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Isoresonant complex-valued potentials and symmetries.

Aymeric AUTIN 1

Abstract

Let X be a connected Riemannian manifold such that the resolvent of the free
Laplacian (∆ − z)−1, z ∈ C \ R+, has a meromorphic continuation through R+. The
poles of this continuation are called resonances. When X has some symmetries, we
construct complex-valued potentials, V , such that the resolvent of ∆ + V , which has
also a meromorphic continuation, has the same resonances with multiplicities as the
free Laplacian.

Mathematics Subject Classification Numbers : 31C12, 58J50

1 Introduction and statement of the results

Let (X, g) be a connected Riemannian manifold with dimension n ≥ 2. On X we
have the free non-negative Laplacian, ∆, acting on functions with domain H2(X), whose
spectrum is included in R

+. So, for z ∈ C \ R
+, the resolvent R0(z) := (∆ − z)−1 of

the Laplacian is a bounded operator from L2(X) to H2(X). We will assume that, the
resolvent has a meromorphic continuation through R

+ in a domain of C, D+. For example,
this holds for Euclidean spaces, asymptotically hyperbolic manifolds and manifolds with
asymptotically cylindrical ends.

We call resonance of ∆ a pole of R0 in D+, and we write Res(∆), the set of these poles.
If z0 ∈ Res(∆), then, in a neighbourhood of z0 in D+, we have a finite Laurent expansion
:

R0(z) =

p∑

i=1

(z − z0)
−iSi +H(z),

where Si has a finite rank and H is holomorphic. p is the order of the resonance. We
call multiplicity of z0 the dimension of the resonant space which is the range of S1. See
[Agm98].

If we perturb the Laplacian with a potential V and if V is sufficiently decreasing at
infinity on X, for example compactly supported, then the resolvent of ∆+V , (∆+V −z)−1

can also be continued meromorphically to D+. Then, we can introduce the resonances of
(∆ + V ), we write their set Res(∆ + V ).

For such a V , sufficiently decreasing, we have the equality for the essential spectrum,
σess(∆+V ) = σess(∆), because V is then relatively compact with respect to ∆. So we can
wonder how these potentials modify resonances. We reach the main question of this work :

Do there exist potentials V such that Res(∆ + V) = Res(∆) ?

We will construct such potentials and we call them isoresonant. In term of inverse
problem, we can’t detect their presence only with the observation of the set of resonances.
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- BP 92208 44322 Nantes Cedex 3, France. Email : aymeric.autin@univ-nantes.fr.
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Our potentials will be complex-valued and it is crucial. For example it is known that,
in R

n, n ≥ 2 and even or n = 3, nontrivial, real valued, smooth and compactly supported
potentials create an infinite number of resonances. See [Mel95] [SBZ95] [Chr99] [SB99].

We have been inspired by the work of Christiansen in [Chr06] and [Chr08]. She con-
structs in Euclidean spaces R

n (n ≥ 2) isoresonant complex potentials, i.e. in this case :
Res(∆ + V ) = Res(∆) = ∅. She uses an action of S

1 on R
n. I generalize this construction

to manifolds which have an isometric action of S
1, and I use other symmetries as (S1)m

and SO(n). On these manifolds, the free Laplacian already has some resonances, so there
is more work to prove the isoresonance of the potentials. To compare ; in the Euclidean
space, it is sufficient to prove Res(∆ + V ) ⊂ Res(∆) because Res(∆) = ∅.

We are going to describe the method for the construction and the statements of the
results. We assume that (X, g) has an isometric action of S

1. This action induces an
unitary representation of S

1 on L2(X) :

S1 −→ U(L2(X))

eiθ −→ f → (x→ f(e−iθ.x)).

Then we can decompose L2(X) according to isotypical components :

L2(X) =

⊥⊕

j∈Z

L2
j(X),

with, for all j ∈ Z,

L2
j(X) := {f ∈ L2(X) ; ∀θ ∈ [0, 2π], ∀x ∈ X, f(e−iθ.x) = eijθf(x)},

is the space of S
1 homogeneous functions of weight j.

We take for our isoresonant potentials sums of S
1 homogeneous functions with weights

of the same sign. Such functions create a shift on the isotypical components of L2(X)
: if V ∈ L∞(X) ∩ L2

m(X) and f ∈ L2
j(X) then V f ∈ L2

j+m(X). On the contrary, the
Laplacian stabilizes these isotypical components. Thanks to this shift we will prove the
inclusion Res(∆ + V ) ⊂ Res(∆), first for truncated V , and after for all V thanks to a
characterization of resonances as zeros of regularized determinants.

On the way, we have to estimate, for all compact K, the lower bound of the spectrum
of the Dirichlet Laplacian acting on S

1 homogeneous functions of weight j supported in
K (we denote this space L2

j(K)). This is an interesting result on its own :

Proposition 1

Let K be a compact manifold with boundary, having an action of S
1 and a metric g such

that S
1 acts by isometries on (K, g) and g has a product form in a neighborhood of the

boundary of K. Then there exist strictly positive constants, C1(K) and C2(K), such that,
for all j ∈ Z, we have :

C1j
2 ≤ Min Spec ∆L2

j (K) ≤ C2(1 + j2).

For the other inclusion, Res(∆) ⊂ Res(∆+V ), we use the Agmon’s perturbation theory
of resonances, developed in [Agm98]. Thanks to this theory we can view resonances as
eigenvalues of auxiliary operators and so we can use the Kato’s theory in order to study
their perturbations.

Finally we get the following result, given here in restricted cases for simplicity :

2



Theorem 1

On the Euclidean space R
n or the hyperbolic space H

n, let be the potential

V =

M∑

m=1

Vm,

where Vm ∈ L∞(X) is compactly supported and S
1 homogeneous with weight m.

Then, in C, we have Res(∆ + V ) = Res(∆) with the same multiplicities.

See the theorem 2 for the general case with a more general manifold, an infinite sum for
V , and V not compactly supported.

Remark 1

Instead of the free Laplacian we can perturb ∆ + V0 with V0 a real, compactly supported
and S

1 invariant potential and the result becomes Res(∆ + V0 + V ) = Res(∆ + V0) with
the same multiplicities. We can imagine the perturbation of other operators which respect
the decomposition of L2(X) according to the isotypical components.

The construction of isoresonant potentials using the action of (S1)m is essentially the
same as in the case S

1 so we don’t describe it in this article, but it can be found in
[Aut08]. On the contrary, if we look at the action of SO(n) (n ≥ 3), as this group is not
commutative, we don’t have any simple description of the isotypical components. Then
we add an hypothesis and assume that we can write

L2(X) =
⊕

k∈N

L2(R+) ⊗Hk,

where Hk = Ker(∆Sn−1 − k(k + n − 2)), k ∈ N, is the eigenspace of the Laplacian on
the sphere S

n−1. Like in the case S
1, we are going to construct some V which induces a

shift in this decomposition of L2(X). This time V is a sum of highest weight vectors of
the representations Hk of the complexification of the Lie algebra son. Moreover, for the
action of SO(n) we don’t need to use the proposition 1, which simplifies the proof of the
isoresonance. Here I have been inspired by the construction of isospectral potentials by
Guillemin and Uribe in [GU83].

These potentials don’t modify the set of resonances of the free Laplacian and their mul-
tiplicity. We can wonder if, with more information, we would be able to detect them. On
this way, I prove that , on H

2, there exist some potentials among the family of isores-
onant potentials which modify the order of the resonances. On H

2, resonances of the
free Laplacian are, up to a change of spectral parameter, the negative integers with order
1. Taking for the hyperbolic plan the model R

+ × S
1 with coordinates (r, θ) and metric

g = dr2 + sh(r)2dθ2, we have

Proposition 2

On the hyperbolic plan H
2, let k be a strictly positive integer. There exists a potential

V ∈ F := {Vm(r)eimθ;m ∈ Z \ {0}, Vm ∈ L∞
c (R+)} such that −k is a resonance of ∆ + V

with an order strictly bigger than 1.

In the last part of this article, we construct isoresonant potentials using the S
1 action

on another example : the catenoid, i.e. (R× S
1,dr2 + (r2 + a2)dα2) with (r, eiα) ∈ R× S

1
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and a ∈ R. We treat this example separately because we can’t use the Agmon’s theory
for defining the continuation of the resolvent and for perturbations of resonances ; instead
we have to use a complex scaling method, following [WZ00].

2 Framework and conditions

We take a cover f : Σ → Ω, where Ω is an open set of C, and an unbounded domain
D ⊂ Σ such that f(D) ⊂ C \ R

+. We note R0(λ) := (∆ − f(λ))−1 which is first defined
holomorphic in D with values in L(L2(X)) (the space of bounded operators from L2(X)
to itself). Let two Banach spaces B0 and B1 be such that

B0
J0→֒ L2(X)

J→֒ B1,

where J0 and J are continuous injections, J0(B0) is dense in L2(X) and J(L2(X)) is dense
in B1. We note, for λ ∈ D,

R̃0(λ) = JR0(λ)J0.

R̃0 is holomorphic on D with values in L(B0, B1).

Our first assumption is the following :

Condition A : R̃0 has a meromorphic continuation with finite rank poles (we will say
finite-meromorphic) from D to D+ a domain of Σ.

In order that Condition A not hold trivially we assume that f(D+) intersects the essen-
tial spectrum of ∆.

Let us give some examples :

• X is R
n with the Euclidean metric,

- If n is odd then we take Σ = C and R0(λ) := (∆ − λ2)−1 is first defined in
D = {λ ∈ C ; Imλ > 0} with values in L(L2(Rn)) and has, for all N > 0,
an holomorphic continuation in D+

N = {λ ∈ C ; | Imλ |< N} with values in

L(e−N<z>L2(Rn), eN<z>L2(Rn)), where < z >= (1+ | z |2) 1
2 . See [Mel95] and

[SBZ95].

- If n is even then we take for Σ the logarithmic cover of C \ {0}, and R0(λ) :=
(∆ − e2λ)−1 is first defined in D = {λ ∈ C ; 0 < Imλ < π} with values
in L(L2(Rn)) and has, for all N > 0, an holomorphic continuation in D+

N =
{λ ∈ C ; | Im(eλ) |< N} with values in L(e−N<z>L2(X), eN<z>L2(X)). See
[Mel95].

• X is an asymptotically hyperbolic manifold. We begin with the definition of such
a manifold. Let X = X ∪ ∂X , a smooth compact manifold of dimension n with
boundary ∂X and ρ0 a boundary-defining function that is a smooth function on X
such that

ρ0 ≥ 0, ∂X = {m ∈ X ; ρ0(m) = 0}, dρ0 |∂X 6= 0.

