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Total Variation Projection with First Order Schemes
Jalal M. Fadili and Gabriel Peyré

Abstract—This article proposes a new algorithm to compute
the projection on the set of images whose total variation is
bounded by a constant. The projection is computed through
a dual formulation that is solved by first order non-smooth
optimization methods. This yields an iterative algorithm that
computes iterative soft thresholding of the dual vector fields. This
projection algorithm can then be used as a building block in a
variety of applications such as solving inverse problems under
a total variation constraint, or for texture synthesis. Numerical
results show that our algorithm competes favorably with state-
of-the-art TV projection methods to solve denoising, texture
synthesis, inpainting and deconvolution problems.

Index Terms—Total variation, projection, duality, proximal
operator, forward-backward splitting, Nesterov scheme, inverse
problems.

I. INTRODUCTION

TOTAL variation is a well known image prior introduced

by Rudin, Osher and Fatemi [1]. For a differentiable func-

tion f : Ω = [0, 1]2 → R, it is computed as ||f ||TV =
∫

Ω
|∇ f |,

and can be extended to the space BV([0, 1]2) that contains

functions with discontinuities.

The total variation is used as a regularization to denoise an

image f0 by solving the strictly convex problem

min
f∈BV([0,1]2)

1

2
||f − f0||2 + λ||f ||TV, (1)

as originally proposed in [1]. The regularization weight λ
should be tuned to match the noise level contaminating f0.

Several algorithms have been proposed to solve this problem,

see for instance [2], [3], [4], [5], [6], [7], [8], [9]. Such primal,

dual, or primal-dual schemes for denoising are often a building

block for solving more complex inverse problems; see e.g.

[10], [11].

TV projection for denoising. Much less work has focused

on denoising an image f0 by projecting it on a total variation

ball of radius τ < ||f0||TV, which requires to solve1

min
||f ||TV6τ

||f − f0||. (2)

Such a formulation might be preferable over (1) when little

is known about the noise level perturbing f0, but when an

estimate τ of the total variation of the clean image is known.

Computing the solution of (2) with a fast algorithm is thus

important for denoising application as has been advocated in

[12].
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1This constraint set is obviously a closed convex set.

An iterative projected sub-gradient method was introduced

in [13], [12]. We propose in this paper a different algorithm

that is based on a dual regularization of the primal projection

problem. This bears similarities with Chambolle’s algorithm

[6] that solves the primal TV regularization (1) using a dual

projection. Our dual problem is then solved using two first-

order iterative schemes: one-step forward-backward splitting

which dates back to [14], [15] and recently revitalized in [16],

and accelerated multi-step Nesterov scheme [17]. Both of these

algorithms require only the computation of a soft thresholding

applied to the dual vector fields at each iteration.

Total variation projection also have far-reaching applications

beyond denoising. For example, the extraction of Cheeger sets

in landslides modeling [18] can be relaxed as a TV projection

problem with boundary constraints, that has been recently

solved using sub-gradient projection [19].

TV projection for synthesis. Classical synthesis methods con-

strain wavelet coefficients [20], [21] and are suitable to model

some natural phenomena. Computer graphics methods do not

rely on statistical modeling and generate a texture through

a consistent copy of pixels from an example image [22],

[23]. Higher order statistical models [24], [25] improve the

visual quality of synthesis by capturing geometric singularities.

Section VI-B shows that a total variation constraint can also

be used to enhance the sharpness of edges in texture synthesis.

TV projection for inverse problems. Total variation projec-

tion might be useful as a proxy to solve more challenging

inverse problems. Popular linear inverse problems such as

inpainting and deconvolution have been the subject of a flurry

of research activity where TV has been extensively used to

regularize them.

Classical methods for inpainting use partial differential

equations that propagate the information from the boundary of

the missing region to its interior, see for instance [26], [27],

[28]. Tensor diffusion makes use of a geometric layer to drive

the diffusion, see [29]. TV regularization was proposed in [30]

for inpainting. Sparsity over a redundant frame has also been

successfully used to regularize the inpainting problem [31],

[32].

There is an extensive literature on the deconvolution prob-

lem image processing, and many algorithms have been de-

veloped to tackle it. For instance, TV penalty has been used

as a regularization term within a variational framework, see

e.g. [33], [10], [11], [34], [9]. Wavelet-based or more gener-

ally sparsity-based deconvolution methods have also received

considerable attention over the last decade, see e.g. [35], [36],

[37], [38].

Inverse problems such as inpainting or deconvolution can

be regularized with a total variation constraint [12]. Sections

VI-C and VI-D are devoted to show how these TV-constrained
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inverse problems can be solved efficiently using a projected

gradient descent iteration, whose projector is computed with

our algorithm.

II. NOTATION AND ELEMENTS OF CONVEX ANALYSIS

Throughout the paper, an image f of N = n× n pixels is

a vector in R
N . We denote by ||.|| the norm induced by the

inner product 〈., .〉 in R
N . We let U = R

N ×R
N be the space

of vector fields with associated inner product

〈u, v〉U =
∑

06i,j6n−1

(u1[i, j]v1[i, j] + u2[i, j]v2[i, j]),

for u = (u1, u2) and v = (v1, v2) ∈ U . The ℓ1 and ℓ∞ norms

of a vector field u = (u1, u2) ∈ U are respectively

||u||1 =
∑

06i,j6n−1

|u[i, j]| and ||u||∞ = max
i,j
|u[i, j]|,

where |u[i, j]| =
√

u1[i, j]2 + u2[i, j]2.

