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Isoresonant complex-valued potentials and symmetries.

Aymeric AUTIN []

Abstract

Let X be a connected Riemannian manifold such that the resolvent of the free
Laplacian (A — 2z)~1, 2 € C\ RT, has a meromorphic continuation through R*. The
poles of this continuation are called resonances. When X has some symmetries, we
construct complex-valued potentials, V', such that the resolvent of A 4+ V', which has
also a meromorphic continuation, has the same resonances with multiplicities as the
free Laplacian.

Mathematics Subject Classification Numbers : 31C12, 58J50

1 Introduction and statement of the results

Let (X,g) be a connected Riemannian manifold with dimension n > 2. On X we
have the free non-negative Laplacian, A, acting on functions with domain H?(X), whose
spectrum is included in R*. So, for z € C\ R*, the resolvent Rg(z) := (A — 2z)~! of
the Laplacian is a bounded operator from L?(X) to H?(X). We will assume that, the
resolvent has a meromorphic continuation through R™ in a domain of C, D". For example,
this holds for Euclidean spaces, asymptotically hyperbolic manifolds and manifolds with
asymptotically cylindrical ends.

We call resonance of A a pole of Ry in DT, and we write Res(A), the set of these poles.
If zg € Res(A), then, in a neighbourhood of zy in DF, we have a finite Laurent expansion

(2 —20)7'S; + H(2),
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where S; has a finite rank and H is holomorphic. p is the order of the resonance. We
call multiplicity of zg the dimension of the resonant space which is the range of S;. See
[Agm9g.

If we perturb the Laplacian with a potential V' and if V is sufficiently decreasing at
infinity on X, for example compactly supported, then the resolvent of A+V, (A+V —z)~!

can also be continued meromorphically to DT. Then, we can introduce the resonances of
(A + V), we write their set Res(A + V).

For such a V, sufficiently decreasing, we have the equality for the essential spectrum,
Oess(A+V) = 0e55(A), because V is then relatively compact with respect to A. So we can
wonder how these potentials modify resonances. We reach the main question of this work :

Do there exist potentials V such that Res(A + V) = Res(A) ?

We will construct such potentials and we call them isoresonant. In term of inverse
problem, we can’t detect their presence only with the observation of the set of resonances.
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Our potentials will be complex-valued and it is crucial. For example it is known that,
in R”, n > 2 and even or n = 3, nontrivial, real valued, smooth and compactly supported

potentials create an infinite number of resonances. See [Mel9F] [EBZ99] [[Chr99] [EB99].

We have been inspired by the work of Christiansen in [JChr0f] and [[Chr0§]. She con-
structs in Euclidean spaces R™ (n > 2) isoresonant complex potentials, i.e. in this case :
Res(A + V) = Res(A) = ). She uses an action of S' on R”. T generalize this construction
to manifolds which have an isometric action of S!, and I use other symmetries as (S')™
and SO(n). On these manifolds, the free Laplacian already has some resonances, so there
is more work to prove the isoresonance of the potentials. To compare ; in the Euclidean
space, it is sufficient to prove Res(A + V) C Res(A) because Res(A) = ().

We are going to describe the method for the construction and the statements of the
results. We assume that (X, g) has an isometric action of S!. This action induces an
unitary representation of S! on L?(X) :

St — U(LA(X))
e’ — fo(x— fle ).

Then we can decompose L?(X) according to isotypical components :

_
12(X) = P LX),

JEZ
with, for all j € Z,
2 o 2 . —i0 .\ _ ijo
Li(X) ={f € L*(X) ; Y0 €[0,2n], Vz € X, f(e ".x) =" f(x)},

is the space of S! homogeneous functions of weight ;.
We take for our isoresonant potentials sums of S' homogeneous functions with weights
of the same sign. Such functions create a shift on the isotypical components of L?(X)

Cif Ve LX) N L2,(X) and f € L?(X) then Vf € L§+m(X). On the contrary, the
Laplacian stabilizes these isotypical components. Thanks to this shift we will prove the
inclusion Res(A + V') C Res(A), first for truncated V, and after for all V' thanks to a
characterization of resonances as zeros of regularized determinants.

On the way, we have to estimate, for all compact K, the lower bound of the spectrum
of the Dirichlet Laplacian acting on S! homogeneous functions of weight j supported in

K (we denote this space L; (K)). This is an interesting result on its own :

Proposition 1

Let K be a compact manifold with boundary, having an action of St and a metric g such
that S' acts by isometries on (K, g) and g has a product form in a neighborhood of the
boundary of K. Then there exist strictly positive constants, C1(K) and Cy(K), such that,
for all j € 7, we have :

Clj2 S Min SpeC ALQ(K) S 02(1 +]2)
J

For the other inclusion, Res(A) C Res(A+ V), we use the Agmon’s perturbation theory
of resonances, developed in [Agm9g]. Thanks to this theory we can view resonances as
eigenvalues of auxiliary operators and so we can use the Kato’s theory in order to study
their perturbations.

Finally we get the following result, given here in restricted cases for simplicity :



Theorem 1
On the Fuclidean space R™ or the hyperbolic space H™, let be the potential

M
V:Z_lvm,

where Vy, € L>(X) is compactly supported and S* homogeneous with weight m.
Then, in C, we have Res(A + V') = Res(A) with the same multiplicities.

See the theorem [ for the general case with a more general manifold, an infinite sum for
V', and V not compactly supported.

REMARK 1

Instead of the free Laplacian we can perturb A + Vi with Vy a real, compactly supported
and S' invariant potential and the result becomes Res(A + Vo + V) = Res(A + Vp) with
the same multiplicities. We can imagine the perturbation of other operators which respect
the decomposition of L?>(X) according to the isotypical components.

The construction of isoresonant potentials using the action of (S!)™ is essentially the
same as in the case S' so we don’t describe it in this article, but it can be found in
[Aut0g]. On the contrary, if we look at the action of SO(n) (n > 3), as this group is not
commutative, we don’t have any simple description of the isotypical components. Then
we add an hypothesis and assume that we can write

(X)) = P e e B,
keN

where H* = Ker(Agn—1 — k(k +n —2)), k € N, is the eigenspace of the Laplacian on
the sphere S"~!. Like in the case S!, we are going to construct some V which induces a
shift in this decomposition of L?(X). This time V is a sum of highest weight vectors of
the representations H* of the complexification of the Lie algebra so,. Moreover, for the
action of SO(n) we don’t need to use the proposition [, which simplifies the proof of the
isoresonance. Here I have been inspired by the construction of isospectral potentials by
Guillemin and Uribe in [GUS83.