We say that a smooth metric g on X is asymptotically hyperbolic if ρ2
0g continues

as a smooth metric on X and | dρ0 |ρ2
0g= 1 on ∂X. Thanks to this condition, the

sectional curvature of g tends to −1 at the boundary, and there exists a function ρ
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defining the boundary, a collar neighborhood of the boundary, Uρ := [0, ε) × ∂X ,
and a family h(ρ), ρ ∈ [0, ε), of smooth metrics on ∂X such that

g =
dρ2 + h(ρ)

ρ2
on Uρ. (1)

For example the hyperbolic space H
n and its convex co-compact quotients are asymp-

totically hyperbolic.

We take Σ = C and R0(λ) := (∆−λ(n− 1−λ))−1 is first defined and meromorphic
in D = {λ ∈ C ; Reλ > n−1

2 } with values in L(L2(X)) and λ is one of its poles if
and only if λ(n− 1 − λ) ∈ σd(∆), and it is of finite rank.
Mazzeo and Melrose ([MM87]) and after Guillarmou ([Gui05]) have proved that R0

has a finite-meromorphic continuation in C \ (n
2 − N) and in all C if and only if

the metric g is even. The metric g is even if the family h(ρ) defined in (1) has a
Taylor’s series in ρ = 0 only with even powers of ρ (it does not depend on the choice
of ρ). More precisely, for all N ≥ 0, R0 has a finite-meromorphic continuation on
D+

N := {λ ∈ C ; Reλ > n−1
2 −N} if g is even, and otherwise on D+

N \ (n
2 − N), with

values in L(ρNL2(X), ρ−NL2(X)).

• X is a Riemannian manifold with asymptotically cylindrical ends. Like in the pre-
vious case, let X = X ∪ ∂X be a smooth compact manifold of dimension n with
boundary. We say that a smooth metric g on X is a metric with asymptotically
cylindrical ends if there exists a function ρ defining the boundary, a collar neighbor-
hood of the boundary, Uρ := [0, ε) × ∂X , and a family h(ρ), ρ ∈ [0, ε), of smooth
metrics on ∂X such that

g =
dρ2

ρ2
+ h(ρ) on Uρ. (2)

Let ∆∂X be the Laplacian on the compact manifold ∂X and 0 = σ2
1 < σ2

2 < . . .
its spectrum. Then the spectrum of the Laplacian on X, ∆, is discrete with finite
multiplicities outside [0,+∞) and, for all j > 0, [σj, σj+1) is continuous spectrum
with a multiplicity equal to the sum of the multiplicities of {σ1, . . . , σj} as eigenvalues
of ∆∂X and there may be embedded eigenvalues with finite multiplicity.

Melrose, in [Mel93], proves the continuation of the resolvent of the free Laplacian on
the Riemannian surface Σ which is the surface such that all the functions rj(λ) :=

(λ−σ2
j )

1
2 are holomorphic on it. This surface is ramified at points λ = σ2

j . R0(λ) =

(∆−λ)−1 is first defined inD = {λ ∈ Σ ; ∀ j Im(rj(λ)) > 0} with values in L(L2(X))
and, for all N ≥ 0, it has a finite-meromorphic continuation in a domain D+

N with
values in L(ρNL2(X), ρ−NL2(X)).

• X is a rank-one symmetric space of the noncompact type. In this case, Hilgert and
Pasquale prove, in [HP09], the finite-meromorphic continuation of the resolvent of
the free Laplacian.

In order to treat all these examples with a single notation, we reformulate the Condition
A, with N > 0, and ρ = e−<z> for the Euclidean case and a boundary-defining function
on X for the other examples, by

Condition AN,ρ : R̃0 has a finite-meromorphic continuation from D to D+
N an un-

bounded domain of Σ, with values in L(ρNL2(X), ρ−NL2(X)).
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Agmon shows in [Agm98] that notions of resonances, multiplicity and order do not
depend of the weight ρN chosen.

In order to have the finite-meromorphic continuation to D+
N of the resolvent of ∆ + V ,

(∆ + V − z)−1, z ∈ C \ Spec(∆ + V ), we introduce a condition for V :

Condition BN,ρ : R̃V (λ) := J(∆+V−f(λ))−1J0 with values in L(ρNL2(X), ρ−NL2(X))

has a finite-meromorphic continuation from D to D+
N and ρ−2NV is bounded on X.

Remark 2

With the hypothesis ρ−2NV bounded, we will be able to apply the Agmon’s perturbation
theory of resonances [Agm98].

Remark 3

If V is compactly supported or if V is smooth on X and vanishes to all orders in ρ at the
boundary then V verifies Condition BN,ρ for all N . In these cases, the resolvent of ∆ + V
has a finite-meromorphic continuation in all Σ.

3 Circular symmetries

3.1 Statement of the result and examples

Let (X, g) be a connected Riemannian manifold with a S
1 action by isometries. We will

need the following condition.

Condition C : For all compact K ⊂ X there exists a compact manifold with boundary
K̃ which is diffeomorphic to a compact of X containing K, and which has a isometric S

1

action, with a smooth metric g̃ such that g̃|K = g|K , and g̃ is a product metric dδ2 + h̃
∂ eK

in a neighbourhood of the boundary ∂K̃ of K̃, with δ a S
1 invariant function defining ∂K̃

and h̃ is independent of δ.

We can now give the main result of this part :

Theorem 2

Let (X, g) be a connected Riemannian manifold with an action of S
1 by isometries verifying

the Condition C and the Condition AN,ρ for some N > 0 and some S
1 invariant function

ρ.

Let V be the potential

V =
+∞∑

m=1

Vm,

where Vm ∈ L∞(X) is S1 homogeneous of weight m, with
+∞∑
m=1

‖Vm ‖∞< +∞. If V verifies

Condition BN,ρ, and for all λ ∈ D+
N \ Res(∆), ρ−(N+1)V R̃0(λ)ρN is in a Schatten class

Sq, q ∈ N \ {0},

then, on D+
N , Res(∆ + V ) = Res(∆) with the same multiplicities.
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We will recall the definition of the Schatten classes in the definition 1 in section 3.3.2.

Remark 4

The last assumption, ρ−(N+1)V R̃0(λ)ρN ∈ Sq, is technical and will allow us to use regu-

larized determinants. If V is compactly supported then it holds with q > dimX
2 and for

any N . In the Euclidean space R
n, if V is bounded and super-exponentially decaying

we still have the assumption for all N . On an asymptotically hyperbolic manifold X, if
V is smooth on X and vanishes to all orders in ρ at the boundary then V verifies the
assumption for all N .

Let us describe the S
1 action, the Condition C and the potentials for the examples of

section 2 verifying Condition A :

• Let R
n = (R2)k × R

n−2k be the Euclidean space with the following S
1 action

k⊕

i=1

R(piθ)⊕ IdRn−2k ,

where θ ∈ [0, 2π), (p1, . . . , pk) ∈ (Z \ {0})k , and R(φ) is the rotation of angle φ on
R

2. For the Condition C, we can remark that every compact K can be included in
a ball B(0, R) and we can take for K̃ a bigger ball B(0, R̃) with R̃ > R with the
following metric in polar coordinates :

g̃ = dr2 + f(r)dω2, (r, ω) ∈ R
+ × S

n−1,

where dω2 is the metric on the (n − 1)-sphere in R
n and f is smooth on [0, R̃],

constant near R̃ and f(r) = r2 on [0, R]. The components S
1 homogeneous of weight

m of the isoresonant potentials of the theorem have the following form :

Vm(r1e
iα1 , . . . , rke

iαk , z) =
∑

(ℓ1,...,ℓk)∈Zk

k
P

i=1
ℓipi=−m

Wm,ℓ1,...,ℓk
(x̄)eiℓ1α1 . . . eiℓkαk

where (r1e
iα1 , . . . , rke

iαk , z) ∈ (R2)k × Rn−2k, x̄ ∈ Rn/S1 and the sum converges in
infinite norm.

• For the hyperbolic space H
n, we can take the Poincaré model i.e. the unit ball of

R
n centered at the origin with the metric 4(1− ‖ x ‖2)−2geuclid. The action of S

1

on R
n described in the previous point induces an isometric action of S

1 on H
n. For

the condition C, if K is included in a ball of radius R and centered at the origin
(i.e. 0Rn with this model), then we take for K̃ a ball of radius R̃ > R and, in polar
coordinates, g̃ = dr2 +f(r)dω2 with this time f(r) = sh2r on [0, R]. The isoresonant
potentials have the same form as in the Euclidean case. We recall ([GZ95a]) that
if n is odd Res(∆) = ∅ and if n is even Res(∆) = −N and the multiplicity of the
integer −k is the multiplicity of k(k + n− 1) as eigenvalue of the Laplacian on the
Euclidean sphere S

n.

• Let us consider H
n with the model R

+
∗ × R

n−1 with the corresponding coordinates
(x, y). We take for X the hyperbolic cylinder H

n/ < γ > where γ is the isometry

w → eℓw. S
1 acts on X isometrically by eiθ.[x, y] = [e

ℓθ
2π x, e

ℓθ
2π y]. We can see X as
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R
+ × S

1 × S
n−2 with the coordinates (r, θ, ω), the metric dr2 + ch2rdθ2 + sh2rdω2,

and the S
1 action is the trivial action on the factor S

1. Every compact is included
in a K = [0, R] × S

1 × S
n−2, so we can take K̃ = [0, R̃] × S

1 × S
n−2 with the metric

g̃ = dr2 + h1(r)dθ
2 + h2(r)dω

2 where h1 and h2 are smooth on [0, R̃], constant near
R̃ and on [0, R], h1(r) = ch2r, h2(r) = sh2r. The components S

1 homogeneous of
weight m of the isoresonant potentials have the form :

Vm(r, θ, ω) = Wm(r, ω)e−imθ .

Here, according to [GZ95a], we have Res(∆) = −N + iZ2π/ℓ [GZ95a].

We recall that the isometric S
1 action induces a decomposition of L2(X) according to

isotypical subspaces :

L2(X) =
⊕

j∈Z

L2
j(X).

Let Pj : L2(X) −→ L2
j(X) be the corresponding orthogonal projection.

The main idea of the proof is that if Vm ∈ L∞(X) is S
1 homogeneous of weight m then

it induces by multiplication a shift on these isotypical representations :

Vm : L2
j (X) −→ L2

j+m(X).

3.2 Spectral lower bound for the Laplacian on homogeneous functions

In the following we will need a spectral lower bound for the Laplacian on S
1 homogeneous

and compactly supported functions. As I have not read this result anywhere before, I also
give an upper bound for the first eigenvalue. In [Aut08], it can be found a more precise
discussion about this result.

Proposition 3

Let K be a compact manifold with boundary, with a S
1 action and equipped with a metric

g such that S
1 acts by isometries on (K, g). We assume g has a product form dδ2 +h∂K in

a neighbourhood of ∂K with δ a S
1 invariant function defining ∂K, and h is independent

of δ. Then there are constants C1 = C1(K) > 0 and C2 = C2(K) > 0 such that for all
j ∈ Z, we have :

C1j
2 ≤ Min Spec ∆L2

j (K) ≤ C2 < j >2 .

where ∆L2
j (K) is the Friedrichs selfadjoint extension in L2

j(K) of the Laplacian defined on

C∞
c (K) ∩ L2

j (K) and < j >:= (1+ |j |2) 1
2 .

