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Computing branchwidth via efficient triangulations and
blocks

Fedor Fomin∗ Fréd́eric Mazoit† Ioan Todinca‡

Abstract

Minimal triangulations and potential maximal cliques are the main ingredients for a num-
ber of polynomial time algorithms on different graph classes computing the treewidth of a
graph. Potential maximal cliques are also the main engine of the fastest so farO(1.9601n)-
time exact treewidth algorithm. Based on the recent results of Mazoit, we define the structures
that can be regarded as minimal triangulations and potential maximal cliques for branchwidth:
efficient triangulations and blocks. We show how blocks can be used to construct an algorithm
computing the branchwidth of a graph onn vertices in time(2 +

√
3)n · nO(1).

1 Introduction

Treewidth is one of the most basic parameters in graph algorithms and it plays an important role
in structural graph theory. Treewidth serves as the main tools in Robertson and Seymour’s Graph
Minors project [18]. It is well known that many intractable problems can be solved in polynomial
(and very often in linear time) when the input is restricted to graphs of bounded treewidth. See [3]
for a comprehensive survey.

The branchwidth is strongly related to treewidth. It is known that for any graphG, bw(G) ≤
tw(G) + 1 ≤ 1.5 · bw(G). Both bounds are tight and achievable on trees and complete graphs.
Branchwidth was introduced by Robertson & Seymour and it appeared to be even more appropriate
tool than treewidth for Graph Minor Theory. Since both parameters are so close, one can expect
that the algorithmic behavior of the problems is also quite similar. However, this is not true.
For example, on planar graphs branchwidth is solvable in polynomial time [21] while computing
the treewidth of a planar graph in polynomial time is a long standing open problem. Even more
striking example was observed by Kloks et al. in [14]: it appeared that computing branchwidth is
NP hard even on split graphs. Note that the treewidth of a split graph can be found in linear time.

The last decade has led to much research in fast exponential-time algorithms. Examples of
recently developed exponential algorithms are algorithms for Maximum Independent Set [13, 19],
(Maximum) Satisfiability [7, 12, 17, 20, 23], Coloring [2, 5, 8], and many others (see the recent
survey written by Woeginger [24] for an overview). There are several relatively simple algorithms
based on dynamic programming computing the treewidth of a graph onn vertices in time2n ·
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nO(1) which with more careful analyze can be speed-up toO(1.9601n) [9]. No such algorithm
is known for branchwidth. The only nontrivial algorithm for branchwidth we were aware can be
obtained by using deep min-max theorems of Robertson & Seymour [18] relating branchwidth
and tangles. Then by playing with tangle axioms one can reduce the search space and perform
dynamic programming to construct optimal tangles in time4n ·nO(1). (We leave the details in this
extended abstract.)

Thus treewidth seems to be more simple problem for design of exponential time algorithms
than branchwidth. The explanation to that can be that all known exact algorithms for treewidth
exploit the relations between treewidth, minimal triangulations, minimal separators and potential
maximal cliques. Mazoit in [15] observed that the branchwidth also can be seen as a triangula-
tion problem. However, while for treewidth one can work only with minimal triangulations the
situation with branchwidth is more complicated. Lucky enough we still can use some specific tri-
angulations, which we call efficient triangulations. In this paper we adopt the techniques of Mazoit
to discover the analogue of potential maximal cliques for branchwidth, we call these structures by
blocks. Potential maximal cliques are extremely useful tools in work with treewidth [4, 9]. We
believe that blocks can also be useful to work with branchwidth. To exemplify that we show how
blocks can be used to compute branchwidth in time(2 +

√
3)n · nO(1). Note that this is the fastest

known exact algorithm for this problem.

2 Basic definitions

We denote byG = (V,E) a finite undirected and simple graph with|V | = n vertices and|E| = m
edges. Throughout this paper we use a modified big-Oh notation that suppresses all polynomially
bounded factors. For functionsf andg we writef(n) = O∗(g(n)

)
if f(n) = g(n) · nO(1).

