N

N

Computing branchwidth via efficient triangulations and
blocks

Fedor V. Fomin, Frédéric Mazoit, Ioan Todinca

» To cite this version:

Fedor V. Fomin, Frédéric Mazoit, loan Todinca. Computing branchwidth via efficient triangulations
and blocks. International Workshop on Graph-Theoretic Concepts in Computer Science, Jun 2005,
France. pp.374-384, 10.1007/11604686_33 . hal-00380511

HAL Id: hal-00380511
https://hal.science/hal-00380511
Submitted on 1 May 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00380511
https://hal.archives-ouvertes.fr

Computing branchwidth via efficient triangulations and
blocks

Fedor Fomin Frederic Mazoif loan Todinca

Abstract

Minimal triangulations and potential maximal cliques are the main ingredients for a num-
ber of polynomial time algorithms on different graph classes computing the treewidth of a
graph. Potential maximal cliques are also the main engine of the fastest@¢1fa601™)-
time exact treewidth algorithm. Based on the recent results of Mazoit, we define the structures
that can be regarded as minimal triangulations and potential maximal cliques for branchwidth:
efficient triangulations and blocks. We show how blocks can be used to construct an algorithm
computing the branchwidth of a graph arvertices in time(2 + v/3)™ - 91,

1 Introduction

Treewidth is one of the most basic parameters in graph algorithms and it plays an important role
in structural graph theory. Treewidth serves as the main tools in Robertson and Seymour’s Graph
Minors project [18]. It is well known that many intractable problems can be solved in polynomial
(and very often in linear time) when the input is restricted to graphs of bounded treewidth. See [3]
for a comprehensive survey.

The branchwidth is strongly related to treewidth. It is known that for any g@aphw (G) <
tw(G) + 1 < 1.5 - bw(G). Both bounds are tight and achievable on trees and complete graphs.
Branchwidth was introduced by Robertson & Seymour and it appeared to be even more appropriate
tool than treewidth for Graph Minor Theory. Since both parameters are so close, one can expect
that the algorithmic behavior of the problems is also quite similar. However, this is not true.
For example, on planar graphs branchwidth is solvable in polynomial time [21] while computing
the treewidth of a planar graph in polynomial time is a long standing open problem. Even more
striking example was observed by Kloks et al. in [14]: it appeared that computing branchwidth is
NP hard even on split graphs. Note that the treewidth of a split graph can be found in linear time.

The last decade has led to much research in fast exponential-time algorithms. Examples of
recently developed exponential algorithms are algorithms for Maximum Independent Set [13, 19],
(Maximum) Satisfiability [7, 12, 17, 20, 23], Coloring [2, 5, 8], and many others (see the recent
survey written by Woeginger [24] for an overview). There are several relatively simple algorithms
based on dynamic programming computing the treewidth of a graph wertices in time2™ -

*Department of Informatics, University of Bergen, N-5020 Bergen, Norf@ayin@ii.uib.no
fLIF, Universite de provence 13453 Marseille Cedex 13 FraRtederic.Mazoit@lif.univ-mrs.fr
fLIFO, Universig d'Orleans 45067 Oglans Cedex 2 Frand@an.Todinca@lifo.univ-orleans.fr

n®M which with more careful analyze can be speed-u®ta.9601™) [9]. No such algorithm

is known for branchwidth. The only nontrivial algorithm for branchwidth we were aware can be
obtained by using deep min-max theorems of Robertson & Seymour [18] relating branchwidth
and tangles. Then by playing with tangle axioms one can reduce the search space and perform
dynamic programming to construct optimal tangles in tithen®). (We leave the details in this
extended abstract.)