Remark 5

In the case where K is a disk centered in 0 in R
2, we can apply this lemma including K

in a bigger disk K̃ as explained before but we can also prove directly the lower bound
because it is just an estimate of the first zero of Bessel functions.

Proof : We begin with the lower bound. Consider two copies of K. We can identify their
regular boundaries and get a compact closed manifold M . More precisely, there exists a
collar neighbourhood W of ∂K diffeomorphic to [0, ǫ) × ∂K by the diffeomorphism :

ψ : [0, ǫ) × ∂K → W

(t, y) → ψt(y),

8



with ψt the gradient flow of δ for the metric g. So, on the topological space M = (K ⊔
K)/∂K, we can construct a differential atlas beginning with ∂K ⊂ M which is included
in a open set [W ] = (W ⊔W )/∂K diffeomorphic to (−ǫ, ǫ) × ∂K by

(−ǫ, ǫ) × ∂K → [W ]

(t, y) →
{
ψt(y), if t ≥ 0
ψ−t(y), if t ≤ 0

On [W ] the S
1 action is, via the previous diffeomorphism, the action on ∂K. The other

charts are those in the interior of K.

As the metric g has a product form in a neighbourhood of ∂K, it can be continue by
symmetry on δ. We get a smooth metric on M and we still have an isometrical action of
S

1 on M .
Let Y be the corresponding vector field which we will consider as a differential operator
of order 1 (Y.f(m) = −i∂θ(f(e−iθ.m))|θ=0). Another pseudo-differential operator of order
1, on M , is P :=

√
∆M + 1 where ∆M is the Laplacian on (M,g). P and Y commute

because S
1 acts by isometries on M . We consider Q := P 2 + Y 2 whose principal symbol

is q(x, ξ) =|ξ |2 +(ξ(Y ))2, (x, ξ) ∈ T ∗M ; so Q is elliptic.

Let Λ ⊂ R
2 be the joint spectrum of (P, Y ), it is constituted by the points (λP

k , λ
Y
k )

such that Pφk = λP
k φk and Y φk = λY

k φk where (φk) is a orthonormal basis of L2(M). We
note that the spectrum of Y is equal to Z and we are looking for the minimum of the first
coordinates of points of Λ whose second coordinate is j. We call this minimum λj

1.

Let p(x, ξ) = (|ξ |, ξ(Y )) be the joint principal symbol of P and Y . p is an homogeneous
function of degree 1. Let Γ be the linear cone Γ = R

+p(S(T ∗M)) where S(T ∗M) is
the unit sphere bundle of T ∗M . Moreover, we have p(S(T ∗M)) = {(1, ξ(Y )), | ξ |= 1}.
Now, as P and Y commute and Q is elliptic, we can apply theorem 0.6 in [CdV79] : if
C is a cone of R

2 such that C ∩ Γ = {0} then C ∩ Λ is finite. Taking, for example,
CK = R{(a, | Y |K), | a |≤ 1

2} where | Y |K= sup
m∈K

| Y (m) |, it means that there exists a

constant c := 1
2|Y|K

and J ∈ N such that, for all j ∈ Z, |j |≥ J , we have λj
1 ≥ c |j | and we

can take a smaller c and have λj
1 ≥ c |j | for all j ∈ Z. As P =

√
∆M + 1, there is another

constant c, such that the minimum of the spectrum of the Laplacian on homogeneous
functions of weight j on M is superior than cj2.

Moreover, the spectrum of ∆L2
j
(K) with Dirichlet conditions is included in the spectrum

of ∆M acting on L2
j(M). Indeed, let I be the involution which exchanges the two copies

of K in M , then the eigenfunctions of ∆M which are odd for I vanish on the image of ∂K
in M . So they correspond to eigenfunctions of the Dirichlet Laplacian on K.

In order to prove the upper bound, we remark that

Min Spec ∆L2
j (K) = inf

φ∈L2
j (K)\{0}

〈∆φ, φ〉
‖φ‖2

.

So it’s sufficient to construct, for j large, one φj ∈ L2
j(K)\{0} such that 〈∆φj , φj〉 ≤ Cj2 ‖

φj ‖2 with C independent of j. Let K̂ be the set of principal orbits of the action of S
1 in

K. The principal orbits are those for which the stability groups are the identity. K̂ is an
open, connected and dense subset of X. We consider the principal S

1 fibration K̂ → K̂/S1

and we take Uj , a S
1 invariant open set of K̂, where this fibration is trivial. So Uj is

diffeomorphic to (Uj/S
1)× S

1 and we can take Uj small enough to be sure that Uj/S
1 is a

9



coordinate patch and we denote the corresponding coordinates by (y, θ) := (y1, . . . , yN , θ)
where N = dim Uj/S

1. In those coordinates the metric has the form

g|Uφj
=

N∑

k,ℓ=1

ak,ℓ(y, θ)dykdyℓ + b(y, θ)dθ2 +

N∑

k=1

ck(y, θ)dykdθ,

with ak,ℓ, b and ck smooth on Uj , and the Laplacian becomes

∆ =

N∑

k,ℓ=1

Ak,ℓ(y, θ)∂yk
∂yℓ

+B(y, θ)∂2
θ +

N∑

k=1

Ck(y, θ)∂θ∂yk

+
N∑

k=1

Dk(y, θ)∂yk
+ E(y, θ)∂θ ,

where Ak,ℓ, B,Ck,Dk and E are smooth on Uj .

We take φj(y, θ) = ψ(y)e−ijθ with ψ smooth and compactly supported in Uj/S
1. So we

have φj ∈ L2
j(K) and

∆φj =
( N∑

k,ℓ=1

Ak,ℓ(y, θ)∂yk
∂yℓ
ψ − j2B(y, θ)ψ − ij

N∑

k=1

Ck(y, θ)∂yk
ψ

+

N∑

k=1

Dk(y, θ)∂yk
ψ − ijE(y, θ)ψ

)
eijθ,

and

〈∆φj, φj〉 = − j2
∫

supp φj

B(y, θ) |ψ |2 dvol(g)

− ij

∫

supp φj

N∑

k=1

Ck(y, θ)(∂yk
ψ)ψ + E(y, θ) |ψ |2 dvol(g)

+

∫

supp φj

N∑

k,ℓ=1

Ak,ℓ(y, θ)(∂yk
∂yℓ
ψ)ψ +

N∑

k=1

Dk(y, θ)(∂yk
ψ)ψ dvol(g)

so
〈∆φj , φj〉 =| 〈∆φj, φj〉 |≤ Λ1(ψ)j2 ‖ψ‖2

L2(K,g) +Λ2(ψ) |j | +Λ3(ψ),

where Λ1,Λ2,Λ3 are positives constants which only depend of ψ.

By fixing ψ as ‖φj ‖=‖ψ‖, we get a constant C2 such that, for all j ∈ Z,

〈∆φj , φj〉 ≤ C2 <j>
2‖φj ‖2 . �

With the proposition 3 and the Condition C we will prove the following :

Lemma 1

Let λ ∈ D+
N \ Res(∆) and χ ∈ C∞

c (X) be S
1-invariant. Then there is a constant C =

C(λ, χ) > 0 such that, for all j ∈ Z, :

‖ χR̃0(λ)Pjχ ‖≤ C

1 + j2

10



Proof : Since S
1 acts by isometries on X, we have, for all j, ∆Pj = Pj∆ and PjR̃0 =

R̃0Pj . The fact that χ is S
1 invariant also gives χPj = Pjχ.

We have
χ(∆ − f(λ))R̃0(λ)χ = χ2,

so
(∆ − f(λ))χR̃0(λ)Pjχ = χ2Pj + [∆, χ]R̃0(λ)χPj .

then
‖ (∆ − f(λ))χR̃0(λ)Pjχ ‖ ≤ ‖ χ2Pj ‖ + ‖ [∆, χ]R̃0(λ)χPj ‖ ≤ C(λ, χ). (3)

Let (K̃, g̃) the compact containing K := suppχ given by the Condition C. If v ∈ L2(X)
then u = χPjR̃0(λ)χv is in L2

j(K, g) and, as supp u ⊂ K and g̃|K = g|K , we also have

u ∈ L2
j(K̃, g̃). In addition, u is, at the same time, in the domain of the Dirichlet Laplacian

on K̃, of the Dirichlet Laplacian on K and of the Laplacian on X, and we have

∆
( eK,eg)

u = ∆(K,g)u = ∆(X,g)u.

Let (φk) (depending on K̃ and j) an orthonormal basis of L2
j (K̃, g̃) constituted by

eigenfunctions of ∆( eK,eg). We denote µk(j, K̃) the eigenvalue corresponding to φk. If we

expand u following this basis : u =
∑
k

ukφk, we have

(
∆( eK,eg) − f(λ)

)
u =

∑

k

(
µk(j, K̃) − f(λ)

)
ukφk

so that

‖
(
∆ − f(λ)

)
u ‖2=

∑

k

| µk(j, K̃) − f(λ) |2|uk |2≥
∑

k

(
µk(j, K̃) − Re(f(λ))

)2 |uk |2 .

Thus, using the proposition 3, there exists a constant C = C(K̃) > 0 such that

∀k ∈ N, ∀j ∈ Z µk(j, K̃) ≥ Cj2.

We take J in order to have CJ2 > Re(f(λ)), then for all |j |≥ J , we have

‖
(
∆ − f(λ)

)
u ‖2≥

(
Cj2 − Re(f(λ))

)2
∑

k

|uk |2=
(
Cj2 − Re(f(λ))

)2 ‖u‖2 .

Using this in the inequality (3) we get that for all |j |≥ J

‖ χR̃0(λ)Pjχ ‖≤ C(λ, χ)

Cj2 − Re(f(λ))
.

So there exists another constant C > 0 such that , for all |j |≥ J , ‖ χR̃0(λ)Pjχ ‖≤ Cj−2,
and we can take a greater C to have, for all j ∈ Z,

‖ χR̃0(λ)Pjχ ‖≤ C

1 + j2
. �
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3.3 Localization of resonances

We begin the proof of the theorem 2 by the inclusion Res(∆ + V ) ⊂ Res(∆). First, we
consider truncations in space of partial sums of V .

3.3.1 Localization of resonances for the truncated partial sums of V

We consider SM :=
M∑

m=1
Vm where Vm is the component S

1 homogeneous of weight m of

V . Let χ ∈ C∞
c (X) be invariant under the action of S

1. In this part, our purpose is to
show that Res(∆ + χSM ) ⊂ Res(∆), on D+

N .