These potentials don’t modify the set of resonances of the free Laplacian and their mul-
tiplicity. We can wonder if, with more information, we would be able to detect them. On
this way, I prove that , on H?, there exist some potentials among the family of isores-
onant potentials which modify the order of the resonances. On H?, resonances of the
free Laplacian are, up to a change of spectral parameter, the negative integers with order
1. Taking for the hyperbolic plan the model RT x S! with coordinates (r,6) and metric
g = dr? +sh(r)?d6?, we have

Proposition 2

On the hyperbolic plan H?, let k be a strictly positive integer. There exists a potential
Ve F = {Vi(r)em™;mec 7\ {0},V,, € L(R*)} such that —k is a resonance of A +V
with an order strictly bigger than 1.

In the last part of this article, we construct isoresonant potentials using the S! action
on another example : the catenoid, i.e. (R x S!,dr? + (r? + a?)da?) with (r,e™) € R x S



and a € R. We treat this example separately because we can’t use the Agmon’s theory
for defining the continuation of the resolvent and for perturbations of resonances ; instead
we have to use a complex scaling method, following [WZ0(].

2 Framework and conditions

We take a cover f : 3 — €, where 2 is an open set of C, and an unbounded domain
D C ¥ such that f(D) c C\R*. We note Rg(A) := (A — f(A\))~! which is first defined
holomorphic in D with values in £(L?(X)) (the space of bounded operators from L?(X)
to itself). Let two Banach spaces By and B; be such that

By & 12(x) < By,

where Jy and J are continuous injections, Jo(Byp) is dense in L?(X) and J(L?(X)) is dense
in B;. We note, for A € D, N
Ro(A) = JRo(A)Jo.

Ry is holomorphic on D with values in £(By, By).

Our first assumption is the following :

Condition A : }NEO has a meromorphic continuation with finite rank poles (we will say
finite-meromorphic) from D to D' a domain of 3.

In order that Condition A not hold trivially we assume that f(D™) intersects the essen-
tial spectrum of A.

Let us give some examples :

e X is R™ with the Euclidean metric,

- If n is odd then we take ¥ = C and Ro()\) := (A — A\?)~! is first defined in
D = {X € C; ImA > 0} with values in £(L?(R")) and has, for all N > 0,
an holomorphic continuation in DY, = {\ € C ; |Im\ |< N} with values in
L(e~N<=>L[2(R"), eN<#>L2(R")), where < z >= (1+ | z[?)2. See [MeI9F] and
[EBZ9.

- If n is even then we take for ¥ the logarithmic cover of C\ {0}, and Ry(\) :=
(A — €)1 is first defined in D = {A € C; 0 < Im\ < 7} with values
in £(L?*(R")) and has, for all N > 0, an holomorphic continuation in D}, =
{Ae C; | Im(eM)|< N} with values in L(e"V<*>L2(X),eN<*>L?(X)). See
[Mel95).

e X is an asymptotically hyperbolic manifold. We begin with the definition of such
a manifold. Let X = X UJX, a smooth compact manifold of dimension n with
boundary 0X and py a boundary-defining function that is a smooth function on X
such that

po =20, 90X ={m e X ; po(m) =0}, dpo [5x7# 0.

We say that a smooth metric g on X is asymptotically hyperbolic if pgg continues
as a smooth metric on X and | dpg |p(2)g: 1 on 0X. Thanks to this condition, the
sectional curvature of g tends to —1 at the boundary, and there exists a function p



defining the boundary, a collar neighborhood of the boundary, U, := [0,e) x 0X,
and a family h(p),p € [0,¢), of smooth metrics on 0X such that

dp? +h
_ %{p) on U,. (1)
p
For example the hyperbolic space H" and its convex co-compact quotients are asymp-
totically hyperbolic.

We take ¥ = C and Ry()\) := (A —A(n—1— X))~ ! is first defined and meromorphic
in D = {\ € C; ReX > 251} with values in £(L*(X)) and X is one of its poles if
and only if A(n —1 —X) € 04(A), and it is of finite rank.

Mazzeo and Melrose ([MMS7]) and after Guillarmou ([[Gui0f]) have proved that Ry
has a finite-meromorphic continuation in C\ (§ — N) and in all C if and only if
the metric g is even. The metric g is even if the family h(p) defined in ([]) has a
Taylor’s series in p = 0 only with even powers of p (it does not depend on the choice
of p). More precisely, for all N > 0, Ry has a finite-meromorphic continuation on
D}, :=={\ € C; ReX > 51 — N} if g is even, and otherwise on D, \ (% — N), with
values in £(pVL?(X), p~ N L?(X)).

e X is a Riemannian manifold with asymptotically cylindrical ends. Like in the pre-
vious case, let X = X UOX be a smooth compact manifold of dimension n with
boundary. We say that a smooth metric g on X is a metric with asymptotically
cylindrical ends if there exists a function p defining the boundary, a collar neighbor-
hood of the boundary, U, := [0,¢) x dX, and a family h(p),p € [0,¢), of smooth
metrics on dX such that 12

g= p_,O2 + h(p) on U,. (2)
Let A, be the Laplacian on the compact manifold X and 0 = 07 < 03 < ...
its spectrum. Then the spectrum of the Laplacian on X, A, is discrete with finite
multiplicities outside [0, +00) and, for all j > 0, [0;,0;4+1) is continuous spectrum
with a multiplicity equal to the sum of the multiplicities of {01, ..., 0;} as eigenvalues
of Ay% and there may be embedded eigenvalues with finite multiplicity.

Melrose, in [Mel9J], proves the continuation of the resolvent of the free Laplacian on
the Riemannian surface ¥ which is the surface such that all the functions r;(\) :=

(A= ajz)% are holomorphic on it. This surface is ramified at points A = 0]2. Ro(N) =
(A—X)"lis first defined in D = {\ € ¥ ; V4 Im(r;(\)) > 0} with values in £(L?*(X))

and, for all N > 0, it has a finite-meromorphic continuation in a domain D]J\r, with
values in L(pNL3(X), p~NL2(X)).

e X is a rank-one symmetric space of the noncompact type. In this case, Hilgert and
Pasquale prove, in [HP09], the finite-meromorphic continuation of the resolvent of
the free Laplacian.

