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Abstract. The technique of counterexample-guided abstraction refine-
ment (Cegar) has been successfully applied in the areas of software and
hardware verification. Automatic abstraction refinement is also desirable
for the safety verification of complex infinite-state models. This paper in-
vestigates Cegar in the context of formal models of network protocols,
in our case, the verification of fifo systems. Our main contribution is the
introduction of extrapolation-based path invariants for abstraction re-
finement. We develop a range of algorithms that are based on this novel
theoretical notion, and which are parametrized by different extrapola-
tion operators. These are utilized as subroutines in the refinement step
of our Cegar semi-algorithm that is based on recognizable partition ab-
stractions. We give sufficient conditions for the termination of Cegar by
constraining the extrapolation operator. Our empirical evaluation con-
firms the benefit of extrapolation-based path invariants.

1 Introduction

Distributed processes that communicate over a network of reliable and un-
bounded fifo channels are an important model for the automatic verification of
client-server architectures and network protocols. As easy as this model seems
at a first glance, as hard is the verification of communication protocols in gen-
eral: distributed processes that run in parallel and that exchange messages in an
asynchronous way, therefore exhibiting complex interactions, allow for a gargan-
tuan (and sometimes infinite) number of possible – emergent – behaviors. Hence,
verifying these multitude of behaviors is far beyond any checking by hand and,
regarding the emergence of behaviors, not directly deducible from the originally
given set of simple processes; consequently, verification is not possible without
automatic methods and the support of algorithmic tools.

Fifo Systems. We focus on communicating fifo systems that consist of a set of
finite automata that model the processes, and a set of reliable, unbounded fifo
queues that model the communication channels. This class of infinite-state sys-
tems is, unfortunately, Turing-complete even in the case of one fifo queue [BZ83].
In general, two approaches for the automatic verification of Turing-complete

⋆ This work was partly supported by ANR project Averiss (ANR-06-SETIN-001).
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Fig. 1. Basic Steps of the Cegar Loop

infinite-state models have been considered in the literature: (a) exact semi-
algorithms that compute forward or backward reachability sets (e.g., [BG99,
BH99, FIS03] for fifo systems) but may not terminate, and (b) algorithms that
always terminate but only compute an over-approximation of these reachability
sets (e.g., [LGJJ06, YBCI08] for fifo systems).

CEGAR. In the last decade, counterexample-guided abstraction refinement
[CGJ+03] has emerged as a powerful technique that bridges the gap between
these two approaches. Cegar plays a prominent role in the automatic, iterative
approximation and refinement of abstractions and has been applied successfully
in the areas of software [BR01, HJMS02] and hardware verification [CGJ+03].
Briefly, the Cegar approach to the verification of a safety property ϕ for
an (infinite-state) model M , i.e., the decision whether M � ϕ, consists in an
abstract–check–refine loop that iterates the four following steps:

1. build a safety conservative, finite-state abstraction M ♯ of the model (e.g., a
predicate abstraction [GS97] which partitions the state space);

2. model-check the abstraction against the given safety property (check whether
M ♯ � ϕ): if the abstraction is safe, then so is the original model (return X),
otherwise a finite counterexample path π♯ is found in the abstraction;

3. symbolically simulate the abstract counterexample on the original model: if
the counterexample is feasible then the original model is unsafe (return  ),
otherwise it is spurious (i.e., a false negative) and

4. one extracts a refinement for M ♯ that rules out the spurious counterexample
before iterating this procedure (jump back to 1).

Our Contribution. We present a Cegar semi-algorithm for safety verification of
fifo systems based on finite partition abstractions where equivalence classes are
recognizable languages of queue contents, or, equivalently, Qdds [BG99]. The
crucial part in Cegar-based verification is refinement, which must find a new
partition that is both (1) precise enough to rule out the spurious counterexample
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and (2) computationally “simple”. In most techniques, refinement is based on the
generation of path invariants; these are invariants along the spurious counterex-
ample that prove its unfeasibility (in our case, given by a series of recognizable
languages). We follow this approach, and present several generic algorithms to
obtain path invariants based on parametrized extrapolation operators for queue
contents. Our path invariant generation procedures are fully generic with respect
to the extrapolation. Refining the partition consists in splitting abstract states
that occur on the counterexample with the generated path invariant.

We formally present the resulting Cegar semi-algorithm and give partial ter-
mination results that, in contrast to the classical Cegar literature, do not rely
on an “a priori finiteness condition” on the set of all possible abstractions. Actu-
ally, our results depend mainly on our generic extrapolation-based path invariant
generation. In particular we show that our semi-algorithm always terminates if
(at least) one of these two conditions is satisfied: (1) the fifo system under ver-
ification is unsafe, or (2) it has a finite reachability set and the parametrized
extrapolation has a finite image for each value of the parameter. We cannot ex-
pect termination in general since safety verification is known to be undecidable
for fifo systems [BZ83].

We have implemented our approach in the tool Mcscm [Mcs] that performs
Cegar-based safety verification of fifo systems. Experimental results on a suite
of (small to medium size) network protocols allow for a first discussion of our
approach’s advantages.

Related Work. Exact semi-algorithms for reachability set computations of fifo
systems usually apply acceleration techniques [BG99, BH99, FIS03] that, intu-
itively, compute the effect of iterating a given “control flow” loop. The tools
Lash [Las] (for counter/fifo systems) and Trex [Tre] (for lossy fifo systems) im-
plement these techniques. However, recognizable languages equipped with Pres-
burger formulas (Cqdds [BH99]) are required to represent (and compute) the
effect of counting loops [BG99, FIS03]. Moreover such tools may only terminate
when the fifo system can be flattened into an equivalent system without nested
loops. Our experiments show that our approach can cope with both counting
loops and nested loops that cannot be flattened.

The closest approach to ours is abstract regular model checking [BHV04],
an extension of the generic regular model-checking framework based on the
abstract–check–refine paradigm. As in classical regular model-checking, a sys-
tem is modeled as follows: configurations are words over a finite alphabet and
the transition relation is given by a finite-state transducer. The analysis consists
in an over-approximated forward exploration (by Kleene iteration), followed, in
case of a non-empty intersection with the bad states, by an exact backward
computation along the reached sets. Two parametrized automata abstraction
schemes are provided in [BHV04], both based on state merging. These schemes
fit in our definition of extrapolation, and therefore can also be used in our frame-
work. Notice that in Armc, abstraction is performed on the data structures that
are used to represent sets of configurations, whereas in our case the system it-
self is abstracted. After each refinement step, Armc restarts (from scratch) the
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approximated forward exploration from the refined reached set, whereas our re-
finement is local to the spurious counterexample path. Moreover, the precision of
the abstraction is global in Armc, and may only increase (for the entire system)
at each refinement step. In contrast, our path invariant generation procedures
only use the precision required for each spurious counterexample. Preliminary
benchmarks demonstrate the benefit of our local and adaptive approach for the
larger examples, where a “highly” precise abstraction is required only for a few
control loops. Last, our approach is not tied to words and automata. In this
work we only focus on fifo systems, but our framework is fully generic and could
be applied to other infinite-state systems (e.g., hybrid systems), provided that
suitable parametrized extrapolations are designed (e.g., on polyhedra).

Outline. We recapitulate fifo systems in Section 2 and define their partition ab-
stractions in Section 3. Refinement and extrapolation-based generation of path
invariants are developed in Section 4. In Sections 5 and 6, we present the general
Cegar semi-algorithm, and analyze its correctness and termination. Section 7
provides an overview of the extrapolation used in our implementation. Experi-
mental results are presented in Section 8, along with some perspectives.

For the sake of completeness, all results are proved in detail. This technical
report is the long version of our SPIN 2009 paper.

2 Fifo Systems

This section presents basic definitions and notations for fifo systems that will be
used throughout the paper.

For any set S we write ℘(S) for the set of all subsets of S, and Sn for the
set of n-tuples over S (when n ≥ 1). For any i ∈ {1, . . . , n}, we denote by s(i)
the ith component of an n-tuple s. Given s ∈ Sn, i ∈ {1, . . . , n} and u ∈ S, we
write s[i← u] for the n-tuple s

′ ∈ Sn defined by s
′(i) = u and s

′(j) = s(j) for
all j ∈ {1, . . . , n} with j 6= i.

Let Σ denote an alphabet (i.e., a non-empty set of letters). We write Σ∗ for
the set of all finite words (words for short) over Σ, and we let ε denote the empty
word. For any two words w, w′ ∈ Σ∗, we write w · w′ for their concatenation. A
language is any subset of Σ∗. For any language L, we denote by L∗ its Kleene
closure and we write L+ = L ·L∗. The alphabet of L, written alph(L), is the least
subset A of Σ such that L ⊆ A∗. For any word w ∈ Σ∗, the singleton language
{w} will be written simply as word w when no confusion is possible.

2.1 Safety Verification of Labeled Transition Systems

We will use labeled transition systems to formally define the behavioral semantics
of fifo systems. A labeled transition system is any triple LTS = 〈C, Σ,→〉 where
C is a set of configurations, Σ is a finite set of actions and →⊆ C × Σ × C is
a (labeled) transition relation. We say that LTS is finite when C is finite. For

simplicity, we will often write c
l
−→ c′ in place of (c, l, c′) ∈→.
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Fig. 2. The Connection/Disconnection Protocol [JR86]

A finite path (path for short) in LTS is any pair π = (c, u) where c ∈ C,
and u is either the empty sequence, or a non-empty finite sequence of transi-
tions (c0, l0, c

′
0), . . . , (ch−1, lh−1, c

′
h−1) such that c0 = c and c′i−1 = ci for every

0 < i < h. We simply write π as c0
l0−→ · · ·

lh−1

−−−→ ch. The natural number h
is called the length of π. We say that π is a simple path if ci 6= cj for all
0 ≤ i < j ≤ h. For any two sets Init ⊆ C and Bad ⊆ C of configurations, a

path from Init to Bad is any path c0
l0−→ · · ·

lh−1

−−−→ ch such that c0 ∈ Init and
ch ∈ Bad. Observe that if c ∈ Init ∩Bad then c is a path (of zero length) from
Init to Bad. The reachability set of LTS from Init is the set of configurations c
such that there is a path from Init to {c}.

In this paper, we focus on the verification of safety properties on fifo sys-
tems. A safety property is in general specified as a set of “bad” configurations
that should not be reachable from the initial configurations. Formally, a safety
condition for a labeled transition system LTS = 〈C, Σ,→〉 is a pair (Init, Bad)
of subsets of C. We say that LTS is (Init, Bad)-unsafe if there is a path from
Init to Bad in LTS, which is called a counterexample. We say that LTS is
(Init, Bad)-safe when it is not (Init, Bad)-unsafe.

2.2 Fifo Systems

The asynchronous communication of distributed systems is usually modeled as
a set of local processes together with a network topology given by channels
between processes. Each process can be modeled by a finite-state machine that
sends and receives messages on the channels to which it is connected. Let us
consider a classical example, which will be used in the remainder of this paper
to illustrate our approach.

Example 2.1. The connection/disconnection protocol [JR86] – abbreviated as
c/d protocol – between two hosts is depicted in Figure 2. This model is composed
of two processes, a client and a server, as well as two unidirectional channels.
The client can open a session by sending the message open (abbreviated o) to
the server and changing its state to 1 (session established). Afterwards, he may
close it either actively by sending the message c(lose), or passively as a reaction
to the d(isconnect) message from the server. The server receives the request
to establish a shared session by the message open and thereupon enters its state
1 (session on server-side established). He as well can either actively or passively
close the session by sending a disconnect request or by receiving a close. ⋄
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To simplify the presentation, we restrict our attention to the case of one
finite-state control process. The general case of multiple processes can be re-
duced to this simpler form by taking the asynchronous product of all processes.
For the connection/disconnection protocol, the asynchronous product of the two
processes is depicted in Figure 3. For instance, the global control state 11 com-
bines the local “session established” control state of both peers.

We assume that channels respect the fifo semantics for send and receive
actions, and, hence, we call them “queues” in the remainder of the paper.

Definition 2.2. A fifo system A is a 4-tuple 〈Q, M, n,∆〉 where:

– Q is a finite set of control states,
– M is a finite alphabet of messages,
– n ≥ 1 is the number of fifo queues,
– ∆ ⊆ Q×Σ ×Q is a set of transition rules,

where Σ = {1, . . . , n} × {!, ?} ×M is the set of fifo actions over n queues.

Simplifying notation, fifo actions in Σ will be shortly written i!m and i?m
instead of (i, !, m) and (i, ?, m). The intended meaning of fifo actions is the follow-
ing: i!m means “emission of message m on queue i ” and i?m means “reception
of message m from queue i ”. The operational semantics of a fifo system A is
formally given by its associated labeled transition system JAK defined below.

Definition 2.3. The operational semantics of a fifo system A = 〈Q, M, n,∆〉
is the labeled transition system JAK = 〈C, Σ,→〉 defined as follows:

– C = Q× (M∗)n is the set of configurations,
– Σ = {1, . . . , n} × {!, ?} ×M is the set of actions,
– the transition relation →⊆ C ×Σ × C is the set of triples ((q, w), l, (q′,w′))

such that (q, l, q′) ∈ ∆ and that satisfy the two following conditions:
• if l = i!m then w

′(i) = w(i) ·m and w
′(j) = w(j) for all j 6= i,

• if l = i?m then w(i) = m ·w′(i) and w
′(j) = w(j) for all j 6= i.

The configurations of C can be seen as momentary snapshots of the whole
system: each configuration includes the current control state and the current
queue contents. The transition relation between configurations captures the ef-
fect of send and receive actions on queues, ensuring the fifo ordering of actions:
messages sent to a queue are received in the same order; further, a receive action
can only be taken if the appropriate message is at front of the queue.

Example 2.4. The fifo system A = 〈{00, 01, 10, 11}, {o, c, d}, 2, ∆〉 that corre-
sponds to the c/d protocol is displayed in Figure 3. Its operational semantics is
presented in Figure 4. The set of initial configurations is Init = {(00, ε, ε)}. A set
of bad configurations for this protocol is Bad = {00, 10}×(c·M∗×M∗). This set
contains configurations where the server is in local state 0 but the first message
in the first queue is close. This is the classical case of an undefined reception
which results in a (local) deadlock for the server. Setting the initial configura-
tion to c0 = (00, ε, ε), a counterexample to the safety condition ({c0}, Bad) is
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Fig. 3. Fifo System Representing the Connection/Disconnection Protocol

the path (00, ε, ε)
1!o
−−→ (10, o, ε)

1?o
−−→ (11, ε, ε)

2!d
−−→ (10, ε, d)

1!c
−−→ (00, c, d) in JAK.

As can be deduced from Figure 4, no counterexample has less than four transi-
tions. Further, there is an infinite path that never visits the same configuration
twice nor reaches Bad, e.g., by alternating the actions 1!o and 1!c. ⋄

3 Partition Abstraction for Fifo Systems

In the context of Cegar-based safety verification, automatic abstraction tech-
niques are usually based on predicates [GS97] or partitions [CGJ+03]. In this
work, we focus on partition-based abstraction and refinement techniques for
fifo systems. Still, our extrapolation-based path invariant generation techniques
could also be used in the context of predicate-based abstractions.

A partition of a set S is any set P of non-empty pairwise disjoint subsets of
S such that S =

⋃
p∈P p. Elements p of a partition P are called classes. For any

element s in S, we denote by [ s ]P the class in P containing s.

At the labeled transition system level, partition abstraction consists of merg-
ing configurations that are equivalent with respect to a given equivalence rela-
tion, or a given partition. In practice, it is often desirable to maintain different
partitions for different control states, to keep partition sizes relatively small (as
in predicate abstraction of programs, where predicates are local to each control
point). We follow this approach in our definition of partition abstraction for fifo
systems, by associating a partition of (M∗)n with each control state. To ease
notation, we write L = (M∗)n \L for the complement of any subset L of (M∗)n.