For λ ∈ D+
N \ Res(∆), we have

(
∆ + χSM − f(λ)

)
R̃0(λ)ρN = ρN

(
I + ρ−NχSMR̃0(λ)ρN

)
.

In addition, we have

ρ−NχSM R̃0(λ)ρN = χρ−2NSMρ
N R̃0(λ)ρN .

So thanks to the condition AN,ρ, ρ
−NχSM R̃0(λ)ρN is an holomorphic family in D+

N \
Res(∆), of compact operators such that

‖ρ−NχSM R̃0(λ)ρN ‖< 1

for |λ| sufficiently large in D+
N .

Then by the analytic Fredholm theory we get that
(
I+ ρ−NχSM R̃0(λ)ρN

)−1
is meromor-

phic on D+
N \ Res(∆) and we have the often called Lipmann-Schwinger equation which

establishes the link between the resolvent of ∆ + χSM and these of the free Laplacian :

ρN R̃χSM
(λ)ρN = ρN R̃0(λ)ρN

(
I + ρ−NχSMR̃0(λ)ρN

)−1
. (LS)

So if λ0 is a pole of R̃χSM
in D+

N \Res(∆), then λ0 is a pole of
(
I + ρ−NχSM R̃0(λ)ρN

)−1

and still by Fredholm theory, there is a nontrivial u ∈ L2(X) such that

(
I + ρ−NχSM R̃0(λ)ρN

)
u = 0.

We remark with the last equality that supp u ⊂ supp χ. Let χ2 ∈ C∞
c (X) invariant under

the action of S
1 and such that χ2 = 1 on the support of χ. If we denote uj := Pju ∈ L2

j (X),
we have

uj = Pj

(
− ρ−NχSM R̃0(λ)ρNu

)
= Pj

(
− ρ−NχSMχ2R̃0(λ)χ2ρ

Nu
)
,

and by linearity

uj = −
M∑

m=1

Pj

(
ρ−NχVmχ2R̃0(λ)χ2ρ

Nu
)
.

However, each Vm induces a shift on the isotypical representations :

Vm : L2
j(X) → L2

j+m(X),
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so we have

uj = −
M∑

m=1

VmPj−m

(
ρ−Nχχ2R̃0(λ)χ2ρ

Nu
)

uj = −
M∑

m=1

Vmρ
−Nχχ2R̃0(λ)χ2ρ

NPj−m(u),

where we have also used that the projections Pj−m commute with R̃0, ρ, χ and χ2.

By hypothesis, for all m, ‖Vm ‖∞≤
+∞∑

m′=1

‖Vm′ ‖∞< +∞, then, applying the lemma 1 to

χ2R̃0χ2Pj−m, we get a constant C such that, for all j ∈ Z,

‖ uj ‖≤
M∑

m=1

C

1 + (j −m)2
‖ uj−m ‖,

so, for all j ∈ Z,

‖ uj ‖≤ ǫj

M∑

m=1

‖ uj−m ‖,

where ǫj → 0 for |j |→ +∞.

Thus we can use the following lemma :

Lemma 2

Let (aj)j∈Z ∈ ℓ1(Z) non-negative. If there is M ∈ N and, for all j ∈ Z, aj ≤ ǫj
M∑

m=1
aj−m

with ǫj → 0 for |j |→ +∞, then aj = 0 for all j.

Proof : Let J ′ ≤ 0 such that, for all j ≤ J ′, ǫj ≤ 1
M . Then, for all j ≤ J ′, we have

aj ≤ 1
M

M∑
m=1

aj−m and if we sum all these inequalities we get, denoting S =
∑

j≤J ′

aj ,

S ≤ 1

M

(
(S − aJ ′) + (S − aJ ′ − aJ ′−1) + . . .+ (S − aJ ′ − . . .− aJ ′−M+1)

)

=
1

M

(
MS −MaJ ′ − (M − 1)aJ ′−1 − . . .− aJ ′−M+1

)
,

from which we deduce

0 ≤ −MaJ ′ − (M − 1)aJ ′−1 − . . . − aJ ′−M+1,

and thus
aJ ′ = aJ ′−1 = . . . = aJ ′−M+1 = 0.

Moreover, as ǫj → 0 for | j |→ +∞, there exists a constant C such that, for all j ∈ Z,

aj ≤ C
M∑

m=1
aj−m, so we have

∀j ≥ J ′ −M + 1, aj = 0,

and we can make tighten J ′ to −∞ and finally we have aj = 0 for all j ∈ Z �
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We apply this lemma 2 to the sequence {‖uj ‖2}j . We get that ‖uj ‖= 0 for all j and

thus u ≡ 0. This is in contradiction with the existence of a pole of R̃χSm in D+
N \Res(∆).

Finally, for all M and all χ ∈ C∞
c (X), invariant under the action of S

1, ∆ + χSM has no
resonance in D+

N \ Res(∆), which can be expressed by

Res(∆ + χSM) ⊂ Res(∆), in D+
N .

3.3.2 Localization of resonances for the potential V

Let us recall some results and notations about regularized determinant that will be
needed in the following. ([Yaf92])

Definition 1

Let H be an Hilbert space. If A : H −→ H is a compact operator, we define its singular

values (sn(A))n∈N as the eigenvalues of the selfadjoint operator (A∗A)1/2. For 1 ≤ p <
+∞, Sp, is the two-sided ideal of L(H) formed by operators A for which the sum

‖A‖p
p=

∞∑

n=0

sp
n(A)

is finite.

Definition 2

For A ∈ Sp we define the regularized determinant, detp, by

detp(I +A) =

∞∏

n=1

(1 + λn(A)) exp
( p−1∑

k=1

(−1)k

k
λk

n(A)
)
,

where the (λn(A))n∈N are the eigenvalues of A.

We give some properties of this determinant

Proposition 4

1. A −→ detp(I +A) is continuous on (Sp, ‖ . ‖p).

2. If z −→ A(z) is holomorphic in some domain of C, with values in Sp, then z −→
detp(I +A(z)) is also holomorphic in the same domain.

3. For A ∈ Sp, I +A is invertible if and only if detp(I +A) 6= 0.

We have assumed that there exists q such that for all λ ∈ D+
N\Res(∆), ρ−(N+1)V R̃0(λ)ρN

is in a Schatten class Sq, so ρ−NV R̃0(λ)ρN is in Sq too.

Let us first prove a preliminary fact. For all χ ∈ C∞
c (X) there exists p such that

χρ−N R̃0(λ)ρN ∈ Sp for all λ ∈ D+
N \ Res(∆). To see this, take a compact K with a

smooth boundary and containing suppχ. Let ∆K be the Dirichlet Laplacian on K, and
(µk)k∈N the eigenvalues of (∆K + 1)−1. Then the Weyl’s formula gives, when k tends to
+∞,

µk ∼ (2π)2

(ωnVol(K))
2
n

k−
2
n ,
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where n = dimX and ωn is the volume of the unity ball in R
n. Thus for p > n

2 , (∆K +

1)−1 ∈ Sp. Moreover, for all λ ∈ D+
N \ Res(∆), (∆K + 1)χρ−N R̃0(λ)ρN is a bounded

operator in L2(X), and, as Sp is a two-sided ideal of L(L2(X)), we have

χρ−N R̃0(λ)ρN = (∆K + 1)−1(∆K + 1)χρ−N R̃0(λ)ρN ∈ Sp.

As Sp1 ⊂ Sp2 , for p1 ≤ p2, we can take the maximum of p and q and we still note it q,

and get that χρ−N R̃0(λ)ρN and ρ−NV R̃0(λ)ρN are both in Sq.

The Lipmann-Schwinger equation, (LS), with V instead of χSM give

ρN R̃V (λ)ρN = ρN R̃0(λ)ρN
(
I + ρ−NV R̃0(λ)ρN

)−1
.

So thanks to the third point of the proposition 4 we have

λ ∈ Res(∆ + V ) ∩D+
N \ Res(∆) ⇐⇒ detq

(
I + ρ−NV R̃0(λ)ρN

)
= 0.

On D+
N \ Res(∆), we define

F (V, λ) := detq

(
I + ρ−NV R̃0(λ)ρN

)
.

If there exists λ0 ∈ Res(∆ + V ) \ Res(∆), then

F (V, λ0) = 0.

Let Γ be a simple loop around λ0 such that λ0 is the only zero of F (V, .) in the do-
main U delimited by Γ, and such that U ⊂ D+

N \ Res(∆). It is possible because, thanks
to the second point of the proposition 4, F is holomorphic in λ and so its zeros are isolated.

Let χr a smooth family of compactly supported and S
1-invariant functions such that, ‖

(χr−1)ρ‖∞ tends to 0 when r tends to +∞. As we have assumed that V ρ−(N+1)R̃0(λ)ρN ∈
Sq we can write, for all λ ∈ Γ,

‖χrV ρ
−N R̃0(λ)ρN − V ρ−N R̃0(λ)ρN ‖q ≤ ‖(χr − 1)ρ‖∞ ‖V ρ−(N+1)R̃0(λ)ρN ‖q .

So, when r tends to +∞, χrV ρ
−N R̃0(λ)ρN tends to V ρ−N R̃0(λ)ρN in Sq uniformly on Γ.

So, with the first point of the proposition 4, F (χrV, λ) → F (V, λ) uniformly on Γ. From
that, there exists r0 such that for all r > r0 and for all λ ∈ Γ we have

|F (χrV, λ) − F (V, λ) |<|F (V, λ) | .

So, by Rouché’s theorem, F (χrV, .) has the same number of zeros, in U , as F (V, .).

In the same way, fixing r > r0, using χrρ
−N R̃0(λ)ρN ∈ Sq we can write

‖χrSMρ
−N R̃0(λ)ρN − χrV ρ

−N R̃0(λ)ρN ‖q ≤ ‖SM − V ‖∞ ‖χrρ
−N R̃0(λ)ρN ‖q .

So using the fact that by hypothesis, ‖SM −V ‖∞ tends to 0 when M tends to ∞, we have
F (χrSM , λ) → F (χrV, λ) uniformly on Γ and we can use the Rouché’s theorem again.

In conclusion, there exist r and M such that F (χrSM , .) has the same number of zeros,
in U , as F (V, .). It means that ∆+χrSM has a resonance in the domain U ⊂ D+

N \Res(∆)
which is in contradiction with the previous part. In conclusion, on D+

N ,

Res(∆ + V ) ⊂ Res(∆).
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Remark 6

In [Chr08], Christiansen proves the inclusion, Res(∆ + V ) ⊂ Res(∆), without using the
shift created by the potential V on the isotypical components of L2(X) but with regularized

determinant and an hypothesis of analycity : W (z) :=
∞∑

m=1
zmVm should be holomorphic

in a domain of C containing the closed disc of center 0 and radius 1.

3.4 Persistence of resonances

In order to achieve the proof of theorem 2, we have to show that the points in Res(∆)∩
D+

N are also resonances of ∆ + V with the same multiplicity. To make this, we will use
the Agmon’s perturbation theory of resonances [Agm98].