Let C a nonempty convex set. The indicator function ıC of

C is

ıC(z) =

{

0, if z ∈ C ,

+∞, otherwise.

The domain of a function ϕ is defined by dom(ϕ) = {z :
ϕ(z) < +∞} and ϕ is proper if dom(ϕ) 6= ∅. The conjugate

of a proper, lower-semicontinuous and convex function ϕ is

the proper closed convex function ϕ∗ defined by

ϕ∗(z) = sup
z∈dom(ϕ)

〈w, z〉 − ϕ(z) ,

and we have the bi-conjugate ϕ∗∗ = ϕ.

We also define the notion of a proximity operator, which

was introduced in [39] as a generalization of convex projection

operator. For every z, the function w 7→ 1
2 ||w − z||2 + ϕ(w)

achieves its infimum at a unique point denoted by proxϕ z. The

uniquely-valued operator proxϕ thus defined is the proximity

operator of ϕ.

III. DISCRETE DUAL FORMULATION

The optimization (2) is computed numerically by discretiz-

ing the gradient operator and the total variation to project an

image of N = n× n pixels.

A. Discrete Total Variation

A discretized gradient for an image f ∈ R
N is defined as

∇ f [i, j] = (∂xf [i, j], ∂yf [i, j]), where

∂xf [i, j] =

{
f [i + 1, j]− f [i, j] if 0 6 i < n− 1,
0 otherwise,

∂yf [i, j] =

{
f [i, j + 1]− f [i, j] if 0 6 j < n− 1,
0 otherwise.

The gradient is thus a vector field ∇ f ∈ U . The discrete total

variation is ||f ||TV = || ∇ f ||1 where the ℓ1 norm of a vector

field in U is defined in Section II.

The adjoint of the gradient is ∇∗ = −div, where the

divergence of a vector field u = (u1, u2) ∈ U is div(u) =
∂∗

xu1 + ∂∗
xu2, with

∂∗
xf [i, j] =

{
f [i, j]− f [i− 1, j] if 0 < i < n,
0 otherwise,

∂∗
yf [i, j] =

{
f [i, j]− f [i, j − 1] if 0 < j < n,
0 otherwise.

B. Total Variation Projection

The goal of this paper is to compute the projection f⋆ of

an image f0 on a set of images with bounded variation

f⋆ = argmin
f∈RN , ||f ||TV6τ

||f − f0||2. (3)

where 0 < τ < ||f0||TV to avoid the trivial solution f⋆ = f0.

The following proposition shows that the primal constrained

optimization problem (3) is recast into a penalized form.

Proposition 1. For any f ∈ R
N , the primal solution is

recovered as f⋆ = f0 − div(u⋆) where u⋆ is the solution

of the dual problem

inf
u∈RN×2

1

2
||f0 − div(u)||2 + τ ||u||∞ . (4)

Proof: Let’s introduce the dual variable u ∈ U . First, it

is easy to show that the Fenchel conjugate of the ℓ∞ norm is

the indicator function of the ℓ1 norm. Indeed, by the Hölder

inequality we have 〈u, v〉U 6 ||u||∞||v||1 2, we then get

(τ ||.||∞)
∗
(v) = sup

u∈U
〈u, v〉U − τ ||u||∞

= sup
ρ>0

sup
||u||∞=ρ

〈u, v〉U − τρ

= sup
ρ>0

ρ (||v||1 − τ) = ı{||v||16τ}(u) .

Thus, using the bi-conjugate relation, one can write the TV-

ball indicator function as

ı{||·||TV6τ}(f) = sup
u∈U

〈u, ∇ f〉U − τ ||u||∞.

This allows to rewrite (3) as

min
f∈RN

1
2 ||f − f0||2 + ı{||·||TV6τ}(f) (5)

= supu∈U − τ ||u||∞ + min
f∈RN

〈u, ∇ f〉U + 1
2 ||f − f0||2

= − infu∈U τ ||u||∞ − min
f∈RN

− 〈div(u), f〉+ 1
2 ||f − f0||2.(6)

The inner minimization involves a strongly convex function,

see e.g. [40] for the definition of strong convexity, whose

unique primal solution f⋆ is recovered from the dual variable

u as

f⋆ = argmin
f∈RN

−〈div(u), f〉+ 1

2
||f−f0||2 = f0+div(u), (7)

and

−〈div(u), f⋆〉+ 1

2
||f⋆−f0||2 = −1

2
||f0 +div(u)||2 +

1

2
||f0||2 .

(8)

2An alternative proof can be found in e.g. [40, Proposition V.3.2.1].
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Combining (5) and (8) with the obvious change of sign on

u leads to the optimization problem (4).

Remark 1. Proposition 1 can be alternatively proved using

Fenchel-Rockafellar duality formula well-known in convex

analysis, see e.g. [41, Section III.4]. We have chosen this line

of proof for convenience and the sake of accessibility to the

reader.