Thus treewidth seems to be more simple problem for design of exponential time algorithms
than branchwidth. The explanation to that can be that all known exact algorithms for treewidth
exploit the relations between treewidth, minimal triangulations, minimal separators and potential
maximal cliqgues. Mazoit in [15] observed that the branchwidth also can be seen as a triangula-
tion problem. However, while for treewidth one can work only with minimal triangulations the
situation with branchwidth is more complicated. Lucky enough we still can use some specific tri-
angulations, which we call efficient triangulations. In this paper we adopt the techniques of Mazoit
to discover the analogue of potential maximal cliques for branchwidth, we call these structures by
blocks. Potential maximal cliqgues are extremely useful tools in work with treewidth [4, 9]. We
believe that blocks can also be useful to work with branchwidth. To exemplify that we show how
blocks can be used to compute branchwidth in tithe- v/3)" - n°(). Note that this is the fastest
known exact algorithm for this problem.

2 Basic definitions

We denote by~ = (V, E) a finite undirected and simple graph wjihi| = n vertices andE| = m
edges. Throughout this paper we use a modified big-Oh notation that suppresses all polynomially
bounded factors. For functiorfsandg we write f(n) = O*(g(n)) if f(n) = g(n) - n°W.

For any non-empty subs&t C V, the subgraph ofr induced byl is denoted byG[W]. If
S is a set of vertices, we denote B— S the graphG[V \ S]. Theneighborhoodf a vertexv
isN(v) ={uecV: {uv} e E} and for avertex se§ C V we putN(S) =g N(v)\ S.
A cligueC of a graphG is a subset 0¥ such that all the vertices @f are pairwise adjacent. Let
w(G) denote the maximum clique size Gf

A graphd is chordalif every cycle ofG with at least four vertices has a chord, that is an edge
between two non-consecutive vertices of the cycle. Consider an arbitrary @raptV, £'), and
a supergraptH = (V, F) of G (i.e. E C F). We say that/ is atriangulationof G if H is
chordal. Moreover, if no strict sub-graph Hfis a triangulation of~, thenH is called aminimal
triangulation

The notion of branchwidth is due to Robertson and Seymour [1&frafch decompositioof
agraphG = (V, E) is a pair(T,) in whichT = (Vp, Er) is a ternary tree (i.e. each node is of
degree one or three) ands a function mapping each edge@fon a leaf ofl". The vertices of”’
will be callednodesand its edges will be calleloranches For any brancle € Ep, letT;(e) and
Ts(e) be the subtrees obtained frafhby removinge. Letlab(e) be the set of vertices @ both
incident to edges mapped @i (e) andT3(e). The maximum of{|lab(e)|, e € Er}, is called
thewidth of the branch decomposition. Theanchwidthof a graphG' (bw(G)) is the minimum
width over all branch decompositions @f Note that the definitions of branch decomposition and
branch-width also apply to hypergraphs. As pointed by Robertson and Seymour, the definition

of branch decomposition can be relaxed.refaxed branch decompositiaaf G = (V, E) is a
couple(T, 7) whereT is an arbitrary tree and is an application mapping each edge(oto at

least one leaf of". The labels of the branches and the width of the decomposition are defined as
before. From any relaxed branch decompaosition we can construct a branch decomposition without
increasing the width.

The branchwidth is strongly related to a well-known graph parameter introduced by Robertson
and Seymour, namely thteeewidth One of the equivalent definitions for treewidthtig(G) =
min{w(H) — 1 | H is atriangulation of7}. Robertson and Seymour show that the two pa-
rameters differ by at most a factor of5. More precisely, for any grap&' we havebw(G) <
tw(G) + 1 < 1.5bw(G). In particular, ifG is a complete graph, its treewidthris— 1, while its
branchwidth ig2n/3] (see [18]). Clearly, when computing the treewidth of a graph we can restrict
to minimal triangulations. This observation and the study of minimal triangulations of graphs led
to several results about treewidth computation, including an exact algoritih(in961™) time.