Let λ0 ∈ D+
N be a resonance of ∆ with multiplicity m. Let U ⊂ D+

N with smooth
boundary Γ such that U ∩ Res(∆) = {λ0}. If V satisfies the hypothesis of the theorem
2 then, for all t ≥ 0, tV satisfies these hypothesis too. So we can apply the result of the
previous part : for all t ≥ 0, Res(∆ + tV ) ⊂ Res(∆) and thus

Res(∆ + tV ) ∩ U ⊂ {λ0}.

Let E := {t0 ≥ 0 ; ∀t ∈ [0, t0], Res(∆ + tV ) ∩ U = {λ0} with the same multiplicity m} ;
we are going to prove by connexity that it is in fact equal to [0,+∞[. First it is not empty
because by definition of λ0, 0 ∈ E.

We take t0 ∈ E, we want to prove that there exists δ > 0 such that ]t0 − δ, t0 + δ[⊂ E.
Following the theory of Agmon ([Agm98]), we begin with the definition of the Banach
space

BΓ = {f ∈ ρ−NL2(X) ; f = g +

∫

Γ
R̃t0V (ξ)Φ(ξ)dξ, g ∈ ρNL2(X),Φ ∈ C(Γ, ρNL2(X))},

where C(Γ, ρNL2(X)) is the space of continuous functions on Γ with values in ρNL2(X).
On the space BΓ we take the norm

‖f ‖BΓ
= inf

g,Φ
(‖g‖ρN L2(X) + ‖Φ‖C(Γ,ρN L2(X))),

where the infimum is taken among all the g ∈ ρNL2(X) and the Φ ∈ C(Γ, ρNL2(X))
such that f = g +

∫
Γ R̃t0V (ξ)Φ(ξ)dξ. On this Banach space, we can define, still following

Agmon, the operator (∆ + t0V )Γ : D
(
(∆ + t0V )Γ

)
→ BΓ. It’s a restriction of ∆ + t0V in

the following sens :

(∆ + t0V )Γu = (∆ + t0V )u, u ∈ D
(
(∆ + t0V )Γ

)
,

where ∆ + t0V is the closure of the operator ∆ + t0V view as an operator densely defined
in ρ−NL2(X).
Agmon proves that (∆ + t0V )Γ has a discrete spectrum in U which is exactly the set of
the poles of R̃t0V , i.e. the resonances of ∆ + t0V , with the same multiplicities.

Next, with the condition BN,ρ, the family tV verifies all the hypothesis in order to apply
the part ”perturbation” of the paper [Agm98]. We perturb ∆+ t0V by tV . So there exists
δ > 0 such that, for all t ∈] − δ, δ[, we can define in BΓ the operator (∆ + t0V + tV )Γ.
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Moreover, for all t ∈]−δ, δ[, (∆+ t0V + tV )Γ has a discrete spectrum in U which is exactly
the set of the poles of R̃t0V +tV with the same multiplicities.

Now, our problem becomes a problem of eigenvalues. Using the Kato’s perturbation
theory of eigenvalues ([Kat66]), we know that, maybe taking a smaller δ, the eigenvalues
of (∆ + t0V + tV )Γ in U are continuous for all t ∈] − δ, δ[. As these eigenvalues are also
resonances of ∆ + t0V + tV , λ0 is the unique possibility. So λ0 is the unique eigenvalue
in U of (∆ + t0V + tV )Γ for all t ∈] − δ, δ[ with constant multiplicity. Therefore, thanks
to the parallel established before, λ0 is the unique resonance in U of ∆ + t0V + tV for all
t ∈] − δ, δ[ with constant multiplicity. It signifies ]t0 − δ, t0 + δ[⊂ E and so E is an open
set.

We can prove that E is also a closed set doing the same proof with the complementary
set of E. If t0 is not in E, then λ0 is a resonance of ∆ + t0V with a multiplicity not equal
to m (it can be 0). Perturbing this operator by tV and using the Agmon’s correspondence,
we can prove that λ0 is a resonance of ∆ + tV with a multiplicity not equal to m for all t
in a neighbourhood of t0.

In conclusion, E = [0,+∞[ and we can take t0 = 1 to obtain, in U , Res(∆+V ) = Res(∆)
with the same multiplicity. To finish, we have to do the same work in the neighbourhood
of any resonance of the free Laplacian. This completes the proof of the theorem 2.

3.5 An example where the order of resonances grows

The isoresonant potentials introduced in the theorem 2 can’t be detected only observing
the set of resonances and their multiplicities. We can wonder if their existence can be seen
through the order of the resonances. We are going to prove, in an example, that there
exist potentials verifying the theorem 2 which change the order of resonances.

We consider the hyperbolic plane H
2 with the model R

+ × S
1, the coordinates (r, θ)

and the metric g = dr2 + sh(r)2dθ2. We have already said that the resonances of the free
Laplacian are all the negative integers and the multiplicity of −k, k ∈ N, is 2k + 1 (see
[GZ95a]). Moreover the order of all these resonances is 1. We denote F := {Vm(r)eimθ;m ∈
Z \ {0}, Vm ∈ L∞

c (R+)} which is a family of isoresonant potentials by the theorem 2.

Proposition 5

Let H
2 be the hyperbolic plane and k a non negative integer. There exists a potential

V ∈ F := {Vm(r)eimθ;m ∈ Z \ {0}, Vm ∈ L∞
c (R+)} such that −k is a resonance of ∆ + V

with an order strictly greater than 1.

Proof : let k ∈ N \ {0}, we suppose, ad absurdum, for all V ∈ F , −k is a resonance of
order 1 of ∆ + V .

For all V ∈ F , the resolvent (∆+V −λ(1−λ))−1 has a meromorphic continuation R̃V on
D+

N = {λ ∈ C ; Reλ > 1
2 −N} as an operator from B0 := ρNL2(H2) to B1 := ρ−NL2(H2)

where ρ is a boundary defining function of a compactification of H
2. We take N sufficiently

large to have −k ∈ D+
N . B0 and B1 are dual thanks to the non degenerate symmetric form

:

〈u, v〉 =

∫

Hn

uv dvol(g).
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We remark, for all t ∈ R and all V ∈ F , we have tV ∈ F . With our hypothesis, for λ in a
neighbourhood of −k, we have

R̃tV (λ) = (λ+ k)−1S(t) +H(t, λ),

where H(t, .) is holomorphic with values in L(B0, B1) and S(t) ∈ L(B0, B1) has a finite
rank.

We apply the Agmon’s perturbation theory of resonances. Consider a domain U ⊂ D+
N

with smooth boundary Γ such that U ∩ Res(∆) = {−k}. We have the corresponding
Banach space,

BΓ = {f ∈ B1 ; f = g +

∫

Γ
R̃0(ξ)Φ(ξ)dξ, g ∈ B0,Φ ∈ C(Γ, B0)},

with B0 ⊂ BΓ ⊂ B1.
Then there exists δ > 0 such that, for all V ∈ F and all t ∈] − δ, δ[, we can define the

operators (∆ + tV )Γ in BΓ and their resolvents RΓ
tV . Thanks to [Agm98], we know that

(∆ + tV )Γ has a discrete spectrum in U which correspond to the resonances of ∆ + tV in
U with the same multiplicities and orders. So for λ near −k in U we have

RΓ
tV (λ) = (λ+ k)−1SΓ(t) +HΓ(t, λ), (4)

with HΓ(t, .) holomorphic with values in L(BΓ) and SΓ(t) ∈ L(BΓ) of finite rank. Still
following [Agm98] we know that S(t) and SΓ(t) have the same range and they coincide on
B0.

Let V ∈ F , for all t ∈]− δ, δ[ and φ ∈ BΓ we define ψ(t) := SΓ(t)φ. From (4) we obtain
for all t ∈] − δ, δ[,

((∆ + tV )Γ + k(k + 1))ψ(t) = 0.

ψ(t) is derivable in t like SΓ(t) (because SΓ(t) = 1
2πi

∫
Γ(∆Γ + tV − λ(1 − λ))−1dλ), so we

can derivate the last equality at t = 0 and get

V ψ(0) + (∆Γ + k(k + 1))ψ′(0) = 0.

Compose this new equality with SΓ(0), using, SΓ(0)(∆Γ + k(k + 1)) = (∆Γ + k(k +
1))SΓ(0) = 0, because

SΓ(0) =
1

2πi

∫

Γ
(∆Γ − λ(1 − λ))−1dλ,

and the fact that −k(k + 1) is an eigenvalue of order 1 of ∆Γ, we obtain

SΓ(0)V ψ(0) = 0.

As ψ(0) ∈ RanSΓ(0) = RanS(0), there exists f0 ∈ B0 such that ψ(0) = S(0)f0 = SΓ(0)f0.
Moreover SΓ(0)V ψ(0) ∈ BΓ ⊂ B1, so we can evaluate :

〈SΓ(0)V ψ(0), f0〉 = 0.

Next, as the Laplacian is a real operator, it is symmetric for 〈., .〉 thus the resolvent,
R̃0(λ), is symmetric too, first for Re(λ) > 1

2 and after in all D+
N by analytic continuation.

In conclusion SΓ(0) is symmetric for 〈., .〉. So

〈V ψ(0), SΓ(0)f0〉 = 〈V ψ(0), ψ(0)〉 = 0,

and we have that equality for all V ∈ F .
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Thus, for all m ∈ Z \ {0} and all Vm ∈ L∞
c (R+) we have

∫ 2π

0
eimθ

∫

R+

Vm(r)ψ(0)2(r, θ)dvol(g) = 0.

This implies that, for all the resonant states ψ(0) of the free Laplacian, ψ(0)2 does not
depend on θ. But, considering the expression of the hyperbolic Laplacian and taking its
decomposition corresponding to

⊕
ℓ∈Z

(L2(R+, shrdr)⊗ eiℓθ), we have resonant states of the

form ψ(0)(r, θ) = ψℓ(r)e
iℓθ where | ℓ |≤ k and ψℓ are hypergeometric functions (see the

annexe of [GZ95b]). Then for ℓ 6= 0, ψ(0)2 depend on θ : we have our contradiction.

Finally there exists V ∈ F such that −k is a resonance of ∆+V of order strictly greater
than 1. �

4 SO(n) symmetries

This time we consider an isometric action of SO(n) on a complete Riemannian manifold
(X, g) of dimension n ≥ 3. Contrary to the case S

1, SO(n) is not commutative, so we
don’t have a simple description of the isotypical components. To have a shift we add an
hypothesis :

Condition D : The isometric action of SO(n) on (X, g) has a fixed point O and the
polar coordinates with pole O define a diffeomorphism from X \ {O} to R

+ \ {0} × S
n−1.