To effectively compute partition abstractions for fifo systems, we need a fam-
ily of finitely representable subsets of (M∗)n. A natural candidate is the class
of recognizable subsets of (M∗)n, or, equivalently, of Qdd-definable subsets of
(M∗)n [BGWW97], since this class is effectively closed under Boolean opera-
tions. The definition and main properties of Qdds are recalled in Appendix A.
Recall that a subset L of (M∗)n is recognizable if (and only if) it is a finite
union of subsets of the form L1 × · · · × Ln where each Li is a regular lan-
guage over M [Ber79]. We extend recognizability in the natural way to subsets
of the set C = Q × (M∗)n of configurations. A subset C ⊆ C is recognizable if
{w | (q, w) ∈ C} is recognizable for every q ∈ Q. We denote by Rec ((M∗)n) the
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Fig. 4. Operational Semantics of the C/D Protocol [JR86] (Example 2.4)

set of recognizable subsets of (M∗)n, and write P ((M∗)n) for the set of all finite
partitions of (M∗)n where classes are recognizable subsets of (M∗)n.

Definition 3.1. Consider a fifo system A = 〈Q, M, n,∆〉 and a partition map
P : Q→ P ((M∗)n). The partition abstraction of JAK induced by P is the finite

labeled transition system JAK♯P = 〈C♯
P , Σ,→♯

P 〉 defined as follows:

– C♯
P = {(q, p) | q ∈ Q and p ∈ P (q)} is the set of abstract configurations,

– Σ = {1, . . . , n} × {!, ?} ×M is the set of actions,

– the abstract transition relation →♯
P ⊆ C

♯
P × Σ × C♯

P is the set of triples

((q, p), l, (q′, p′)) such that (q, w)
l
−→ (q′,w′) for some w ∈ p and w

′ ∈ p′.

To relate concrete and abstract configurations, we define the abstraction function
αP : C → C♯

P , and its extension to ℘(C) → ℘(C♯
P ), as well as the concretization

function γP : C♯
P → C, extended to ℘(C♯

P )→ ℘(C), as expected:

αP ((q, w)) = (q, [w ]P (q))

γP ((q, p)) = {q} × p

αP (C) = {α(c) | c ∈ C}
γP (C♯) =

⋃ {
γ(c♯)

∣∣ c♯ ∈ C♯
}
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To simplify notations, we shall drop the P subscript when the partition map
can easily be derived from the context. Intuitively, an abstract configuration
(q, p) of JAK♯ represents the set {q} × p of (concrete) configurations of JAK. The
abstract transition relation →♯ is the existential lift of the concrete transition
relation → to abstract configurations.

The following forward and backward language transformers will be used to
capture the effect of fifo actions. The functions post : Σ×℘((M∗)n)→ ℘((M∗)n)
and pre : Σ × ℘((M∗)n)→ ℘((M∗)n) are defined by:

post(i!m, L) = {w[i← u] | w ∈ L, u ∈M∗ and w(i) ·m = u}
post(i?m, L) = {w[i← u] | w ∈ L, u ∈M∗ and w(i) = m · u}
pre(i!m, L) = {w[i← u] | w ∈ L, u ∈M∗ and w(i) = u ·m}
pre(i?m, L) = {w[i← u] | w ∈ L, u ∈M∗ and m ·w(i) = u}

Obviously, post(l, L) and pre(l, L) are effectively recognizable subsets of (M∗)n

for any l ∈ Σ and any recognizable subset L ⊆ (M∗)n. Moreover, we may use post
and pre to characterize the abstract transition relation of a partition abstraction
JAK♯P , as follows: for any rule (q, l, q′) ∈ ∆ and for any pair (p, p′) ∈ P (q)×P (q′),

we have (q, p)
l
−→♯ (q′, p′) iff post(l, p) ∩ p′ 6= ∅ iff p ∩ pre(l, p′) 6= ∅.

Lemma 3.2. For any fifo system A and partition map P : Q→ P ((M∗)n), JAK♯

is effectively computable. For any recognizable subset C ⊆ C, α(C) is effectively
computable.

Proof. The lemma follows from (1) closure under intersection, complement and
post (or pre) of recognizable subsets of (M∗)n, and (2) decidability of emptiness
for recognizable subsets of (M∗)n. ⊓⊔

We extend α to paths in the obvious way: α(c0
l0−→ · · ·

lh−1

−−−→ ch) = α(c0)
l0−→♯

· · ·
lh−1

−−−→
♯
α(ch). Observe that α(π) is an abstract path in JAK♯ for any concrete

path π in JAK. We therefore obtain the following safety preservation property.

Proposition 3.3. Consider a fifo system A and a safety condition (Init, Bad)

for JAK. For any partition abstraction JAK♯ of JAK, if JAK♯ is (α(Init), α(Bad))-
safe then JAK is (Init, Bad)-safe.

Proof. If JAK is (Init, Bad)-unsafe then there is a path π in JAK from Init to

Bad, and hence α(π) is an abstract path from α(Init) to α(Bad) in JAK♯. ⊓⊔

The converse to this proposition does not hold generally. An abstract coun-
terexample π♯ is called feasible if there exists a concrete counterexample π such
that π♯ = α(π), and π♯ is called spurious otherwise.

Lemma 3.4. For any fifo system A, any partition map P : Q→ P ((M∗)n), and
any safety condition (Init, Bad) for JAK, feasibility of abstract counterexamples
is effectively decidable.
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Fig. 5. Example Partition Abstraction of the C/D Protocol (Example 3.5)

Proof. Given an abstract counterexample π♯ = (q0, p0)
l0−→♯ · · ·

lh−1

−−−→
♯

(qh, ph),
we deduce from the definition of feasibility that π♯ is feasible iff the subset
L ⊆ (M∗)n defined below is non-empty:

L = ph ∩ post(lh−1, (ph−1 ∩ · · · ∩ post(l1, p1 ∩ post(l0, p0 ∩ Init)) · · · )) ∩Bad

Since L is an effectively computable recognizable subset of (M∗)n, we may ef-
fectively decide whether L is non-empty, which concludes the proof. ⊓⊔

Example 3.5. Continuing the discussion of the c/d protocol, we consider the
partition abstraction induced by the following partition map:

q ∈ Q 00 10 01 11

P (q) ε× ε, ε× ε o∗ × ε, o∗ × ε M∗ ×M∗ M∗ ×M∗

The set of initial abstract configurations is α(Init) = {(00, ε × ε)}, and the
set of bad abstract configurations is α(Bad) = {(00, ε× ε), (10, o∗ × ε)}. The
resulting partition abstraction is the finite labeled transition system depicted in
Figure 5. A simple graph search reveals several abstract counterexamples, for

instance π♯ = (00, ε× ε)
1!o
−−→♯ (10, o∗ × ε)

1!c
−−→♯ (00, ε× ε). This counterexample

is spurious since the only concrete path that corresponds to π♯ (i.e., whose image

under α is π♯) is π = (00, ε, ε)
1!o
−−→ (10, o, ε)

1!c
−−→ (00, oc, ε) /∈ Bad. ⋄

This section presented partition abstraction for fifo systems, as a means to
finitely and conservatively approximate their semantics. The next step consists
in refinement techniques to increase the precision of partition abstractions.
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4 Counterexample-based Partition Refinement

The abstraction-based verification of safety properties relies on refinement tech-
niques that gradually increase the precision of abstractions in order to rule out
spurious abstract counterexamples. Refinement for partition abstractions simply
consists in splitting some classes into a sub-partition.

Given two partitions P and P̃ of a set S, we say that P̃ refines P when each
class p̃ ∈ P̃ is contained in some class p ∈ P . Moreover we then write [ p̃ ]P for
the class p ∈ P containing p̃.

Let us fix, for the remainder of this section, a fifo system A = 〈Q, M, n,∆〉

and a safety condition (Init, Bad) for JAK. Given two partition maps P, P̃ : Q→

P ((M∗)n), we say that P̃ refines P if P̃ (q) refines P (q) for every control state

q ∈ Q. If P̃ refines P , then for any abstract path (q0, p̃0)
l0−→♯ · · ·

lh−1

−−−→
♯

(qh, p̃h)

in JAK♯
eP
, it holds that (q0, [ p̃0 ]P (q0)

)
l0−→♯ · · ·

lh−1

−−−→
♯
(qh, [ p̃h ]P (qh)) is an abstract

path in JAK♯P . This fact shows that, informally, refining a partition abstraction
does not introduce any new spurious counterexample.

When a spurious counterexample is found in the abstraction, the partition
map must be refined so as to rule out this counterexample. We formalize this

concept for an abstract path π♯
P = (q0, p0)

l0−→♯ · · ·
lh−1

−−−→
♯

(qh, ph) in JAK♯P from

αP (Init) to αP (Bad) as follows: a refinement P̃ of P is said to rule out the

abstract counterexample π♯
P if there exists no path π♯

P = (q0, p̃0)
l0−→♯ · · ·

lh−1

−−−→
♯

(qh, p̃h) from α eP
(Init) to α eP

(Bad) in JAK♯
eP

satisfying p̃i ⊆ pi for all 0 ≤ i ≤ h.

Note that if π♯
P is a feasible counterexample, then no refinement of P can rule it

out. Conversely, if P̃ is a refinement of P that rules out π♯
P then any refinement

of P̃ also rules out π♯
P .

The main challenge in Cegar is the discovery of “suitable” refinements,
that are computationally “simple” but “precise enough” to rule out spurious
counterexamples. In this work, we focus on counterexample-guided refinements
based on path invariants.

Definition 4.1. Consider a partition map P and a spurious counterexample

π♯ = (q0, p0)
l0−→♯ · · ·

lh−1

−−−→
♯

(qh, ph) in JAK♯P . A path invariant for π♯ is any
sequence L0, . . . , Lh of recognizable subsets of (M∗)n such that:

(i) we have ({q0} × p0) ∩ Init ⊆ {q0} × L0, and
(ii) we have post(li, pi ∩ Li) ⊆ Li+1 for every 0 ≤ i < h, and
(iii) we have ({qh} × Lh) ∩Bad = ∅

Observe that condition (ii) is more general than post(li, Li) ⊆ Li+1 which
is classically required for inductive invariants. With this relaxed condition, path
invariants are tailored to the given spurious counterexample, and therefore can
be simpler (e.g., be coarser or have more empty Li).
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Proposition 4.2. Consider a partition map P and a simple spurious counterex-

ample π♯ = (q0, p0)
l0−→♯ · · ·

lh−1

−−−→
♯

(qh, ph). Given a path invariant L0, . . . , Lh

for π♯, the partition map P̃ defined below is a refinement of P that rules out π♯:

P̃ (q) = (P (q) \ {pi | i ∈ I(q)}) ∪
⋃

i∈I(q)

{
pi ∩ Li, pi ∩ Li

}
\ {∅}

where I(q) = {i | 0 ≤ i ≤ h, qi = q} for each control state q ∈ Q.

Proof. For any control sate q ∈ Q, since π♯ is simple, we have pi = pj ⇒ i = j

for every i, j ∈ I(q). The function P̃ defined in the proposition is therefore a

partition map that refines P by definition. We need to show that P̃ rules out π♯.

By contradiction, assume there exists a path π♯
P = (q0, p̃0)

l0−→♯ · · ·
lh−1

−−−→
♯
(qh, p̃h)

from α eP
(Init) to α eP

(Bad) in JAK♯
eP

satisfying p̃i ⊆ pi for all 0 ≤ i ≤ h.

We first show that p̃i ∈
{
pi ∩ Li, pi ∩ Li

}
for every 0 ≤ i ≤ h. Consider any

integer i with 0 ≤ i ≤ h. Observe that i ∈ I(qi). If p̃i ∈ P (qi) then p̃i = pi as

p̃i ⊆ pi. Hence, p̃i 6∈ (P (qi) \ {pj | j ∈ I(qi)}). Since p̃i ∈ P̃ (qi), we obtain that
p̃i ∈

{
pj ∩ Lj , pj ∩ Lj

}
for some j ∈ I(qi). Let us now prove that i = j. Remark

that qi = qj as j ∈ I(qi). Moreover, we get p̃i ⊆ pj , and hence p̃i ⊆ pi ∩ pj .
Therefore pi = pj since pi and pj are classes of the same partition P (qi). We
arrive at (qi, pi) = (qj , pj) which implies that i = j since π♯ is simple. We have
thus shown that p̃i ∈

{
pi ∩ Li, pi ∩ Li

}
for every 0 ≤ i ≤ h.

Recall that L0, . . . , Lh is a path invariant for π♯. We prove by induction on
i that p̃i = pi ∩ Li for every 0 ≤ i ≤ h. For the basis, we derive from item (i) of
Definition 4.1 that {q0}×(p0∩L0) is disjoint from Init. Since (q0, p̃0) ∈ α eP

(Init),

we get that {q0} × p̃0 intersects Init. Therefore p̃0 6= p0 ∩ L0, and hence p̃0 =
p0 ∩L0. For the induction step, assume that p̃i = pi ∩Li for some 0 ≤ i < h. We
have post(li, p̃i) ⊆ Li+1 according to item (ii) of Definition 4.1. Therefore, we

get that pi+1 ∩ Li+1 is disjoint from post(li, p̃i). Since (qi, p̃i)
li−→♯ (qi+1, p̃i+1) is

an abstract transition in JAK♯
eP
, we get that p̃i+1 intersects post(li, p̃i). Therefore

p̃i+1 6= pi+1 ∩ Li+1, and hence p̃i+1 = pi+1 ∩ Li+1.

We thus obtain that p̃h = ph ∩ Lh, and we derive from item (iii) of Defini-
tion 4.1 that {qh} × p̃h is disjoint from Bad, which contradicts the assumption
that (qh, p̃h) ∈ α eP

(Bad). ⊓⊔

We propose a generic approach to obtain path invariants by utilizing a
parametrized approximation operator for queue contents. The parameter (the
k in the definition below) is used to adjust the precision of the approximation.

Definition 4.3. A (parametrized) extrapolation is any function ∇ from N to
Rec ((M∗)n) → Rec ((M∗)n) that satisfies, for any L ∈ Rec ((M∗)n), the two
following conditions (with ∇(k) written as ∇k):

(i) we have L ⊆ ∇k(L) for every k ∈ N,
(ii) there exists kL ∈ N such that L = ∇k(L) for every k ≥ kL.
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Our definition of extrapolation is quite general, in particular, it does not
require monotonicity in k or in L, but it is adequate for the design of path in-
variant generation procedures. The most simple extrapolation is the identity ex-
trapolation λk .(λL.L) that maps each k ∈ N to the identity on Rec ((M∗)n). As
shown in Appendix B, the parametrized automata approximations of [BHV04]
and [LGJJ06] also satisfy the requirements of Definition 4.3. The choice of an ap-
propriate extrapolation with respect to the underlying domain of fifo systems is
crucial for the implementation of Cegar’s refinement step, and will be discussed
in Section 7.

Remark 4.4. Extrapolations are closed under various operations, such as func-
tional composition, functional union and intersection, as well as round-robin
combination. Formally, for any finite sequence ∇0, . . . ,∇m of extrapolations, the
functions λk .

(
∇0

k ◦ · · · ◦ ∇
m
k

)
, λk .

(
λL.

⋃m
i=0∇

i
k(L)

)
and λk .

(
λL.

⋂m
i=0∇

i
k(L)

)

are extrapolations. Moreover, for any infinite sequence (µk, νk)k∈N
of pairs in

{0, . . . ,m} × N such that (νk)k∈N
diverges to infinity, the function λk .∇

µ(k)
ν(k) is

an extrapolation. Notice also that any function f : Rec ((M∗)n)→ Rec ((M∗)n)
that is extensive (i.e., L ⊆ f(L)) can be turned into an extrapolation as follows:
∇0 = f and ∇k = λL.L for all k ≥ 1.