In order to treat all these examples with a single notation, we reformulate the Condition
A, with N > 0, and p = e~ <*> for the Euclidean case and a boundary-defining function
on X for the other examples, by

Condition Ay, : fio has a finite-meromorphic continuation from D to D]‘\Ff an un-
bounded domain of ¥, with values in £(p"¥ L?(X), p~N L2(X)).




Agmon shows in [Agm9§| that notions of resonances, multiplicity and order do not

depend of the weight p" chosen.

In order to have the finite-meromorphic continuation to D]J\r, of the resolvent of A + V|
(A+V —2)71 2 € C\ Spec(A + V), we introduce a condition for V :

Condition By, : Ry()\) := J(A+V—f(\)) " Jo with values in £(p" L2(X), p~N L*(X))

has a finite-meromorphic continuation from D to D]J\r, and p~2NV is bounded on X.

REMARK 2
With the hypothesis p~2NV bounded, we will be able to apply the Agmon’s perturbation

theory of resonances [Agm9§].

REMARK 3

If V is compactly supported or if V is smooth on X and vanishes to all orders in p at the
boundary then V' verifies Condition By, for all N. In these cases, the resolvent of A+ V'
has a finite-meromorphic continuation in all 3.

3 Circular symmetries

3.1 Statement of the result and examples

Let (X, g) be a connected Riemannian manifold with a S' action by isometries. We will
need the following condition.

Condition C': For all compact K C X there exists a compact manifold with boundary
K which is diffeomorphic to a compact of X containing K, and which has a isometric S!
action, with a smooth metric g such that gx = gy, and g is a product metric dé? + %a i
in a neighbourhood of the boundary OK of K , with § a S! invariant function defining 0K
and h is independent of 9.

We can now give the main result of this part :

Theorem 2
Let (X, g) be a connected Riemannian manifold with an action of S' by isometries verifying
the Condition C and the Condition Ay, for some N > 0 and some S invariant function

p.
Let V' be the potential

+oo
V=> Vu,
m=1

+o0
where Vy, € L®(X) is ST homogeneous of weight m, with Y. || Vin |lee< +00. If V verifies

m=1

Condition By, ,, and for all X € DY, \ Res(A), p~NHDYV Ro(A)pN is in a Schatten class
Sq» q € NA{0},

then, on DY, Res(A + V) = Res(A) with the same multiplicities.



We will recall the definition of the Schatten classes in the definition [l| in section 3.3.2.

REMARK 4 N
The last assumption, p_(N+1)VR0()\)pN € 8y, is technical and will allow us to use regu-
larized determinants. If V is compactly supported then it holds with q > dlmX and for

any N. In the Euclidean space R", if V' is bounded and super—exponent1a11y decaying
we still have the assumption for all N. On an asymptotically hyperbolic manifold X, if
V is smooth on X and vanishes to all orders in p at the boundary then V verifies the
assumption for all N.

Let us describe the S! action, the Condition C' and the potentials for the examples of
section 2 verifying Condition A :

o Let R” = (R?)*F x R"2* be the Euclidean space with the following S! action

k

P Rpif) ® Idgn-ax,

i=1

where 0 € [0,27), (p1,-..,pr) € (Z\ {0})¥, and R(¢) is the rotation of angle ¢ on
R?. For the Condition C, we can remark that every compact K can be included in
a ball B(0,R) and we can take for K a bigger ball B(0, R) with R > R with the
following metric in polar coordinates :

g=dr’ + f(r)dw?, (r,w)eRT xS" 1

where dw? is the metric on the (n — 1)-sphere in R™ and f is smooth on [0, R],
constant near R and f(r) = r2 on [0, R]. The components S' homogeneous of weight
m of the isoresonant potentials of the theorem have the following form :

i i A PRIATe! il
Vin(re'®, oo rpe'@ 2) = g Wi, 0, (T)e1O et Rk
(51 AAAAA ) €L
Zfipz:*m
i=1
where (r1e’®1, ... rpei®, z) € (R%)* x R"2¢ 7 ¢ R"/S! and the sum converges in

infinite norm.

e For the hyperbolic space H”, we can take the Poincaré model i.e. the unit ball of
R"™ centered at the origin with the metric 4(1— || 2 ||?) "2geuctia- The action of St
on R” described in the previous point induces an isometric action of S' on H". For
the condition C, if K is included in a ball of radius R and centered at the origin
(i.e. Ogn with this model), then we take for K a ball of radius R > R and, in polar
coordinates, § = dr? + f(r)dw? with this time f(r) = sh®r on [0, R]. The isoresonant
potentials have the same form as in the Euclidean case. We recall ([[GZ954]) that
if n is odd Res(A) = () and if n is even Res(A) = —N and the multiplicity of the
integer —k is the multiplicity of k(k 4+ n — 1) as eigenvalue of the Laplacian on the
Fuclidean sphere S™.

e Let us consider H" with the model R} x R"~! with the corresponding coordinates
(z,y). We take for X the hyperbolic cylinder H"/ < v > where v is the isometry

w — e‘w. S' acts on X isometrically by €.z, y] = [e%x, e%y]. We can see X as



R x S x "2 with the coordinates (r,6,w), the metric dr? + ch?rdf? + sh?rdw?,
and the S! action is the trivial action on the factor §1. Every compact is included
ina K =[0,R] x S x "2 s0 we can take K = [0, R] x S' x §"~2 with the metric
g = dr? 4 hi(r)d6#? + he(r)dw? where hy and hy are smooth on [0, R], constant near
R and on [0, R], hy(r) = ch®r, ho(r) = sh®r. The components S! homogeneous of
weight m of the isoresonant potentials have the form :

Vi (1,0, w) = Wy (r,w)e ™™,
Here, according to [[GZ95d], we have Res(A) = —N + iZ27 /¢ [[GZ954].

We recall that the isometric S' action induces a decomposition of L?(X) according to
isotypical subspaces :
L’(X) =P Li(X).

JEZ
Let Pj : L*(X) — L?(X ) be the corresponding orthogonal projection.
The main idea of the proof is that if V;,, € L>°(X) is S' homogeneous of weight m then
it induces by multiplication a shift on these isotypical representations :

Vin 1 L3(X) — L3, (X).

