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Elastic effects of liquids on surface physics
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Abstract

The contact between a liquid and an elastic solid generates a stress vector depend-
ing on the curvature tensor in each point of the separating surface. For nanometer
values of the mean curvature and for suitable materials, the stress vector takes sig-
nificant amplitude on the surface. Although the surface average action of the liquid
on the solid is the hydrostatic pressure, the local strain generates torques tending
to regularize the surface undulations and asperities.
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1 Introduction

In 1977, John Cahn gave simple illuminating arguments to describe the inter-
action between solids and liquids. His model was based on a generalized van
der Waals theory of fluids treated as attracting hard spheres [1]. It entailed as-
signing an energy to the solid surface that is a functional of the liquid density
at the surface. It was thoroughly examined in a review paper by de Gennes [2].
Three hypotheses are implicit in Cahn’s picture: i) The liquid density is taken
to be a smooth function of the distance from the solid surface, that surface is
assumed to be flat on the scale of molecular sizes and the correlation length is
assumed to be greater than intermolecular distances; ii) The forces between
solid and liquid are of short range with respect to intermolecular distances;
iii) The liquid is considered in the framework of a mean-field theory. This
means, in particular, that the free energy of the liquid is a classical so-called
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gradient square functional.
The point of view that the liquid in an interfacial region may be treated as
bulk phase with a local free-energy density and an additional contribution
arising from the nonuniformity which may be approximated by a gradient
expansion truncated at the second order, is most likely to be successful and
perhaps even quantitatively accurate near the liquid critical point [3]. We use
this approximation enabling us to compute analytically the liquid density pro-
files. Nevertheless, we take surface effects and repulsive forces into account by
adding density functionals at boundary surfaces. In mean-field theory, London
potentials of liquid-liquid and liquid-solid molecular interactions are















ϕll = −
cll

r6
, when r > σl and ϕll = ∞ when r ≤ σl ,

ϕls = −
cls

r6
, when r > δ and ϕls = ∞ when r ≤ δ ,

where cll et cls are two positive constants associated with Hamaker constants,
σl and σs respectively denote liquid and solid molecular diameters, δ = 1

2
( σl+

σs) is the minimal distance between centers of liquid and solid molecules [4].

We consider the interaction between a solid surface flat at a molecular scale
(but curved at several nanometer scale) and a liquid by means of a continuous
model. The density-functional of energy E of the inhomogeneous liquid in a
domain D of differentiable boundary S (external forces being neglected) is
taken in the form

E = Ef + ES with Ef =
∫ ∫ ∫

D
ρ ε dv, ES =

∫ ∫

S
φ ds.

The first integral (energy of the volume) is associated with square-gradient
approximation when we introduce a specific free energy of the fluid at a given
temperature, ε = ε(ρ, β), as a function of liquid density ρ and β = (grad ρ)2.
Specific free energy ε characterizes together fluid properties of compressibility
and molecular capillarity of interfaces. In accordance with gas kinetic theory
[5], scalar λ = 2ρ ε,β(ρ, β) (where ε,β denotes the partial derivative with respect
to β) is assumed to be constant at a given temperature and

ρ ε = ρ α(ρ) +
λ

2
(grad ρ)2,

where term (λ/2) (grad ρ)2 is added to the volume free energy ρ α(ρ) of a
compressible fluid. We denote the pressure term by P (ρ) = ρ2α ′(ρ). The
second integral (energy of the surface) is such that the free energy per unit
surface φ is [2],

φ(ρ) = −γ1ρ +
1

2
γ2 ρ2. (1)

Here ρ denotes the limit liquid density value at surface S. Constants γ1, γ2
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and λ are positive and given by relations [6],

γ1 =
πcls

12δ2mlms

ρsol, γ2 =
πcll

12δ2m2
l

, λ =
2πcll

3σl m2
l

,

where ml et ms respectively denote the masses of liquid and solid molecules;
ρsol is the solid density.