IV. FIRST-ORDER SCHEMES ON THE DUAL PROBLEM

In going from the primal problem (3) to the dual formu-

lation (4), we have replaced a constrained problem with an

unconstrained penalized form. The primal solution is easily

recovered from the dual solution as f⋆ = f0 − div(u⋆).
Furthermore, it turns out that the dual problem (4) is easier

to solve with various first order non-smooth optimization

schemes. Indeed, (4) involves a quadratic form which has

a Lipschitz continuous gradient, and the non-differentiable

ℓ∞ term. Section IV-B presents a one-step forward-backward

splitting iteration, as explained for instance in [15], [16], while

Section IV-C proposes an accelerated multi-step scheme due to

Nesterov, see [17] and also [7] for some applications to image

processing. It turns out that both these algorithms involve

the computation of the proximity operator associated to the

ℓ∞ norm that can be computed explicitly as explained in the

following section.

A. ℓ∞ Proximity Operator

Recall from Section II that the proximity operator

proxκ||·||∞(u) associated to κ|| · ||∞ amounts to solving

proxκ||·||∞(u) = argmin
v∈U

1

2
||u− v||2 + κ||v||∞. (9)

Proposition 2 hereafter shows that proxκ||·||∞(u) is computed

explicitly through a soft thresholding Sλ applied on the dual

vector field u for a properly chosen value of λ.

To get the precise value of λ for a given vector field u ∈ U ,

we need to compute d[0] 6 d[1] 6 . . . 6 d[N − 1] that orders

the set of norms

{d[t]}N−1
t=0 = {|u[i, j]|}n−1

i,j=0, (10)

and also the cumulated ordered norms

D[s] =

N−1∑

t=s+1

d[t]. (11)

Proposition 2. For u ∈ U , with d and D as defined in

(10)-(11), we have proxκ||·||∞(u) = 0 if ||u||1 6 κ and

proxκ||·||∞(u) = u− Sλ(u) otherwise, where

Sλ(u)[i, j] = max

(

1− λ

|u[i, j]| , 0
)

u[i, j] (12)

and λ > 0 is given by

λ = d[t] + (d[t + 1]− d[t])
D[t + 1]− κ

D[t + 1]−D[t]
(13)

where t is such that D[t + 1] 6 κ < D[t].

Proof: Using a similar proof to that of Proposition 1, we

have the relation between the primal and dual minimization

problems

proxκ||·||∞(u) = argmin
v∈U

1
2 ||u− v||2 + κ||v||∞

⇐⇒ Proj{||·||16κ}(u) = argmin
w∈U

1
2 ||u− w||2 + ı{||·||16κ}(w) .

where Proj{||·||16κ}(u) is the orthogonal projection of u onto

the closed ℓ1 ball in U of radius κ. In the same vein as (7),

the relation between the primal and dual solutions (both are

unique here) yields

proxκ||·||∞(u) = u− Proj{||·||16κ}(u) . (14)

If ||u||1 6 κ, then proxκ||·||∞(u) = 0. Otherwise, the projection

Proj{||·||16κ}(u) is computed by finding the Lagrange multi-

plier λ(κ) such that3

Proj{||·||16κ}(u) = argmin
v

1

2
||u− v||2 + λ(κ)||v||1. (15)

As noticed for instance in [42] for wavelet thresholding, the

solution of (15) has a closed-form known as soft-thresholding

extended to vector fields

Proj{||·||16κ}(u) = Sλ(κ)(u).

Observe that ||Sλ(u)||1 =
∑

|u[i,j]|>λ (|u[i, j]| − λ) is a

piecewise affine and decreasing function of λ with slope

changing at the ordered values d[t]. One can then check that

the value of λ that meets the constraint ||Sλ(u)||1 = κ is the

one given by (13).

Remark 2. Equation (14) can be proved alternatively us-

ing Moreau decomposition which allows to conclude that

proxϕ∗(u) = u − proxϕ(u), see for instance [43] and [16,

Lemma 2.10].

B. Forward-backward Projection Algorithm

The projection f⋆ = f0 − div(u⋆) is computed by solving

the dual unconstrained optimization problem (4). Owing to

Lipschitz differentiability of the quadratic term, the dual

problem verifies the necessary prerequisite to be solved with

the one-step forward-backward splitting recursion.

The forward-backward scheme can be written in a compact

form with descent step-size µ > 0 4

u(k+1) = proxµτ ||·||∞

(

u(k) − µ∇
(

f0 − div(u(k))
))

, (16)

where the proximity operator for κ = µτ is defined in

(9). The overall algorithm to minimize (3) is summarized in

Algorithm 1.

3Actually, there is a bijection between λ and κ such that the constrained
and Lagrangian problems share the same solution.

4The descent step-size can be even a sequence µt > 0 that varies from
one iteration to another.
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Algorithm 1: Forward-backward total variation projection.

Initialization: choose some u(0) ∈ U , µ ∈ (0, 1/4), set

k = 0.

Main iteration:

while ||u(k+1) − u(k)|| > η do

1) Gradient descent step: compute

ũ(k) = u(k) − µ∇
(

f0 − div(u(k))
)

.

2) TV correction step: compute d and D as defined

in (10) and (11) and set λ as in (13) with κ = µτ .