3.2 Spectral lower bound for the Laplacian on homogeneous functions

In the following we will need a spectral lower bound for the Laplacian on S! homogeneous
and compactly supported functions. As I have not read this result anywhere before, I also

give an upper bound for the first eigenvalue. In [A §], it can be found a more precise
discussion about this result.

Proposition 3
Let K be a compact manifold with boundary, with a S' action and equipped with a metric
g such that S! acts by isometries on (K, g). We assume g has a product form d§? + hyg in
a neighbourhood of 0K with § a S' invariant function defining 0K, and h is independent
of §. Then there are constants C; = C1(K) > 0 and Cy = Co(K) > 0 such that for all
Jj € Z, we have :

Cle < Min Spec AL?(K) <Oy <y >2

where A L2(Kk) 18 the Friedrichs selfadjoint extension in L? (K) of the Laplacian defined on
J
C2°(K) N LA(K) and < j >:= (1+ | [?)7.

REMARK b5
In the case where K is a disk centered in 0 in R?, we can apply this lemma including K

in a bigger disk K as explained before but we can also prove directly the lower bound
because it is just an estimate of the first zero of Bessel functions.

Proof : We begin with the lower bound. Consider two copies of K. We can identify their
regular boundaries and get a compact closed manifold M. More precisely, there exists a
collar neighbourhood W of 0K diffeomorphic to [0,€) x K by the diffeomorphism :

P:[0,e) x OK — W
(ty) — i(y),



with 1, the gradient flow of § for the metric g. So, on the topological space M = (K U
K)/OK, we can construct a differential atlas beginning with 0K C M which is included
in a open set [W] = (W U W)/IK diffeomorphic to (—¢,€) x 0K by

(—€,6) x OK — [W]

ty) = {wt<y), if ¢ <0

On [W] the S! action is, via the previous diffeomorphism, the action on K. The other
charts are those in the interior of K.

As the metric g has a product form in a neighbourhood of K, it can be continue by

symmetry on §. We get a smooth metric on M and we still have an isometrical action of
S' on M.
Let Y be the corresponding vector field which we will consider as a differential operator
of order 1 (Y. f(m) = —i0s(f(e™".m))jg—). Another pseudo-differential operator of order
1, on M, is P := /Ap + 1 where Ay is the Laplacian on (M,g). P and Y commute
because S! acts by isometries on M. We consider @ := P? 4+ Y2 whose principal symbol
is q(x, &) =€ +(£(Y))?, (x,€) € T*M ; so Q is elliptic.

Let A C R? be the joint spectrum of (P,Y), it is constituted by the points (AJ, A))
such that Py = )\kpqﬁk and Yo = )\kyqﬁk where (¢y) is a orthonormal basis of L?(M). We
note that the spectrum of Y is equal to Z and we are looking for the minimum of the first
coordinates of points of A whose second coordinate is j. We call this minimum \}.

Let p(z,€) = (|£],£(Y)) be the joint principal symbol of P and Y. p is an homogeneous
function of degree 1. Let I' be the linear cone I' = Rtp(S(T*M)) where S(T*M) is
the unit sphere bundle of T*M. Moreover, we have p(S(T*M)) = {(1,£(Y)),| ¢ |= 1}.
Now, as P and Y commute and @ is elliptic, we can apply theorem 0.6 in ] . if
C is a cone of R? such that C N T = {0} then C N A is finite. Taking, for example,
Ckx = R{(a,|Y |k),| a|< 3} where | Y |[g= sup |Y(m) |, it means that there exists a

meK

constant ¢ := ﬁ and J € N such that, for all j € Z, |j|> J, we have )\]i >c|j| and we
K

can take a smaller ¢ and have )\{ >c|j|forall j € Z. As P =+/Aj + 1, there is another
constant ¢, such that the minimum of the spectrum of the Laplacian on homogeneous
functions of weight j on M is superior than cj2.

Moreover, the spectrum of A L2(K) with Dirichlet conditions is included in the spectrum
J

of A acting on L?(M ). Indeed, let I be the involution which exchanges the two copies
of K in M, then the eigenfunctions of Aj; which are odd for I vanish on the image of 0K
in M. So they correspond to eigenfunctions of the Dirichlet Laplacian on K.

In order to prove the upper bound, we remark that

o (A99)
= 11n 5 -
ser2(x)\{o} |4

J

So it’s sufficient to construct, for j large, one ¢; € L?(K)\{O} such that (A¢;, ¢;) < Cj% ||
oy |2 with C independent of j. Let K be the set of principal orbits of the action of S in
K. The principal orbits are those for which the stability groups are the identity. K is an
open, connected and dense subset of X. We consider the principal S' fibration K—K /St

and we take Uj, a S! invariant open set of K , where this fibration is trivial. So Uj is
diffeomorphic to (U;/S!) x S* and we can take U; small enough to be sure that U, /S! is a



coordinate patch and we denote the corresponding coordinates by (y, ) := (y1,...,yn,0)
where N = dim U;/S*. In those coordinates the metric has the form

N N
9o, = D are(y, 0)dyrdye +b(y, 0)d6% + > ci(y, 0)dyxdd,
k=1 k=1

with ay, ¢,b and ¢, smooth on Uj, and the Laplacian becomes

N N
A =" Arily,0)0y,0,, + B(y,0)0; + > _ Cily, 000,
k=1 k=1

N
+ Z Dk;(y’ e)ayk + E(ya 9)895

where Ay ¢, B, Cy, Dy, and E are smooth on Uj.

We take ¢;(y,0) = Y(y)e 9 with 1 smooth and compactly supported in U;/St. So we
have ¢; € L?(K) and

N
=( ) Apely,0)0y,0,,¢ — j*B( —ij ch (y,0)0y,

k(=1

+ ZDk Y, 0)0y, ¢ — i E(y, 0)¢) e’

and
@650 == [ Bly.6) [0 dvollg)
supp ¢,
- | S Culy, )0,V + Ey.6) | 6 doll)
supp¢>Jk 1
N N
+ . S Ay 0) 0000+ 3" Duly. )0y )5 dvoll)
SUPP @5 [ r=1 k=1
SO

(Ads, ¢5) =] (Adj, 65) [< M (¥)5” 191172k g +A2() 15| +As(10),
where A1, Ao, A3 are positives constants which only depend of .