With this condition, in the polar coordinates the metric g becomes :

dr2 + f(r)dω2, (r, ω) ∈ R
+ × S

n−1,

where dω2 is the metric on the (n− 1)-sphere in R
n. For example with f(r) = r2 we have

the Euclidean space and, with f(r) = sh(r)2, the hyperbolic space. If f is independent of
r outside a compact then (X, g) is a manifold with a cylindrical end of section S

n−1.

With the condition D we have

L2(X) =
⊕

k∈N

L2(R+) ⊗Hk,

where Hk = Ker (∆Sn−1 − k(k + n − 2)), k ∈ N, be the eigenspaces of the Laplacian
on S

n−1. The action of SO(n) on X induces a representation of SO(n) on L2(X) ≃
L2(R+) ⊗ L2(Sn−1) which only acts on the factor L2(Sn−1), so on the Hk. Moreover the
restriction of this representation to each Hk is irreducible (cf [BGM71]). The shift that
we will use in order to construct isoresonant potentials, will appear on these Hk.

4.1 Representation

The group action of SO(n) on L2(X) induces an action of its Lie algebra, son. We can
describe this action with the following operators,

Dξf(x) :=
d

dt
f(e−tξ.x)|t=0, ξ ∈ son, f ∈ L2(X), x ∈ X.

We consider the complexification of the Lie algebra son, g := soC
n = son + ison. We choose

h one of the Cartan subalgebras of g i.e. one of the maximal Abelian subalgebras of g.
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Let us describe h as a subalgabra of gl(Cn). h is the Lie algebra whose basis is (ζk)1≤k≤p

where p is the integer part of n
2 and ζk has all its entries null except the kth 2 × 2-block

which is (
0 i
−i 0

)
.

Take (ωk) the dual basis of (ζk) in h∗.

Remember that g acts on itself by the adjoint representation :

ad(Y ) : Z → [Y,Z], (Y,Z) ∈ g2.

We consider the following scalar product,

〈Y,Z〉 = Tr(ad(Y ) ◦ ad(Z)), (Y,Z) ∈ g2

where the conjugation is defined by U + iV = −U + iV with real U and V . So, for all
Y,Z ∈ g, [Y,Z] = −[Y ,Z]. With this we remark that, for all ξ ∈ h, we have ξ = ξ and
thus ad(ξ) is selfadjoint (cf [Sim96, p.177]). So {ad(ξ) ; ξ ∈ h} is a family of selfadjoint
operators on g which commute together. We can simultaneously diagonalize them and
decompose g according to the eigenspaces.

We obtain g = h⊕⊕
gα where the sum is over a finite set of α ∈ h∗ which are the roots

of g and we denote gα := {X ∈ g ; ad(ξ)(X) = α(ξ)X, ∀ξ ∈ h} which are the root spaces

(they are all one dimensional cf [Sim96, p.180]). Let Λ ⊂ h∗ the integer lattice generated
by the roots. In Λ we choose a lexicographical order “�”, choosing ω1 � . . . � ωp. Then
we denote g+ :=

⊕
α≻0

gα (respectively g− :=
⊕
α≺0

gα) the subalgebra of g generated by root

spaces with positive root (respectively negative). So we have g = h ⊕ g+ ⊕ g−. For a
general theory see [Sim96, chapter VIII].

We come back to the irreducible representations Hk. It have a decomposition according
to the action of h :

Hk =
⊕

ωk
min�ω�ωk

max

Hk
ω,

where the sum is over a finite set of h∗, and these ω are the weights of Hk and the
corresponding weight spaces, Hk

ω, are defined by Hk
ω = {f ∈ Hk;Dξf = ω(ξ)f, ∀ξ ∈ h}.

We will need the following lemma,

Lemma 3

If f ∈ Hk
ω and if ξ ∈ gα, then Dξf ∈ Hk

ω+α.

Proof : for all ζ ∈ h, we have

Dζ(Dξf) = Dξ(Dζf) +D[ζ,ξ]f.

But [ζ, ξ] = ad(ζ)(ξ) = α(ζ)ξ because ξ ∈ gα, and Dζf = ω(ζ)f by definition of Hk
ω. So

Dζ(Dξf) = ω(ζ)Dξf + α(ζ)Dξf = (ω + α)(ζ)(Dξf). �

We define particular vectors in the Hk, k ∈ N, which will be used to create the necessary
shift.
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Definition 3

A nonzero vector v ∈ Hk is a highest weight vector if it is an eigenvector for the action of
all the Dξ , ξ ∈ h, and if it is in the kernel of all the Dξ, ξ ∈ g+.

As g is semi-simple and Hk is an irreducible representation of it, there is an unique
highest weight vector up to scalar : we note it vk

max. In fact Hk
αk

max
is one dimensional,

generated by vk
max. With our choice vk

max can be calculated explicitly (see [Aut08]) :

vk
max ◦ φ (x1, . . . , xn) = (x1 + ix2)

k,

where φ : R
+\{0}×S

n−1 → X\{O} is the diffeomorphism of conditionD and (x1, x2, . . . , xn)
are the standard coordinates of R

n restricted to S
n−1.

We will need the following lemma,

Lemma 4

Hk
ωk

max
= Hk ∩

( ⋂

ξ∈g+

KerDξ

)
.

Proof : the first inclusion Hk
ωk

max
⊂ Hk ∩

( ⋂
ξ∈g+

KerDξ

)
is the definition of a highest

weight vector.

Let u ∈ Hk∩
( ⋂
ξ∈g+

KerDξ

)
, so u ∈ Hk =

⊕
ωk

min�ω�ωk
max

Hk
ω and we write u =

∑
ωk

min�ω�ωk
max

uω

with uω ∈ Hk
ω. For all ξ ∈ gβ with β ≻ 0, we have, thanks to the lemma 3, Dξuω ∈ Hk

α+β.
By hypothesis, we have

Dξu =
∑

ωk
min�ω�ωk

max

Dξuω = 0,

and, as the previous sum is direct, we get for all ω :

∀ξ ∈ g+ Dξuω = 0.

Moreover, for all ω, by the definition of Hk
ω, uω is an eigenvector for the action of all the

Dξ, ξ ∈ h. Thus by the definition of a highest weight vector, we have uω = 0 except for
uωk

max
and in conclusion u ∈ Hk

ωk
max

�

4.2 Isoresonant potentials

Let
L2(X)+ =

⊕

k∈N

L2(R+) ⊗Hk
ωk

max

and note Pk the corresponding projections into L2(R+) ⊗Hk
ωk

max
.

Theorem 3

Let (X, g) a Riemannian manifold of dimension n ≥ 3, with an isometric action of SO(n),
verifying condition D. We assume that we have condition AN,ρ for some N > 0 with a

function ρ invariant under the action of SO(n).
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Let V be the potential,

V =
∞∑

k=1

Vk

where Vk ∈ L2(R+)⊗Hk
ωk

max
and sup

k
‖Vk ‖∞< +∞. If V verifies condition BN,ρ, and for

all λ ∈ D+
N \ Res(∆), ρ−(N+1)V R̃0(λ)ρN is in a Schatten class Sq, q ∈ N \ {0},

then, in D+
N , Res(∆ + V ) = Res(∆) with the same multiplicities.

The Euclidean space R
n, the hyperbolic space H

n, asymptotically hyperbolic spaces
and manifolds with asymptotically cylindrical ends with an action of SO(n), are examples
where this theorem can be applied.

Remark 7

If X has an isometric action of SO(n) it has also an isometric action of S
1. With the

condition D, X is diffeomorphic to R
+ \ {0} × S

n−1 and SO(n) acts on the factor S
n−1.

Taking, on S
n−1, the hyperspherical coordinates (φ1, . . . , φn−1) ∈ [−π

2 ,
π
2 ]n−2 × [0, 2π), we

can consider the action of S
1 on X, corresponding to one of the inclusions S

1 ⊂ SO(n),
defined by

eiθ.(r, φ1 . . . , φn−1) = (r, φ1 . . . , φn−1 − θ).

If we consider the components Vk ∈ L2(R+) ⊗Hk
ωk

max
of V , they have the following form

Vk(r, φ1 . . . , φn−1) = sk(r)v
k
max(φ1 . . . , φn−1) = sk(r)(

n−2∏

i=1

cosφi)
keikφn−1 .

In fact we have vk
max = (x1+ix2)

k with x1 = (
n−2∏
i=1

cosφi) cos φn−1 and x2 = (
n−2∏
i=1

cosφi) sinφn−1.

So Vk is S
1 homogeneous of weight k for the previously described S

1 action.
In conclusion the family of potentials constructed thanks to the action of SO(n) is

included into the potentials constructed with the action of S
1.

So, why look at the SO(n) action ? In fact, as we will see, using the SO(n) action
simplifies the proof of isoresonance. In particular we don’t need the lower bound of the
spectrum of the Laplacian on functions of weight j i.e. the proposition 3. This allows us
to add to the free Laplacian a real SO(n)-invariant potential V0 not compactly supported
but just decreasing at infinity in order to continue RV0 (compare with remark 1).

In the way to prove the theorem 3, first, note that Vk maps L2(R+) ⊗ Hℓ
ωℓ

max
into

L2(R+) ⊗Hℓ+k

ωℓ+k
max

. As for the action of S
1, this shift will be the key of the proof.

4.3 From L2(X) to L2(X)+

Let χ ∈ C∞
c (X) invariant under the action of SO(n). As for the circular action we begin

studying Res(∆ + χV ), on D+
N . We can write the Lipmann-Schwinger equation and get

that if λ0 ∈ Res(∆ + χV ) ∩ (D+
N \ Res(∆)) then there exists a nontrivial u ∈ L2(X) such

that (
I + ρ−NχV R̃0(λ0)ρ

N
)
u = 0.

We want to prove that we can choose u in L2(X)+ :
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Lemma 5

For λ0 ∈ Res(∆ + χV ) ∩ (D+
N \ Res(∆)), there exists a non trivial w ∈ L2(X)+ such that

(
I + ρ−NχV R̃0(λ0)ρ

N
)
w = 0.

Proof : as ρ−NχV R̃0(λ0)ρ
N : L2(X) → L2(X) is a compact operator, we have H−1 :=

Ker
(
I + ρ−NχV R̃0(λ0)ρ

N
)

is finite dimensional.

In addition, for all ξ ∈ g+, Dξ maps H−1 into itself. Indeed, by definition of highest

weight vector, we haveDξV =
∞∑

k=1

DξVk = 0. Moreover, as the action of SO(n) is isometric,

Dξ commutes with the Laplacian and so with R̃0(λ0). Dξ commutes also with ρ and χ

because they are SO(n)-invariant. So, if u ∈ H−1 then u = −ρ−NχV R̃0(λ0)ρ
Nu and

Dξu = −ρ−NχDξ(V R̃0(λ0)ρ
Nu)

= −ρ−Nχ(Dξ(V )R̃0(λ0)ρ
Nu+ V Dξ(R̃0(λ0)ρ

Nu))

= −ρ−NχV R̃0(λ0)ρ
NDξu,

and finally Dξu ∈ H−1.
So H−1 is a finite representation of g+. Moreover g+ is a nilpotent algebra. It’s coming

from the fact that there is only a finite number of positive roots of g and from the following
calculation : if ξ ∈ gα and ζ ∈ gβ then ad(ξ)(ζ) ∈ gα+β . To see this, for all σ ∈ h, we have

ad(σ)([ξ, ζ]) = [σ, [ξ, ζ]] = [ξ, [σ, ζ]] + [[σ, ξ], ζ]

= [ξ, β(σ)ζ] + [α(σ)ξ, ζ]

= (α+ β)(σ)[ξ, ζ].