Define

u(k+1) = ũ(k) − Sλ(ũ(k)),

using the soft thresholding operator (12).

3) k = k + 1.

Output: f⋆ = f0 − div(u(k+1)).

1) Convergence analysis: Theorem 1 ensures that the se-

quence (f (k))k∈N obtained from Algorithm 1 converges to the

solution of (3) with a convergence rate O(1/k).

Theorem 1. Suppose that µ ∈ (0, 1/4). Let u(0) ∈ R
N×2.

The sequence of iterates f (k) = f0 − div(u(k)), where u(k)

is the dual sequence in (16), converges to f⋆. More precisely,

there exists a C > 0 such that

||f (k) − f⋆||2 6 C/k.

Proof: By coercivity, the set of solutions of (4) is non

empty. Moreover, let
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣ be the operator norm of the

discrete divergence. The term ||f0 − div(u)||2/2 is differen-

tiable whose gradient is Lipschitz continuous with Lipschitz

constant
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣
2

6 8 [6]. Thus, by continuity of the mapping

u 7→ f = f0 − div(u), and since the projection f⋆ is unique,

applying [44, Corollary 6.5], we deduce that the sequence

of iterates f (k) converges to f⋆ provided that the step-size

satisfies 0 < µ 6 µ 6 µ < 1/4 6 2/
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣
2
.

Let’s now turn to the convergence rate. We let J(f) and

J̃(u) be the primal and the dual objectives given in (3) and

(4), namely

J(f) =
1

2
||f − f0||2
︸ ︷︷ ︸

H(f)

+ ı{||.||TV6τ}(f)
︸ ︷︷ ︸

G(∇ f)

,

J̃(u) =
1

2
||f0 − div(u)||2 − 1

2
||f0||2

︸ ︷︷ ︸

H∗(div(u))

+ τ ||u||∞
︸ ︷︷ ︸

G∗(u)

,
(17)

where H∗ and G∗ are the conjugates of H and G respectively.

Recall that from Proposition 1, we have

minf J(f) = − infu J̃(u) ⇐⇒ ∀ (f, u) ∈ R
N × U(18)

J(f) > J(f⋆) = −J̃(u⋆) > −J̃(u) , (19)

and from the primal-dual solutions relationship

H(f⋆) + H∗(div(u⋆)) = 〈f⋆, div(u⋆)〉 (20)

⇐⇒ f⋆ = (Du H∗)(div(u⋆)) , (21)

where Du H∗ is the gradient of H∗ with respect to u.

Relation (16) is equivalent to the following inclusion

u(k) − µ∇(Du H∗)(div(u(k)))− u(k+1) (22)

∈ ∂(µG∗)(u(k+1)) , (23)

where ∂G∗ is the subdifferential of G∗; see [40] for an

introduction to convex analysis and subdifferential calculus.

From this inclusion and using the fact that H∗ has a Lipschitz

gradient with constant 1, one can show that

J̃(u(k+1)) 6 H∗(div(u(k))) + G∗(u(k+1))

+〈−∇(Du H∗)(div(u(k))), u(k+1) − u(k)〉U

+

∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣
2

2 ||u(k+1) − u(k)||2 .

From (20), µ ∈ (0, 1/4) ⊆
(

0, 2/
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣
2
)

and the definition

of the conjugate G∗, we obtain

J̃(u(k+1)) 6 −H(f (k)) + G∗(u(k+1))− 〈∇ f (k), u(k+1)〉U
+

1

µ
||u(k+1) − u(k)||2

6 −H(f (k))−G(∇ f (k)) +
1

µ
||u(k+1) − u(k)||2 +

max
u∈dom(G∗)

〈−∇ f (k), u(k+1) − u〉U −G∗(u) + G∗(u(k+1))

From the inclusion (22) (see also [45, Lemma 1]), we have

the inequality

〈−∇ f (k), u(k+1) − u〉U −G∗(u) + G∗(u(k+1)) (24)

6
1
µ 〈u(k) − u(k+1), u(k+1) − u〉U , ∀u ∈ U . (25)

Hence using (19) and the Cauchy-Schwartz inequality, we get

−J(f⋆) 6 J̃(u(k+1)) 6 −J(f (k)) +
1

µ
||u(k+1) − u(k)||2(26)

+
1

µ
max

u∈dom(G∗)
〈u(k) − u(k+1), u(k+1) − u〉U

= −J(f (k)) +
c + 1

µ
||u(k+1) − u(k)||2 , (27)

where c is a finite constant for which the Cauchy-Schwartz

inequality becomes an equality for all k > 0.

From [17, Theorem 1 and Theorem 4], we show that

||u(k+1) − u(k)||2 (28)

6

(

1

µ
−
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣
2

2

)−1
(

J̃(u(k+1))− J̃(u(k))
)

6

(

1

µ
−
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣
2

2

)−1
2
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣
2
R2

k + 2
, (29)

for all k > 0, where R is the radius of the sublevel sets of J̃ ,

which are bounded here.

Thus, since J(f) is strongly convex with modulus 1, we

obtain using (26) and (28)

||f (k) − f⋆||2 6 2
(

J(f (k))− J(f⋆)
)

6

2
(∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣
−2 − µ

2

)−1

(c + 1)R2

k + 2
,(30)
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for all k > 0, which gives the desired rate.