In this paper, we first develop the boundary conditions for the general case of
the interaction between a non-homogeneous liquid and a curved solid surface
with a surface energy due to intermolecular interactions and depending of the
fluid volume deformation. Then, for a surface energy in form (1) we study the
stress vector distribution on a surface where bumps and hollows are period-
ically distributed. Finally, we estimate the stress effects for a silicon surface,
with a curvature of several nanometer range, in contact with water.

2 Boundary conditions

The equation of equilibrium and boundary conditions are obtained by using
the virtual power principle [7,8]. For example, virtual displacements ζ = δx are
defined in a classical way by Serrin [9] page 145, where x = {xi}, (i = 1, 2, 3)
denotes the Euler variables in a Galilean or fixed system of coordinates.
A liquid (in drop form) occupying a domain D of the physical space lies on a

Fig. 1. Vector n is the unit normal vector to S exterior to D; vector t is the unit
tangent vector to Γ with respect to n; n′ = t × n.

solid surface S (the liquid is also partially bordered by a gas); the edge Γ (or
contact line) is the curve common to S and the boundary of D (see Fig. 1).
All the surfaces and curves are oriented differential manifolds ( 1 ).

1 Transposed mappings being denoted by T , for any vectors a,b, we write aT b

for their scalar product (the line vector is multiplied by the column vector) and
abT or a ⊗ b for their tensor product (the column vector is multiplied by the line
vector). The image of vector a by a mapping B is denoted by B a. Notation bT B
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2.1 Variation of the density-functional of energy E

The density in the fluid has a limit value at the wall S. Then, on S,

δφ = φ′(ρ) δρ = −ρ φ′(ρ) div ζ,

where δρ + ρ div ζ = 0 [9]. Let us denote

G = −ρ φ′(ρ) , H = φ(ρ) − ρ φ′(ρ).

The function H is the Legendre transform of φ with respect to ρ. For any
virtual displacement ζ null on Γ, Rel. (11) of Appendix yields,

∫ ∫

S
δφ ds =

∫ ∫

S
G div ζ ds ≡

∫ ∫

S

{

G
dζn

dn
−
(

2G

Rm

nT + gradT
tgG

)

ζ

}

ds,

where, now S is the imprint of D on the solid surface. Consequently, from the
calculations in Appendix, we obtain:
For any virtual displacement null on the complementary boundary of D with
respect to S and null on the edge Γ, the variation of E is,

δE = −
∫ ∫ ∫

D
(div σ) ζ dv

+
∫ ∫

S
(G − A)

dζn

dn
+

(

2(A − H)

Rm

nT + gradT
tg(A − H) + nT σ

)

ζ ds,

where

σ = −p I − λ grad ρ ⊗ grad ρ ≡ −p I − λ

(

∂ρ

∂x

)T
∂ρ

∂x
(2)

is the symmetric stress tensor of the inhomogeneous liquid, with p = ρ2ε,ρ −
ρ div(λ grad ρ) ; A = λ ρ (dρ/dn) with dρ/dn = (∂ρ/∂x) n ; ζn = nT ζ ;
2/Rm is the mean curvature of S and gradtg denotes the tangential part of the
gradient relatively to S.

2.2 The virtual work of forces exerted on D

The virtual work of elastic stresses on S is

δτ e =
∫ ∫

S
κT ζ ds ,

means the covector cT defined by the rule cT = (BT b)T . The divergence of a
linear transformation B is the covector divB such that, for any constant vector a,
(div B)a = div (B a). If f is a real function of x, ∂f/∂x is the linear form associated
with the gradient of f and ∂f/∂xi = (∂f/∂x)i ; consequently, (∂f/∂x)T = grad f .
The identity tensor is denoted by I.
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where κ = −σe n is the loading vector associated with stress tensor σe on the
wall in classical theory of continuum mechanics ( 2 ). Then, the virtual work
of forces δτ exerted on D is δτ = − δE + δτ e and,

δτ =
∫ ∫ ∫

D
(div σ) ζ dv

−
∫ ∫

S
(G − A)

dζn

dn
+

(

2(A − H)

Rm

nT + gradT
tg(A − H) + nT σ − κT

)

ζ ds.