Then by Engel’s theorem (see [FH91] p.125) there exists a nonzero vector w ∈ H−1 such
that Dξw = 0 for all ξ ∈ g+.

We can decompose w :

w =
∑

k∈N

wk, wk ∈ L2(R+) ⊗Hk,

and for ξ ∈ g+ we have

Dξw =
∑

k∈N

Dξwk = 0,

with Dξwk ∈ L2(R+) ⊗ Hk. As the previous sum is direct, we have, for all k, wk ∈
(L2(R+)⊗Hk)

⋂
( ∩
ξ∈g+

KerDξ). But, with the lemma 4, we have (L2(R+)⊗Hk)
⋂

( ∩
ξ∈g+

KerDξ) =

L2(R+) ⊗Hk
ωk

max
. In conclusion, for all k, wk ∈ Hk

ωk
max

and w ∈ L2(X)+. �

4.4 The end of the proof of theorem 3

We assume that there exists λ0 ∈ Res(∆ + χV ) ∩ (D+
N \ Res(∆)), and we take a non

trivial w ∈ L2(X)+ whose existence is given by the lemma 5 and which satisfies
(
I + ρ−NχV R̃0(λ0)ρ

N
)
w = 0.

For all j ∈ N, we denote wj := Pjw ∈ L2(R+) ⊗ Hj

ωj
max

. The Pj commute with ρ, χ

because they are both invariant under the action of SO(n) and R̃0(λ0) because the action
is isometric. We have

wj = Pj

(
− ρ−NχV R̃0(λ0)ρ

Nw
)

= −
∞∑

k=1

ρ−2NχPj

(
Vkρ

N R̃0(λ0)ρ
Nw

)
.
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Moreover we have already seen that, for all ξ ∈ g+, Dξ commute with R̃0(λ0) and ρ.

Thus, if w ∈ L2(X)+ then ρN R̃0(λ0)ρ
Nw ∈ L2(X)+ and we have ρN R̃0(λ0)ρ

Nw =
∞∑

ℓ=0

Pℓ(ρ
N R̃0(λ0)ρ

Nw).

We use the shift created by highest weight vectors i.e. :

Vk : L2(R+) ⊗Hℓ
ωℓ

max
→ L2(R+) ⊗Hℓ+k

ωℓ+k
max

.

So

wj = −
∞∑

k=1

ρ−2NχVkPj−k

(
ρN R̃0(λ0)ρ

Nw
)

= −
∞∑

k=1

ρ−2NχVkρ
N R̃0(λ0)ρ

NPj−k(w).

Thanks to the hypothesis sup
k

‖ Vk ‖∞< +∞, the operators ρ−2NχVkρ
N R̃0(λ0)ρ

N are

uniformly bounded in k and consequently there exists a constant C such that, for all
j ∈ N,

‖ wj ‖≤ C

∞∑

k=1

‖ wj−k ‖ .

With this inequality and the fact that wj = 0 for all j ≤ 0, we get wj = 0 for all j ∈ N

and thus w = 0 which is in contradiction with our hypothesis.

Finally we have proved that for all χ ∈ C∞
c (X) invariant under the action of SO(n), we

have D+
N ∩ Res(∆ + χV ) ⊂ Res(∆).

In a second part we pass from χV to V like in the case of the S
1 action. We introduce

a family of smooth and compactly supported functions (χr) invariant under the action of
SO(n) such that ‖ (χr − 1)ρ‖∞ tends to 0 when r tends to +∞. We use the assumption
ρ−(N+1)V R̃0(λ)ρN ∈ Sq in order to characterize the resonances of ∆ + V as the zeros

of the holomorphic function in λ, F (V, λ) := detq

(
I + ρ−NV R̃0(λ)ρN

)
. Finally with the

Rouché’s theorem we prove that if R̃V has a pole in D+
N \ Res(∆) then, there exists r

such that R̃χrV has also a pole which is in contradiction with the previous part. So
D+

N ∩ Res(∆ + V ) ⊂ Res(∆).

To conclude, we prove D+
N ∩ Res(∆) ⊂ Res(∆ + V ) and, in fact the equality with

multiplicity, using the Agmon’s perturbation theory of resonances exactly in the same
way as in the case S

1. This achieves the proof of theorem 3.

5 Isoresonant potentials on the catenoid

We are going to construct isoresonant potentials on the catenoid. In this case we use
complex scaling defined by Wunsch and Zworski in [WZ00] instead of the Agmon’s theory.

5.1 Statement of the result

The catenoid is the surface X diffeomorphic to the cylinder R × S
1 with the metric

g = dr2 + (r2 + a2)dα2 where (r, eiα) ∈ R × S
1 and a ∈ R \ {0}. We take x = 1

|r| outside

{r = 0} as the function defining the boundary at infinity of X, ∂∞X, which is two copies

of S
1. Near the boundary, we have g = dx2

x4 + (1+a2x2)dα2

x2 : it’s a scattering metric in the
Melrose’s sens ([Mel95]).
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The catenoid is an example in the Wunsch and Zworski article [WZ00] so we can use
their results. They proved that there exists θ0 > 0 such that the resolvent of the free
Laplacian, (∆ − z)−1, has a finite-meromorphic continuation from {z ∈ C ; Imz < 0} to
{z ∈ C ; arg z < 2θ0} with values in operators from L2

c(X) to H2
loc(X). We denote R̃0 this

continuation. Like in the previous part we call resonances its poles and we denote their
set Res(∆).

The group S
1 acts isometrically on X by its trivial action on the factor S

1 : eiβ.(r, eiα) =
(r, ei(α+β)). Using this action we are going to construct isoresonant potentials :

Theorem 4

Let X be the catenoid (R × S
1,dr2 + (r2 + a2)dα2) with (r, eiα) ∈ R × S

1 and a ∈ R \ {0}.
We take x = 1

|r| outside {r = 0} as the function defining the boundary at infinity of X.

Let V ∈ xL∞(X) defined by

V (r, eiα) =
∞∑

m=1

Vm(r)eimα, (r, eiα) ∈ R × S
1,

where, for all m, Vm ∈ L∞(R). We assume that, in a neighborhood of ∂∞X, V (x, eiα)
with all its partial sums have a analytic continuation in U ×W where U is an open set of

C including {ζ ∈ C ; |ζ |≤ 1, 0 ≤ arg ζ ≤ θ0} with θ0 > 0 and W is a neighborhood of S
1

in C. We also assume that, in X and in all compacts of U ×W , the partial sums of V
tend to V in infinite norm.

Then the resolvent (∆ + V − z)−1 has a finite-meromorphic continuation from {z ∈
C ; Imz < 0} to {z ∈ C ; arg z < 2θ0} with values in operators from L2

c(X) to H2
loc(X),

and moreover, in this open set, Res(∆ + V ) = Res(∆) with the same multiplicities.

We give an example of isoresonant potential on the catenoid :

V (x, eiα) =
xeiα

1 − ρeiα
= x

∞∑

m=1

ρm−1eimα,

with 0 ≤ ρ < 1 and U = C, W = {ω ∈ C ; |ω |< ρ−1}.

5.2 Complex scaling

We will use twice the complex scaling : to continue the resolvent of ∆ +V and to study
perturbations of resonances. So we begin with the description of this construction. We
will follow [WZ00] where the construction is done for the free Laplacian. It is also valid
when we add a potential V ∈ xL∞(X).

We begin with the construction of a family (Xθ)0≤θ≤θ0 of submanifolds of C × C with
the θ0 of the statement of theorem 4. They will be totally real i.e., for all p ∈ Xθ,
TpXθ ∩ iTpXθ = {0}, and of maximal dimension. We define them as follows.

Let ǫ > 0 and (t0, t1) ∈]0, 1[2 with t0 < t1, then there exists a smooth deformation of
[0, 1) in U , denote it γθ(t), t ∈ [0, 1) satisfying the following properties :

γθ(t) = teiθ for 0 ≤ t < t0

γθ(t) ≡ t for t > t1

arg γθ(t) ≥ 0 (5)

0 ≤ arg γθ(t) − arg γ′θ(t) ≤ ǫ

0 ≤ 2 arg γθ(t) − arg γ′θ(t) ≤ θ + ǫ.
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Now we can define Xθ := (γθ × ∂∞X) ∪ (X ∩ {x ≥ 1}).
On a neighborhood of ∂∞X, the metric g has the form dx2

x4 + h
x2 where h = (1+a2x2)dα2

continues holomorphically to U×W . So consider P V := ∆+V , which is first an operator on
X. If V verifies the hypothesis of theorem 4, then its coefficients continue holomorphically
in U ×W . We denote P̃ V the differential operator coming from this continuation. Since
Xθ is totally real and of maximal dimension, we can define without ambiguity (cf [SBZ95])
the differential operator P V

θ by

∀u ∈ C∞(Xθ), P V
θ u = (P̃ V ũ)|Xθ

where ũ is an almost analytic extension of u, that is

ũ ∈ C∞(U ×W ), ũ|Xθ
= u, ∂ũ|Xθ

= O(d(.,Xθ)
N ), for all N.

We have

Proposition 6

With V ∈ xL∞(X), for all 0 ≤ θ ≤ θ0, P
V
θ has a discrete spectrum in C \ e2iθ

R
+.

Moreover, for θ such that 0 ≤ θ2 ≤ θ ≤ θ0, the spectrum of P V
θ in {0 ≤ arg z < 2θ2} with

its multiplicity do not depend on θ. This spectrum doesn’t depend too on the choice of a
γθ verifying (5).

Proof : Following exactly the Wunsch and Zworski proof in [WZ00] we can prove that,
for all z ∈ C \ e2iθ

R
+, P V

θ − z : H2(Xθ) → L2(Xθ) is a Fredholm operator with index
zero. The unique difference is the presence of our potential V . But, since it is null at the
boundary of Xθ (= ∂∞X), it doesn’t change the principal symbol and the normal symbol
of ∆θ − z.

5.3 Continuation of the resolvent

We want to get the meromorphic continuation of the resolvent RV (z) := (∆ + V − z)−1

from {z ∈ C ; Imz < 0} to {z ∈ C ; arg z < 2θ0} with values in operators from L2
c(X) to

H2
loc(X).