Remark 3. • It is important to note that the above proof

is general and applies to any problem in the form (17)

provided that J(f) is strongly convex, beyond the TV

projection problem considered here. Strong convexity is of

course important to derive the rate (30) over the iterates,

but the rate on the primal objective in (30) remains valid

even if J(f) is not strongly convex.

• We point out that another proof of the convergence rate of

the forward-backward splitting in terms of the objective

has recently appeared in [45, Proposition 2]. The rate of

[17] is nevertheless sharper.

This result asserts that Algorithm 1 necessitates as large as

O(1/η) iterations to reach a η convergence tolerance on the

iterates.

C. Multi-step Projection Algorithm

In [17], [46], Nesterov proposes an accelerated multi-step

gradient algorithm to solve functionals formed as a sum of

two convex terms: a smooth one with Lipschitz-continuous

gradient and a non-necessarily smooth term whose structure

is simple. By simple, we intend in our context that the corre-

sponding proximity operator is accessible. The dual problem

(4) falls within the scope of the Nesterov algorithm. Unlike the

forward-backward iteration (16), Nesterov accelerated version

uses explicitly all previous iterates u(i), i < k to compute

u(k), hence the name multi-step algorithm.

Algorithm 2 details the steps of Nesterov scheme to min-

imize (4). It is formulated using proximal operators, as de-

scribed in [7].

Algorithm 2: Nesterov total variation projection.

Initialization: u(0) ∈ U , A0 = 0, ξ(0) = 0, µ ∈ (0, 1/4).
Main iteration:

while ||u(k+1) − u(k)|| > η do

1) First proximal computation:

υ(k) = proxAkτ ||·||∞(u(0) − ξ(k)) ,

where the proximal operator is computed as

defined in Proposition 2 with κ = Akτ .

2) Set ak =
(

µ +
√

µ2 + 4µAk

)

/2 and

ω(k) = Aku(k)+akυ(k)

Ak+ak
.

3) Second proximal computation:

ω̃(k) = ω(k) − µ

2
∇
(

f0 − div(ω(k))
)

,

u(k+1) = proxµτ/2||·||∞(ω̃(k)) ,

where the proximal operator is computed as

defined in Proposition 2 with κ = µτ/2.

4) Update Ak+1 = Ak + ak and

ξ(k+1) = ξ(k) + ak∇
(
f0 − div(u(k+1))

)
.

5) k = k + 1.

Output: f⋆ = f0 − div(u(k+1)).

1) Convergence analysis: The following results gives the

convergence rate of the primal sequence f (k) = f0−div(u(k))
obtained from Algorithm 2.

Theorem 2. Suppose that µ ∈ (0, 1/4). Let u(0) ∈ R
N×2.

Define

f̄ (k) =

∑k
i=0 aif

(i)

Ak
.

Then, after k iterations, the sequence of iterates (f (k))k>1 is

such that ∃ C > 0

||f̄ (k) − f⋆||2 6 C/k2.

Proof: From [17, Equation (4.4)], it can be shown that

the above multi-step algorithm generates a sequence u(k) such

that

AkJ̃(u(k)) 6 min
u∈U

1

2
||u− u(0)||2 + AkG∗(u)

+

k∑

t=0

at

(

H∗(div(u(t)))+〈−∇(Du H∗)(div(u(t))), u−u(t)〉U
)

.

From (20), we obtain

J̃(u(k)) 6 min
u∈U

1

2Ak
||u− u(0)||2 −G∗(u)

k∑

t=0

at

Ak

(

H(f (t)) + 〈∇ f (t), u〉U
)

+ G∗(u)

6 min
u∈U

1

2Ak
||u− u(0)||2 −H(f̄ (k))− 〈∇ f̄ (k), u〉U

6 −H(f̄ (k))

−max
u

(

〈∇ f̄ (k), u〉U −G∗(u)− 1

2Ak
||u− u(0)||2

)

︸ ︷︷ ︸

GAk
(∇ f̄(k))

.

where we have used the fact that H is convex for the second

inequality. In fact, GAk
(v) can be seen as a uniform smooth

approximation of G(v) = max
u∈dom G∗

〈v, u〉U −G∗(u). Indeed,

it is easily seen that

GAk
(v) 6 G(v) 6 GAk

(v) +
1

2Ak
max

u∈dom G∗

||u− u(0)||2 ,

where A−1
k = O(1/k2) [17, Lemma 7]. Let

R2 = max
u∈dom G∗

||u− u(0)||2,

which is bounded. Hence using (19), we get

−J(f⋆) 6 J̃(u(k)) 6 −H(f̄ (k))−G(∇ f̄ (k)) +
1

2Ak
R2

= −J(f̄ (k)) +
1

2Ak
R2 .

Thus, we arrive at

J(f̄ (k))− J(f⋆) 6
1

2Ak
R2 . (31)

Note that we also have,

J(f̄ (k))− J(f⋆) 6 J̃(u(k))− J̃(u⋆) +
1

2Ak
R2 ,
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where the convergence rate on J̃ is 4
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣
2
R2/k2 from [17,

Theorem 6], and we used the fact that u(k) ∈ dom G∗, ∀k >

0.