The branch decompositions of a graph can also be associated to triangulations. Indeed, given
a branch decompositiof?’, 7) of G = (V, E), we can associate to eachc V the subtree of”
covering all the leaves d&f containing edges incident ta It is well-known that the intersection
graph of the sub-trees of a tree is chordal [10]. Thus the intersection graph of th&triesea
triangulationH (T,) of G. Note that for each branehe E7, lab(e) is the set of vertices such
thate belongs tdrl’,. In particular,lab(e) induces a clique i (T, 7), not necessarily maximal.

(We shall point out later that, for each maximal cliqueof H (T,), there exists a node of T’
such thaw € T, for all z € 2.)

The first big difference with treewidth is that there exist examples of graphs for which any op-
timal branch decomposition leads to non-minimal triangulations [15]. Therefore the many existing
tools about minimal triangulations are not sufficient in our case. The second important difference
is that the branchwidth problem remains NP-hard even for a restricted class of chordal graphs,
thesplit graphs [14]. Nevertheless, our technique for computing the branchwidth relies on a struc-
tural result stating that, for any gragh there is an optimal branch decomposit{@n 7) such that
H(T,) is anefficienttriangulation ofG. The efficient decomposition, defined in the next section,
behave somehow similarily to minimal decompositions. In order to obtain our exact algorithm
for branchwidth, we will combine this observation with an exponential algorithm computing the
branchwidth of hyper-cliques.

3 Branchwidth and efficient triangulations

Let « andb be two non adjacent vertices of a graph= (V, E). A set of verticesS C V is
ana, b-separatorif in the graphG — S a andb in are in different connected componentsis a
minimal a, b-separatorif no proper subset of is ana, b-separator. We say th&tis aminimal
separatorof G if there are two verticeg andb such thatS is a minimala, b-separator. We denote
by C(S) the set of connected components(df- S and byA the set of all minimal separators
of G.

Definition 1. A triangulationH of G is efficientif

1. each minimal separator &f is also a minimal separator 6f;

2. for each minimal separatat of H, the connected components Hf — S are exactly the
connected components 6f— S.

In particular, all the minimal triangulations 6f are efficient [16].

Theorem 2 ([15]). There is an optimal branch decompositiGh, 7) of G such that the chordal
graph H(T', 7) is an efficient triangulation ofs. Moreover, each minimal separator &f is the
label of some branch df.

Definition 3. A set of verticesB C V of GG is called ablockif, for each connected componeiit
of G — B,

e its neighborhood; = N (C;) is a minimal separator;
e B\ S;is non empty and contained in a connected compone@t-efs;.

We say that the minimal separatdisborderthe blockB and we denote bg(B) the set of these
separators.

Let B denote the set of blocks 6f. Note thatV” is a block withS(V') = 0.
We prove that ifH is an efficient triangulation of7, then any maximal cliqués of H is a
block of G.

Lemma 4 ([4]). Let H be a chordal graph an€l be a maximal clique off. ThenS2 is a block of
H.

Lemma 5. Let H be an efficient triangulation aif and{2 be any maximal clique dff. Then(2 is
a block ofG. Conversely, for any block of G, there is an efficient triangulatiof (B) of G such
that B induces a maximal clique if.

Proof. If H is an efficient triangulation of7, by Lemma 4 every maximal clique is a block of
H. By definition of efficient triangulations, a block éf is also a block of=.

Conversely, ifB is a block ofG, let Cy, . .., C, be the connected components(of- B and
let.S; = N(C;), foralll < i < p. Let H(B) be the graph obtain fro& by completingB and
each sef5; U C; into a clique. The minimal separatorsEf B) are exactlySy, . .., .S,. Moreover,
for eachsS;, the connected componentsidf— S; are exactly the components 6f— S;. O

Note that the treewidth of a graph can be expressed by the following equation:

tw(G)= | min_ max{|Q| — 1 | Q maximal clique ofH }. (1)
H triangulation ofc

The minimum can be taken over all minimal triangulatididsof G. A similar formula can be
obtained for branchwidth.