For any non-empty subsetW ⊆ V , the subgraph ofG induced byW is denoted byG[W ]. If
S is a set of vertices, we denote byG − S the graphG[V \ S]. Theneighborhoodof a vertexv
is N(v) =

{
u ∈ V : {u, v} ∈ E

}
and for a vertex setS ⊆ V we putN(S) =

⋃
v∈S N(v) \ S.

A cliqueC of a graphG is a subset ofV such that all the vertices ofC are pairwise adjacent. Let
ω(G) denote the maximum clique size ofG.

A graphG is chordal if every cycle ofG with at least four vertices has a chord, that is an edge
between two non-consecutive vertices of the cycle. Consider an arbitrary graphG = (V,E), and
a supergraphH = (V, F ) of G (i.e. E ⊆ F ). We say thatH is a triangulation of G if H is
chordal. Moreover, if no strict sub-graph ofH is a triangulation ofG, thenH is called aminimal
triangulation.

The notion of branchwidth is due to Robertson and Seymour [18]. Abranch decompositionof
a graphG = (V,E) is a pair(T, τ) in which T = (VT , ET ) is a ternary tree (i.e. each node is of
degree one or three) andτ is a function mapping each edge ofG on a leaf ofT . The vertices ofT
will be callednodesand its edges will be calledbranches. For any branche ∈ ET , let T1(e) and
T2(e) be the subtrees obtained fromT by removinge. Let lab(e) be the set of vertices ofG both
incident to edges mapped onT1(e) andT2(e). The maximum of

{
| lab(e)|, e ∈ ET

}
, is called

thewidth of the branch decomposition. Thebranchwidthof a graphG
(
bw(G)

)
is the minimum

width over all branch decompositions ofG. Note that the definitions of branch decomposition and
branch-width also apply to hypergraphs. As pointed by Robertson and Seymour, the definition
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of branch decomposition can be relaxed. Arelaxed branch decompositionof G = (V,E) is a
couple(T, τ) whereT is an arbitrary tree andτ is an application mapping each edge ofG to at
least one leaf ofT . The labels of the branches and the width of the decomposition are defined as
before. From any relaxed branch decomposition we can construct a branch decomposition without
increasing the width.

The branchwidth is strongly related to a well-known graph parameter introduced by Robertson
and Seymour, namely thetreewidth. One of the equivalent definitions for treewidth istw(G) =
min

{
ω(H) − 1 | H is a triangulation ofG

}
. Robertson and Seymour show that the two pa-

rameters differ by at most a factor of1.5. More precisely, for any graphG we havebw(G) ≤
tw(G) + 1 ≤ 1.5 bw(G). In particular, ifG is a complete graph, its treewidth isn − 1, while its
branchwidth isd2n/3e (see [18]). Clearly, when computing the treewidth of a graph we can restrict
to minimal triangulations. This observation and the study of minimal triangulations of graphs led
to several results about treewidth computation, including an exact algorithm inO∗(1.961n) time.

The branch decompositions of a graph can also be associated to triangulations. Indeed, given
a branch decomposition(T, τ) of G = (V,E), we can associate to eachx ∈ V the subtree ofT
covering all the leaves ofT containing edges incident tox. It is well-known that the intersection
graph of the sub-trees of a tree is chordal [10]. Thus the intersection graph of the treesTx is a
triangulationH(T, τ) of G. Note that for each branche ∈ ET , lab(e) is the set of verticesx such
thate belongs toTx. In particular,lab(e) induces a clique inH(T, τ), not necessarily maximal.
(We shall point out later that, for each maximal cliqueΩ of H(T, τ), there exists a nodeu of T
such thatu ∈ Tx for all x ∈ Ω.)

The first big difference with treewidth is that there exist examples of graphs for which any op-
timal branch decomposition leads to non-minimal triangulations [15]. Therefore the many existing
tools about minimal triangulations are not sufficient in our case. The second important difference
is that the branchwidth problem remains NP-hard even for a restricted class of chordal graphs,
thesplit graphs [14]. Nevertheless, our technique for computing the branchwidth relies on a struc-
tural result stating that, for any graphG, there is an optimal branch decomposition(T, τ) such that
H(T, τ) is anefficienttriangulation ofG. The efficient decomposition, defined in the next section,
behave somehow similarily to minimal decompositions. In order to obtain our exact algorithm
for branchwidth, we will combine this observation with an exponential algorithm computing the
branchwidth of hyper-cliques.

