Qddk q2 if ∃i ∈ [1, n],


q1 ∈ Qi ∧ q2 ∈ Qi
∧L≤k(D, q1, F ) = L≤k(D, q2, F )
∧L≤k(Di, q1, Fi) = L≤k(Di, q2, Fi)

Remark that for every k ∈ N, the relation ∼Qddk is an equivalence relation
on Q, and that the lemmata demonstrated for ∼k also hold for ∼Dk . It follows
from Proposition B.3 that for any n-dim queue decision diagram D for M , the
quotient D/∼Qddk is an n-dim queue decision diagram for M .

Definition B.14. The bounded language extrapolation is the function ξ from
N to the function set Qdd (M,n)→ Qdd (M,n) defined by ξk(D) = D/∼Qddk .

Proposition B.15. The function ξ is a restricted Qdd-extrapolation.

Proof. Let D = 〈Q,M ∪ {¤},→, I, F 〉 be an n-dim queue decision diagram for

M . For every k ∈ N, the relation ∼Qddk is an equivalence relation on Q. Therefore,

the quotient ξk(D) = D/∼Qddk satisfies L(D) ⊆ L(ξk(D)), which proves condition
(i) of Definition B.1. According to Lemma B.13, there exists K ∈ N such that
L(ξk(D)) = L(D) for all k ≥ K, which proves condition (ii) of Definition B.1.
We have thus shown that ξ is a Qdd-extrapolation.

It is easily seen that for any k ∈ N, the equivalence relation ∼k has at most

2Σ
k

equivalence classes, because Σk is the maximal number of distinct words of

length up to k. By definition, ∼Qddk has at most n×(2Σ
k

)n+1 equivalence classes.
For any bound b ∈ N, the set of all Qdd D = 〈Q,Σ,→, I, F 〉 with |Q| ≤ b and
Σ = M ∪ {¤} is finite up to automata isomorphism. We conclude that ξ is
restricted. ut

B.3 Comparison between the two Extrapolations

We consider an n-dimension QDD given by D = 〈Q,Σ,→, I, F 〉 with Q =
∪ni=0Qi and F = ∪ni=0Fi. In this context, the standard coloring is std = ∪ni=0(Fi×
Fi)∪∪ni=0((Qi\Fi)×(Qi\Fi)). Let us denote by Bk the bisimulation equivalence
of depth k defined in Definition B.5, with coloring std. Let us denote by Tk the
language equivalence of depth k defined in Definition B.11.

Lemma B.16. For all k ∈ N, Bk ⊆ Tk, i.e., forall q, q′ ∈ Q it holds that
(q, q′) ∈ Bk ⇒ (q, q′) ∈ Tk.

Proof. By induction on k. The basis is trivial, since B0 = T0 = std. Thus, let
k ∈ N and assume that Bk ⊆ Tk.

Conversely, take a pair (q1, q2) ∈ Bk+1. Since Bk+1 ⊆ Bk ⊆ Tk we have
L≤k(D, q1, F ) = L≤k(D, q1, F ). Now consider a word w ∈ L≤k+1(D, q1, F ), and

let us write w = l · w′. There exists q′1 ∈ Q such that q1
l−→ q′1 and w′ ∈

L≤k(D, q′1, F ). Moreover, as (q1, q2) ∈ Bk+1, there exists q′2 such that q2
l−→ q′2



44 Alexander Heußner, Tristan Le Gall, and Grégoire Sutre

and (q′1, q
′
2) ∈ Bk. Therefore, (q′1, q

′
2) ∈ Tk, and we get that w′ ∈ L≤k(D, q′2, F ),

hence, w ∈ L≤k+1(D, q2, F ). It follows that L≤k+1(D, q1, F ) ⊆ L≤k+1(D, q2, F ).
We obtain by symmetry of Bk+1 that L≤k+1(D, q2, F ) = L≤k(D, q1, F ). ut

Note that this proposition does not allow to deduce that Bk is a “better” equiv-
alence relation than Tk with respect to the CEGAR algorithm. In fact, if the
quotient of D by Tk merge more states, it may give a more general invariant and
thus rule out more spurious examples.
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C Example Protocols

We present in this section the suite of protocols (except for the c/d protocol
which was already introduced in Example 2.1) on which we tested our tool. Each
protocol is specified as a system of communicating processes. In each case, the
resulting fifo system is the asynchronous product of the processes. The queues
are initially empty, and each process has a single initial state that is graphically
indicated by an arrow with no source state. We provide with each protocol the
set of bad configurations used in our experimental evaluation.

Alternating Bit Protocol
Figure 11a presents the classical example protocol for automatic verification of
finite fifo systems, in the formalization of [LGJJ06]. The two participating peers
exchange control data over the channels 1 and 2 as well as data over channel
3. We checked that the sender and the receiver (left hand-side and right hand-
side of Figure 11a, espectively) are loosely synchronized. Formally, the safety
property is given by the following set of good control states, which should be
the only reachable ones: {00, 10, 11, 12, 22, 32, 33, 30}.

Nested Connection/Disconnection Protocol
Systems with nested loops overburden standard acceleration techniques, which
rely on the analysis of simple loops and cannot accelerate nested loops. We have
extended the connection/disconnection protocol with simple loops to exchange
data (message m) from the client to the server, see Figure 11b. This variant does
not have the disconnect transitions, as otherwise the example would be unsafe
and, hence, easier to verify with a Cegar approach. We checked the same safety
property as the c/d protocol, directly specified here by the state (b)ad of the
server, which should not be reachable.