2.3 Results

The fundamental lemma of variation calculus, applied to the relation δτ = 0,
for all previous virtual displacements, yields:

• The well-known equation of equilibrium for capillary fluids [10],

div σ = 0, (3)

• The boundary conditions on S,

∀ x ∈ S,















G − A = 0,

κ =
2(A − H)

Rm

n + gradtg(A − H) + σ n.
(4)

Equation (4)1 yields a condition relative to the surface energy (1) which de-
pends on the fluid density at the surface and on the quality of the solid wall:

λ
dρ

dn
+ φ′(ρ) = 0 or λ

dρ

dn
= γ1 − γ2 ρ . (5)

Equation (5) expresses an embedding effect for the liquid density. Such a con-
dition appears for simpler geometry in [1,11].
Condition (4)2 appears in the literature [7,12] but without the terms cor-
responding to the molecular model (1) of surface free energy. Such type of
condition also appears in interfacial problems with other solid surface energy
but with a null curvature as in [1,11]. In Cauchy theory, we are back to the
classical equation κ = σ n.
The definition (2) of σ implies σ n = −pn − λ (dρ/dn) grad ρ . Then, for an
elastic wall, by taking into account of Rel. (5), the vector κ is normal to S,

κ = κn n with κn = nTσ n−
2 φ

Rm
. (6)

2 It is important to note that the external unit normal to S with respect to the
solid is −n.
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We obtain the stress vector values of the solid at the elastic wall (which is
opposite to the action τ of the liquid on the elastic wall). Relation (6) looks
like the Laplace formula for fluid interfaces. Nonetheless, we will see in the
next section some differences between the results for fluid interfaces and for
liquid-solid interfaces.

3 An example of elastic effect on a solid surface

3.1 General considerations

As bibliography about elastic effects on surface physics, one may refer to the
review article [13].
The aim of this section is to present an example of system such that the meso-
scopic effects of a liquid locally generate important molecular stress vectors
on a solid surface. We consider a periodic domain such that the substrate
solid surface has an alternated structure. The solid surface can be considered
as a flat domain at the Angström scale because roughness and undulations
are only of several nanometer length (such a model is presented on Fig. 2).
At level 0 with respect to the third axis, the lateral boundary of domain

Fig. 2. We consider the model consisting of a surface S with bumps and hollows
periodically distributed on a period L of several nanometers in two directions such
that, with respect to the third axis, the bump and hollow levels are opposite. Ex-
trema of the surface mean curvature are located at point A and B; curve C is the
limit curve of the periodic rectangular parallepiped. Surface S′ delimits the liquid
bulk (at a distance h of a great number of nanometers from surface S). Surface Σ
is the lateral boundary of D. Vector k is normal to S′ and z is directed along k.
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D follows the curve C of the bludging surface. Due to the axial symmetries
around the lines Ak and Bk, in local coordinates with these lines as third axis,
grad ρ = (dρ/dz)k and on these lines the stress tensor σ of the inhomogeneous
liquid gets expressions in the form

σ =















a1 0 0

0 a2 0

0 0 a3















, with























a1 = a2 = −p, p = P (ρ) −
λ

2

(

dρ

dz

)2

− λ ρ ∆ρ

a3 = −p − λ

(

dρ

dz

)2

,

where ∆ is the Laplace operator. Consequently, on these lines, Eq. (3) yields
a constant value for the eigenvalue a3,

p + λ

(

dρ

dz

)2

= Pl, (7)

where Pl denotes the uniform pressure in the liquid bulk of density ρl bounding
the liquid layer at level h.
- Due to symmetries of domain D, we deduce the average stress actions of
the liquid on S and S ′ are opposite and numerically equal to the pressure Pl.
- From Rels. (5-7) we obtain, at points A and B, a stress vector τ = −κ,
action of the liquid on the elastic wall in the same form than the Laplace
formula form for fluid interfaces,