We now present two extrapolation-based path invariant generation proce-
dures (Figure 6). Recall that the parameter k of an extrapolation intuitively
indicates the desired precision of the approximation. The first algorithm, UPInv,
performs an approximated post computation along the spurious counterexam-
ple, and iteratively increases the precision k of the approximation until a path
invariant is obtained. The applied precision in UPInv is uniform along the coun-
terexample. Due to its simplicity, the termination analysis of Cegar in Section 6
will refer to UPInv. The second algorithm, APInv, first performs an exact pre
computation along the spurious counterexample to identify the “bad” coreach-
able subsets Bi. The path invariant is then computed with a forward traversal
that uses the Split subroutine to simplify each post image while remaining dis-
joint from the Bi. The precision used in Split is therefore tailored to each post
image, which may lead to simpler path invariants. Naturally, both algorithms
may be “reversed” to generate path invariants backwards (more precisely, the
complement of a path invariant would be generated with the reversed version).

Observe that if the extrapolation∇ is effectively computable, then all steps in
the algorithms UPInv, Split and APInv are effectively computable. We now prove
correctness and termination of these algorithms. Let us fix, for the remainder of
this section, an extrapolation ∇ and a partition map P : Q → P ((M∗)n), and
assume that Init and Bad are recognizable.

Proposition 4.5. For any spurious abstract counterexample π♯
P , the execution

of UPInv (∇, Init, Bad, π♯
P ) terminates and returns a path invariant for π♯

P .

Proof. Consider a spurious counterexample π♯
P = (q0, p0)

l0−→♯ · · ·
lh−1

−−−→
♯
(qh, ph).

Let us define the sequence R0, . . . , Rh of subsets of (M∗)n by R0 = p0 ∩
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UPInv (∇, Init, Bad, π
♯
P )

Input: extrapolation∇, recognizable subsets Init, Bad of Q×(M∗)n, spurious

counterexample π
♯
P = (q0, p0)

l0−→♯ · · ·
lh−1
−−−→

♯
(qh, ph)

1 k ← 0
2 do

3 L0 ← ∇k (p0 ∩ {w | (q0, w) ∈ Init})
4 for i from 1 upto h

5 Fi ← post(li−1, pi−1 ∩ Li−1)
6 if pi ∩ Fi = ∅
7 Li ← ∅
8 else

9 Li ← ∇k(Fi)
10 k ← k + 1
11 while ({qh} × Lh) ∩Bad 6= ∅
12 return (L0, . . . , Lh)

Split (∇, L0, L1)

Input: extrapolation ∇, disjoint recognizable subsets L0, L1 of (M∗)n

1 k ← 0
2 while ∇k(L0) ∩ L1 6= ∅
3 k ← k + 1
4 return ∇k(L0)

APInv (∇, Init, Bad, π
♯
P )

Input: extrapolation∇, recognizable subsets Init, Bad of Q×(M∗)n, spurious

counterexample π
♯
P = (q0, p0)

l0−→♯ · · ·
lh−1
−−−→

♯
(qh, ph)

1 Bh ← ph ∩ {w | (qh, w) ∈ Bad}
2 i← h

3 while Bi 6= ∅ and i > 0
4 i← i− 1
5 Bi ← pi ∩ pre(li, Bi+1)
6 if i = 0
7 I ← p0 ∩ {w | (q0, w) ∈ Init}
8 L0 ← Split (∇, I, B0)
9 else

10 (L0, . . . , Li)← ((M∗)n, . . . , (M∗)n)
11 for j from i upto h− 1
12 Lj+1 ← Split (∇, post(lj , pj ∩ Lj), Bj+1)
13 return (L0, . . . , Lh)

Fig. 6. Extrapolation-based Path Invariant Generation Algorithms
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{w | (q0,w) ∈ Init} and Ri = post(li−1, pi−1 ∩ Li−1) for all 1 ≤ i ≤ h. Notice

that ({qh} × Rh) ∩ Bad = ∅ since π♯
P is spurious. According to Definition 4.3,

there exists kR ∈ N such that ∇kR
(Ri) = Ri for every 0 ≤ i ≤ h. Consequently,

the while-loop of the algorithm UPInv (lines 2–11) is re-iterated at most kR

times. Indeed, if k = kR at some iteration of the while-loop, then for this iter-
ation we have Li = Ri for each 0 ≤ i ≤ h and therefore ({qh} × Lh) ∩Bad = ∅.

We conclude that the execution of UPInv (∇, Init, Bad, π♯
P ) terminates.

Let (L0, . . . , lh) denote the value returned by UPInv (∇, Init, Bad, π♯
P ). It ob-

viously holds that ({qh}×Lh)∩Bad = ∅. Recall that according to Definition 4.3,
we have L ⊆ ∇k(L) for every L ∈ Rec ((M∗)n) and k ∈ N. We deduce from the
definition of the while-loop (lines 2–11) that L0 ⊇ p0 ∩ {w | (q0,w) ∈ Init} and
Li ⊇ post(li−1, pi−1 ∩ Li−1) for all 1 ≤ i ≤ h. We conclude that (L0, . . . , Lh) is
a path invariant. ⊓⊔

Lemma 4.6. For any two recognizable subsets L0, L1 of (M∗)n, if L0 ∩ L1 = ∅
then Split (∇, L0, L1) terminates and returns a recognizable subset L of (M∗)n

that satisfies L0 ⊆ L ⊆ L1.

Proof. Consider any two disjoint recognizable subsets L0, L1 of (M∗)n. Accord-
ing to Definition 4.3, we have L = ∇k(L) for some kL ∈ N, and therefore
Split (∇, L0, L1) terminates. There exists k ∈ N such that the returned value L
satisfies L = ∇k(L0) and ∇k(L0) ∩ L1 = ∅. Since L0 ⊆ ∇k(L0) from Defini-
tion 4.3, we obtain that L0 ⊆ L ⊆ L1. ⊓⊔

Proposition 4.7. For any spurious abstract counterexample π♯
P , the execution

of APInv (∇, Init, Bad, π♯
P ) terminates and returns a path invariant for π♯

P .

Proof. Consider a spurious counterexample π♯
P = (q0, p0)

l0−→♯ · · ·
lh−1

−−−→
♯
(qh, ph).

Let us define the sequence R0, . . . , Rh of subsets of (M∗)n by Rh = ph ∩
{w | (qh,w) ∈ Bad} and Ri = pi ∩ pre(li, Ri+1) for all 0 ≤ i < h. This se-
quence satisfies the following disjointness property: for any subset L ⊆ (M∗)n

and for any 0 ≤ i < h, if L ⊆ Ri then post(li, pi ∩ L) ⊆ Ri+1. Remark that

({q0} ×R0) ∩ Init = ∅ since π♯
P is spurious.

As the variable i remains nonnegative along the execution of APInv (∇, Init,

Bad, π♯
P ), the while-loop (lines 3–5) and the for-loop (lines 11–12) both perform

at most h iterations. Hence the execution terminates if each call to Split (lines 8
and 12) terminates. Let us write i6 the value of the variable i at line 6. Remark
that, at line 6 onwards, it holds that 0 ≤ i = i6 ≤ h and Bj = Rj for each
i6 ≤ j ≤ h. Define I = p0 ∩ {w | (q0,w) ∈ Init}. We consider two cases:

– if i6 > 0 then the execution takes the else branch (line 10) and therefore
Lj = (M∗)n for all 0 ≤ j ≤ i6 at line 11 onwards. Moreover, we deduce
from the condition of the while-loop (line 3) that Bi6 = ∅. This implies in
particular that Rj = ∅ for all 0 ≤ j ≤ i6.

– otherwise, i6 = 0 and the execution proceeds through lines 7–8. Since B0 =
R0, we get that I ∩ B0 = ∅ at line 8. According to Lemma 4.6, the call to
Split at line 8 terminates and L0 satisfies I ⊆ L0 ⊆ B0.
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We obtain in both cases that, before the for-loop at line 11, we have: I ⊆ L0 and
post(lj−1, pj−1∩Lj−1) ⊆ Lj ⊆ Rj for each 0 < j ≤ i6. We now turn our attention
to the for-loop (lines 11–12). We deduce from the above mentioned disjointness
property and from Lemma 4.6 that, at each iteration i6 ≤ j < h of the for-loop,
post(lj , pj ∩ Lj) is disjoint from Rj+1 = Bj+1 and, therefore, the call to Split at
line 12 terminates and post(lj , pj ∩ Lj) ⊆ Lj+1 ⊆ Rj+1. We conclude that the
execution terminates, and that I ⊆ L0, Lh ⊆ Rh and post(lj , pj ∩Lj) ⊆ Lj+1 for
each 0 ≤ j < h, which precisely means that (L0, . . . , Lh) is a path invariant. ⊓⊔

Example 4.8. Consider again the c/d protocol, and assume an extrapolation
∇ satisfying ∇0(L × ε) = (alph(L))

∗ × ε for all L ⊆ M∗, and ∇1(u × ε) =
u× ε for each u ∈ {ε, o, oc}, e.g., the extrapolation ρ′′ presented in Remark 7.1.

The UPInv algorithm, applied to the spurious counterexample (00, ε × ε)
1!o
−−→♯

(10, o∗ × ε)
1!c
−−→♯ (00, ε× ε) of Example 3.5, would perform two iterations of

the while-loop and produce the path invariant (ε × ε, o × ε, oc × ε). These
iterations are detailed in the table below. The mark  or X indicates whether
the condition at line 11 is satisfied.

L0 L1 L2 Line 11

k = 0 ε× ε o∗ × ε {o, c}∗ × ε  

k = 1 ε× ε o× ε oc× ε X

Following Proposition 4.2, the partition map would be refined to:

q ∈ Q 00 10 01, 11

P (q) ε× ε, oc× ε, (ε ∪ oc)× ε o× ε, (ε ∪ (o · o+))× ε, o∗ × ε M∗ ×M∗

This refined partition map clearly rules out the spurious counterexample. ⋄

5 Safety Cegar Semi-Algorithm for Fifo Systems

We are now equipped with the key ingredients to present our Cegar semi-
algorithm for fifo systems. The semi-algorithm takes as input a fifo system A,
a recognizable safety condition (Init, Bad), an initial partition map P0, and a
path invariant generation procedure PathInv. The initial partition map may be
the trivial one, mapping each control state to (M∗)n. We may use any path in-
variant generation procedure, such as the ones presented in the previous section.
The semi-algorithm iteratively refines the partition abstraction until either the
abstraction is precise enough to prove that JAK is (Init, Bad)-safe (line 10), or
a feasible counterexample is found (line 4).

The semi-algorithm maintains the current partition map in variable P . At
each iteration of the while-loop, the partition abstraction JAK♯P is finite, and
any standard graph exploration algorithm may be used to search for an abstract
counterexample (lines 1–2). If there is none then JAK♯P is (α(Init), α(Bad))-safe,
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CEGAR (A, Init, Bad, P0, PathInv)

Input: fifo system A = 〈Q, M, n, ∆〉, recognizable subsets Init, Bad of Q ×
(M∗)n, partition map P0 : Q→ P ((M∗)n), procedure PathInv

1 while JAK♯P is (αP (Init), αP (Bad))-unsafe

2 pick a simple abstract counterexample π♯ in JAK♯P
3 if π♯ is a feasible abstract counterexample
4 return  
5 else

6 write π♯ as the abstract path (q0, p0)
l0−→♯ · · ·

lh−1
−−−→

♯
(qh, ph)

7 (L0, . . . , Lh) ← PathInv (Init, Bad, π♯)
8 foreach i ∈ {0, . . . , h}

9 P (qi)← (P (qi) \ {pi}) ∪
`˘

pi ∩ Li, pi ∩ Li

¯

\ {∅}
´

10 return X

and the semi-algorithm returns that JAK is (Init, Bad)-safe (X). Otherwise, an
arbitrary simple abstract counterexample is chosen depending on an underlying
graph search strategy (e.g., breadth-first or depth-first). If this abstract coun-
terexample is feasible then the semi-algorithm returns that JAK is (Init, Bad)-
unsafe ( ). Or else, a path invariant is generated from the spurious abstract
counterexample, and is used to refine the partition. The new partition map ob-
tained after the foreach loop (lines 8–9) is precisely the partition map P̃ from
Proposition 4.2, and hence it rules out this abstract counterexample. Recall that
Lemmata 3.2 and 3.4 ensure that the steps at lines 1 and 3 are effectively com-
putable.

Let us fix, for the remainder of this section, a fifo system A, two recognizable
subsets Init, Bad of Q×(M∗)n, an initial partition map P0 : Q→ P ((M∗)n), and
a path invariant generation procedure PathInv. The correctness of the CEGAR

semi-algorithm is expressed by the following proposition, which directly follows
from Proposition 3.3 and from the definition of feasible abstract counterexam-
ples.

Proposition 5.1. For any terminating execution of CEGAR (A, Init, Bad, P0,
PathInv), if the execution returns X (resp.  ) then JAK is (Init, Bad)-safe (resp.
(Init, Bad)-unsafe).

Example 5.2. We show a full execution of CEGAR on the c/d protocol with initial
partition map P0 defined by P0(q) = {M∗ ×M∗} for every q ∈ Q. Recall that
Init = {(00, ε, ε)} and Bad = {00, 10} × (c · M∗ × M∗). Let us assume an
extrapolation ∇ that fulfills the following requirements (e.g., the extrapolation
ρ′′ presented in Remark 7.1):





∇0(L) = (alph ({w(1) | w ∈ L}))∗ × (alph ({w(2) | w ∈ L}))∗

∇1(u× ε) = u× ε for each u ∈ {ε, o, oc, oco}
∇1(ococ× ε) = (oc)+ × ε

We present below the successive iterations of CEGAR. For each iteration,
we give the abstract counterexample, the path invariant computed by UPinv,
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and the refined partition map. We detail the executions of UPInv by providing
the potential path invariant at each iteration of the while-loop; the mark  or
X indicates whether the condition at line 11 of UPInv is satisfied. The abstract
counterexamples picked at line 2 of CEGAR are obtained by a breadth-first search
of the partition abstraction. All abstract counterexamples are spurious except
for the last one which is feasible, and hence the execution of CEGAR returns  .

Remark that the partition abstraction obtained at the end of iteration 1
is precisely the one of Example 3.5, and iteration 2 was already presented in
Example 4.8.

(0) π♯
0 is the empty path (00, M∗ ×M∗).