Definition 6 (block-branchwidth). Let B be a block ofG and K (B) be the complete graph with
vertex setB. A branch decompositiofi 'z, 75) of K (B) respectshe blockB if, for each minimal
separatolS € S(B), there is a branch of the decomposition such that C lab(e). Theblock
branchwidthbbw(B) of B is the minimum width over all the branch decompositiongafB)
respectings.

Equivalently,bbw(B) is the branchwidth of the hypergraph obtained from the complete graph
with vertex setB by adding a hyperedgg for each minimal separatdt borderingB. The block-
branchwidth allows us to express the branchwidtlizaby a formula similar to Equation 1 (see
Propositions 4.18 and 6.7 in [15]). The proof of the theorem is given in the Appendix.

Theorem 7 ([15]).

bw(G) max{bbw(Q2) | 2 maximal clique of }. 2

= omin
H efficient triangulation ofz
A potential maximal clique of a grap@¥ is a set of vertice$2 such that there is a minimal
triangulationH of GG in which (2 introduces a maximal clique [4]. Using the Equation 1, Bouéhitt
and Todinca show that, given a graph and all its potential maximal cliques, the treewidth of the

graph can be computed in polynomial time. The result is refined in [9], where the authors show
the following:

Theorem 8. There is an algorithm that, given a graghand the seil of its potential maximal
cliques, computes the treewidth@fin O(nm|Ilg|) time.

According to Lemma 5, a vertex subgef G can be a maximal clique of an efficient trian-
gulation H of GG if and only if Q2 is a block ofG. Hence, in our case the blocks play the same role
as the potential maximal cliques in Theorem 8.

Using Equation 2 instead of Equation 1 and blocks instead of potential maximal cliques, the
algorithm cited in Theorem can be directly transformed into an algorithm takjrtge set5. of
all its blocks and the block-branchwidth of each bldgkand computing the branchwidth 6fin
O(nm|Bg|) time. In the rest of this section we give, without proofs, the new algorithm and the
main tools for obtaining it.

Given a minimal separatdf of G and a connected componenbf G — S, let R(.S, C') denote
the hypergraph obtained fro6i[S U C] by adding the hyperedge.

Lemma 9 (Similar to Corollary 4.5 in [4]). For any graphG,

bw(G) = min([?n/?)],srgiArg C’rélg(}é) bw(R(S,(C)))

Moreover, the minimum can be taken over the inclusion-minimal separat6is of

The case whebw(G) = [2n/3] corresponds to the fact that, for an optimal decomposition
(T,) of G, the efficient triangulatiod (T', 7) is the complete graph.

Lemma 10 (Similar to Corollary 4.8 in [4]). Let.S be a minimal separator ofr and C be a
component ofs — S such thatS = N(C). Then

bw(R(S,C)) max (bbw(Q), bw(R(S;, C;)))

= min
blocks2 s.t. scocsuc
whereC; are the components 6 — Q2 contained inC' and.S; = N(C;).
The algorithm for computing the branchwidth @fis a straightforward translation of Lem-

mas 9 and 10, and very similar to the one of [9].

5

Input: G, allits blocks and all its minimal separators
Output: bw(G)
begin
compute all the pair$S, C'} whereS is a minimal separator ard a component
of G — S with S = N(C); sort them by the size ff U C
for each{S, C} taken in increasing order
bw(R(S,C)) :=bbw(SUC)
for each block with S c QC SuC
compute the component of G — 2 contained inC' and letS, = N(C;)
bw(R(S,C)) := min(bw(R(S,C)),
max(bbw (§2), bw(R(Si, Cy))))
end _for
end _for
let AZ, be the set of inclusion-minimal separator(of

bw(G) := min([2n/3], SréuAn*G clélc%) bw(R(S,C)))

end

Theorem 11. Given a graphG and the listB¢ of all its blocks together with their block-branchwidth,
the branchwidth oty can be computed i@ (nm|B¢|) time.