By fixing v as || ¢; [|=|v||, we get a constant Cy such that, for all j € Z,

(Adj, ;) < Cy <j>2|| o> O

With the proposition B and the Condition C' we will prove the following :

Lemma 1
Let A € DY, \ Res(A) and x € C°(X) be S'-invariant. Then there is a constant C =
C'(\,x) > 0 such that, for all j € Z, :

I xRo(N) Pyx ||<

1+ 52
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Proof : Since S! acts by isometries on X, we have, for all j, AP; = P;A and ijio =
RoP;. The fact that x is S! invariant also gives xP; = Pjx.

We have B
X(A = fF(A)Ro(A\)x = x>,
(A — FON)XRo (N Pyx = X*Pj + [A, x]Ro(\)x P
then
(A = FODXRoNPix || < 1P |+ 1| A X Ro(A)x Py || < C(A, x). (3)

Let (IN(,ﬁ) the compact containing K := suppyx given by the Condition C. If v € L?*(X)
then u = xPjRo(\)xv is in L?(K, g) and, as supp u C K and g = g, we also have
u € L?(f( ,g). In addition, u is, at the same time, in the domain of the Dirichlet Laplacian

on K , of the Dirichlet Laplacian on K and of the Laplacian on X, and we have

A(f(@u == A(K@)u == A(X@)u.

Let (¢5) (depending on K and j) an orthonormal basis of L?(IN( ,g) constituted by

eigenfunctions of A( R.3)" We denote ug(j, K) the eigenvalue corresponding to ¢y. If we
expand u following this basis : © = > ug¢y, we have
k

(A zg — FO)u =D (i K) = FON)urn

k

so that

(A = FO0)u P=3" 1 i K) = FO) Plug P2 37 (i (G K) = Re(F(V))” Jug >
k k

Thus, using the proposition [J, there exists a constant C' = C (I~( ) > 0 such that
VkeN, VjieZ u(j,K) > Cj

We take J in order to have C'.J? > Re(f())), then for all |j|> J, we have

(A= FO))ullP> (052 = Re(F(A))* Y Juk = (C52 — Re(F(A))* [|ul? .
k

Using this in the inequality (f) we get that for all | j|> J

C(Ax)
j2 = Re(f(N)

So there exists another constant C' > 0 such that , for all |j|> J, || XEO()\)P]'X < Cj2,
and we can take a greater C to have, for all j € Z,

| o) Pix < &

Ro(\)Pjx ||< :

11



3.3 Localization of resonances

We begin the proof of the theorem [ by the inclusion Res(A + V) C Res(A). First, we
consider truncations in space of partial sums of V.

3.3.1 Localization of resonances for the truncated partial sums of V'

M
We consider Sy; := Y. V;, where V,, is the component S' homogeneous of weight m of
m=1

V. Let x € C°(X) be invariant under the action of S'. In this part, our purpose is to
show that Res(A + xSy) C Res(A), on DY,

For A € D}, \ Res(A), we have
(A+xSu = F(N)Ro(Np™ = pM (I + p~ VxS Ro(N)p").
In addition, we have
PN xSuRo(Np™N = xp~ N Sup™ Ro(A)p™ .

So thanks to the condition Ay, p_NxSMEO()\)pN is an holomorphic family in D \
Res(A), of compact operators such that

oM xSarRo(N)p™ | < 1
for || sufficiently large in D.

Then by the analytic Fredholm theory we get that (I +pNxS MEO(A) pN )_1 is meromor-
phic on D]J\r, \ Res(A) and we have the often called Lipmann-Schwinger equation which
establishes the link between the resolvent of A + x.S3s and these of the free Laplacian :

~ ~ _ ~ -1

PN Rys, (Np™ = pV Ro(N)p" (I + p~VxSarRo(Mp™) . (LS)
So if Ag is a pole of }Aést in D} \ Res(A), then ) is a pole of (I + p*NxSMﬁo()\)pN)fl
and still by Fredholm theory, there is a nontrivial v € L?(X) such that

(I +p xSy Ro(N)p™ )u = 0.

We remark with the last equality that supp w C supp x. Let x2 € C°(X) invariant under
the action of S* and such that y2 = 1 on the support of y. If we denote u; := Pju € L? (X),
we have

uj = Pi( = p~VxSuRo(N)p™Nu) = Pi( = p~ N xSauxa Ro(Mx2p ),

and by linearity
M

uj = — Z Pi (0N xVinxaRo(A)x2p™ ).
m=1
However, each V,, induces a shift on the isotypical representations :

2 2
Vit LA(X) = L2, (X),

12



so we have

ujo= = vapj—m(p_NXXQEO()‘)XQPNU)
M ~

4= = > Viup M x0eRoNxep™ Py (v),
m=1

where we have also used that the projections P;_,, commute with éo, p, x and xa.

+o0
By hypothesis, for all m, || Vi, [[o< > || Vi [loo< +00, then, applying the lemma [l] to
m/=1

X2§0X2ijm, we get a constant C' such that, for all j € Z,

M

H%HSZ 7= Il

m=1

so, for all j € Z,
M
laj 1< €5 D Il g I,
m=1
where €; — 0 for |j|— +oo.

Thus we can use the following lemma :

Lemma 2 M
Let (a;)jez € (Y(Z) non-negative. If there is M € N and, for all j € Z, aj < €; > aj_m
m=1

with e; — 0 for | j|— +o00, then a; = 0 for all j.

Proof : Let J' < 0 such that, for all j < J', ¢; < ﬁ Then, for all 7 < .J', we have

< ﬁ Z—1aj_m and if we sum all these inequalities we get, denoting S = > aj,

jsJ’
1
SSM((S—ajz)—i—(S—aJl—aJ/,l)—i—...—l—(S—aJ/—...—aJ/,M+1))
1
:M(MS—MaJ/—(M—l)aj/,l—...—aj/,MJrl),

from which we deduce
0 S —M(ZJ/ — (M— 1)CLJ/_1 — .. T Ay —M+1,
and thus
ajy =ajy_1=...=0ajy_M+1 =0.
Moreover, as €; — 0 for | j | = 400, there exists a constant C' such that, for all j € Z,
M
a; <C Y aj_m, so we have

Vi>J —M+1, aj =0,

and we can make tighten J' to —oo and finally we have a; =0 for all j € Z O

13



We apply this lemma [J to the sequence {||u;[|*};. We get that [ w;[l= 0 for all j and
thus v = 0. This is in contradiction with the existence of a pole of RXS in DY, \ Res(A).