UPInv: k = 0 (ε× ε) X

q 00 10, 01, 11

P (q) ε× ε, ε× ε M∗ ×M∗

(1) π♯ : (00, ε× ε)
1!o
−−→♯ (10, M∗ ×M∗)

UPInv: k = 0 (ε× ε, o∗ × ε) X

00 10 01, 11

ε× ε, ε× ε o∗ × ε, o∗ × ε M∗ ×M∗

(2) π♯ : (00, ε× ε)
1!o
−−→♯ (10, o∗ × ε)

1!c
−−→♯ (00, ε× ε)

UPInv:
k = 0 (ε× ε, o∗ × ε, {o, c}∗ × ε)  

k = 1 (ε× ε, o× ε, oc× ε) X

00 10 01, 11

ε× ε, oc× ε, (ε ∪ oc)× ε o× ε, (ε ∪ (o · o+))× ε, o∗ × ε M∗ ×M∗

(3) π♯ : (00, ε× ε)
1!o
−−→♯ (10, o× ε)

1!c
−−→♯ (00, oc)

1!o
−−→♯ (10, o∗ × ε)

UPInv:
k = 0 (ε× ε, o∗ × ε, {o, c}∗ × ε, {o, c}∗ × ε)  

k = 1 (ε× ε, o× ε, oc× ε, oco× ε) X

00 ε× ε, oc× ε, (ε ∪ oc)× ε

10 o× ε, (ε ∪ (o · o+))× ε, oco× ε, (o∗ ∪ oco)× ε

01, 11 M∗ ×M∗
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(4) π♯ : (00, ε×ε)
1!o
−−→♯ (10, o×ε)

1?o
−−→♯ (11, M∗×M∗)

1?c
−−→♯ (10, (o∗ ∪ oco)× ε)

UPInv: k = 0 (ε× ε, o∗ × ε, ε× ε, ∅) X

00 ε× ε, oc× ε, (ε ∪ oc)× ε

10 o× ε, (ε ∪ (o · o+))× ε, oco× ε, (o∗ ∪ oco)× ε

01 M∗ ×M∗

11 ε× ε, ε× ε

(5) π♯ : (00, ε× ε)
1!o
−−→♯ (10, o× ε)

1?o
−−→♯ (11, ε× ε)

2!d
−−→♯ (10, (o∗ ∪ oco)× ε)

UPInv: k = 0 (ε× ε, o∗ × ε, ε× ε, ε× d∗) X

00 ε× ε, oc× ε, (ε ∪ oc)× ε

10 o× ε, (ε ∪ (o · o+))× ε, oco× ε, ε× d+, ((o∗ ∪ oco)× ε) ∪ (ε× d+)

01 M∗ ×M∗

11 ε× ε, ε× ε

(6) π♯ : (00, ε × ε)
1!o
−−→♯ (10, o × ε)

1!c
−−→♯ (00, oc × ε)

1!o
−−→♯ (10, oco × ε)

1!c
−−→♯

(00, (ε ∪ oc)× ε)

UPInv:
k = 0 (ε× ε, o∗ × ε, {o, c}∗ × ε, {o, c}∗ × ε, {o, c}∗ × ε)  

k = 1 (ε× ε, o× ε, oc× ε, oco× ε, (oc)+ × ε) X

00 ε× ε, oc× ε, (oc · (oc)+)× ε, (oc)∗ × ε

10 o× ε, (ε ∪ (o · o+))× ε, oco× ε, ε× d+, ((o∗ ∪ oco)× ε) ∪ (ε× d+)

01 M∗ ×M∗

11 ε× ε, ε× ε

(7) π♯ : (00, ε × ε)
1!o
−−→♯ (10, o × ε)

1!c
−−→♯ (00, oc × ε)

1?o
−−→♯ (01, M∗ ×M∗)

2!d
−−→♯

(00, (oc)∗ × ε). This abstract counterexample is feasible. ⋄

Termination of the CEGAR semi-algorithm cannot be assured as, otherwise,
it would solve the general reachability problem (given any two configurations c
and c′ in C, decide whether there exists a path from c to c′), which is known to
be undecidable for fifo systems [BZ83]. However, (Init, Bad)-unsafety is semi-
decidable for fifo systems by forward or backward symbolic exploration when Init
and Bad are recognizable [BG99]. Moreover, this problem becomes decidable for
fifo systems having a finite reachability set from Init.
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6 Termination Analysis of the CEGAR Semi-Algorithm

We investigate in this section the termination of the CEGAR semi-algorithm
when A is (Init, Bad)-unsafe or has a finite reachability set from Init. In con-
trast to other approaches where abstractions are refined globally (e.g., predicate
abstraction [GS97]), partition abstractions [CGJ+03] are refined locally by split-
ting abstract configurations along the abstract counterexample (viz. lines 8 – 9
of the CEGAR semi-algorithm). The abstract transition relation only needs to
be refined locally around the abstract configurations which have been split, and,
hence, its refinement can be computed efficiently. However, this local nature of
refinement complicates the analysis of the algorithm.

6.1 Characterization of Non-Terminating Executions of CEGAR

First we introduce some additional notations. For any set L of subsets of (M∗)n,
we denote by Ψ(L) the set of equivalence classes of the equivalence relation ∼L

on (M∗)n defined by: w ∼L w
′ if for every L ∈ L, we have w ∈ L if and only if

w
′ ∈ L. Intuitively, Ψ(L) is the partition “generated” by L. Notice that if L is

finite then so is Ψ(L).

Given an execution of CEGAR (A, Init, Bad, P0,PathInv), and for each itera-
tion θ ∈ {0, 1, 2, . . .} of the while-loop3, we take a “snapshot” between lines 7
and 8, and remember the current partition map as Pθ, the simple abstract coun-
terexample as π♯

θ and its length as hθ, and the path invariant as (Lθ
0, . . . , L

θ
hθ

).

Moreover we shortly write JAK♯θ, C
♯
θ and αθ instead of JAK♯Pθ

, C♯
Pθ

and αPθ
, re-

spectively. We also define Init♯θ = αθ(Init) and Bad♯
θ = αθ(Bad). For any bound

b ∈ N, we let Reach≤b
θ denote the set of abstract configurations (q, p) ∈ C♯

θ such

that there exists in JAK♯θ a path of length at most b from Init♯θ to (q, p).

Lemma 6.1. Consider any execution of CEGAR (A, Init, Bad, P0,PathInv). For

any iteration θ and for any (q, p) ∈ C♯
θ, it holds that p ∈ Ψ(Lθ(q)) where:

Lθ(q) = P0(q) ∪ {L
η
i | 0 ≤ η < θ and 0 ≤ i ≤ hη}

Proof. We prove the lemma by induction on θ. The basis is trivial, since p ∈ P0(q)

for every (q, p) ∈ C♯
0. Assume that the lemma holds for the iteration θ and let us

show that the lemma also holds for the iteration θ+1. Let (q, p) ∈ C♯
θ+1. If (q, p) ∈

C♯
θ, then we get that p ∈ Ψ(Lθ(q)). Since Lθ(q) ⊆ Lθ+1(q), we obtain that p ∈

Ψ(Lθ+1(q)). Assume now that (q, p) 6∈ C♯
θ. Since p ∈ Pθ+1(q) \Pθ(q), we get that

p was added to P (q) during the iteration θ at line 9. We deduce from line 9 that

p ∈
{
p′ ∩ L, p′ ∩ L

}
for some (q′, p′) ∈ C♯

θ and L ∈
{
Lθ

i

∣∣ 0 ≤ i ≤ hθ

}
. We deduce

from the induction hypothesis p′ ∈ Ψ(Lθ(q)) and therefore p ∈ Ψ(Lθ+1(q)). ⊓⊔

Proposition 6.2. For any non-terminating execution of CEGAR (A, Init, Bad,
P0,PathInv), the set

{
Lθ

i

∣∣ θ ∈ N and 0 ≤ i ≤ hθ

}
is infinite.

3 We implicitly only consider iterations of the while-loop that do not return at line 4.
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Proof. Consider a non-terminating execution and let us show that the set L ={
Lθ

i

∣∣ θ ∈ N, 0 ≤ i ≤ hθ

}
is infinite. We get from Lemma 6.1 that for every q ∈ Q

and θ ∈ N, we have Pθ(q) ⊆ Ψ(P0(q) ∪ L). According to line 9 of the CEGAR

semi-algorithm, Pθ+1 refines Pθ for every θ ∈ N, and moreover Pθ+1 6= Pθ since
Pθ+1 rules out π♯

θ. We deduce that there exists q ∈ Q such that the nondecreasing
sequence (|Pθ(q)|)θ∈N

diverges. Since P0(q) is finite and Pθ(q) ⊆ Ψ(P0(q) ∪ L),
we conclude that L is infinite. ⊓⊔

6.2 Properties of Breadth-First Executions of CEGAR

To obtain termination results in the unsafe case, we will, unsurprisingly, restrict
ourselves to breadth-first explorations of the partition abstractions. Formally, a
breadth-first execution of the CEGAR semi-algorithm is any execution where, at
each iteration θ, the abstract counterexample π♯

θ picked at line 2 is among the
shortest ones.

Lemma 6.3. Consider any breadth-first execution of CEGAR (A, Init, Bad, P0,

PathInv). For any iteration θ ≥ 1 and for any (q, p) ∈ Init♯θ\Init♯θ−1, there exists

p0 ∈ Pθ−1(q) such that p = p0 ∩ Lθ−1
0 and ({q} × p0) ∩ Init = ({q} × p) ∩ Init.

Proof. Consider an iteration θ + 1 (with θ ∈ N) and let (q, p) be any abstract

configuration in Init♯θ+1 \ Init♯θ. Observe that ({q} × p) ∩ Init is non-empty,

and therefore (q, p) 6∈ C♯
θ since otherwise we would have (q, p) ∈ Init♯θ. Since

p ∈ Pθ+1(q) \ Pθ(q), we get that p was added to P (q) during the iteration θ at

line 9. Let us write π♯
θ as π♯

θ = (q0, p0)
l0−→♯ · · ·

lh−1

−−−→
♯

(qh, ph). We deduce from

line 9 that p ∈
{

pi0 ∩ Lθ
i0

, pi0 ∩ Lθ
i0

}
for some 0 ≤ i0 ≤ h such that q = qi0 .

Observe that (qi0 , pi0) ∈ Init♯θ since we have p ⊆ pi0 and ({q} × p) ∩ Init 6= ∅.

We come to i0 = 0 since the abstract counterexample π♯
θ is among the shortest

ones. Hence, we get that q = q0 and p ∈
{

p0 ∩ Lθ
0, p0 ∩ Lθ

0

}
. Since (Lθ

0, . . . , L
θ
h)

is a path invariant for π♯
θ, we have ({q0} × p0) ∩ Init ⊆ {q0} × Lθ

0 and hence

{q0}× (p0 ∩Lθ
0) is disjoint from Init. We deduce that p = p0 ∩Lθ

0 and moreover
we get that ({q} × p0) ∩ Init = ({q} × p) ∩ Init. ⊓⊔

Lemma 6.4. Consider any breadth-first execution of CEGAR (A, Init, Bad, P0,

PathInv). For any iteration θ, for any b ∈ N and for any (q, p) ∈ Reach≤b
θ , we

have p ∈ Ψ
(
Lb

θ(q)
)

where:

Lb
θ(q) = P0(q) ∪ {L

η
i | 0 ≤ η < θ, i ≤ hθ and i ≤ b}

Proof. For any iteration θ and for any b ∈ N, let use denote by (Hb
θ) the property:

for any (q, p) ∈ C♯
θ, if there exists in JAK♯θ a path of length at most b from Init♯θ

to (q, p), then p ∈ Ψ
(
Lb

θ(q)
)
. We prove by double induction on θ and b that (Hb

θ)
holds for any iteration θ and for any b ∈ N.
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Let us prove the basis ∀b (Hb
0) of the induction on θ. Observe that Lb

0(q) =

P0(q) for every q ∈ Q. Therefore p ∈ P0(q) = Ψ(P0(q)) for any (q, p) ∈ C♯
0,

and we conclude that the basis obviously holds. We now prove the induction
step ∀θ

(
∀b (Hb

θ) =⇒ ∀b (Hb
θ+1)

)
of the induction on θ. Consider an iteration

θ + 1 (with θ ∈ N) and assume that (Hb
θ) holds for every b ∈ N. We prove

by induction on b that (Hb
θ+1) holds for any b ∈ N. Observe that the basis

(H0
θ+1) may equivalently be rephrased as: for any (q, p) ∈ Init♯θ+1, we have

p ∈ Ψ
(
L0

θ+1

)
. Let (q, p) ∈ Init♯θ+1. If (q, p) ∈ Init♯θ then we deduce from (H0

θ )

that p ∈ Ψ
(
L0

θ

)
. Since L0

θ ⊆ L
0
θ+1 we obtain that p ∈ Ψ

(
L0

θ+1

)
. Otherwise, we

obtain from Lemma 6.3 that p = p0 ∩ Lθ
0 for some p0 ∈ Pθ(q). We deduce from

(H0
θ ) that p0 ∈ Ψ

(
L0

θ

)
and therefore p ∈ Ψ

(
L0

θ+1

)
. We therefore have proved

that the basis (H0
θ+1) of the induction on b holds.

Let us now show the induction step ∀b
(
(Hb

θ+1) =⇒ (Hb+1
θ+1)

)
of the induction

on b. Consider any bound b ∈ N and assume that (Hb
θ+1) holds. Recall that (Hc

θ)

holds for every c ∈ N. Let (q, p) be any abstract configuration in C♯
θ+1 such that

there is in JAK♯θ+1 a path π♯ of length at most b+1 from Init♯θ+1 to (q, p). We show

that p ∈ Ψ
(
Lb+1

θ+1(q)
)
. Recall that Pθ+1(q) refines Pθ(q) and define p̂ = [ p ]Pθ(q),

i.e. p̂ is the class in Pθ(q) that contains p. Observe that (q, p̂) is an abstract

configuration in C♯
θ. The “lift” of π♯ to Pθ yields a path of length at most b + 1

in JAK♯θ from Init♯θ to (q, p̂). We deduce from (Hb+1
θ ) that p̂ ∈ Ψ

(
Lb+1

θ (q)
)
. Since

Lb+1
θ ⊆ Lb+1

θ+1 we obtain that p̂ ∈ Ψ
(
Lb+1

θ+1

)
. If p ∈ Pθ(q) then p = p̂ ∈ Ψ

(
Lb+1

θ (q)
)
.

Otherwise, p ∈ Pθ+1(q) \ Pθ(q) and we get that p was added to P (q) during the

iteration θ at line 9. Let us write π♯
θ as π♯

θ = (q0, p0)
l0−→♯ · · ·

lh−1

−−−→
♯

(qh, ph). We

deduce from line 9 that p ∈
{

pi0 ∩ Lθ
i0

, pi0 ∩ Lθ
i0

}
for some 0 ≤ i0 ≤ h such that

q = qi0 . Moreover pi0 = p̂ since pi0 and p̂ both contain p. Remark that we may

replace in π♯
θ the prefix (q0, p0)

l0−→♯ · · ·
li0−1

−−−→
♯

(qi0 , p̂) with the “lift” of π♯ to

Pθ. The resulting abstract path is also an abstract counterexample in JAK♯θ, and

its length is h − i0 + (b + 1). Since π♯
θ is among the shortest ones, we get that

i0 ≤ b + 1. As pi0 = p̂ ∈ Ψ
(
Lb+1

θ (q)
)
, we conclude that p ∈ Ψ

(
Lb+1

θ (q)
)
. ⊓⊔

Lemma 6.5. Consider any breadth-first execution of CEGAR (A, Init, Bad, P0,

PathInv), and define Iθ =
{

p ∩ {w | (q, w) ∈ Init}
∣∣∣ (q, p) ∈ Init♯θ

}
for any it-

eration θ. It holds that Iθ ⊆ Iθ−1 for any iteration θ ≥ 1.

Proof. Consider an iteration θ ≥ 1 and let L ∈ Iθ. There exists (q, p) ∈ Init♯θ
such that L = p∩{w | (q, w) ∈ Init}. Notice that {q}×L = ({q}×p)∩Init 6= ∅.

If (q, p) ∈ Init♯θ−1 then L ∈ Iθ−1. Otherwise, we obtain from Lemma 6.3 that
({q} × p0) ∩ Init = ({q} × p) ∩ Init for some p0 ∈ Pθ−1(q). We thus come to

L = p0 ∩ {w | (q, w) ∈ Init}. Since L 6= ∅, we get that (q, p0) ∈ Init♯θ−1 and we
conclude that L ∈ Iθ−1. ⊓⊔



Extrapolation-based Path Invariants for Abstraction Refinement 23

6.3 Termination of CEGAR for Unsafe Fifo Systems with UPInv (∇)

For the rest of this section, we fix an extrapolation ∇ and we focus on the path
invariant generation procedure UPInv presented in Section 4.

The following proposition shows that for any bound b, there is an iteration
after which the abstract configurations that are reachable from Init♯ by a path
of length at most b are never split, or, put differently, the “reachability set up
to depth b” of the abstraction remains constant.