Proof. The proof is very similar to the proof for treewidth and potential maximal cliques in [9]
and we omit it here. m

4 Computing the block-branchwidth

The main result of this section is that the block-branchwidth of a blea¥ G can be computed
in O*(\/§") time. Computing the block-branchwidth is NP-hard, as it can be deduced directly
from [14].

Let n(B) denote the number of vertices of the blaBkof G and lets(B) be the number of
minimal separators bordering. Note thats(B) is at most the number of componentsof- B,
in particularn(B) + s(B) < n.

Lemma 12. bbw(B) < p if and only if there is a partition o8 into four partsA;, As, Az, D
such that

1. |B\ A;| <p, forallie {1,2,3};
2. for each minimal separata$ € S(B), S is contained inB \ 4; for somei € {1,2,3}.

Proof. Suppose thdibw(B) < pand let(T, 7) be an optimal branch decomposition®fespect-
ing the block. Recall that this branch decomposition corresponds to the completggrBphwvith
vertex setB. For eachx € B let T, be the minimal sub-tree &F spanning all the leaves af
labeled with an edge incident 1o Letwu represen3. Clearlywu is a ternary node. Lety, es, e3 be
the branches df’ incident tou. LetT'(i) be the sub-tree df rooted inu, containing the brancty,
fori € {1,2,3}. Let B, = {z € B | zis incident to some edge & (B) mapped on a leaf of'(i)}.
Fix D = By N By N Bs, andA; = B; N By, \ D for all triples (i, j, k) with 4, j, k € {1,2,3} and

distinct. Observe thab, A, A,, A3 form a partition of B. The three sets are pairwise disjoint by
construction. Since for at € B, u € T, we have that: € B; N B; for distincti, j € {1,2,3}, so

x is in one of the four setd, A, A3 or D. It remains to show that the partition satisfies the con-
ditions of the theorem. Consider a separétor S(B) and a brancla in the decomposition with

S C lab(e). Suppose w.l.o.g. thate T'(i). Consequentlyab(e) C B;, and sinceB; = B\ A4;

we have the second condition of the theorem. For proving the first condition, 4inck,, Az, D

is a partition ofB, note thatlab(e;) = A; U A, UD = B\ A;. Therefore|B \ A;| < p, for all
i€{1,2,3}.

Conversely, suppose that such a partition exists and let us construct a branch decomposition
of K (B) respecting the blocB, of width at mosp. Let B; = B\ A;, for eachi € {1, 2, 3}. For
eachi, construct an arbitrary branch decomposit{@h 7;) of the complete graph with vertex set
B;. LetT be the tree obtained as follows : for edEh add a new node; on some branch df7;,
then glue the three trees by adding a new nedadjacent tavy, vo, v3. The treeT is a ternary
tree and each edge &f (B) is mapped on at least one leaf Bf so we obtained a relaxed tree
decomposition{T’, 7) of K (B). Lete; be the brancHu, v;}. Note thaflab(e;) = B; N (B; U By),
where{i, 5, k} = {1,2,3}. Hencelab(e;) = B;. Consequently, the relaxed branch decomposition
respects the blocB. Clearly for each branchof T', lab(e) is contained in som8;, so|lab(e)| <
p and the conclusion follows. O

Theorem 13. The block-branchwidth of any blodk can be computed i®*(3°(?)) time.

Proof. Let B be a block ofG. Suppose thatbw(B) < p. By Lemma 12, there exists a partition
of Bin Ay, Ay, A3 and D such thaiB \ A;| < p and everyS € S(B) is a subset oB \ A;.
Denote byay, a2, az andd the sizes ofd;, A, A3 andD. We can partitiorS(B) in three subsets
S; such that every € S; is included inB \ A4;. Let.S; be the union of all the minimal separators
of S;. The numbers, as, a3 andd satisfy the following inequalities:

1.a;>20,d>0,a1+az+a3z+d=|BJ
2. |S1NSyNSs| < d,|(S1NS2)\ S3| <as,|(S2NS3)\ Si| <aq,[(S3NSy)\ S| < ag;
d.art+as+d<pat+a3+d<p,az+a+d<p.