Finally, for all M and all x € C°(X), invariant under the action of S', A + x.Sy; has no
resonance in D7 \ Res(A), which can be expressed by

Res(A + xSu) C Res(A), in DF.

3.3.2 Localization of resonances for the potential V

Let us recall some results and notations about regularized determinant that will be

needed in the following. ([Yaf93])

Definition 1

Let H be an Hilbert space. If A :H — H is a compact operator, we define its singular
values (s,,(A))nen as the eigenvalues of the selfadjoint operator (A*A)'/2. For 1 < p <
+00, Sp, is the two-sided ideal of L(H) formed by operators A for which the sum

[e.e]

1Alp=" " sh(4)

n=0

Is finite.

Definition 2
For A € S, we define the regularized determinant, det,, by

det,(I + A) = Hl—i—)\ exp(

where the (A, (A))nen are the eigenvalues of A.

We give some properties of this determinant

Proposition 4
1. A — det,(I + A) is continuous on (Sp, || . ||)-

2. If z — A(z) is holomorphic in some domain of C, with values in S, then z —
det, (I + A(z)) is also holomorphic in the same domain.

3. For A€ Sy, I + A is invertible if and only if det,(I + A) # 0

We have assumed that there exists ¢ such that for all A € D \Res(A), p~NHDY Ry (A)pN
is in a Schatten class S,, so p~ NV Ry(A\)pY is in S, too.

Let us first prove a preliminary fact. For all x € C2°(X) there exists p such that
xp VRy(A)pY € S, for all A € DJ; \ Res(A). To see this, take a compact K with a
smooth boundary and containing suppy. Let Ag be the Dirichlet Laplacian on K, and
(1 )ken the eigenvalues of (Ax + 1)1, Then the Weyl’s formula gives, when k tends to
400,

2m)? _2
HE ~ %k ™
(wp VOl(K))n
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where n = dimX and w,, is the volume of the unity ball in R". Thus for p > 5, (Ax +
1)~! € S,. Moreover, for all A € D} \ Res(A), (Ax + 1)xp N Ro(N)p" is a bounded
operator in L?(X), and, as S, is a two-sided ideal of £(L?(X)), we have

xo N RoWpN = (Ak +1)7H Ak + Dxp VRoW)pN €5,

As 5, C S, for p1 < pa, we can take the maximum of p and ¢ and we still note it ¢,
and get that xp N Ro(\)p"™ and p~ NV Ry(A\)pY are both in S,.
The Lipmann-Schwinger equation, (L), with V instead of xSy give
> = NS -1
PV Ry (\)p™ = pV Ro(N)p" (I + p~ NV Ro(M)p™)
So thanks to the third point of the proposition f] we have

A € Res(A + V) N DY\ Res(A) <= dety (I + p NV Ry(M\)p") = 0.

On Dj; \ Res(A), we define
F(V,\) == dety (I + p~NVRy(N)p").
If there exists A\g € Res(A + V) \ Res(A), then
F(V,Ao) = 0.

Let I' be a simple loop around Ao such that Ao is the only zero of F (V,.) in the do-
main U delimited by I', and such that U C D}, \ Res(A). It is possible because, thanks
to the second point of the proposition [, F' is holomorphic in A and so its zeros are isolated.

Let x, a smooth family of compactly supported and S'-invariant functions such that, ||
(xr—1)p||oo tends to 0 when r tends to +-co. As we have assumed that Vo~ (Nt Ro(X)p" €
S, we can write, for all A € T,

Ve N RBo(N)p™ = VoV RoMp" llg < 1| (e = Dplloo Ve~ MV Ro(N)p™ |l -

So, when 7 tends to +00, x, Vo~V Ry(A\)p" tends to Vo~ Ry(A)p" in S, uniformly on T'.
So, with the first point of the proposition i, F(x,V,\) — F(V, ) uniformly on I'. From
that, there exists rg such that for all » > r¢ and for all A € I' we have

[FOGVoA) = F(VN[<IF(V A

So, by Rouché’s theorem, F'(x,V,.) has the same number of zeros, in U, as F(V.).

In the same way, fixing r > 7o, using x,p Y Ro(A)p € S, we can write
IxrSarp™ N Ro(N)p™ = xaVp N Ro(NpN g < 150 = Vlloo ™ N Ro(N)p™ g -

So using the fact that by hypothesis, || .Sy —V ||o tends to 0 when M tends to oo, we have
F(x+Sam,A) — F(x,V, ) uniformly on I and we can use the Rouché’s theorem again.

In conclusion, there exist r and M such that F(x,Sus,.) has the same number of zeros,
in U, as F(V,.). It means that A+ x,.Sy has a resonance in the domain U C Dj;\ Res(A)
which is in contradiction with the previous part. In conclusion, on D]J\r,,

Res(A + V) C Res(A).
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REMARK 6
In ], Christiansen proves the inclusion, Res(A + V') C Res(A), without using the
shift created by the potential V' on the isotypical components of L*(X) but with regularized

determinant and an hypothesis of analycity : W(z) := Z 2"V, should be holomorphic

in a domain of C containing the closed disc of center 0 and radius 1.

3.4 Persistence of resonances

In order to achieve the proof of theorem fl, we have to show that the points in Res(A) N
Dj\} are also resonances of A + V with the same multiplicity. To make this, we will use

the Agmon’s perturbation theory of resonances [Agm9g].

Let Ay € D]\L, be a resonance of A with multiplicity m. Let U C D]\L, with smooth
boundary T' such that U N Res(A) = {\o}. If V satisfies the hypothesis of the theorem
g then, for all ¢t > 0, tV satisfies these hypothesis too. So we can apply the result of the
previous part : for all ¢ > 0, Res(A +tV) C Res(A) and thus

Res(A+tV)NU C { Ao}

Let E :={tg > 0; ¥Vt € [0,%o], Res(A+tV)NU = {\g} with the same multiplicity m} ;
we are going to prove by connexity that it is in fact equal to [0, +oo[. First it is not empty
because by definition of g, 0 € E.