3 Branchwidth and efficient triangulations

Let a andb be two non adjacent vertices of a graphG = (V,E). A set of verticesS ⊆ V is
ana, b-separatorif in the graphG − S a andb in are in different connected components.S is a
minimala, b-separatorif no proper subset ofS is ana, b-separator. We say thatS is a minimal
separatorof G if there are two verticesa andb such thatS is a minimala, b-separator. We denote
by C(S) the set of connected components ofG − S and by∆G the set of all minimal separators
of G.

Definition 1. A triangulationH of G is efficientif

1. each minimal separator ofH is also a minimal separator ofG;
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2. for each minimal separatorS of H, the connected components ofH − S are exactly the
connected components ofG− S.

In particular, all the minimal triangulations ofG are efficient [16].

Theorem 2 ([15]). There is an optimal branch decomposition(T, τ) of G such that the chordal
graphH(T, τ) is an efficient triangulation ofG. Moreover, each minimal separator ofH is the
label of some branch ofT .

Definition 3. A set of verticesB ⊆ V of G is called ablock if, for each connected componentCi

of G−B,

• its neighborhoodSi = N(Ci) is a minimal separator;

• B \ Si is non empty and contained in a connected component ofG− Si.

We say that the minimal separatorsSi border the blockB and we denote byS(B) the set of these
separators.

LetBG denote the set of blocks ofG. Note thatV is a block withS(V ) = ∅.
We prove that ifH is an efficient triangulation ofG, then any maximal cliqueK of H is a

block ofG.

Lemma 4 ([4]). LetH be a chordal graph andΩ be a maximal clique ofH. ThenΩ is a block of
H.

Lemma 5. LetH be an efficient triangulation ofG andΩ be any maximal clique ofH. ThenΩ is
a block ofG. Conversely, for any blockB of G, there is an efficient triangulationH(B) of G such
thatB induces a maximal clique inH.

Proof. If H is an efficient triangulation ofG, by Lemma 4 every maximal cliqueΩ is a block of
H. By definition of efficient triangulations, a block ofH is also a block ofG.

Conversely, ifB is a block ofG, let C1, . . . , Cp be the connected components ofG − B and
let Si = N(Ci), for all 1 ≤ i ≤ p. Let H(B) be the graph obtain fromG by completingB and
each setSi∪Ci into a clique. The minimal separators ofH(B) are exactlyS1, . . . , Sp. Moreover,
for eachSi, the connected components ofH − Si are exactly the components ofG− Si.

Note that the treewidth of a graph can be expressed by the following equation:

tw(G) = min
H triangulation ofG

max{|Ω| − 1 | Ω maximal clique ofH}. (1)

The minimum can be taken over all minimal triangulationsH of G. A similar formula can be
obtained for branchwidth.

Definition 6 (block-branchwidth). Let B be a block ofG andK(B) be the complete graph with
vertex setB. A branch decomposition(TB, τB) of K(B) respectsthe blockB if, for each minimal
separatorS ∈ S(B), there is a branche of the decomposition such thatS ⊆ lab(e). Theblock
branchwidthbbw(B) of B is the minimum width over all the branch decompositions ofK(B)
respectingB.
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Equivalently,bbw(B) is the branchwidth of the hypergraph obtained from the complete graph
with vertex setB by adding a hyperedgeS for each minimal separatorS borderingB. The block-
branchwidth allows us to express the branchwidth ofG by a formula similar to Equation 1 (see
Propositions 4.18 and 6.7 in [15]). The proof of the theorem is given in the Appendix.