τ =

(

Pℓ +
2 φ

Rm

)

n. (8)

- We must emphasize that Rel. (8) is only valid at points A and B. In fact,
Rel. (6) yields

τ =

(

−nT σ n +
2 φ

Rm

)

n, (9)

but for points which are not the summits of bumps or the bottoms of hollows,
−nT σ n ≡ p + λ (dρ/dn)2 6= Pℓ where λ(dρ/dn)2 6= λ (gradρ)2. Consequently
at a mesoscopic scale, due to the anisotropy of the liquid on curved solid sur-
faces, Rel. (9) replaces Laplace’s formula of fluid interfaces.
- The stress vector is directed as k at points A and B. Due to the axial
symmetries around the surface extrema at points A and B and opposite mean
curvatures, when we neglect Pl with respect to 2φ/Rm, the stress vector as-
sociated with the hollow corresponding to point A is a vector T parallel to k

and the stress vector associated with the bump corresponding to point B is a
vector −T; the two vectors generate a torque on the surface. This result is in
accordance with results in [14] where the interaction between liquid and solid
is represented as localized dipoles and monopoles depending on bumps and
hollows of the surface S.
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Physical constants cll σl ml ρl

Water 1.4 × 10−58 2.8 × 10−8 2.99 × 10−23 0.998

Physical constants cls σs ms ρsol

Silicon 1.4 × 10−58 2.7 × 10−8 4.65 × 10−23 2.33

Deduced constants δ λ γ1 γ2

Results (water-silicon) 2.75 × 10−8 1.17 × 10−5 81.2 54.2

Table 1
The physical values associated with water and silicon are obtained in references

[4,15] and expressed in c.g.s. units (centimeter, gramme, second). No information
is available for water-silicon interactions; we assume that cll = cls.

3.2 Application to explicit materials

At θ = 20◦ Celsius, we consider water damping a wall in silicon. The experi-
mental estimates of coefficients defined in Section 1 are presented in Table 1.
Far from the liquid critical point, the liquid density at the wall is closely the
same than the liquid density in the bulk [16].

If we consider a mean radius of curvature of surface S, Rm = −10−6 cm at point
A and Rm = 10−6 cm at point B, when we neglect Pl, we immediately obtain
an arithmetic value of τn ≡ nT τ = 108 cgs (or 100 atmospheres) corresponding
to stress effects of large magnitude between areas around points A and B.

The elastic effects of a liquid on a solid surface result from the topology of the
contact interface. It is amazing to observe that a solid surface considered as
an interface between solid and liquid does not require new concept but only a
supplementary surface energy and likewise surface morphology.
An important assumption in the previous calculations is that three scales
infer in the surface physics: a length scale of one nanometer associated with
molecular effects and the expression of surface energy, a length scale of ten
nanometers associated with the size of undulations and surface roughness and
a length scale of one hundred nanometers associated with the distance of the
liquid bulk to the surface S.
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continus, J. Mécanique 12 (1973) 235-274.

[8] G.A. Maugin, The method of virtual power in continuum mechanics -
Application to coupled fields, Acta Mechanica, 35, (1980) 1-70.

[9] J. Serrin, Mathematical principles of classical fluid mechanics, in: S. Flügge
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4 Appendix

Let S be a differentiable oriented manifold in the 3-dimensional space and n

its oriented unit normal locally extended in the vicinity of S by the expression
n(x) = grad d(x), where d(x) is the distance of point x to S; covectors gradT a
and gradT

tga denote the transposition of grad a and gradtga, respectively; for
any vector field w, we get [7]:
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rot(n× w) = n div w −w div n +
∂n

∂x
w −

∂w

∂x
n.

From nT ∂n

∂x
= 0 and divn = −

2

Rm

we obtain on S:

nT rot(n ×w) = div w +
2

Rm

nTw − nT ∂w

∂x
n, (10)

and we deduce,

Lemma 1 For any differentiable scalar field a,

a div ζ = a
dζn

dn
−

2a

Rm

ζn − (gradT
tga) ζ + nT rot (an× ζ). (11)

where gradT
tga =

[

∂a

∂x

(

I − nnT
)

]

belongs to the cotangent plane to S and

dζn

dn
= nT ∂ζ

∂x
n.