We take tg € E, we want to prove that there exists 6 > 0 such that |ty — d,tg + 0[C E.
Following the theory of Agmon ([Agm9§]), we begin with the definition of the Banach
space

Br={fep NL*(X); f=g+ / Ry (©)@(€)dE, g€ pVL*(X),® € C(I, pNL* (X))},

where C(T, pV L?(X)) is the space of continuous functions on ' with values in p" L?(X).
On the space Br we take the norm

1 ll5e = inf(llgllpv L2y + I @ llow,vizoo)),

where the infimum is taken among all the g € pVL2(X) and the ® € O(T',pVNL?(X))
such that f =g+ [, Etov(§)®(§)d§. On this Banach space, we can define, still following
Agmon, the operator (A + V)" : D((A +tyV)') — Br. It’s a restriction of A + toV in
the following sens :

A+t u=(A+tV)u, ueD(A+tV)"),

where A + tgV is the closure of the operator A +toV view as an operator densely defined
in p~NL2(X).

Agmon proves that (A + toV)! has a discrete spectrum in U which is exactly the set of
the poles of fitov, i.e. the resonances of A + t¢V, with the same multiplicities.

Next, with the condition By ,, the family ¢tV verifies all the hypothesis in order to apply
the part ”perturbation” of the paper [] We perturb A +toV by tV. So there exists
§ > 0 such that, for all ¢ €] — §,0[, we can define in Br the operator (A + toV + tV)I.
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Moreover, for all t €] -, 4], (A +toV 4+tV)! has a discrete spectrum in U which is exactly
the set of the poles of Ry, ¢ with the same multiplicities.

Now, our problem becomes a problem of eigenvalues. Using the Kato’s perturbation
theory of eigenvalues ([Kat6(]), we know that, maybe taking a smaller ¢, the eigenvalues
of (A +toV +tV)! in U are continuous for all ¢ €] — §,5[. As these eigenvalues are also
resonances of A + tgV + tV, Ag is the unique possibility. So Ay is the unique eigenvalue
in U of (A +toV + V) for all ¢ €] — §,5[ with constant multiplicity. Therefore, thanks
to the parallel established before, A is the unique resonance in U of A + toV + ¢V for all
t €] — §,0] with constant multiplicity. It signifies |tg — d,t9 + d[C F and so E is an open
set.

We can prove that E is also a closed set doing the same proof with the complementary
set of E. If ty is not in I, then Ag is a resonance of A + tgV with a multiplicity not equal
to m (it can be 0). Perturbing this operator by ¢tV and using the Agmon’s correspondence,
we can prove that \g is a resonance of A + ¢tV with a multiplicity not equal to m for all ¢
in a neighbourhood of .

In conclusion, E = [0, +o0o] and we can take tyg = 1 to obtain, in U, Res(A+V) = Res(A)
with the same multiplicity. To finish, we have to do the same work in the neighbourhood
of any resonance of the free Laplacian. This completes the proof of the theorem [

3.5 An example where the order of resonances grows

The isoresonant potentials introduced in the theorem [ can’t be detected only observing
the set of resonances and their multiplicities. We can wonder if their existence can be seen
through the order of the resonances. We are going to prove, in an example, that there
exist potentials verifying the theorem B which change the order of resonances.

We consider the hyperbolic plane H? with the model R x S!, the coordinates (r,#)
and the metric g = dr? + sh(r)?d#?. We have already said that the resonances of the free
Laplacian are all the negative integers and the multiplicity of —k, k € N, is 2k + 1 (see
[GZ954]). Moreover the order of all these resonances is 1. We denote F := {Vj,,(r)e™:m ¢
Z\ {0}, Vy, € LL(RT)} which is a family of isoresonant potentials by the theorem f.

Proposition 5

Let H? be the hyperbolic plane and k a non negative integer. There exists a potential
Ve F = {Vi(r)em™;mc 7\ {0},V,, € L(R*)} such that —k is a resonance of A +V
with an order strictly greater than 1.

Proof : let k € N\ {0}, we suppose, ad absurdum, for all V' € F, —k is a resonance of
order 1 of A+ V.

For all V € F, the resolvent (A+V —A(1—)))~! has a meromorphic continuation Ry on
D, ={A € C; ReX > 1 — N} as an operator from By := p" L*(H?) to By := p~VL2(H?)
where p is a boundary defining function of a compactification of H2. We take N sufficiently
large to have —k € D]J\r,. By and Bj are dual thanks to the non degenerate symmetric form

(u,v) = / uvdvol(g).
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We remark, for all t € R and all V' € F, we have tV € F. With our hypothesis, for A in a
neighbourhood of —k, we have

R (N) = A+ )71 S(t) + H(t, ),
where H(t,.) is holomorphic with values in £(By, B1) and S(t) € L(By, B1) has a finite
rank.

We apply the Agmon’s perturbation theory of resonances. Consider a domain U C Dj\}
with smooth boundary I' such that U N Res(A) = {—k}. We have the corresponding
Banach space,

Br={feBi; =g+ /F Ro(©)@(6)de, g € By, ® € C(T, By)),

with By C Br C Bj.

Then there exists 6 > 0 such that, for all V' € F and all t €] — 4, [, we can define the
operators (A + tV)' in Br and their resolvents RtFV. Thanks to [Agm9y], we know that
(A +tV)I' has a discrete spectrum in U which correspond to the resonances of A + ¢V in
U with the same multiplicities and orders. So for A near —k in U we have

Riy(\) = (A +E)71SY(t) + HY (t,\), (4)

with H''(¢,.) holomorphic with values in £(Br) and S'(t) € £(Br) of finite rank. Still
following [Agm9q] we know that S(t) and S' (¢) have the same range and they coincide on
Bo.

Let V € F, for all t €] — 6,6 and ¢ € Br we define 1(t) := S (t)¢. From (f) we obtain
for all t €] — 4, 4],
(A +tV)' + k:(k +1)Y(t) =

¥(t) is derivable in ¢ like ST (t) (because ST(t) = 7 [L(AT + ¢V — A(1 — X)) "1d]), so we
can derivate the last equality at ¢ = 0 and get

Vp(0) + (AT + k(k +1))9'(0) = 0.