Theorem 7 ([15]).

bw(G) = min
H efficient triangulation ofG

max{bbw(Ω) | Ω maximal clique ofH}. (2)

A potential maximal clique of a graphG is a set of verticesΩ such that there is a minimal
triangulationH of G in whichΩ introduces a maximal clique [4]. Using the Equation 1, Bouchitté
and Todinca show that, given a graph and all its potential maximal cliques, the treewidth of the
graph can be computed in polynomial time. The result is refined in [9], where the authors show
the following:

Theorem 8. There is an algorithm that, given a graphG and the setΠG of its potential maximal
cliques, computes the treewidth ofG in O(nm|ΠG|) time.

According to Lemma 5, a vertex subsetΩ of G can be a maximal clique of an efficient trian-
gulationH of G if and only if Ω is a block ofG. Hence, in our case the blocks play the same role
as the potential maximal cliques in Theorem 8.

Using Equation 2 instead of Equation 1 and blocks instead of potential maximal cliques, the
algorithm cited in Theorem can be directly transformed into an algorithm takingG, the setBG of
all its blocks and the block-branchwidth of each blockB, and computing the branchwidth ofG in
O(nm|BG|) time. In the rest of this section we give, without proofs, the new algorithm and the
main tools for obtaining it.

Given a minimal separatorS of G and a connected componentC of G−S, letR(S, C) denote
the hypergraph obtained fromG[S ∪ C] by adding the hyperedgeS.

Lemma 9 (Similar to Corollary 4.5 in [4]). For any graphG,

bw(G) = min(d2n/3e, min
S∈∆G

max
C∈C(S)

bw(R(S, C)))

Moreover, the minimum can be taken over the inclusion-minimal separators ofG.

The case whenbw(G) = d2n/3e corresponds to the fact that, for an optimal decomposition
(T, τ) of G, the efficient triangulationH(T, τ) is the complete graph.

Lemma 10 (Similar to Corollary 4.8 in [4]). Let S be a minimal separator ofG and C be a
component ofG− S such thatS = N(C). Then

bw(R(S, C)) = min
blocksΩ s.t.S⊂Ω⊆S∪C

max(bbw(Ω),bw(R(Si, Ci)))

whereCi are the components ofG− Ω contained inC andSi = N(Ci).

The algorithm for computing the branchwidth ofG is a straightforward translation of Lem-
mas 9 and 10, and very similar to the one of [9].
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Input: G, all its blocks and all its minimal separators
Output: bw(G)
begin

compute all the pairs{S, C} whereS is a minimal separator andC a component
of G− S with S = N(C); sort them by the size ofS ∪ C

for each{S, C} taken in increasing order
bw(R(S, C)) := bbw(S ∪ C)
for each blockΩ with S ⊂ Ω ⊆ S ∪ C

compute the componentsCi of G− Ω contained inC and letSi = N(Ci)
bw(R(S, C)) := min(bw(R(S, C)),

max
i

(bbw(Ω),bw(R(Si, Ci))))

end for
end for
let ∆∗

G be the set of inclusion-minimal separators ofG
bw(G) := min(d2n/3e, min

S∈∆∗
G

max
C∈C(S)

bw(R(S, C)))

end

Theorem 11.Given a graphG and the listBG of all its blocks together with their block-branchwidth,
the branchwidth ofG can be computed inO(nm|BG|) time.

Proof. The proof is very similar to the proof for treewidth and potential maximal cliques in [9]
and we omit it here.

4 Computing the block-branchwidth

The main result of this section is that the block-branchwidth of a blockB of G can be computed
in O∗(

√
3

n
) time. Computing the block-branchwidth is NP-hard, as it can be deduced directly

from [14].
Let n(B) denote the number of vertices of the blockB of G and lets(B) be the number of

minimal separators borderingB. Note thats(B) is at most the number of components ofG− B,
in particularn(B) + s(B) ≤ n.

Lemma 12. bbw(B) ≤ p if and only if there is a partition ofB into four partsA1, A2, A3, D
such that

1. |B \Ai| ≤ p, for all i ∈ {1, 2, 3};

2. for each minimal separatorS ∈ S(B), S is contained inB \Ai for somei ∈ {1, 2, 3}.