Proposition 6.6. For any b ∈ N and for any non-terminating breadth-first ex-
ecution of CEGAR (A, Init, Bad, P0,UPInv (∇)), the two following sets are finite:

⋃

θ∈N

Reach≤b
θ and

{
Lθ

i

∣∣ θ ∈ N, i ≤ hθ and i ≤ b
}

Proof. We prove the proposition by induction on b. Let us first show the basis.
For any θ ∈ N, define Iθ as in Lemma 6.5. We infer from Lemma 6.5 that Iθ ⊆ I0.
We derive from the definition of the algorithm UPInv that for any iteration θ ∈ N,
there exists (q, p) ∈ Init♯θ and k ∈ N such that Lθ

0 = ∇k (p ∩ {w | (q, w) ∈ Init}),
and therefore Lθ

0 = ∇k(L) for some L ∈ Iθ. Recall that according to Defi-
nition 4.3, the set {∇k(L) | k ∈ N} is finite for any recognizable subset L of
(M∗)n. Since I0 is finite, we obtain that {∇k(L) | L ∈ I0, k ∈ N} is finite. Con-
sequently, the set

{
Lθ

0

∣∣ θ ∈ N
}

is finite. Moreover, according to Lemma 6.4, we

have p ∈ Ψ
(
P0(q) ∪

{
Lθ

0

∣∣ θ ∈ N
})

for every (q, p) ∈ Reach≤0
θ . We deduce that⋃

θ∈N
Reach≤0

θ is finite.

Let us now show the induction step. Assume that the proposition holds for

some bound b ∈ N. Let us defineH =
{

p ∩ Lθ
b

∣∣∣ θ ∈ N, b ≤ hθ, (q, p) ∈ Reach≤b
θ

}
.

The sets
⋃

θ∈N
Reach≤b

θ and
{
Lθ

b

∣∣ θ ∈ N, b ≤ hθ

}
are both finite according to

the induction hypothesis, and therefore H is finite. We derive from the defi-
nition of the algorithm UPInv that for any iteration θ ∈ N with hθ ≥ b + 1,
if Lθ

b+1 is non-empty then there exists (q, p) ∈ Reach≤b
θ , l ∈ Σ and k ∈ N

such that Lθ
b+1 = ∇k

(
post(l, p ∩ Lθ

b)
)
, and therefore Lθ

b+1 = ∇k (post(l, L)) for
some L ∈ H. Recall that according to Definition 4.3, the set {∇k (L) | k ∈ N}
is finite for any subset L of (M∗)n. Since H and Σ are both finite, we ob-
tain that {∇k (post(l, L)) | l ∈ Σ,L ∈ H, k ∈ N} is finite. We deduce that the
set

{
Lθ

b+1

∣∣ θ ∈ N, b + 1 ≤ hθ

}
is finite, and we get from the induction hypoth-

esis that
{
Lθ

i

∣∣ θ ∈ N, i ≤ hθ, i ≤ b + 1
}

is also finite. Moreover, according to

Lemma 6.4, we have p ∈ Ψ
(
P0(q) ∪

{
Lθ

i

∣∣ θ ∈ N, i ≤ hθ, i ≤ b + 1
})

for every

(q, p) ∈ Reach≤b+1
θ . We deduce that

⋃
θ∈N

Reach≤b+1
θ is finite. ⊓⊔

Proposition 6.7. For any breadth-first execution of CEGAR (A, Init, Bad, P0,
UPInv (∇)), if the execution does not terminate then the sequence (hθ)θ∈N

of
lengths of counterexamples picked at line 2 is nondecreasing and diverges.

Proof. Consider a non-terminating breadth-first execution and let us show that
the sequence (hθ)θ∈N

is nondecreasing and diverges. Let η, θ ∈ N such that η < θ,
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1?a

1!a

1!a

1!a

ch. 1

Fig. 7. Fifo System of Example 6.9 Showing Non-Termination of CEGAR

and observe that the partition map Pθ refines Pη. The “lift” of π♯
θ to Pη yields

a counterexample in JAK♯η. Since π♯
η is a counterexample in JAK♯η among the

shortest ones, we get that its length hη satisfies hη ≤ hθ. This concludes the
proof that (hθ)θ∈N

is nondecreasing.

By contradiction, assume that there exists b, θ1 ∈ N such that hθ = b for every
θ ≥ θ1. We obtain from Proposition 6.6 that

⋃
θ∈N

Reach≤b
θ is finite. Therefore,

there exists θ2 ≥ θ1 such that Reach≤b
θ2

= Reach≤b
θ2+1. Let us write π♯

θ2
as π♯

θ2
=

(q0, p0)
l0−→♯ · · ·

lb−1

−−−→
♯
(qb, pb). Note that (qi, pi) ∈ Reach≤b

θ2+1 for every 0 ≤ i ≤ b.

We deduce that π♯
θ2

is also a counterexample in JAK♯θ2+1, which contradicts the

fact that Pθ2+1 is a refinement of Pθ2
that rules out π♯

θ2
. We conclude that the

sequence (hθ)θ∈N
diverges. ⊓⊔

Corollary 6.8. If JAK is (Init, Bad)-unsafe then any breadth-first execution of
CEGAR (A, Init, Bad, P0,UPInv (∇)) terminates.

Proof. Assume that there exists in JAK a path π from Init to Bad and let b
denote the length of π. Consider any breadth-first execution of CEGAR (A, Init,
Bad, P0,UPInv (∇)). Observe that for any iteration θ, αθ(π) is an abstract coun-

terexample of length b in JAK♯θ. Hence, we have hθ ≤ b for every iteration θ ∈ N,
and we conclude with Proposition 6.7 that the execution terminates. ⊓⊔

6.4 Termination of CEGAR for Finite Fifo Systems with UPInv (∇)

It would also be desirable to obtain termination of the CEGAR semi-algorithm
when A has a finite reachability set from Init. However, the following example
shows that this condition is not sufficient to guarantee that CEGAR (A, Init,
Bad, P0,UPInv (∇)) has a terminating execution.

Example 6.9. Consider the fifo system A depicted in Figure 7. This fifo system
has a single message a and a single queue. The safety condition (Init, Bad) is de-
fined by the recognizable subsets Init = {(0, ε)} and Bad = {0}× ({a} · {aa}∗).
Notice that the reachability set from Init is equal to Init, which is finite, and
hence JAK is (Init, Bad)-safe.

Define the initial partition map P0 by P0(q) = {{a}∗} for all q ∈ {0, 1, 2, 3}.
We consider the extrapolation ∇ defined by ∇0({ε}) = {ε, aa} and ∇k(L) = L
if k > 0 or L 6= {ε}. Let us now detail the first iterations of an execution of
CEGAR (A, Init, Bad, P0,UPInv (∇)).
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(0) π♯
0 is the empty path (0, {a}∗), and UPInv (∇, Init, Bad, π♯

0) returns the path
invariant ({ε, aa}).

(1) π♯
1 is the path (0, {ε, aa})

1?a
−−→♯ (1, {a}∗)

1!a
−−→♯ (2, {a}∗)

1!a
−−→♯ (3, {a}∗)

1!a
−−→♯

(0, {ε, aa}), and the path invariant is ({ε, aa}, {a}, {aa}, {a3}, {a4}).

(2) π♯
2 is the path (0, {ε, aa})

1?a
−−→♯ (1, {a})

1!a
−−→♯ (2, {aa})

1!a
−−→♯ (3, {a3})

1!a
−−→♯

(0, {a4})
1?a
−−→♯ (1, {a})

1!a
−−→♯ (2, {aa})

1!a
−−→♯ (3, {a3})

1!a
−−→♯ (0, {ε, aa, a4}),

and the path invariant returned by UPInv (∇, Init, Bad, π♯
2) is the sequence

({ε, aa}, {a}, {a2}, {a3}, {a4}, {a3}, {a4}, {a5}, {a6}).

These first iterations suggest that the execution may not terminate, and we
can actually prove that it necessarily does not terminate. Consider any execu-
tion of CEGAR (A, Init, Bad, P0,UPInv (∇)). For any iteration θ, the path in-
variant (Lθ

0, . . . , L
θ
hθ

) computed by UPInv (∇) satisfies Lθ
0 = {ε, aa} and Lθ

4i =

{a4 · a2(i−1)} for any 1 ≤ i ≤ hθ

4 . We deduce that, for each iteration θ, there

exists a finite subset Fθ of {a}∗ such that {{ε, aa}, Fθ} ⊆ Pθ(0). Observe that

(0, {ε, aa}) ∈ Init♯θ and (0, Fθ) ∈ Bad♯
θ. Moreover, for every i ≥ 1, there is a

concrete path in JAK from (0, aa) to (0, a2i). Hence, there is an abstract path

in JAK♯θ from (0, {ε, aa}) to (0, Fθ). We obtain that JAK♯θ is (Init♯, Bad♯)-unsafe
for every iteration θ, which, combined with Proposition 5.1, implies that the
execution does not terminate since JAK is (Init, Bad)-safe. ⋄

It turns out that termination of the CEGAR semi-algorithm can be guaranteed
for fifo systems with a finite reachability set when ∇k has a finite image for every
k ∈ N. This apparently strong requirement, formally specified in Definition 6.10,
is satisfied by the extrapolations presented in [BHV04] and [LGJJ06], which are
based on state equivalences up to a certain depth (see Appendix B).

Definition 6.10. An extrapolation ∇ is restricted if for every k ∈ N, the set
{∇k(L) | L ∈ Rec ((M∗)n)} is finite.

Remark that the extrapolation used in Example 6.9 was not restricted. The
path invariants obtained in this example only used ∇0, as the while-loop of
the algorithm UPInv was never repeated. The use of restricted extrapolations
prevents this kind of executions. Indeed, as a consequence of Proposition 6.2,
we obtain that if ∇ is restricted then for any execution of CEGAR (A, Init, Bad,
P0,UPInv (∇)), the execution terminates if and only if the number of iterations of
the while-loop of the algorithm UPInv is bounded4. As shown by the following
proposition, if moreover JAK has a finite reachability set from Init then the
execution necessarily terminates.

Proposition 6.11. Assume that ∇ is restricted. If JAK has a finite reachabil-
ity set from Init, then any execution of CEGAR (A, Init, Bad, P0, UPInv (∇))
terminates.

4 Remark that this bound is not a bound on the length of abstract counterexamples.
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Proof. Assume that JAK has a finite reachability set from Init, and consider
any execution of CEGAR (A, Init, Bad, P0,UPInv (∇)). For each q ∈ Q, let us
write RS(q) the finite set of w ∈ (M∗)n such that there is a path in JAK from
Init to (q, w). Define L =

⋃
q∈Q RS(q) and remark that L is finite. Recall that

according to Definition 4.3, for any recognizable subset L of (M∗)n, there exists
kL ∈ N such that L = ∇k(L) for every k ≥ kL. Since L is finite, we infer that
there exists K ∈ N such that L = ∇k(L) for every k ≥ K and L ⊆ L. Let us
define H = ℘(L) ∪ {∇k(L) | k < K, L ∈ Rec ((M∗)n)}. Observe that H is finite
since ∇ is restricted.

We show that Lθ
i ∈ H for any iteration θ and for any 0 ≤ i ≤ hθ. Consider

an iteration θ, and let us write π♯
θ as π♯

θ = (q0, p0)
l0−→♯ · · ·

lh−1

−−−→
♯

(qh, ph), with
h = hθ. Notice that (qi−1, li−1, qi) is a transition rule in ∆ for each 1 ≤ i ≤ h.
Let us define R0 = p0 ∩ {w | (q0,w) ∈ Init} and Ri = post(li−1, pi−1 ∩ Lθ

i−1)
for every 1 ≤ i ≤ h. We derive from the definition of the algorithm UPInv that
there exists k ∈ N such that: Lθ

0 = ∇k(R0), and Li = ∅ or Li = ∇k(Ri) for every
1 ≤ i ≤ h. If k < K then we get that Lθ

i ∈ H for every 0 ≤ i ≤ h. Otherwise, we
have k ≥ K and therefore Li = Ri for every 0 ≤ i ≤ h. An immediate induction
on i shows that Ri ⊆ RS(qi) for every 0 ≤ i ≤ h. We deduce that Lθ

i ⊆ L and
hence Lθ

i ∈ H for every 0 ≤ i ≤ h.

We obtain that
{
Lθ

i

∣∣ θ ∈ N and 0 ≤ i ≤ hθ

}
⊆ H. Since H is finite, we con-

clude with Proposition 6.2 that the execution terminates. ⊓⊔

Remark 6.12. Our notion of restricted extrapolation is related to Jhala and
McMillan’s restricted interpolation, introduced in [JM06] to derive partial com-
pleteness results of Cegar for predicate abstraction. Indeed, given a restricted
extrapolation ∇, the finite subsets Lk = {∇i(L) | i ≤ k, L ∈ Rec ((M∗)n)} of
Rec ((M∗)n) are analogous to the finite languages Lk of predicates that re-
strict interpolants in [JM06]. However, in contrast to the Cegar semi-algorithm
of [JM06] where the restricted languages of predicates are enlarged globally, the
parameter k is tailored to each abstract counterexample in our CEGAR semi-
algorithm combined with UPInv (∇) or APInv (∇).

7 Overview of the (Colored) Bisimulation Extrapolation

This section briefly introduces the bisimulation-based extrapolation underly-
ing the widening operator introduced in [LGJJ06]. This extrapolation assumes
an automata representation of recognizable subsets of (M∗)n, and relies on
bounded-depth bisimulation over the states of the automata. For simplicity, we
focus in this section on fifo systems with a single queue, i.e., n = 1. In this
simpler case, recognizable subsets of (M∗)n are regular languages contained in
M∗, which can directly be represented by finite automata over M . The general
case of n ≥ 2, which is discussed in detail in Appendices A and B, requires the
use of Qdds, that are finite automata accepting recognizable subsets of (M∗)n

via an encoding of n-tuples in (M∗)n by words over an extended alphabet. Still,
the main ingredients rest the same.
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In the remainder of this section, we lift our discussion from regular languages
in M∗ to finite automata over M . Consider a finite automaton over M with a set
Q of states. As in abstract regular model checking [BHV04], we use quotienting
under equivalence relations on Q to obtain over-approximations of the automa-
ton. However, we follow the approach of [LGJJ06], and focus on bounded-depth
bisimulation equivalence (other equivalence relations were used in [BHV04]).

Given a priori an equivalence relation col on Q, also called “coloring”, and a
bound k ∈ N, the (colored) bisimulation equivalence of depth k is the equivalence
relation ∼col

k on Q defined as expected: ∼col
0 = col and two states are equivalent

for ∼col
k+1 if (1) they are ∼col

k -equivalent and (2) they have ∼col
k -equivalent m-

successors for each letter m ∈ M . The ultimately stationary sequence ∼col
0 ⊇

∼col
1 ⊇ · · · ⊇ ∼col

k ⊇ ∼col
k+1 ⊇ · · · of equivalence relations on Q leads to the

colored bisimulation-based extrapolation.

We define a coloring std, called standard coloring, by (q1, q2) ∈ std if either
q1 and q2 are both final states or q1 and q2 are both non-final states. The bisim-
ulation extrapolation is the function ρ from N to Rec (M∗)→ Rec (M∗) defined
by ρk(L) = L/∼std

k , where L is identified to a finite automaton accepting it.
Notice that ρ is a restricted extrapolation.

Remark 7.1. We could also choose other colorings or define the sequence of
equivalences in a different way. For instance, better results are sometimes ob-
tained in practice with the extrapolation ρ′ that first (for k = 0) applies a
quotienting with respect to the equivalence relation Q × Q (i.e., all states are
merged), and then behaves as ρk−1 (for k ≥ 1). Analogously, the extrapolation
ρ′′ defined by ρ′′0 = ρ′0 and ρ′′k = ρk for k ≥ 1 was used in Examples 4.8 and 5.2.
The variants ρ′ and ρ′′ are also formally defined for the general case of n ≥ 2 in
Remark B.10 page 39.