The first inequalies express the fact thiat A,, A; andD is a partition of B, the second express
the fact thatS; is a subset oB \ A; and the last ones express the fact thiat (B) < p.

Conversely, suppose there is a partitio®¢B) in S1, So andSs and four integers , as, as, d
satisfying the system above. Then there exist a partitioB @fito four setsA;, As, Az, D, of
cardinalitiesaq, a2, as, d and such thaD intersectsS; U Sy U S3 exactly inS; N Se N S3, and
eachA; intersectsS; U Sy U S3 exactly in(S; N .S) \ S, where{i, j,k} = {1,2,3}. Moreover
|B\ A;| < p by the third series of inequalities, so by Lemma 12 we Hawe(B) < p.

Hence, there an efficient branch decompositio&¢f3) respectingB of branchwidth at most
p if and only if there is a partition partitios;, Sz, S3 of S(B) and four numbers;, as, as andd
satisfying the system. To decide whethéw (B) < p or not, we only have to try all the partitions
of S(B) in S, S andS; and check all the* possible values for the;’s andd. This can be done
in O*(315B) = 0*(3°(B)) time as claimed. O

Theorem 14. The block-branchwidth of any blodk can be computed i@®*(3™(5)) time.

Proof. We show that for any number the existence of a partition like in Lemma 12 can be tested
in O*(37(8)),

For this purpose, instead of partitionidgjinto four parts, we try all the partitions d@® into
three partsA;, X, D, whereX corresponds toly U As. If | B\ A1| < p, we check in polynomial
time if X can be partitioned intol, and A5 as required. Since there are at ma&t®) three-
partitions ofB, it only remains to solve this last point.

We say that two vertices, y € X are equivalent if there existe A; and a minimal separator
S borderingB such thatr,y, z € S. In particular,z ~ y implies thatz andy must be both in
Ay or both inAs. Let Xy, ..., X, be the equivalence classes®f ThenX can be partitioned
into A, and A3 as required if and only if|.X1],...,|X,|} can be partitioned into two parts of
sum at mosp — |A;| — |D| vertices. Consider now the EXACT SUBSET-SUM problem, whose
instance is a set of positive integdrs= {i1, ..., i,} and a numbet, and the problem consists in
finding a subset of whose sum is exactlyy Though NP-hard in general, it becomes polynomial
whent and the numbers; are polynomially bounded in (see e.g. the chapter on approximation
algorithms, the subset-sum problem in the book of Cormen, Leiserson, Rivest [6]). By taking
I = {|X1],...,|X,|} and trying all possible values dfbetweenl andn?, we can check in
polynomial time if X can be partitioned as required. O

Since at least one & B) or n(B) is smaller or equal ta/2, we deduce:

Theorem 15. For any blockB of G, the block-branchwidth o can be computed iﬂ)*(\/gn)
time.

Theorems 11 and 15 imply our main result.

Theorem 16. The branchwidth of graphs can be computedif((2 + /3)") time andO*(2")
space.

Proof. The algorithm enumerates every subsedf V' and checks ifB is a block. Clearly, we
can verify if B is a block in polynomial time. If so, we compute the block branchwidttBof
using Theorem 15. The number of blocks is at nitysand for each block we need*(y/3") for
computing its block branchwidth. Hence the running time of this pha&¥ (2 +1/3)"), and the
space ig0*(2").

Eventually, we use Theorem 11 for computing the branchwidtd.of he second phase takes
O*(2™) time and space. O

5 Open problems

Our algorithm is based on the enumeration of the blocks of a grapf*({2™) time) and on the
computation of the block-branchwidth of a block (m‘(\/En) time). It is natural to ask whether
one of these steps can be improved.