Proof. Suppose thatbbw(B) ≤ p and let(T, τ) be an optimal branch decomposition ofB respect-
ing the block. Recall that this branch decomposition corresponds to the complete graphK(B) with
vertex setB. For eachx ∈ B let Tx be the minimal sub-tree ofT spanning all the leaves ofT
labeled with an edge incident tox. Letu representB. Clearlyu is a ternary node. Lete1, e2, e3 be
the branches ofT incident tou. LetT (i) be the sub-tree ofT rooted inu, containing the branchei,
for i ∈ {1, 2, 3}. LetBi = {z ∈ B | z is incident to some edge ofK(B) mapped on a leaf ofT (i)}.
Fix D = B1 ∩B2 ∩B3, andAi = Bj ∩Bk \D for all triples(i, j, k) with i, j, k ∈ {1, 2, 3} and
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distinct. Observe thatD,A1, A2, A3 form a partition ofB. The three sets are pairwise disjoint by
construction. Since for allx ∈ B, u ∈ Tx, we have thatx ∈ Bi∩Bj for distincti, j ∈ {1, 2, 3}, so
x is in one of the four setsA1, A2, A3 or D. It remains to show that the partition satisfies the con-
ditions of the theorem. Consider a separatorS ∈ S(B) and a branche in the decomposition with
S ⊆ lab(e). Suppose w.l.o.g. thate ∈ T (i). Consequentlylab(e) ⊆ Bi, and sinceBi = B \ Ai

we have the second condition of the theorem. For proving the first condition, sinceA1, A2, A3, D
is a partition ofB, note thatlab(ei) = Aj ∪ Ak ∪ D = B \ Ai. Therefore|B \ Ai| ≤ p, for all
i ∈ {1, 2, 3}.

Conversely, suppose that such a partition exists and let us construct a branch decomposition
of K(B) respecting the blockB, of width at mostp. Let Bi = B \Ai, for eachi ∈ {1, 2, 3}. For
eachi, construct an arbitrary branch decomposition(Ti, τi) of the complete graph with vertex set
Bi. Let T be the tree obtained as follows : for eachTi, add a new nodevi on some branch ofTi,
then glue the three trees by adding a new nodeu, adjacent tov1, v2, v3. The treeT is a ternary
tree and each edge ofK(B) is mapped on at least one leaf ofT , so we obtained a relaxed tree
decomposition(T, τ) of K(B). Let ei be the branch{u, vi}. Note thatlab(ei) = Bi∩ (Bj ∪Bk),
where{i, j, k} = {1, 2, 3}. Hencelab(ei) = Bi. Consequently, the relaxed branch decomposition
respects the blockB. Clearly for each branche of T , lab(e) is contained in someBi, so| lab(e)| ≤
p and the conclusion follows.

Theorem 13. The block-branchwidth of any blockB can be computed inO∗(3s(B)) time.

Proof. Let B be a block ofG. Suppose thatbbw(B) ≤ p. By Lemma 12, there exists a partition
of B in A1, A2, A3 andD such that|B \ Ai| ≤ p and everyS ∈ S(B) is a subset ofB \ Ai.
Denote bya1, a2, a3 andd the sizes ofA1, A2, A3 andD. We can partitionS(B) in three subsets
Si such that everyS ∈ Si is included inB \Ai. Let Si be the union of all the minimal separators
of Si. The numbersa1, a2, a3 andd satisfy the following inequalities:

1. ai ≥ 0, d ≥ 0, a1 + a2 + a3 + d = |B|;

2. |S1 ∩ S2 ∩ S3| ≤ d, |(S1 ∩ S2) \ S3| ≤ a3, |(S2 ∩ S3) \ S1| ≤ a1, |(S3 ∩ S1) \ S2| ≤ a2;

3. a1 + a2 + d ≤ p, a2 + a3 + d ≤ p, a3 + a1 + d ≤ p.