Example 7.2. Consider the regular language L = {aac, baaa} over the alphabet
M = {a, b, c, d, e}, represented by the automaton FAL of Figure 8a. The previ-
ously defined extrapolation ρ applies to L as follows: ρ0 splits the states of FAL

according to std, hence, ρ0(L) = {a, b}∗ · {a, c} (viz. Figure 8c). Then ρ1 merges
the states that are bisimulation equivalent up to depth 1, i.e., the states of
FAL (Figure 8d). As all states of FAL are non equivalent for ∼std

k with k ≥ 2, we
have ρk(L) = L (again Figure 8a). The variants ρ′ and ρ′′ mentioned previously
would lead to ρ′0(L) = ρ′′0(L) = (alph(L))

∗
= {a, b, c}∗ (viz. Figure 8b). ⋄

The benefits of the bisimulation extrapolation for the abstraction of fifo sys-
tems were already discussed in [LGJJ06]. The following example shows that this
extrapolation can, in some common cases, discover exact repetitions of message
sequences in queues, without the need for acceleration techniques.

Example 7.3. Let us continue the running example of the c/d protocol, consid-
ered here as having a single queue by restricting it to operations on the first

queue. The application of acceleration techniques on the path (00, ε)
1!o
−−→

1!c
−−→

(00, oc)
1!o
−−→

1!c
−−→ (00, ococ) · · · would produce the set of queue contents (oc)+.



28 Alexander Heußner, Tristan Le Gall, and Grégoire Sutre

(a)

a

b

a

a

c

a

a

(b)

a

b

c

(c)

a,b

a,c

(d)

a

b

a

a a

a c

Fig. 8. Finite Automata Representations for Extrapolating L (Example 7.2)

The bisimulation extrapolation ρ applied to the singleton language {ococ}, rep-
resented by the obvious automaton, produces the following results for the first
two parameters: ρ0({ococ}) = {o, c}∗ · c and ρ1({ococ}) = (oc)+. ⋄

8 Experimental Evaluation

Our prototypical tool Mcscm that implements the previous algorithms is written
in Ocaml and relies on a library by Le Gall and Jeannet [Scm] for the classical
finite automata and Qdd operations, the fifo post/pre symbolic computations,
as well as the colored bisimulation-based extrapolation. The standard coloring
with final and non-final states is used by default in our tool (see Section 7), but
several other variants are also available.

We implemented the CEGAR semi-algorithm of Section 5 as a generic Ocaml

functor, that is parametrized by a symbolic representation of the model to be
verified. This should allow us to transfer the ideas of this paper to other classes
of infinite-state models such as counter automata, hybrid automata, etc. The
initial partition map of the CEGAR semi-algorithm is fixed to the trivial one
λq .(M∗)n, hence, the initial partition abstraction is “isomorphic” to the “control
flow graph” of the input fifo system.

Our implementation includes the two path invariant generation algorithms
UPInv and APInv of Section 4. We actually implemented a “single split” backward
variant of APInv, reminiscent of the classical Cegar implementation [CGJ+03]
(analogous to APInv but applying the split solely to the “failure” abstract config-
uration). Therefore our implemented variant APInv′ leads to more Cegar loops
than would be obtained with APInv, and this explains in part why UPInv glob-
ally outperforms APInv′ for larger examples. Several pluggable subroutines can
be used to search for counterexamples (depth-first or breadth-first exploration).
To increase confidence in the results, an independent module, that can perform
inductive invariant checking and feasibility checking, verifies the result of the
Cegar implementation.

We tested the prototype on a suite of protocols that includes the classical
alternating bit protocol Abp [AJ96], a simplified version of Tcp – also in the
setting of one server with two clients that interfere on their shared channels, a
sliding window protocol, as well as protocols for leader election due to Peterson
and token passing in a ring topology. Further, we provide certain touchstones



Extrapolation-based Path Invariants for Abstraction Refinement 29

protocol states/trans. refmnt. time [s] mem [MiB] loops states♯/trans♯

Abp 16/64
APInv′ 0.30 1.09 72 87/505
UPInv 2.13 1.58 208 274/1443

c/d protocol 5/17
APInv′ 0.02 0.61 8 12/51
UPInv 0.01 0.61 6 11/32

nested c/d protocol 6/17
APInv′ 0.68 1.09 80 85/314
UPInv 1.15 1.09 93 100/339

non-regular protocol 9/18
APInv′ 0.02 0.61 13 21/47
UPInv 0.06 0.61 14 25/39

Peterson 10648/56628
APInv′ 7.05 32.58 299 10946/58536
UPInv 2.14 32.09 51 10709/56939

(simplified) Tcp 196/588
APInv′ 2.19 3.03 526 721/3013
UPInv 1.38 2.06 183 431/1439

server with 2 clients 255/2160
APInv′ (> 1h) — — —
UPInv 9.61 4.97 442 731/7383

token ring 625/4500
APInv′ 85.15 19.50 1720 2344/19596
UPInv 4.57 6.42 319 1004/6956

sliding window 225/2010
APInv′ 16.43 9.54 1577 1801/15274
UPInv 0.93 2.55 148 388/2367

Table 1. Benchmark Results of Mcscm on a Suite of Example Protocols

for our approach: an enhancement of the c/d protocol with nested loops for the
exchange of data, and a protocol with a non-recognizable reachability set. A
detailed presentation of the protocols is provided in Appendix C. Except for the
c/d protocol, which is unsafe, all other examples are safe.

Table 1 gives a summary of the results obtained by Mcscm on an off-the-
shelf computer (2.4 GHz Intel Core 2 Duo). The second column indicates the
size of the input fifo system. The number of CEGAR loops and the size of the
partition abstraction at the last CEGAR loop are given in the last two columns.
Breadth-first exploration was applied in all examples to search for abstract coun-
terexamples. The bisimulation extrapolation ρ presented in Section 7 was used
except for the server with 2 clients, where we applied the variant ρ′ of ρ pre-
sented in Remark 7.1, as the analysis did not terminate after one hour with ρ.
All examples are analyzed with UPInv in a few seconds, and memory is not a
limitation.

We compared Mcscm with Trex [Tre], which is, to the best of our knowledge,
the sole publicly available and directly usable model-checker for the verification
of unbounded fifo systems. Note, however, that the comparison is biased as Trex
focuses on lossy channels. We applied Trex to the first six protocols of Table 1.
Trex has an efficient implementation based on simple regular expressions (and
not general Qdds as we do), and needs in most cases less than 1 second to build
the reachability set (the latter allows to decide the reachability of bad configura-
tions by a simple additional look-up). Further, Trex implements communicating
timed and counter automata that are – at this stage – beyond the focus of our
tool. Nonetheless, Trex assumes a lossy fifo semantics, and, therefore, is not able
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to verify all reliable fifo examples correctly (e.g., when omitting the disconnect
messages in the c/d protocol, Trex is still able to reach Bad due to the possible
loss of messages, albeit the protocol is safe). Moreover, Trex suffers (as would
also a symbolic model-checker based on the Lash library [Las]) from the main
drawback of acceleration techniques, which in general cannot cope with nested
loops, whereas they seem to have no adverse effect on our tool (viz. nested c/d
protocol on which Trex did not finish after one hour). Mcscm can also handle a
simple non-regular protocol (with a counting loop) that is beyond the Qdd-based
approaches [BG99], as the representation of the reachability set would require
recognizable languages equipped with Presburger formulas (Cqdds [BH99]).

To obtain a finer evaluation of our approach, we prototypically implemented
the global abstraction refinement scheme of [BHV04] in our tool. While this
Armc implementation seems to be advantageous for some small protocols, larger
examples confirm that the local and adaptive refinement approach developed
in this paper outperforms a global refinement one in protocols that demand a
“highly” precise abstraction only for a few control loops (e.g., Peterson’s leader
election and token ring). Further, our Armc implementation was not able to
handle the non-regular protocol nor the server with 2 clients.

9 Conclusion and Perspectives

Our prototypical implementation confirms our expectations that the proposed
Cegar framework with extrapolation-based path invariants is a promising al-
ternative approach to the automatic verification of fifo systems.

Our approach relies on partition abstractions where equivalence classes are
recognizable languages of queue contents. Our main contribution is the design
of generic path invariant generation algorithms based on parametrized extrap-
olation operators for queue contents. Because of the latter, our CEGAR semi-
algorithm enjoys additional partial termination properties.

The framework developed in this paper is not specific to fifo systems, and
we intend to investigate its practical relevance to other families of infinite-state
models. Future work also includes the safety verification of more complex fifo
systems that would allow the exchange of unbounded numerical data over the
queues, or include parametrization (e.g., over the number of clients). Several
decidable classes of fifo systems have emerged in the literature (in particular
lossy fifo systems) and we intend to investigate termination of our CEGAR semi-
algorithm (when equipped with the path invariant generation algorithms de-
veloped in this paper) for these classes. A fully automatic approach to safety
verification would further demand an appropriate heuristics with respect to dif-
ferent classes of communication protocols, in order to choose the appropriate
path invariant generation algorithm, graph search method, etc.
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A Queue Decision Diagrams

Boigelot and Godefroid introduced queue decision diagrams (Qdds) for the sym-
bolic verification of infinite-state communication protocols [BG99], and an im-
plementation of Qdds is provided in the Lash toolset [Las]. We recall in this
section the definition and main properties of Qdds. We adapt the original def-
inition of [BG99, BGWW97], which assumed disjoint queue alphabets, to our
framework where a single alphabet is used for all queues. Moreover, to simplify
the presentation of extrapolations in the next section, we will w.l.o.g. restrict
our attention to trim Qdds.

A finite automaton is any 5-tuple FA = 〈Q, Σ,→, I, F 〉 where 〈Q, Σ,→〉 is
a finite labeled transition system whose configurations are called states, I ⊆ Q
is a set of initial states, and F ⊆ Q is a set of final states. We say that FA
is trim when every state q ∈ Q occurs on some path from I to F . A word

w = l0 · · · lh−1 ∈ Σ∗ is accepted by FA if there is a path q0
l0−→ · · ·

lh−1

−−−→ qh such
that q0 ∈ I and qh ∈ F . The accepted language of a finite automaton FA, written
L(FA), is the set of all words accepted by FA. Remark that if FA is trim then:
L(FA) = ∅ if and only if FA has an empty set of states. Given an alphabet Σ
and a subset Γ ⊆ Σ, the projection of any word w ∈ Σ∗ on Γ , written w |Γ , is
the word in Γ ∗ obtained from w by removing all letters that are not in Γ .

Consider a finite alphabet M of messages and an integer n ≥ 1 denoting
the number of queues. We use the classical encoding of n-tuples w ∈ (M∗)n by
words over M ∪ {⊲⊳} where ⊲⊳ 6∈ M is a new letter used as separator. Formally,
define the function η : (M∗)n → (M ∪{⊲⊳})∗ by η(w) = w(1) ⊲⊳ · · · ⊲⊳ w(n). Let
us write E(M,n) for the set of all words w ∈ (M ∪ {⊲⊳})∗ whose projection on
{⊲⊳} is the word ⊲⊳n−1. Notice that η is a bijection between (M∗)n and E(M,n).

Definition A.1. An n-dim queue decision diagram for M is any trim finite
automaton D = 〈Q, M ∪ {⊲⊳},→, I, F 〉 such that L(D) ⊆ E(M,n).

We denote by Qdd (M,n) the set of all n-dim queue decision diagrams for M .
For notational convenience, we write JDK for the subset of (M∗)n represented
by a queue decision diagram D ∈ Qdd (M, n), defined by JDK = η−1(L(D)). The
subsets of (M∗)n that are representable by queue decision diagrams coincide
exactly with the recognizable subsets, formally:

Theorem A.2 ([BGWW97]). For any finite alphabet M and integer n ≥ 1,
the following equality holds:

Rec ((M∗)n) = {JDK | D ∈ Qdd (M,n)}

B Quotient-based Extrapolations

In this section, we show how well-known behavioral equivalences on labeled tran-
sition systems can be turned into extrapolations (that satisfy the requirements
of Definition 4.3).
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Consider a finite alphabet M and an integer n ≥ 1. Recall that recognizable
subsets of (M∗)n are in bijection with languages accepted by Qdds. We assume
for the remainder of this section a function χ from Rec ((M∗)n) to Qdd (M,n)
such that L = Jχ(L)K for every L ∈ Rec ((M∗)n). With the help of the func-
tion η of Section A, this function χ could be defined for instance by mapping
each recognizable subset L of (M∗)n to the minimal deterministic finite automa-
ton accepting η(L). Thanks to the function χ, the design of extrapolations for
recognizable subsets can be reduced to the design of extrapolations for Qdds.

Definition B.1. A (parametrized) Qdd-extrapolation is any function ∇ from
N to Qdd (M, n) → Qdd (M,n) that satisfies, for any D ∈ Qdd (M,n), the two
following conditions (with ∇(k) written as ∇k):

(i) we have L(D) ⊆ L(∇k(D)) for every k ∈ N,
(ii) there exists kD ∈ N such that L(D) = L(∇k(D)) for every k ≥ kD.

Definition B.2. A Qdd-extrapolation ∇ is restricted if for every k ∈ N, the
set {∇k(D) | D ∈ Qdd (M, n)} is finite up to automata isomorphism.

For any Qdd-extrapolation ∇, the function ∇χ = λk .(λL.J∇k(χ(L))K) is an
extrapolation (in the sense of Definition 4.3). Moreover, if ∇ is restricted then
∇χ is restricted (in the sense of Definition 6.10). We thus focus on the design of
(restricted) Qdd-extrapolations for the remainder of this section.

The quotient FA/≡ of a finite automaton FA = 〈Q, Σ,→, I, F 〉 by an equiv-
alence relation ≡ on Q is the finite automaton 〈Q≡, Σ,→≡, I≡, F≡〉 where:

Q≡ = Q/≡ I≡ = {[ q ]≡ | q ∈ I}

→≡ =
{

([ q ]≡ , l, [ q′ ]≡)
∣∣∣ q

l
−→ q′

}
F≡ = {[ q ]≡ | q ∈ F}

Notice that the quotient FA/≡ is trim whenever FA is trim. Moreover, it holds
that L(FA) ⊆ L(FA/≡1) ⊆ L(FA/≡2) for any two equivalence relations ≡1 and
≡2 on Q such that ≡1 ⊆ ≡2.

Given an n-dim queue decision diagram D = 〈Q, M ∪ {⊲⊳},→, I, F 〉 for M ,
since D is trim and L(D) ⊆ E(M, n) we derive that the four following conditions
are equivalent for any 1 ≤ i ≤ n and q ∈ Q:

(i) there is a path q0
l0−→ · · ·

lh−1

−−−→ q with q0 ∈ I and (l0 · · · lh−1) | ⊲⊳ = ⊲⊳i−1

(ii) there is a path q
l0−→ · · ·

lh−1

−−−→ qh with qh ∈ F and (l0 · · · lh−1) | ⊲⊳ = ⊲⊳n−i

(iii) we have (l0 · · · lh−1) | ⊲⊳ = ⊲⊳i−1 for all paths q0
l0−→ · · ·

lh−1

−−−→ q with q0 ∈ I

(iv) we have (l0 · · · lh−1) | ⊲⊳ = ⊲⊳n−i for all paths q
l0−→ · · ·

lh−1

−−−→ qh with qh ∈ F

For all 1 ≤ i ≤ n, we denote by Qi the set of all states q satisfying one (or
equivalently all) of the above conditions. Remark that if Q 6= ∅ then the set
{Qi | 1 ≤ i ≤ n} is a partition of Q. We define the equivalence relation ≈D on Q
as follows: if Q = ∅ then ≈D = ∅, otherwise ≈D =

⋃n
i=1 Qi ×Qi. The following

two propositions show that ≈D is the coarsest equivalence relation on Q under
which the quotient of D is also a Qdd.



Extrapolation-based Path Invariants for Abstraction Refinement 35

Proposition B.3. For any n-dim queue decision diagram D for M , the quotient
D/≈D is an n-dim queue decision diagram for M . Moreover, if JDK 6= ∅ then
JD/≈DK = N∗

1 ×· · ·×N∗
n where Ni = alph ({w(i) | w ∈ JDK}) for all 1 ≤ i ≤ n.