Computing the block-branchwidth is the same problem as computing the branchwidth of a
complete hypergraph with’ vertices ands’ hyper-edges of cardinality at least three. Can we
obtain an algorithm faster than oG{max(3", 3*'))-time algorithm?

8

Note that there exist graphs with vertices having2” /n®(") blocks. Indeed, consider the
disjoint union of a cliquek and an independent sktboth having: /2 vertices, and add a perfect
matching betweer and. We obtain a grapld?,, such that for any’ C I, G,, — I is a block.
ThusG,, has at Ieas(n%) > 2" /n blocks. The interesting question here is if we can define a
new class of triangulations, smaller than the efficient triangulations but also contairifigr)
for some optimal branch decompositions of the graph.

References

[1] R. Beigel and D. Eppstein. 3-coloring in tind&1.3446™): a no-MIS algorithm. Proceedings
of the 36th IEEE Symposium on Foundations of Computer Science (FOCS, 11p0sM4—
452,

[2] R. Beigel and D. Eppsteirs-coloring in timeO(1.3289™). Journal of Algorithmsp4:444—
453, 2005.

[3] H. L. Bodlaender, A partiat-arboretum of graphs with bounded treewidthgoret. Comput.
Sci, 209:1-45, 1998.

[4] V. Bouchitte and I. Todinca. Treewidth and minimum fill-in: grouping the minimal separa-
tors. SIAM J. on Computing81(1):212 — 232, 2001.

[5] J. M. Byskov. Enumerating maximal independent sets with applications to graph colouring.
Operations Research Lettei®2:547-556, 2004.

[6] T. Cormen, C. Leiserson, and R. Rivekitroduction to algorithmsThe MIT press, 1990.

[7] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan,
and U. Sclining. A deterministi¢2—2/(k+1))™ algorithm for k-SAT based on local search.
Theoretical Computer Scienc289(1):69-83, 2002.

[8] D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfac-
tion. Proceedings of th&2th ACM-SIAM Symposium on Discrete Algorithms (SODA 2001)
pp. 329-337.

[9] F. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for treewidth and
minimum fill-in. In Proceedings 31st International Colloquium on Automatas, Languages
and Programming (ICALP’04)volume 3142 ol ecture Notes in Computer Scienpages
568-580. Springer, 2004.

[10] F. Gavril. The intersection graphs of a path in a tree are exactly the chordal gdaypinsal
of Combinatorial Theoryl6:47-56, 1974.

[11] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graph#cademic Press, New
York, 1980.

[12] K. Ilwama and S. Tamaki. Improved upper bounds for 3-SAT. Proceedings &5theACM-
SIAM Symposium on Discrete Algorithms (SODA 2004828.

9

[13] T. Jian. An @2°-3%47) algorithm for solving maximum independent set probleiEEE
Transactions on Computerd5(9):847—-851, 1986.

[14] T. Kloks, J. Kratochil, and H. Miller. New branchwidth territories. IRroceedings 16th
Annual Symposium on Theoretical Aspects of Computer Science (STAQ®I98)e 1563
of Lecture Notes in Computer Scienpages 173—-183. Springer, 1999.

[15] F. Mazoit. Décompositions algorithmiques des graphe®hD thesis,Ecole normale
sugerieure de Lyon, 2004. In French.

[16] A. Parra and P. Scheffler. Characterizations and algorithmic applications of chordal graph
embeddingsDiscrete Appl. Math.79(1-3):171-188, 1997.

[17] R. Paturi, P. Pudlak, M. E. Saks, and F. Zane. An improved exponential-time algorithm for k-
SAT. Proceedings of th&dth IEEE Symposium on Foundations of Computer Science (FOCS
1998) pp. 628-637.

[18] N. Robertson and P. Seymour. Graph minors X. Obstructions to tree decomposibiomsl
of Combinatorial Theory Series, B82:153—-190, 1991.