Non-Regular Protocol
Figure 11c presents a simple example where the reachability set is not rec-
ognizable. Indeed, the set of reachable queue contents in control state 00 is
{(am, ε, bm, ε) | m ∈ N} which is well known to be not recognizable. The safety
property is given explicitly by the control state 02, which should not be reach-
able.

Remark C.1. Even though we only compute invariants from recognizable sub-
sets, our approach is able to verify the safety property on this non-regular exam-
ple. Other techniques that are based on recognizable subsets, but that rely on an
exact computation of the reachability set (e.g., symbolic exhaustive exploration
with Qdds and acceleration [BG99]) are not able to handle finite fifo systems
with non-regular configurations. On the other hand, our technique is limited to
safety properties that can be proven with recognizable invariants.
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Fig. 11: Example Protocols

Peterson’s Leader Election
This is a translation of Peterson’s leader election algorithm [Pet82] (viz. Fig-
ure 12a that includes pseudocode taken from [Ans08]) into a finite fifo systems.
The algorithm is modeled as a set of finite state automata which are executed
distributively (and asynchronously) in a ring topology. We check whether more
than one process asserts that he is the leader. We fix for our benchmark the num-
ber of peers to 3 as our approach does not permit parametrized model checking.

Simplified TCP
Based on the underlying state transition of the TCP protocol and by ignoring
all the additional timing constraints as well as the sophisticated data transport
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e l s e :
send ( Virtual ID )
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Fig. 12: More Example Protocols
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(sliding windows etc.), we modeled the three-way handshake of TCP as well as
the passive/active close in a simple client/server setting with one bidirectional
channel.

The diagram in Figure 12b presents only the client in detail, the server is
identical except for exchanging send and receive in the 3-way handshake phase.
We further restrict ourselves to the messages (s)yn, (a)ck, (f)in, (d)ata without
any additional sequence numbering nor user data.

We verified that the connection establishment and termination work by
checking whether one of the peers remains in the closed state whereas the other
assumes the connection to be established.

Server with Two Clients
This is a simple extension of the (simplified) TCP protocol, where we verify
the correctness of connection establishment and termination in the case of a
second client that uses the same channels as the original client, but with distinct
messages.

Token Ring Protocol
Figure 13 is an example of a token passing protocol of n identical processes, set
in a ring architecture. At the beginning, each process has 0 or 1 token (local
states 0 or 1). A process is in a “bad” configuration when it has two tokens
(local state b). Therefore, it sends an alert message a before sending a token t.
When a process receives an alert message, it ignores it (if it has no token) or
sends immediately its token to the following process, without an alert message.
Thus the only outgoing transition of local state 3 is to send a token. For our
benchmark, we fix the number of processes to 4.

0 ?a

2

3

1

b

?t

!a

?a
?a

!t

!t

?t?t

outputinput

Fig. 13: Generic Peer of Token Ring Protocol (inital state either 0 or 1 )

Sliding Window Protocol
The family of sliding window protocols defines a safe way to transfer data over
a channel. The size of the sliding window is a priori fixed (as in our case),
or adaptively changes dynamically. At each moment, the sender restricts the
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Fig. 14: Simple Sliding Window Protocol (m message length, w fix window)

number of unacknowledged messages in the queue towards the receiver to be
smaller than the window size.

The instantiation of the sliding window protocol in the following benchmarks
has a fixed message length of 10 and a window size of 2. If the sender receives
an acknowledgment for a packet that was not already sent or that was already
acknowledged, our protocol aborts the transfer by entering an error state. Fur-
ther, receiving acknowledgments not in the order of sent packages also leads to
the error state, whose reachability will be checked.

A Bounded Retransmission Protocol
The bounded retransmission protocol (Brp) was designed by Philips to trans-
mit (large) data packages over an unreliable medium by splitting packages into
frames and each frame into a sequence of small chunks. It is based on the Abp
and allows for a bounded number of retransmissions of each frame. Due to both
its simplicity and its practical relevance, it can also be seen as one of the stan-
dard examples in protocol verification , e.g., a simple Brp model is also included
as standard example with Trex [TReX].

As our framework does not allow timers, we combine ideas from the previ-
ous mentioned models: we focus only the alternating bit part of the exchange
of frames, hence, ignore the transmission of data; the expiration of timers is
modeled as non-deterministic choice and the intrinsic synchronization of the two
processes timers are explicitly modeled by a synchronization via a different pair
of channels, that assures that both timers are run out and both processes agree
that they restart the transmission of a frame by additionally emptying the chan-
nels. See Figure 15 for details, where f is the (f)irst message sent and l the (l)ast
and the (s)ync message s is the only message exchanged over the third channel.
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Fig. 15: A Bounded Retransmission Protocol

We verify the safety properties of the underlying Abp (as before), as well as
prove that our model of synchronizing the timers via an extra channel and forcing
the emptiness of the channels before sending the first message is accurate.

A Variant of Pop3
This Protocol is based on Rfc 1939. Here, we abstract the exchanged data even
further and only transmit commands that either result in an error message or an
acknowledgment (maybe followed by a data token). We only focus one singular
connection, and verify that it is impossible that the client is in the “transmission”
phase (i.e., already passed the username/password check) and the server still is
in “authentication” phase, or vice versa.