Proof. Let us write D = 〈Q, M∪{⊲⊳},→, I, F 〉. Remark that JDK 6= ∅ if and only
if Q 6= ∅. If Q is empty then D/≈D = D and hence D/≈D is also in Qdd (M,n).
Assume now that Q is non-empty. We first give an explicit characterization of
D/≈D. Observe that I ⊆ Q1 and F ⊆ Qn.

Consider any two integers i, j in {1, . . . , n} and assume that there is a tran-

sition r
l
−→ r′ in D with r ∈ Qi and r′ ∈ Qj . Since D is trim, there exists in D

two paths q
l0−→ · · ·

lh−1

−−−→ r and r′
l′0−→ · · ·

l′
h′

−1

−−−→ q′ such that q ∈ I and q′ ∈ F .
Note that (l0 · · · lh−1) | ⊲⊳ = ⊲⊳i−1 since r ∈ Qi. Two cases arise:

– if l = ⊲⊳ then we obtain that r′ ∈ Qi+1 since q
l0−→ · · ·

lh−1

−−−→ r
⊲⊳
−→ r′ is a path

in D and (l0 · · · lh−1 ⊲⊳) | ⊲⊳ = ⊲⊳i. We deduce that j = i + 1.

– if l ∈ M then we obtain that r′ ∈ Qi since q
l0−→ · · ·

lh−1

−−−→ r
l
−→ r′ is a path

in D and (l0 · · · lh−1l) | ⊲⊳ = ⊲⊳i−1. We deduce that j = i. Moreover, we have
l ∈ Ni since the n-tuple w = η−1(l0 · · · lh−1 · l · l

′
0 · · · l

′
h′−1) satisfies w ∈ JDK

and w(i) ∈M∗ · l ·M∗.

Conversely, since JDK 6= ∅, there exists w ∈ L(D). We may write w as w =
l10 · · · l

1
h1−1 ⊲⊳ · · · ⊲⊳ ln0 · · · l

n
hn−1 with li0 · · · l

i
hi−1 ∈M∗ for all 1 ≤ i ≤ n. Therefore,

there exists in D a path q1
0

l10−→ · · ·
l1
h1

−1

−−−→ q1
h1

⊲⊳
−→ · · ·

⊲⊳
−→ qn

0

ln0−→ · · ·
ln
hn

−1

−−−−→ qn
hn

with q1
0 ∈ I and qn

hn ∈ F . We get that qi
0 and qi

hi are in Qi for all 1 ≤ i ≤ n,

and moreover qi
hi

⊲⊳
−→ qi+1

0 for all 1 ≤ i < n. We deduce that for every 1 ≤ i < n,

there exists in D a transition q
⊲⊳
−→ q′ with q ∈ Qi and q′ ∈ Qi+1.

Consider now any i ∈ {1, . . . , n} and let l ∈ Ni. There exists w ∈ JDK such
that w(i) ∈ M∗ · l ·M∗. Since η(w) = w(1) ⊲⊳ · · · ⊲⊳ w(n) ∈ L(D), there exists

in D a path q0
l0−→ · · ·

lh−1

−−−→ qh
l
−→ qh+1 with q0 ∈ I and (l0 · · · lh−1) | ⊲⊳ = ⊲⊳i−1.

We deduce that there exists in D a transition q
l
−→ q′ with q, q′ ∈ Qi.

We have thus shown that the quotient D/≈D is the trim finite automaton
〈Q≈, Σ,→≈, I≈, F≈〉 where:

Q≈ = {Qi | 1 ≤ i ≤ n}
→≈ = {(Qi, l, Qi) | 1 ≤ i ≤ n, l ∈ Ni} ∪ {(Qi, ⊲⊳, Qi+1) | 1 ≤ i < n}
I≈ = {Q1}
F≈ = {Qn}

We derive that L(D/≈D) = N∗
1 ⊲⊳ · · · ⊲⊳ N∗

n ⊆ E(M,n), which entails that
D/≈D is an n-dim queue decision diagram for M . Moreover, we also get that
JD/≈DK = η−1(N∗

1 ⊲⊳ · · · ⊲⊳ N∗
n) = N∗

1 × · · · ×N∗
n. ⊓⊔

It follows from the previous proposition that for any equivalence relation ≡ ⊆
≈D, the quotient D/≡ is also an n-dim queue decision diagram for M . The
following proposition shows that the converse also holds.
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Proposition B.4. Let D = 〈Q, M ∪ {⊲⊳},→, I, F 〉 be an n-dim queue decision
diagram for M . For any equivalence relation ≡ on Q, if the quotient D/≡ is an
n-dim queue decision diagram for M then it holds that ≡ ⊆ ≈D.

Proof. Assume that ≡ 6⊆ ≈D and let us prove that D/≡ = 〈Q≡, Σ,→≡, I≡, F≡〉
is not an n-dim queue decision diagram for M . Note that Q 6= ∅ since otherwise
≡ and ≈D would be empty. Moreover, we deduce from ≡ 6⊆ ≈D that there exists
1 ≤ i < j ≤ n and (r, r′) ∈ Qi × Qj such that r ≡ r′. Since D is trim, there

exists in D two paths q
l0−→ · · ·

lh−1

−−−→ r and r′
l′0−→ · · ·

l′
h′

−1

−−−→ q′ such that q ∈ I and

q′ ∈ F . Therefore, [ q ]≡
l0−→ · · ·

lh−1

−−−→ [ r ]≡ = [ r′ ]≡
l′0−→ · · ·

l′
h′

−1

−−−→ [ q′ ]≡ is a path
in D/≡ from I≡ to F≡. Hence the word w = l0 · · · lh−1l

′
0 · · · l

′
h′−1 is accepted by

D/≡. Since r ∈ Qi and r′ ∈ Qj , we get that w | ⊲⊳ = ⊲⊳(i−1)+(n−j). As i 6= j, we
conclude that w 6∈ E(M,n) and hence L(D/≡) 6⊆ E(M,n), which entails that
D/≡ is not in Qdd (M,n). ⊓⊔

Regarding the algorithms UPInv and APInv of Section 4, we focus on quotient-
based Qdd-extrapolations that lead to suitable path invariant generation algo-
rithms for fifo systems. Natural candidates are bounded-depth behavioral equiv-
alences such as trace equivalence and bisimulation equivalence. The former was
used in [BHV04] to over-approximate finite automata in abstract regular model
checking. The latter was used in [LGJJ06] to derive a widening operator in
abstraction interpretation of fifo systems with Qdds.

B.1 Colored Bisimulation-based Extrapolation

We recall in this subsection the extrapolation underlying the widening operator
introduced in [LGJJ06]. This extrapolation relies on bounded-depth bisimula-
tion based on an initial coloring that partitions the set of states. The extrapola-
tion presented in [LGJJ06] relied on minimal deterministic automata. Requiring
minimization at each extrapolation step may adversely affect performance in
practice. We extend in this subsection the approach of [LGJJ06] to arbitrary
automata.

Definition B.5. Let FA = 〈Q, Σ,→, I, F 〉 be a finite automaton, and let col be
an equivalence relation on Q. For every k ∈ N, the bisimulation equivalence of
depth k is the relation ∼col

k on Q defined inductively by:

q1 ∼
col
0 q2 if (q1, q2) ∈ col

q1 ∼
col
k+1 q2 if





q1 ∼
col
k q2

∀l ∈ Σ,∀q′1 ∈ Q : q1
l
−→ q′1 ⇒

(
∃q′2 ∈ Q : q′1 ∼

col
k q′2 ∧ q2

l
−→ q′2

)

∀l ∈ Σ,∀q′2 ∈ Q : q2
l
−→ q′2 ⇒

(
∃q′1 ∈ Q : q′1 ∼

col
k q′2 ∧ q1

l
−→ q′1

)

The relations ∼col
k (for k ∈ N) are obviously equivalence relations on Q. The

following lemma states well-known facts that are useful for the design of the
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bisimulation-based extrapolation. Knuth’s up-arrow notation is used in item
(iii) to denote iterated exponentials: for any a, k ∈ N, (a ↑↑ k) is the function
fk = f ◦ · · · ◦ f︸ ︷︷ ︸

k times

where f : N→ N is the function defined by f(x) = ax.

Lemma B.6. For any finite automaton FA = 〈Q, Σ,→, I, F 〉 and equivalence
relation col on Q, the three following assertions hold:

(i) we have ∼col
k = ∼col

|Q| for every k ≥ |Q|.

(ii) if col satisfies (q, q′) ∈ col⇒ (q ∈ F ⇔ q′ ∈ F ) then L(FA/∼col
|Q|) = L(FA).

(iii) for every k ∈ N, we have |Q/∼col
k | ≤ (2|Σ|+1 ↑↑k)(|Q/col|).

Proof. Let us first prove (i). We derive from Definition B.5 that ∼col
k ⊇ ∼col

k+1,

hence, |Q/∼col
k | ≤ |Q/∼col

k+1| for every k ∈ N. Since 1 ≤ |Q/∼col
k | ≤ |Q| for all

k ∈ N, we obtain that there exists k ≤ |Q| such that |Q/∼col
k | = |Q/∼col

k+1|. We

arrive at ∼col
k 6⊃ ∼col

k+1 and hence ∼col
k = ∼col

k+1. We deduce from Definition B.5

that ∼col
k = ∼col

k′ for all k′ ≥ k, which concludes the proof of (i) as k ≤ |Q|.

Let us now prove assertion (ii). Assume that for each (q, q′) ∈ col, it holds
that q ∈ F if and only if q′ ∈ F . Let us shortly write ∼ in place of ∼col

|Q|. Since

L(FA) ⊆ L(FA/∼), we only have to show that L(FA/∼) ⊆ L(FA). Consider
any word l0 · · · lh−1 accepted by FA/∼. There exists q0, . . . , qh ∈ Q such that

[ q0 ]∼
l0−→ · · ·

lh−1

−−−→ [ qh ]∼ is a path in FA/∼ and such that q0 ∈ I and qh ∈ F .

Remark that for any q, q′ ∈ Q and any l ∈ Σ, if [ q ]∼
l
−→ [ q′ ]∼ is a transition in

FA/∼ then there exists q′′ ∈ [ q′ ]∼ such that q
l
−→ q′′ is a transition in FA. Indeed,

if [ q ]∼
l
−→ [ q′ ]∼ then we have r

l
−→ r′ for some r ∈ [ q ]∼ and r′ ∈ [ q′ ]∼. Since

∼ = ∼col
|Q| = ∼col

|Q|+1, we get from Definition B.5 that there exists q′′ ∈ [ q′ ]∼ such

that q
l
−→ q′′. An immediate induction along the path π shows that there exists

q′0 ∈ [ q0 ]∼ , . . . , q′h ∈ [ qh ]∼ such that q′0
l0−→ · · ·

lh−1

−−−→ q′h is a path in FA with
q′0 = q0. Since qh ∼ q′h, we get that (qh, q′h) ∈ col and hence q′h ∈ F . We deduce
that l0 · · · lh−1 is accepted by FA. We have thus shown that L(FA/∼) ⊆ L(FA).

To prove (iii), we first introduce some additional notations. Define the func-

tion pre : Σ × ℘(Q)→ ℘(Q) by pre(l, U) =
{

q ∈ Q
∣∣∣ ∃u ∈ U : q

l
−→ u

}
. For any

U ⊆ ℘(Q), the equivalence relation ∼U on Q “generated” by U is defined by:
q1 ∼U q2 if for every U ∈ U , we have q1 ∈ U if and only if q2 ∈ U . It follows
from Definition B.5 that, for every k ∈ N, the following equality holds:

∼col
k+1 = ∼col

k ∩ ∼Uk
where Uk =

{
pre(l, U)

∣∣ l ∈ Σ,U ∈ Q/∼col
k

}

Let us write sk = |Q/∼col
k | for all k ∈ N. We deduce from the above equality

that sk+1 ≤ sk · |Q/∼Uk
| for every k ∈ N. Since |Uk| ≤ Σ · sk, we get that ∼Uk

has at most 2|Σ|·sk equivalence classes, and we derive that sk+1 ≤ sk ·2
|Σ|·sk . We

obtain that sk+1 ≤ 2(|Σ|+1)·sk =
(
2|Σ|+1

)sk

for every k ∈ N. As s0 = |Q/col|, we

arrive at sk ≤ (2|Σ|+1 ↑↑k)(|Q/col|) for all k ∈ N. ⊓⊔
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Remark that for every k ∈ N, the relation ∼col
k is an equivalence relation on

Q that is contained in col. It follows from Proposition B.3 that for any n-dim
queue decision diagram D for M and for any equivalence relation col on Q with
col ⊆ ≈D, the quotient D/∼col

k is an n-dim queue decision diagram for M .

The last ingredient to obtain an extrapolation is the choice of an adequate
equivalence relation col. Items (i) and (ii) of Lemma B.6 suggest that col should
satisfy (q, q′) ∈ col ⇒ (q ∈ F ⇔ q′ ∈ F ). We therefore consider the coloring
defined as follows, which will be the standard equivalence relation col in our
discussion. Given an n-dim queue decision diagram D = 〈Q, M ∪ {⊲⊳},→, I, F 〉
for M , we define for every 1 ≤ i ≤ n the sets Ii and Fi by:

I1 = I Ii =
{

q ∈ Qi

∣∣∣ ∃q′ ∈ Q : q′
⊲⊳
−→ q

}
(for i > 1)

Fn = F Fi =
{

q ∈ Qi

∣∣∣ ∃q′ ∈ Q : q
⊲⊳
−→ q′

}
(for i < n)

Intuitively, the sets Ii and Fi are respectively the sets of initial and final states
for the queue i. The standard coloring for D is the equivalence relation std
“generated” by the sets Qi and Fi, formally defined by:

(q, q′) ∈ std if ∀i ∈ {1, . . . , n} : (q ∈ Qi ⇔ q′ ∈ Qi) ∧ (q ∈ Fi ⇔ q′ ∈ Fi)

Our definition of standard coloring is a variant of the one in [LGJJ06], where it
was defined as the equivalence relation “generated” by the sets Qi, Ii and Fi.
Note that the quotient D/∼std

k is in Qdd (M, n) for every k ∈ N, since std ⊆ ≈D.
We arrive at the following definition.

Definition B.7. The bisimulation extrapolation is the function ρ from N to the
function set Qdd (M,n)→ Qdd (M, n) defined by ρk(D) = D/∼std

k .

Proposition B.8. The function ρ is a restricted Qdd-extrapolation.

Proof. Let D = 〈Q, M ∪ {⊲⊳},→, I, F 〉 be an n-dim queue decision diagram for
M . For every k ∈ N, the relation ∼std

k is an equivalence relation on Q. Therefore,
the quotient ρk(D) = D/∼std

k satisfies L(D) ⊆ L(ρk(D)), which proves condition
(i) of Definition B.1. Observe that the standard coloring std satisfies (q, q′) ∈
std ⇒ (q ∈ F ⇔ q′ ∈ F ). According to Lemma B.6, it holds that L(ρk(D)) =
L(D) for all k ≥ |Q|, which proves condition (ii) of Definition B.1. We have thus
shown that ρ is a Qdd-extrapolation.