By virtue of the lower-bound estimate of Ak >

k2/(8
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣
2
), see [17, Lemma 7], and

∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣
2

6 8, we

deduce that

J(f̄ (k))− J(f⋆) 6
32R2

k2
, k > 1 . (32)

Finally, by strong convexity of J(f), we obtain the desired

rate

||f̄ (k) − f⋆||2 6
64R2

k2
, k > 1 . (33)

Remark 4. Again, in the same vein as the proof of Theorem 1,

the above proof is general and applies straightforwardly to

any problem in the form (17) beyond TV projection, with

the proviso that J(f) is strongly convex. Strong convexity is

however not necessary to get the convergence rate (32) of the

primal objective J(f). Note also that the proof on the rate

over J(f) has a flavor of the one in [46, Theorem 3].

This result asserts that Algorithm 2 necessitates only

O(1/
√

η) iterations to reach a η-convergence tolerance both

on the primal iterates and objective. This is much faster than

O(1/η) iterations required by the forward-backward scheme.

V. INVERSE PROBLEMS

Image acquisition devices compute P 6 N noisy measure-

ments

y = Φf0 + ε ∈ R
p. (34)

of a high resolution image f0 ∈ R
N , where ε is an additive

noise. The linear operator Φ typically accounts for blurring,

sub-sampling or missing pixels so that the measured data y
only captures a small fraction of the original image f one

wishes to recover.

A. Regularization with TV Constraint

A total variation prior allows to to regularize the solution

by reducing the space of candidate solutions of the inverse

problem to those belonging to a total variation ball of finite

radius. Thus solving such a constrained inverse problem pro-

vides an image that both matches approximately the forward

measurements y and that has a low total variation. If the noise

is assumed to be zero-mean of finite variance, it is devised to

solve the constrained optimization problem

min
f∈RN

||f ||TV subject to ||Φf − y|| 6 γ (35)

where γ is related to the noise standard deviation supposedly

known a priori.

On the contrary, if a little is known about the noise ε, but

one has some guess τ on the total variation of the image, it

is better to consider the following problem

f⋆ = argmin
f∈RN

1

2
||Φf − y||2 subject to ||f ||TV 6 τ, (36)

where the minimum is not necessarily unique depending on

the kernel of the operator Φ.

B. Projected Gradient Descent

The solution to (36) requires the minimization of the gradi-

ent Lipschitz functional 1
2 ||Φf−y||2 under a convex constraint.

It is thus possible to use a projected gradient descent

f (ℓ+1) = Proj{||·||TV6τ}

(

f (ℓ) + νΦ∗(y − Φf (ℓ)),
)

(37)

where Proj{||·||TV6τ} is the projector on the TV ball defined in

(3).

The following Theorem ensures the convergence of the

iteration.

Theorem 3. If ν ∈ (0, 2/
∣
∣
∣
∣
∣
∣Φ
∣
∣
∣
∣
∣
∣
2
), where

∣
∣
∣
∣
∣
∣ ·
∣
∣
∣
∣
∣
∣ is the operator

spectral norm, then f (ℓ) converges to a minimizer f⋆ of (36)

with the rate O(1/ℓ) on the objective.

Proof: We use the same arguments as in the first part in

the proof of Theorem 1. The convergence rate is a classical

result that can be found in [47].

The projection step 2) can be computed using either the

forward-backward projection detailed in Algorithm 1 or the

Nesterov projection detailed in Algorithm 2. This leads to the

TV projection algorithm to solve inverse problems detailed in

Algorithm 3.

Algorithm 3: TV-constrained inverse problem resolution

algorithm.

Initialization: set f (0) = 0, ℓ = 0 and ν ∈ (0, 2/
∣
∣
∣
∣
∣
∣Φ
∣
∣
∣
∣
∣
∣
2
).

Main iteration:

while ||f (ℓ+1) − f (ℓ)|| > η do

1) Gradient descent step:

f̃ (ℓ) = f (ℓ) + νΦ∗(y − Φf (ℓ)).

2) Projection step: set u(0) = 0 and k = 0, apply

Algorithm 1 or Algorithm 2 to f̃ (ℓ) with

convergence tolerance ηproj, and get

Proj{||·||TV6τ}(f̃
(ℓ)).

3) Update: Set f (ℓ+1) = Proj{||·||TV6τ}(f̃
(ℓ)).

4) ℓ← ℓ + 1.

Remark 5. A this stage, the reader may legitimately ask

the question why we did not choose the multi-step Nesterov

algorithm instead of the one-step projected gradient to solve

(36). The main reason is that the projected gradient (which is

actually a special instance of the forward-backward scheme),

is robust to errors in the computation of the projection

operator, see [44], [16]. Such errors are inevitable in our case

since the projection is computed via a nested inner iteration

(i.e. Algorithm 1 or Algorithm 2). We do not have any proof of

robustness of the multi-step Nesterov scheme to such errors.

VI. NUMERICAL EXAMPLES

A. Denoising

We have first tested our TV projection algorithms for

denoising, i.e. Φ = Id in (34). In our experiment y = f0 + ε
is an observed image of N = 5122 pixels contaminated by
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a zero-mean additive white Gaussian noise (AWGN) ε of

standard deviation 0.06||f0||∞ (PSNR=12.2 dB).