The first inequalies express the fact thatA1, A2, A3 andD is a partition ofB, the second express
the fact thatSi is a subset ofB \Ai and the last ones express the fact thatbbw(B) ≤ p.

Conversely, suppose there is a partition ofS(B) in S1, S2 andS3 and four integersa1, a2, a3, d
satisfying the system above. Then there exist a partition ofB into four setsA1, A2, A3, D, of
cardinalitiesa1, a2, a3, d and such thatD intersectsS1 ∪ S2 ∪ S3 exactly inS1 ∩ S2 ∩ S3, and
eachAi intersectsS1 ∪ S2 ∪ S3 exactly in(Sj ∩ Sk) \ Si, where{i, j, k} = {1, 2, 3}. Moreover
|B \Ai| ≤ p by the third series of inequalities, so by Lemma 12 we havebbw(B) ≤ p.

Hence, there an efficient branch decomposition ofK(B) respectingB of branchwidth at most
p if and only if there is a partition partitionS1,S2,S3 of S(B) and four numbersa1, a2, a3 andd
satisfying the system. To decide whetherbbw(B) ≤ p or not, we only have to try all the partitions
of S(B) in S1, S2 andS3 and check all then4 possible values for theai’s andd. This can be done
in O∗(3|S(B)|) = O∗(3s(B)) time as claimed.
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Theorem 14. The block-branchwidth of any blockB can be computed inO∗(3n(B)) time.

Proof. We show that for any numberp, the existence of a partition like in Lemma 12 can be tested
in O∗(3n(B)).

For this purpose, instead of partitioningB into four parts, we try all the partitions ofB into
three partsA1, X,D, whereX corresponds toA2 ∪A3. If |B \A1| ≤ p, we check in polynomial
time if X can be partitioned intoA2 andA3 as required. Since there are at most3n(B) three-
partitions ofB, it only remains to solve this last point.

We say that two verticesx, y ∈ X are equivalent if there existz ∈ A1 and a minimal separator
S borderingB such thatx, y, z ∈ S. In particular,x ∼ y implies thatx andy must be both in
A2 or both inA3. Let X1, . . . , Xq be the equivalence classes ofX. ThenX can be partitioned
into A2 andA3 as required if and only if{|X1|, . . . , |Xq|} can be partitioned into two parts of
sum at mostp − |A1| − |D| vertices. Consider now the EXACT SUBSET-SUM problem, whose
instance is a set of positive integersI = {i1, . . . , iq} and a numbert, and the problem consists in
finding a subset ofI whose sum is exactlyt. Though NP-hard in general, it becomes polynomial
whent and the numbersij are polynomially bounded inn (see e.g. the chapter on approximation
algorithms, the subset-sum problem in the book of Cormen, Leiserson, Rivest [6]). By taking
I = {|X1|, . . . , |Xq|} and trying all possible values oft between1 and n2, we can check in
polynomial time ifX can be partitioned as required.

Since at least one ofs(B) or n(B) is smaller or equal ton/2, we deduce:

Theorem 15. For any blockB of G, the block-branchwidth ofB can be computed inO∗(
√

3
n
)

time.

Theorems 11 and 15 imply our main result.

Theorem 16. The branchwidth of graphs can be computed inO∗((2 +
√

3)n) time andO∗(2n)
space.

Proof. The algorithm enumerates every subsetB of V and checks ifB is a block. Clearly, we
can verify if B is a block in polynomial time. If so, we compute the block branchwidth ofB
using Theorem 15. The number of blocks is at most2n and for each block we needO∗(

√
3

n
) for

computing its block branchwidth. Hence the running time of this phase isO∗((2+
√

3)n), and the
space isO∗(2n).

Eventually, we use Theorem 11 for computing the branchwidth ofG. The second phase takes
O∗(2n) time and space.