Notice that the standard coloring std satisfies |Q/std| ≤ 2n for every n-dim
queue decision diagram 〈Q, M ∪ {⊲⊳},→, I, F 〉 for M . For any bound b ∈ N, the
set of all finite automata FA = 〈Q, Σ,→, I, F 〉 with |Q| ≤ b and Σ = M ∪ {⊲⊳}
is finite up to automata isomorphism. We deduce from item (iii) of Lemma B.6
that ρ is restricted. ⊓⊔

Remark B.9. The proof of the previous proposition only relies on the two fol-
lowing properties of the standard coloring: |Q/std| is uniformly bounded and
(q, q′) ∈ std ⇒ (q ∈ F ⇔ q′ ∈ F ). Therefore, any equivalence relation con-
tained in ≈D and satisfying these two properties may be used in place of std
(for instance, the standard coloring of [LGJJ06]).
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Remark B.10. We mentioned in Remark 4.4 page 13 that extrapolations are
closed under round-robin combination. Consider in particular the functions ρ′

and ρ′′ from N to the function set Qdd (M,n)→ Qdd (M, n) defined by ρ′0(D) =
ρ′′0(D) = D/≈D, ρ′k = ρk−1 and ρ′′k = ρk for all k ≥ 1. The functions ρ′ and
ρ′′ are also restricted Qdd-extrapolations. Compared to the extrapolation ρ of
Definition B.7, the extrapolations ρ′ and ρ′′ provide the coarsest quotient-based
Qdd approximation when the parameter k is zero.

B.2 Colored Trace-based Extrapolation

We present in this subsection the extrapolation underlying the automata ab-
straction function based on finite-length languages introduced in [BHV04]. This
extrapolation relies on bounded-depth trace equivalence (with final states). The
automata abstractions presented in [BHV04] were designed for minimal deter-
ministic automata and were not tailored to queue decision diagrams. We extend
in this subsection the automata abstraction function based on finite-length lan-
guages of [BHV04] to arbitrary finite automata and to Qdds.

The presentation of this subsection follows the same layout as the previous
subsection. By abuse of notation, we will reuse the symbol ∼ to now denote
bounded-depth trace equivalence.

We first introduce some additional notations. Consider a finite automaton
FA = 〈Q, Σ,→, I, F 〉. We write |w| for the length of any word w ∈ Σ∗. Given a
bound b ∈ N, the accepted language of FA up to b is the set L≤b(FA) of all words
w ∈ L(FA) of length at most b, formally L≤b(FA) = {w ∈ L(FA) | |w| ≤ b}. For
any state q ∈ Q and for any subset S ⊆ Q, we denote by FA[q, S] the finite
automaton FA[q, S] = 〈Q, Σ,→, {q}, S〉, and we shortly write L≤b(FA, q, S) in
place of L≤b(FA[q, S]).

Definition B.11. Let FA = 〈Q, Σ,→, I, F 〉 be a finite automaton, and let col
be an equivalence relation on Q. For every k ∈ N, the trace equivalence of depth
k is the relation ∼col

k on Q defined by:

q1 ∼
col
k q2 if L≤k(FA, q1, C) = L≤k(FA, q2, C) for all C ∈ Q/col

The relations ∼col
k (for k ∈ N) are obviously equivalence relations on Q. Notice

that ∼col
0 = col and ∼col

k+1 ⊆ ∼
col
k for every k ∈ N. The following two lemmata

state well-known properties of trace equivalence that are useful for the design of
the trace-based extrapolation.

Lemma B.12. Consider a finite automaton FA = 〈Q, Σ,→, I, F 〉 and an equiv-
alence relation col on Q. For every k ∈ N, q ∈ Q and C ∈ Q/col, it holds that:

L≤k(FA, q, C) = L≤k
(
FA/∼col

k , [ q ]∼col

k

, {[ c ]∼col

k

| c ∈ C}
)

Proof. We assume an arbitrary C ∈ Q/col. Let us shortly write ∼k and C̃k

in place of ∼col
k and {[ c ]∼k

| c ∈ C}, respectively. We proceed by mutual in-

clusion. The inclusion L≤k(FA, q, C) ⊆ L≤k(FA/∼k, [ q ]∼k
, C̃k) follows from



40 Alexander Heußner, Tristan Le Gall, and Grégoire Sutre

the fact that [ q0 ]∼k

l0−→ · · ·
lh−1

−−−→ [ qh ]∼k
is a path in FA/∼k for any path

q0
l0−→ · · ·

lh−1

−−−→ qh in FA. To prove the reverse inclusion, we show by induction
on k that L≤k(FA, q, C) ⊇ L≤k(FA/∼k, [ q ]∼k

, C̃k) for every q ∈ Q.

We first prove the basis, and let q ∈ Q. Recall that ∼0 = col, hence, C̃0 =
{C}. If q ∈ C then [ q ]∼0

= C and L≤0(FA, q, C) = {ε} = L≤0(FA/∼0, C, {C}).

If q 6∈ C then [ q ]∼0
6= C and L≤0(FA/∼0, [ q ]∼0

, {C}) = ∅. We have thus shown
that the basis holds in both cases.

We now prove the induction step. Consider any k ∈ N and assume that
L≤k(FA, q, C) ⊇ L≤k(FA/∼k, [ q ]∼k

, C̃k)) for every q ∈ Q. Let q ∈ Q and

let w ∈ L≤k+1(FA/∼k+1, [ q ]∼k+1
, C̃k+1)). There exists q0, . . . , qh ∈ Q such

that [ q0 ]∼k+1

l0−→ · · ·
lh−1

−−−→ [ qh ]∼k+1
is a path in FA/∼k+1 and such that

w = l0 · · · lh−1, q0 = q and qh ∈ C. Since ∼col
k+1 ⊆ ∼

col
k , we obtain that

[ q0 ]∼k

l0−→ · · ·
lh−1

−−−→ [ qh ]∼k
is a path in FA/∼k. Therefore, if |w| ≤ k then

w ∈ L≤k(FA/∼k, [ q ]∼k
, C̃k)), and we deduce from the induction hypothesis

that w ∈ L≤k(FA, q, C), hence, w ∈ L≤k+1(FA, q, C). Let us now assume that

|w| = h = k+1. Since [ q0 ]∼k+1

l0−→ [ q1 ]∼k+1
, there exists q′0 ∈ [ q0 ]∼k+1

and q′1 ∈

[ q1 ]∼k+1
such that q′0

l0−→ q′1 is a transition in FA. Let w′ = l1 · · · lk+1. Recall that

[ q1 ]∼k

l1−→ · · ·
lk−→ [ qk+1 ]∼k

is a path in FA/∼k with q1 ∼k q′1 and qh ∈ C. There-

fore, we have w′ ∈ L≤k(FA/∼k, [ q′1 ]∼k
, C̃k)) and it follows from the induction

hypothesis that w′ ∈ L≤k(FA, q′1, C). We deduce that w ∈ L≤k+1(FA, q′0, C).
Moreover, L≤k+1(FA, q, C) = L≤k+1(FA, q′0, C) as q = q0 ∼k+1 q′0. We conclude
that w ∈ L≤k+1(FA, q, C). ⊓⊔

Lemma B.13. For any finite automaton FA = 〈Q, Σ,→, I, F 〉 and equivalence
relation col on Q, there exists K ∈ N such that the two following assertions hold:

(i) we have ∼col
k = ∼col

K for every k ≥ K.
(ii) if col satisfies (q, q′) ∈ col⇒ (q ∈ F ⇔ q′ ∈ F ) then L(FA/∼col

K ) = L(FA).

Proof. It follows from Definition B.5 that ∼col
k ⊇ ∼col

k+1 for every k ∈ N. Since
there are only finitely many equivalence relations on Q, we get that there is K in
N such that ∼col

k = ∼col
K for every k ≥ K. Now assume that for each (q, q′) ∈ col,

it holds that q ∈ F if and only if q′ ∈ F . Let us shortly write ∼ in place of
∼col

K . Since L(FA) ⊆ L(FA/∼), we only have to show that L(FA/∼) ⊆ L(FA).
Consider any word w accepted by FA/∼. Let k = max(|w|, K). There exists
qi ∈ I and qf ∈ F such that w ∈ L≤k(FA/∼, [ qi ]∼ , [ qf ]∼). Let C = [ qf ]

col

and remark that C ⊆ F . Note that w ∈ L≤k(FA/∼, [ qi ]∼ , {[ c ]∼ | c ∈ C}).
Since k ≥ K, it holds that ∼col

k = ∼ and we deduce from Lemma B.12 that
w ∈ L≤k(FA, qi, C). As qi ∈ I and C ⊆ F , we come to w ∈ L(FA). ⊓⊔

Remark that for every k ∈ N, the relation ∼col
k is an equivalence relation on

Q that is contained in col. It follows from Proposition B.3 that for any n-dim
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queue decision diagram D for M and for any equivalence relation col on Q with
col ⊆ ≈D, the quotient D/∼col

k is an n-dim queue decision diagram for M . We
consider the “standard” coloring std defined as in subsection B.1, and arrive at
the following definition.

Definition B.14. The trace extrapolation is the function ξ from N to the func-
tion set Qdd (M, n)→ Qdd (M,n) defined by ξk(D) = D/∼std

k .

Proposition B.15. The function ξ is a restricted Qdd-extrapolation.

Proof. Let D = 〈Q, M ∪ {⊲⊳},→, I, F 〉 be an n-dim queue decision diagram
for M . For every k ∈ N, the relation ∼std

k is an equivalence relation on Q.
Therefore, the quotient ξk(D) = D/∼std

k satisfies L(D) ⊆ L(ξk(D)), which proves
condition (i) of Definition B.1. Observe that the standard coloring std satisfies
(q, q′) ∈ std ⇒ (q ∈ F ⇔ q′ ∈ F ). According to Lemma B.13, there exists
K ∈ N such that L(ξk(D)) = L(D) for all k ≥ K, which proves condition (ii) of
Definition B.1. We have thus shown that ξ is a Qdd-extrapolation.

It is easily seen that for any equivalence relation col on Q and for any k ∈ N,
the bisimulation equivalence of depth k is a refinement of (i.e., is contained in) the
trace equivalence of depth k. We deduce that item (iii) of Lemma B.6 also applies
to the trace equivalence of depth k, formally |Q/∼col

k | ≤ (2|Σ|+1 ↑↑ k)(|Q/col|)
for every k ∈ N. We derive that |Q/∼std

k | ≤ (2|Σ|+1 ↑↑ k)(2n) for every k ∈ N.
For any bound b ∈ N, the set of all finite automata FA = 〈Q, Σ,→, I, F 〉 with
|Q| ≤ b and Σ = M ∪ {⊲⊳} is finite up to automata isomorphism. We conclude
that ξ is restricted. ⊓⊔

C Protocols of the Experimental Evaluation (Section 8)

We present in this section the suite of protocols (except for the c/d protocol
which was already introduced in Section 2) on which we tested our prototype
Mcscm. Each protocol is specified as a system of communicating processes. In
each case, the resulting fifo system is the asynchronous product of the processes.
The queues are initially empty, and each process has a single initial state that
is graphically indicated by an arrow with no source state. We provide with each
protocol the set of bad configurations used in our experimental evaluation.

C.1 Alternating Bit Protocol

This is the classical example protocol for automatic verification of communicat-
ing fifo systems, in the formalization of [LGJJ06]. The two participating peers
exchange control data over the channels 1 and 2 as well as data over channel 3.
We checked that the sender and the receiver (left hand-side and right hand-side
of Figure 9, respectively) are loosely synchronized. Formally, the safety property
is given by the following set of good control states, which should be the only
reachable ones: {00, 10, 11, 12, 22, 32, 33, 30}.
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Fig. 9. Alternating Bit Protocol

C.2 Nested Connection/Disconnection Protocol

Systems with nested loops overburden standard acceleration techniques, which
rely on the analysis of simple loops and cannot accelerate nested loops. We have
extended the connection/disconnection protocol with simple loops to exchange
data (message m) from the client to the server. This variant does not have the
disconnect transitions, as otherwise the example would be unsafe and, hence,
easier to verify with a Cegar approach. We checked the same safety property
as the c/d protocol, directly specified here by the state b of the server, which
should not be reachable.

0Client

1

!o !c

!m

0 Server

1

b?o ?c

?c

?m

ch. 1

Fig. 10. Extension of the C/D Protocol with Nested Loops for Data

C.3 Non-Regular Protocol

This is a simple example where the reachability set is non-recognizable. Indeed,
the set of reachable queue contents in control state 00 is {(am, ε, bm, ε) | m ∈ N}
which is not recognizable. The safety property is given explicitly by the control
state 02, which should not be reachable.

Remark C.1. Even though we only utilize recognizable subsets to compute in-
variants, our approach is able to verify the safety property on this non-regular
example. Other techniques that are based on recognizable subsets, but that rely
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Fig. 11. Non-Regular Protocol using Channels 1,3 like Stacks

on an exact computation of the reachability set (e.g., symbolic exhaustive explo-
ration with Qdds and acceleration [BG99]) are not able to handle non-regular
fifo systems at all. On the other hand, our technique is limited to safety proper-
ties that can be proved with recognizable invariants.

C.4 Peterson’s Leader Election

This is a translation of Peterson’s leader election algorithm [Pet82] (viz. Fig-
ure 12 for pseudocode taken from [Ans08]) into a fifo system. The algorithm is
modeled as a set of finite state automata which are executed distributively (and
asynchronously) in a ring topology. We check whether more than one process
asserts that he is the leader. In our case (Table 1 of Section 8), the number of
peers is fixed to 3 (we do not perform parametrized model checking).

// assume each pear has fix UID

VirtualID = UID

Mode = Active

while (TRUE) {

if (Mode == Relay):

tempid = receive()

send(tempid)

else {

send(VirtualID)

uid2 = receive()

if (VirtualID == id2):

announce("I’m the leader of the ring.")

else:

send(id2);

uid3 = receive();

if (id2 > max{VirtualID,id3}):

VirtualID = id2;

else:

Mode = Relay;

Peer

outputinput

Fig. 12. Leader Election in an Asynchronous Ring following Peterson

C.5 Simplified TCP

Based on the underlying state transition of the TCP protocol and by ignoring
all the additional timing constraints as well as the sophisticated data transport
(sliding windows etc.), we modeled the three-way handshake of TCP as well as
the passive/active close in a simple client/server setting with one bidirectional
channel.
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The diagram in Figure 13 presents only the client in detail, the server is
identical except for exchanging send and receive in the 3-way handshake phase.
We further utilize only the messages s(yn), a(ck), f(in), d(ata) without any
additional sequence numbering nor user data.

We verified that the connection establishment and termination work by
checking whether one of the peers remains in the closed state whereas the other
assumes the connection to be established.

closed
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closed
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?s ?a

?a ?s
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!d?d
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close

active
close Server

ch. 1
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Fig. 13. Simplified Transmission Control Protocol

C.6 Server with Two Clients

This is a simple extension of the (simplified) TCP protocol, where we verify
the correctness of connection establishment and termination in the case of a
second client that uses the same channels as the original client, but with distinct
messages.

C.7 Token Ring Protocol

This is an example of a token passing protocol, where n identical processes, set
in a ring architecture, can pass some tokens. At the beginning, each process has
0 or 1 token (local states 0 or 1). A process is in a “bad” configuration when
it has two tokens (local state b). Therefore, it sends an alert message a before
sending a token t. When a process receives an alert message, it ignores it (if it
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has no token) or sends immediately its token to the following process, without
an alert message. This is the reason why the only outgoing transition of local
state 3 is to send a token. In our case (Table 1 of Section 8), the number of
processes is fixed to 4.
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1

b

?t

!a

?a ?a

!t

!t

?t
?t

outputinput

Fig. 14. Single Peer of Token Ring Protocol

C.8 Sliding Window Protocol

The family of sliding window protocols defines a safe way to transfer data over
a channel. The size of the sliding window is a priori fixed (as in our case),
or adaptively changes dynamically. At each moment, the sender restricts the
number of unacknowledged messages in the queue towards the receiver to be
smaller than the window size.

The instantiation of the sliding window protocol whose benchmark is pre-
sented in Section 8 has a fixed message length of 10 and a window size of 2. If
the sender receives an acknowledgement for a packet that was not already sent
or that was already acknowledged, our protocol aborts the transfer by enter-
ing an error state. Further, receiving acknowledgements not in the order of sent
packages also leads to the error state, whose reachability will be checked.