Let z with arg z < 2θ0 which is not an eigenvalue of P V
θ0

. Take f ∈ L2
c(X). With the

proposition 6, we can choose γθ0 and more precisely the t1 in the definition 5 such that,
on the support of f , Xθ0 coincides with X. Then f ∈ L2(Xθ0) and there exists an unique
solution uθ0 ∈ H2(Xθ0) of

(P V
θ0

− z)uθ0 = f.

We give a lemma whose proof is given in [SBZ95],

Lemma 6

Let Ω ⊂ C
n an open set, a compact K ⊂ Ω and a continuous family Xt, t ∈ [0, 1] of totally

real submanifolds of Ω of maximal dimension such that Xt ∩ (Ω \K) = Xt′ ∩ (Ω \K) for
all t, t′ ∈ [0, 1]. Let P̃ a differential operator with holomorphic coefficients in Ω such that
PXt (the restriction of P̃ on Xt) is elliptic for all t ∈ [0, 1]. If u is a distribution on X0

and if PX0u continues as an holomorphic function on a neighborhood of
⋃

t∈[0,1]

Xt then the

same is true for u.
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f has an holomorphic continuation to
⋃

θ∈[0,θ0]

Xθ, because deformations occur outside its

support. Since P V
θ −z is elliptic for all θ ∈ [0, θ0], we can apply the previous lemma 6, and

get an holomorphic continuation of uθ0 on
⋃

θ∈[0,θ0]

Xθ. We denote by G this continuation.

Then we define the continuation to the resolvent by

R̃V (z)f = G|X0
∈ H2(X).

Now take z0 an eigenvalue of P V
θ0

, then it is also an eigenvalue P V
θ for all arg z0 < 2θ ≤

2θ0. For z near z0 and θ such that arg z < 2θ we have the following Laurent expansion

(P V
θ − z)−1 =

M(z0)∑

j=1

Aθ
j (z0)

(z − z0)j
+Hθ(z, z0),

where Aθ
j(z0) are finite rank operators and Hθ(z, z0) is holomorphic in z near z0. Still

following [WZ00], we obtain that the continued resolvent has, near each of its pole, a
Laurent expansion with exactly the same form.

In conclusion, a resonance z0 ∈ {arg z < 2θ0} of ∆X + V , which is first defined as poles
of the continuation of the resolvent, is also characterized as an element of the spectrum
of a P V

θ with arg z0 < 2θ ≤ 2θ0. Multiplicities and orders are the same in the two visions,
so, thanks to the proposition 6, they do not depend on the chosen θ.

5.4 Proof of the isoresonance

5.4.1 Localization of resonances for the truncated partial sums of V

Let SM (r, eiα) =
M∑

m=1
Vm(r)eimα and χ ∈ C∞

c (X), S
1 invariant. In this part we will prove

Res(∆ + χSM ) ⊂ Res(∆) in D+ := {z ∈ C ; arg z < 2θ0}.
We take another S

1 invariant cutoff function χ1 ∈ C∞
c (X) such that χ1 = 1 on the

support of χ. Then we have, for z ∈ D+ \ Res(∆),

(∆ + χSM − z)R̃0(z)χ1 = χ1(I + χSM R̃0(z)χ1).

χSMR̃0(z)χ1 is an holomorphic family of compact operators in D+ \ Res(∆) such that

‖χSM R̃0(z)χ1 ‖< 1

with | z | sufficiently large in {z ∈ C ; Imz < 0}. So we can apply the Fredholm analytic
theory and get (I+χSM R̃0(z)χ1)

−1 and thus R̃χSM
(z) := (∆+χSM − z)−1 meromorphic

in D+ \ Res(∆). Moreover, in D+ \ Res(∆), we can characterize poles of R̃χSM
, that is

resonances, with the existence of a non trivial u ∈ L2(X) solution of

(I + χSMR̃0(z)χ1)u = 0.

After, we prove that this non trivial solution u can’t exist. It is exactly the same
proof than for theorem 2. We use the shift created by the components Vm(r)eimα on
the spaces L2

j(X). There is just two things to verify. First the catenoid satisfies the
condition C. In fact, all compact K of X is included in a compact manifold with boundary
K̃ = [−R,R]× S

1 on which we can put the metric g̃ = dr2 + f(r)dα2 with f(r) = r2 + a2
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in K and constant near the boundary of K̃. We also have to verify that R̃0 commutes
with the action of S

1 in order to have the commutation with the projectors Pj . For that,
remember that the complex scaling doesn’t touch the factor ∂∞X of the catenoid and S

1

only acts on this factor. So the action of S
1 is isometric on all the Xθ and so it commutes

with R̃0.

Finally we get Res(∆ + χSM) ⊂ Res(∆) in D+.

5.4.2 Localization of resonances for V

We have to control perturbations of resonances when we pass from χSM to V . Instead
of use regularized determinants as before (they were adapted to the weight spaces ρNL2

but not to cutoff functions), we use complex scaling in order to transform resonances into
eigenvalues.

Assume, ab absurdum, ∆ + V has a resonance z0 in D+ \ Res(∆). Using complex
scaling, it means : z0 is an eigenvalue of P V

θ with arg z0 < 2θ ≤ 2θ0. Let Ω ⊂ {z ∈
C ; arg z < 2θ} \ Res(∆) an open set, with a smooth boundary Γ, containing z0 and such
that Ω ∩ Res(∆ + V ) = {z0}. Our aim is to show that there exist a S

1 invariant cutoff
function χ, and M such that PχSM

θ has an eigenvalue in Ω. If we do that, ∆+χSM would
have a resonance in Ω which would be in contradiction with the previous part.

We have assumed in theorem 4 that, for allM , SM has an analytic continuation to U×W ,
and V too. Hence we can restrict these two continuations to Xθ and now work on Xθ.
V ∈ xL∞(X), so V tends to 0 when we reach ∂Xθ. Consequently there exists χ ∈ C∞

c (Xθ),
S

1 invariant, which continues analytically in U ×W , such that ‖ χV − V ‖L∞(Xθ) is as
small as we want. With the hypothesis of theorem 4, we also have that the partial sums
SM tend to V on Xθ in infinite norm. Finally there exist χ like we have just described,
and M such that

‖V − χSM ‖L∞(Xθ)<
δ2

δ + ℓ
2π

where δ−1 = max
z∈Γ

‖ (P V
θ − z)−1 ‖ and ℓ is the length of Γ. We have been inspired by

Gohberg and Krejn in [GK71] (theorem 3.1).

We consider the projectors of L2(Xθ) associated with the generalized eigenspaces of the
two operators that we are comparing :

ΠV = 1
2πi

∫
Γ(P V

θ − z)−1dz

ΠχSM
= 1

2πi

∫
Γ(PχSM

θ − z)−1dz

We have (PχSM

θ − z)−1 = (P V
θ − z)−1

(
I + (χSM − V )(P V

θ − z)−1
)−1

. Since δ2

δ+ ℓ
2π

< δ, for

all z ∈ Γ, we can be certain of the convergence in

(PχSM

θ − z)−1 = (P V
θ − z)−1

(
I +

∞∑

j=1

[(V − χSM )(P V
θ − z)−1]j

)
.

Look at the difference between the two projectors :

ΠχSM
− ΠV =

1

2πi

∫

Γ
(P V

θ − z)−1
∞∑

j=1

[(V − χSM )(P V
θ − z)−1]jdz.

Hence

‖ΠχSM
− ΠV ‖≤ ℓ

2π
max
z∈Γ

‖(P V
θ − z)−1 ‖2‖V − χSM ‖L∞(Xθ)

1− ‖(P V
θ − z)−1 ‖‖V − χSM ‖L∞(Xθ)

,
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but ‖(P V
θ − z)−1 ‖≤ δ−1 by definition of δ and ‖V − χSM ‖L∞(Xθ)<

δ2

δ+ ℓ
2π

by hypothesis,

hence 1− ‖(P V
θ − z)−1 ‖‖V − χSM ‖L∞(Xθ)> 1 − δ

δ+ ℓ
2π

and so

‖ΠχSM
− ΠV ‖< 1.

Consequently the ranges of ΠV and ΠχSM
have the same dimension, which is not zero

because z0 is an eigenvalue of P V
θ , so PχSM

θ has an eigenvalue in Ω and we have our
contradiction.

5.4.3 Persistence of resonances

To finish the proof of theorem 4 we have to show that Res(∆) ⊂ Res(∆ + V ) in D+ =
{z ∈ C ; arg z < 2θ0}. This time we use the complex scaling instead of the Agmon’s
perturbation theory of resonances.

Let z0 ∈ D+ a resonance of ∆ with multiplicity m. We take Ω ⊂ {z ∈ C ; arg z < 2θ0}
a domain such that Ω ∩ Res(∆) = {z0}. We consider the family of operators ∆ + tV
with t ≥ 0. Remark that tV verifies the hypothesis of theorem 4, so we can localize its
resonances as in the previous part, Res(∆ + tV ) ⊂ Res(∆), and thus :

Res(∆ + tV ) ∩ Ω ⊂ {z0}.

We are going to prove, by connexity, that the following set

E := {t0 ≥ 0 ; ∀t ∈ [0, t0], Res(∆ + tV ) ∩ Ω = {z0} with multiplicity m},

is equal to [0,+∞[. It is not empty because 0 ∈ E.

Take t0 ∈ E, and θ such that arg z0 < 2θ ≤ 2θ0 and Ω ⊂ {z ∈ C ; arg z < 2θ}. We
know by complex scaling that the spectrum of P t0V

θ in Ω exactly corresponds with the
resonances of ∆ + t0V with the same multiplicities. Hence

Spec(P t0V
θ ) ∩ Ω = {z0}.

Moreover t → P tV
θ is an holomorphic family in the sens of Kato for t in a complex

neighbourhood of t0 because P tV
θ = ∆θ + tV|Xθ

and V is bounded in Xθ. So its eigenvalues
are continuous for t in a neighbourhood of t0. But with the localization of the resonances
of ∆ + tV we obtain that for all t

Spec(P tV
θ ) ∩ Ω ⊂ {z0},

so, there exists ε > 0, such that for all t ∈]t0 − ε, t0 + ε[,

Spec(P tV
θ ) ∩ Ω = {z0},

with multiplicity m. Then, thanks to the complex scaling parallel, we get that, for all
t ∈]t0 − ε, t0 + ε[

Res(∆ + tV ) ∩ Ω = {z0},
with multiplicity m and thus ]t0 − ε, t0 + ε[ is included in E which is open.

We show that E is closed too doing the same work with the complementary set of E in
[0,+∞[.

In conclusion E = [0,+∞[ and taking t = 1 we have, in Ω, Res(∆ + V ) = Res(∆) with
the same multiplicities. Doing the same work in the neighbourhood of each resonance of
the free Laplacian we obtain Res(∆ +V ) = Res(∆) with the same multiplicities in all D+

which finishes the proof of theorem 4.
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