5 Open problems

Our algorithm is based on the enumeration of the blocks of a graph (inO∗(2n) time) and on the
computation of the block-branchwidth of a block (inO∗(

√
3

n
) time). It is natural to ask whether

one of these steps can be improved.
Computing the block-branchwidth is the same problem as computing the branchwidth of a

complete hypergraph withn′ vertices ands′ hyper-edges of cardinality at least three. Can we
obtain an algorithm faster than ourO(max(3n′

, 3s′))-time algorithm?
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Note that there exist graphs withn vertices having2n/nO(1) blocks. Indeed, consider the
disjoint union of a cliqueK and an independent setI, both havingn/2 vertices, and add a perfect
matching betweenK andI. We obtain a graphGn such that for anyI ′ ⊆ I, Gn − I ′ is a block.
ThusGn has at least

(
n

n/2

)
≥ 2n/n blocks. The interesting question here is if we can define a

new class of triangulations, smaller than the efficient triangulations but also containingH(T, τ)
for some optimal branch decompositions of the graph.
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A Appendix

Theorem 7 ([15]).

bw(G) = min
H efficient triangulation ofG

max{bbw(Ω) | Ω maximal clique ofH}. (2)

Proof. Let (T, τ) be an optimal branch decomposition ofG such thatH = H(T, τ) is an efficient
triangulation ofG. Such a decomposition exists by Theorem 2. First, let us construct a branch
decomposition(T ′, τ ′) of H having the same width as(T, τ). For each edge{x, y} of E(H) −
E(G), the sub-treesTx andTy share a branche. We divide the branche by a nodev, add a leaf
w adjacent tov and map the edge{x, y} on w. Clearly this will not increase the width of the
decomposition. Consider any maximal cliqueΩ of G. By Lemma 5,Ω is a block ofG and by
Theorem 2 each minimal separator borderingΩ is contained in the label of some brancheS of
T ′. For eachS let (TS , τS) be a arbitrary branch decomposition of the cliqueK(S). We glue
this decomposition toT ′ on the brancheS . That is, we add a node oneS and a node on some
branch ofTS and make them adjacent. We call this new edgee′S , in particular its label is exactly
S. By this process we obtain a relaxed branch decomposition(T ′′, τ ′′) of H of same width as
(T ′, τ ′). By removing fromT ′′ all the leaves that do not correspond to edges in the cliqueΩ, we
obtained a relaxed clique decomposition of the complete graphK(Ω). For each minimal separator
S borderingΩ, note thatS is contained in the label of the edgee′S , so the new decomposition
respectsΩ. Hencebbw(Ω) ≤ bw(G) for each maximal cliqueΩ of H.

Conversely, letH be any efficient triangulation ofG, let us show thatbw(G) ≤ max{bbw(Ω) |
Ω maximal clique ofH}. For each maximal cliqueΩ of G, let (TΩ, τΩ) be an optimal branch de-
compoition ofK(Ω), respecting the blockΩ. We connect these decompositions into a relaxed
branch decomposition ofH. For this purpose we use aclique treeassociated to the chordal graph
graphH (see e.g. [11]). A clique tree is given by a treeT = (VT , ET ) and a one-to-one cor-
respondence between the nodes ofT and the maximal cliques ofH such that, for eachΩ,Ω′

maximal cliques ofH, their intersection is contained in all the cliques associated to nodes on the
unique path fromuΩ to uΩ′ of T (uΩ anduΩ′ denote the nodes associated toΩ andΩ′ respec-
tively). Moreover, for each branche = {uΩ, uΩ′} of T , S = Ω ∩ Ω′ is a minimal separator
borderingΩ andΩ′ [11]. Let eS (resp. e′S) be a branch ofTΩ (resp. TΩ′) whose label contains
S. We connectTΩ andTΩ′ by adding a new branch between the middle ofeS ande′S , for all
branches{uΩ, uΩ′} of T . Hence we obtain a relaxed branch decomposition ofH. By the prop-
erties of the clique tree, the label of each newly created edge connectingTΩ andTΩ′ is exactly
S = Ω ∩ Ω′. Consequently, the labels of the branches contained in someTΩ do not change.
Hencebw(H) ≤ max{bbw(Ω) | Ω maximal clique ofH}. G being a sub-graph ofH, we have
bw(G) ≤ bw(H) and the conclusion follows.
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