Figure 1 shows the projections f⋆ of the noisy image

computed with our dual projection algorithms described either

in Algorithm 1 or Algorithm 2 for a decreasing value of the

constraint τ , so that only the strongest edges are present in

the projected images.

Figure 2 compares the convergence speed of our one-step

and multi-step projection algorithms summarized in Algo-

rithm 1 and Algorithm 2, with the sub-gradient projection

method proposed in [12], [13]. Since an iteration of the

multi-step Nesterov projection is approximately twice the

computational cost of one iteration of the two other algorithms,

we displayed the errors generated by f (k/2) instead of f (k) for

the curve of the multi-step algorithm. The one-step algorithm

converges slightly faster compared to the sub-gradient projec-

tion. Moreover, and as predicted by our convergence analysis,

the multi-step projection algorithm clearly outperforms the

two other methods. Figure 3 shows the evolution of the total

variation of the iterates.

Noisy image y f⋆ with ||f0||TV/||f⋆||TV = 2

f⋆ with ||f0||TV/||f⋆||TV = 4 f⋆ with ||f0||TV/||f⋆||TV = 8
Fig. 1. Examples of total variation projections computed with our algorithm.

B. Total Variation Texture Synthesis

Statistical approaches to texture synthesis draw an image at

random from a set of potential textures defined by constraints

that can be learned from an exemplar texture. A standard pro-

cedure considers the outputs of a filter-bank, such as wavelets,

and constrains their marginal distributions to match those of

the exemplar [21], [24]. Instead of considering the uniform

distribution inside the set of constraints–assumed to have a

non-empty intersection– and sample from this intersection,

a simpler approach is to use alternating projections onto

100 200 300 400 500 600 700 800 900 1000
−3.5

−3

−2.5

−2

−1.5

−1

 

 
Forward−Backward
Subgradient proj.
Nesterov

Fig. 2. Decay with k of the error log10(||f (k)−f⋆||/||f⋆||) for the one-step

forward-backward dual projection in Algorithm 1 (solid line), for the multi-

step dual projection in Algorithm 2 (dashed-dotted line), and the sub-gradient

projection [12] (dashed line). Here τ = ||f0||TV/4.

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

 

 
Forward−Backward
Subgradient proj.
Nesterov

Fig. 3. Decay with k of the total variation error log10(||f (k)||TV/τ − 1)
for the same algorithms as in Figure 2. Here τ = ||f0||TV/4.

the constraints of an initial random white noise image [25].

Although the constrained sets are often non-convex, hopefully,

this scheme converges to a point within the constraints that is

expected to be visually similar to the exemplar image.

We propose here to consider a total variation constraint to

better preserve sharp edges during the synthesis

CTV =
{
f ∈ R

N \ ||f ||TV 6 τ
}

,

where τ might be computed from an exemplar texture τ =
||f0||TV. This constraint is especially suitable for piecewise-

smooth textures representing objects occluding each other.

To enforce other statistical constraints as well, we set up a

simple texture model where only the histogram of grayscale

intensity is imposed. In a discrete setting, this amounts to

selecting a set V = {vi}N−1
i=0 of N values vi ∈ R, and consider

the convex compact constraint set

CV =
{
f ∈ R

N \ {f [i, j]}n−1
i,j=0 = V

}
.

In other words, the constraint f ∈ CV imposes that the contrast

of the texture remains the same during the synthesis. We note

that more complicated statistical constraints can be imposed

as well, see for instance [25].

The synthesis algorithm, detailed in Algorithm 4, corre-

sponds to the alternating projection onto the two (convex)



8

constraint sets

f (ℓ+1) = ProjCV

(

Proj||·||TV6τ (f (ℓ))
)

,

starting from an initial noise texture f (0).

Algorithm 4: Total variation texture synthesis algorithm.

Initialization: set f (0) = random white noise and set

ℓ = 0.

Main iteration:

while ||f (ℓ+1) − f (ℓ)|| > η do

1) Impose TV constraint: compute

f̃ (ℓ) = Proj||·||TV6τ f (ℓ)

using our dual projection Algorithm 1 or 2.

2) Impose histogram constraint: compute

f (ℓ+1) = ProjCV
f̃ (ℓ)

using histogram equalization (38).

3) ℓ← ℓ + 1.

The orthogonal projection ProjCV
(f) of an image onto CV

corresponds to an histogram equalization. We assume that the

values of V are ordered by increasing values vi 6 vi+1, and

we denote by f [r(i)] the ordered values of f , where r is a

permutation of the pixel indices. The orthogonal projection is

then

ProjCV
(f) = f̃ with f̃ [r(i)] = vi. (38)

Figure 4 depicts examples of texture synthesis where the

pixel values V are equally spaced in [0, 1] so that the textures

have a uniform distribution of gray values. When the total

variation constraint τ decreases, short edges are removed. This

allows to interpolate between a noisy texture and a cartoon

image with sharp edges.