[19] J. M. Robson. Algorithms for maximum independent sdtairnal of Algorithms7(3):425—
440, 1986.

[20] U. Schoning. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems.
Proceedings of thdOth IEEE Symposium on Foundations of Computer Science (FOCS
1999) pp. 410-414.

[21] P. D. Seymour and R. Thomas, Call routing and the ratcat€wmmbinatorica14:217-241,
1994.

[22] R. Tarjan and A. Trojanowski. Finding a maximum independent $dAM Journal on
Computing 6(3):537-546, 1977.

[23] R. Williams. A new algorithm for optimal constraint satisfaction and its implications. Pro-
ceedings of th&1st International Colloquium on Automata, Languages and Programming
(ICALP 2004) Springer LNCS vol. 3142, 2004, pp. 1227-1237.

[24] G. J. Woeginger. Exact algorithms for NP-hard problems: A surg@ymbinatorial Opti-
mization — Eureka, You Shrinpringer LNCS vol. 2570, 2003, pp. 185-207.

10

A Appendix
Theorem 7 ([15]).

bw(G) max{bbw(Q2) | Q@ maximal clique of }. (2)

= . omin
H efficient triangulation ofz

Proof. Let (T, 7) be an optimal branch decomposition@fsuch thatd = H (T, 7) is an efficient
triangulation ofG. Such a decomposition exists by Theorem 2. First, let us construct a branch
decomposition7”, 7') of H having the same width &9, 7). For each edgéx,y} of E(H) —
E(G), the sub-tree§’, andT,, share a branch. We divide the branch by a nodev, add a leaf
w adjacent tov and map the edgér, y} onw. Clearly this will not increase the width of the
decomposition. Consider any maximal cligeof G. By Lemma 5,2 is a block of G and by
Theorem 2 each minimal separator borderihdgs contained in the label of some braneh of
T'. For eachS let (Ts, 7s) be a arbitrary branch decomposition of the cligi¢S). We glue
this decomposition t@” on the branchkeg. That is, we add a node ary; and a node on some
branch ofl’'s and make them adjacent. We call this new edgein particular its label is exactly
S. By this process we obtain a relaxed branch decompos(fidnr”) of H of same width as
(T",7"). By removing from7” all the leaves that do not correspond to edges in the clifjuee
obtained a relaxed clique decomposition of the complete gia§h). For each minimal separator
S bordering(?, note thatS' is contained in the label of the edgg, so the new decomposition
respects). Hencebbw (2) < bw(G) for each maximal cliqué? of H.

Conversely, lef be any efficient triangulation @, let us show thatw(G) < max{bbw () |
2 maximal clique ofH }. For each maximal cliqu of G, let (Tq, 7q) be an optimal branch de-
compoition of K(2), respecting the block. We connect these decompositions into a relaxed
branch decomposition df. For this purpose we usectique treeassociated to the chordal graph
graph H (see e.g. [11]). A clique tree is given by a trée= (Vp, Ep) and a one-to-one cor-
respondence between the nodesloénd the maximal cliques off such that, for eack, €/
maximal cliques off, their intersection is contained in all the cliques associated to nodes on the
unique path fromug to ug of T' (ug andug, denote the nodes associatedx@nd ()’ respec-
tively). Moreover, for each branch = {uq,uq/} of T, S = QN Q' is a minimal separator
borderingQ? andQ’ [11]. Leteg (resp. €') be a branch of, (resp. Tty) whose label contains
S. We connecfl, andTy by adding a new branch between the middlezgfande’, for all
brancheduq, ug } of T. Hence we obtain a relaxed branch decompositio/ ofBy the prop-
erties of the clique tree, the label of each newly created edge conné¢tingd T is exactly
S = QN Q. Consequently, the labels of the branches contained in $Qm#o not change.
Hencebw(H) < max{bbw(2) | maximal clique ofH }. G being a sub-graph off, we have
bw(G) < bw(H) and the conclusion follows. O

11