• Application to the calculation of δEf :

All the densities are expressed in the physical space. The domain D is a ma-

terial volume [9], then δEf =
∫ ∫ ∫

D
ρ δε dv.

From δε =
∂ε

∂ρ
δρ +

∂ε

∂β
δβ and δ

∂ρ

∂x
=

∂δρ

∂x
−

∂ρ

∂x

∂ζ

∂x
(see [10]), we get:

ρ ε,β δβ = 2ρ ε,β δ
∂ρ

∂x

(

∂ρ

∂x

)T

≡ λ

(

∂δρ

∂x
−

∂ρ

∂x

∂ζ

∂x

)(

∂ρ

∂x

)T

≡ div(λ grad ρ δρ) − div(λ grad ρ) δρ − tr

(

λ grad ρ gradT ρ
∂ζ

∂x

)

.

Due to δ ρ = −ρ div ζ (see [9]), with a = λ ρ (dρ/dn) ≡ A and by using
definition (2), we obtain:

δEf =
∫ ∫ ∫

D

(

∂p

∂x
+ div(λ grad ρ gradT ρ)

)

ζ dv

−
∫ ∫ ∫

D
div

(

λ ρ grad ρ div ζ + λ grad ρ gradT ρ ζ + p ζ
)

dv

≡
∫ ∫ ∫

D
−(div σ) ζ dv +

∫ ∫

S
(−A div ζ + nT σ ζ) ds.

From the Stokes formula, we get:

∫ ∫

S
nT rot (An × ζ) ds =

∫

Γ
A tT (n× ζ) dℓ ≡

∫

Γ
An′T ζ dℓ,
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which is null in the case of the virtual displacements of Section 2.1. Finally,
by using Rel. (11),

δEf =
∫ ∫ ∫

D
−(div σ) ζ dv+

∫ ∫

S

{

−A
dζn

dn
+
(

2A

Rm

nT + gradT
tg A + nT σ

)

ζ

}

ds.

• Application to the calculation of δES:

Due to ES =
∫ ∫

S
φ det (n, d1x, d2x) where d1x and d2x are two coordinate

lines of S, we get:

ES =
∫ ∫

S0

φ det F det (F−1n, d1X, d2X),

where S0 is the image of S in a reference space with Lagrangian coordinates

X and F is the deformation gradient tensor
∂x

∂X
of components

{

∂xi

∂Xj

}

, (see

[9]). Then,

δES =
∫ ∫

S0

δφ det F det(F−1n, d1X, d2X)+
∫ ∫

S0

φ δ
(

det F det(F−1n, d1X, d2X)
)

,

with
∫ ∫

S0

φ δ
(

det F det (F−1n, d1X, d2X)
)

=
∫ ∫

S
φ div ζ det(n, d1x, d2x) + φ det

(

∂n

∂x
ζ, d1x, d2x

)

− φ det

(

∂ζ

∂x
n, d1x, d2x

)

=
∫ ∫

S

(

div(φ ζ) − (gradT φ) ζ − φnT ∂ζ

∂x
n

)

ds.

Relation (10) yields:

div (φ ζ) +
2 φ

Rm

nT ζ − nT ∂φ ζ

∂x
n = nT rot (φn× ζ).

Consequently,

∫ ∫

S0

φ δ
(

det F det (F−1n, d1X, d2X)
)

=
∫ ∫

S0

(

−
2 φ

Rm

nT + gradT φ (nnT − I)

)

ζ ds +
∫ ∫

S
nT rot (φn× ζ) ds,

and finally due to
∫

Γ
φn′T ζ dℓ = 0 for the virtual displacements of Section 2.1,

δES =
∫ ∫

S

(

δφ −

(

2 φ

Rm

nT + gradT
tgφ

)

ζ

)

ds.
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