C. Inpainting

Inpainting aims at restoring an image f0 from which a set

Ω ⊂ {0, . . . , n − 1}2 of pixels is missing. It corresponds to

the inversion of the ill-posed linear problem (34) where Φ is

defined as

(Φf)[i, j] =

{

0 if (i, j) ∈ Ω,

f [i, j] if (i, j) /∈ Ω.
(39)

In this case, it is obvious that
∣
∣
∣
∣
∣
∣Φ
∣
∣
∣
∣
∣
∣ = 1, and we use ν = 1

for the projected gradient descent Algorithm 3. The recursion

(37) amounts to first imposing the known values outside Ω

f̃ (ℓ)[i, j] =

{
f (ℓ)[i, j] if (i, j) ∈ Ω,
y[i, j] otherwise.

and then projecting onto the TV ball

f (ℓ+1) = Proj{||·||TV6τ} f̃ (ℓ).

The top of Figure 5, exemplifies a damaged image y of

N = 5122 pixels, with |Ω|/N = 0.7 of randomly removed

pixels. The noise is AWGN with standard deviation 0.05||f0||∞
(PSNR=13 dB).

||f (0)||TV/||f⋆||TV = 4 ||f (0)||TV/||f⋆||TV = 8

||f (0)||TV/||f⋆||TV = 16 ||f (0)||TV/||f⋆||TV = 32
Fig. 4. Texture synthesis with TV projection and histogram equalization.

The inpainted image f⋆ is computed by solving (36) with

the projected gradient descent, Algorithm 3, with a total vari-

ation constraint size τ = 0.6||f0||TV. The number of iterations

for the projection step 3) is controlled by setting ηproj = 10−2.

Roughly between 10 to 20 iterations of dual projections are

required to maintain the total variation constraints during the

gradient descent. Figure 6, top, depicts the decay in log scale

of the iterates error, that exhibits a roughly linear convergence

speed for large ℓ. This rate is likely to be a consequence of

the special structure of the masking operator Φ. We think that

this can justified in the light of compressed sensing arguments

(the mask is random here), and the convergence analysis in

[45]. We leave these aspects, which are beyond the scope of

the paper, to a future work.

D. Deconvolution

An optical system produces a blur that is modeled by

convolution with a low pass point spread function (PSF) ϕ. In

such a case, the operator Φ in (34) represents the circular

convolution with ϕ. The convolution by ϕ removes high

frequency details and the total variation constraint (36) helps

to recover sharp edges of the original image.

Figure 6, bottom, gives an example of blurred image y of

N = 5122 pixels. The PSF is a Gaussian kernel of standard

deviation s = 4 pixels, normalized to a unit mass. Thus
∣
∣
∣
∣
∣
∣Φ
∣
∣
∣
∣
∣
∣ = 1. The noise is AWGN with standard deviation

0.02||f0||∞ (PSNR=17 dB). We use a gradient descent step-

size ν = 1.9 in Algorithm 3.

The deconvolved image f⋆ is computed by applying Al-

gorithm 3 to y, with a total variation constraint size τ =
0.6||f0||TV. Figure 6, bottom, shows the decay in log scale

of the iterates error. This is consistent with the predicted

convergence rate of Theorem 3.
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f0 y = Φf0 + ε f⋆

Fig. 5. Examples of inpainting (first row) and deconvolution (bottom row) using the TV constraint.

CONCLUSION

This paper proposes a new approach to compute the projec-

tion of an image on a total variation ball. This approach solves

an unconstrained dual formulation of the primal problem, and

boils down to an iterative soft thresholding on the gradi-

ent field. Two algorithms for solving the dual minimization

problem were proposed. We also studied their convergence

behavior and established their convergence rates.

Even though we only focused on the total variation norm

in the constraint, our dualization-based projection approach is

quite general and extends to any positively 1-homogeneous

functional for which the conjugate can be easily computed.

This includes constraints involving functionals of the form

||Gf ||1 for any linear operator G (of explicit adjoint) such as

the analysis operator of a frame. The scheme also generalizes

very easily to arbitrary dimension.

We have illustrated the projection algorithm over several

applications such as denoising when little is known about

the noise statistics, or to enforce total variation constraint in

texture synthesis.

A projected gradient descent was also proposed that uses

this projection to solve linear inverse problems under a total

variation constraint. Our projector can be advantageously used

when additional constraints are involved, such as for example

contrast bounds a 6 f 6 b or affine constraints Af = g.

Such a problem with compound constraints can be solved

for instance using e.g. Douglas-Rachford splitting and its

extensions.
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[43] J.-J. Moreau, “Proximité et dualité dans un espace hilbertien,” Bulletin

de la S.M.F, vol. 93, pp. 273–299, 1965.
[44] P. L. Combettes, “Solving monotone inclusions via compositions of

nonexpansive averaged operators,” Optimization, vol. 53, no. 5-6, pp.
475–504, 2004.

[45] K. Bredies and D. Lorenz, “Linear convergence of iterative soft-
thresholding,” J. Fourier Analysis and Applications, vol. 14, pp. 813–
837, Dec 2008.

[46] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math.

Program., vol. 103, no. 1, Ser. A, pp. 127–152, 2005.
[47] B. Polyak, Introduction to Optimization. New York: Optimization

Software, Inc., Publications Division, 1987.