Compose this new equality with ST (0), using, ST(0)(Al + k(k + 1)) = (A" + k(k +
1))SY(0) = 0, because

1 r_ -l
,/F(A A1 = A)lan,

21

ST (0) =

and the fact that —k(k + 1) is an eigenvalue of order 1 of Al we obtain

ST(0)V(0) =

As (0) € RanS' (0) = RanS(0), there exists fo € By such that 1(0) = S(0) fo = S (0) fo.
Moreover ST (0)V4(0) € Br C By, so we can evaluate :

(ST(0)V(0), fo) = 0.

_Next, as the Laplacian is a real operator, it is symmetric for (.,.) thus the resolvent,
Ry()), is symmetric too, first for Re(\) > % and after in all D]'\'} by analytic continuation.
In conclusion S*(0) is symmetric for (.,.). So

(V4p(0), S"(0) fo) = (V(0),%(0)) = 0,

and we have that equality for all V € F.
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Thus, for all m € Z \ {0} and all V;,, € L°(R™") we have

27
/ eime/ Vm(r)w(0)2(r, 0)dvol(g) = 0.
0 R+

This implies that, for all the resonant states 1(0) of the free Laplacian, 1(0)? does not
depend on 0. But, considering the expression of the hyperbolic Laplacian and taking its

decomposition corresponding to @ (L?(R*,shrdr) @ e*?), we have resonant states of the
el

form 1(0)(r,0) = 1(r)e’® where | £|< k and 1y are hypergeometric functions (see the
annexe of [GZ95H]). Then for £ # 0, (0)? depend on 6 : we have our contradiction.

Finally there exists V' € F such that —k is a resonance of A+ V of order strictly greater
than 1. O

4 SO(n) symmetries

This time we consider an isometric action of SO(n) on a complete Riemannian manifold
(X, g) of dimension n > 3. Contrary to the case S!, SO(n) is not commutative, so we
don’t have a simple description of the isotypical components. To have a shift we add an
hypothesis :

Condition D : The isometric action of SO(n) on (X, g) has a fixed point O and the
polar coordinates with pole O define a diffeomorphism from X \ {O} to RT \ {0} x S*~L.

With this condition, in the polar coordinates the metric g becomes :
dr® 4 f(r)dw?, (r,w) e RT xS"1

where dw? is the metric on the (n — 1)-sphere in R™. For example with f(r) = 72 we have
the Euclidean space and, with f(r) = sh(r)?, the hyperbolic space. If f is independent of
r outside a compact then (X, g) is a manifold with a cylindrical end of section S*~!.

With the condition D we have
L2(X) = ) IARY) o HY,
keN
where H¥ = Ker (Agn-1 — k(k +n — 2)), k € N, be the eigenspaces of the Laplacian
on S"71. The action of SO(n) on X induces a representation of SO(n) on L?(X) =~
L?(R*Y) ® L2(S"~!) which only acts on the factor L?(S"~!), so on the H*. Moreover the

restriction of this representation to each H* is irreducible (cf [BGMT1]). The shift that
we will use in order to construct isoresonant potentials, will appear on these H*.

4.1 Representation

The group action of SO(n) on L?(X) induces an action of its Lie algebra, s0,,. We can
describe this action with the following operators,

D¢ f(x) := %f(e_tg.m)‘tzo, £ €so,, fel*X), zeX.

We consider the complexification of the Lie algebra so,, g := 50% = 50, +150,. We choose

h one of the Cartan subalgebras of g i.e. one of the maximal Abelian subalgebras of g.
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Let us describe h as a subalgabra of gl(C™). b is the Lie algebra whose basis is (Cx)1<k<p
where p is the integer part of § and ¢, has all its entries null except the kth 2 x 2-block

which is
0 4
—i 0/
Take (wy) the dual basis of (x) in h*.
Remember that g acts on itself by the adjoint representation :
ad(Y):Z — Y, 2], (Y,Z) e g
We consider the following scalar product,
(Y, z) = Tr(ad(?) cad(Z)), (Y,2)¢€ 92

where the conjugation is defined by U + iV = —U + ¢V with real U and V. So, for all
Y,Z € g, [Y,Z] = —[Y,Z]. With this we remark that, for all £ € b, we have £ = ¢ and
thus ad(€) is selfadjoint (cf [Sim94, p.177]). So {ad(€) ; € € b} is a family of selfadjoint
operators on g which commute together. We can simultaneously diagonalize them and
decompose g according to the eigenspaces.

We obtain g = h @ €p g, where the sum is over a finite set of a € h* which are the roots
of g and we denote g, := {X € g; ad(§)(X) = «({)X, V¢ € b} which are the root spaces
(they are all one dimensional cf [Bim96, p.180]). Let A C h* the integer lattice generated
by the roots. In A we choose a lexicographical order “~”, choosing wy > ... = w,. Then

we denote g4 = @ go (respectively g— := € go) the subalgebra of g generated by root
a0 a<0
spaces with positive root (respectively negative). So we have g = h @ g, @ g_. For a

general theory see [FIm9@, chapter VIII].

We come back to the irreducible representations H*. It have a decomposition according
to the action of b :
k k
O I

wk o <Lw=wk

min — max

where the sum is over a finite set of h*, and these w are the weights of H* and the
corresponding weight spaces, HE, are defined by H* = {f € H¥; Def =w(&)f, V€ € b}

We will need the following lemma,

Lemma 3
If f € HY and if € € g, then D¢f € HE_,.

Proof : for all ( € b, we have
D¢(Def) = De(De f) + Dig g f-
But [¢, €] = ad(¢)(€) = a(C)€ because £ € g4, and D¢ f = w(¢) f by definition of HE. So

D¢(Def) = w(C)Def + a(Q)Def = (w+ a)(C)(Def). O

We define particular vectors in the H*, k € N, which will be used to create the necessary
shift.
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Definition 3
A nonzero vector v € HF is a highest weight vector if it is an eigenvector for the action of
all the D¢, & € by, and if it is in the kernel of all the De, & € gt

As g is semi-simple and H* is an irreducible representation of it, there is an unique
In fact H gk is one dimensional,

max

highest weight vector up to scalar : we note it v¥, .

generated by vF, .. With our choice v¥,,, can be calculated explicitly (see [Aut0g]) :
k _ . k
Upaw © @ (21, ..y 2p) = (21 + 122)",

where ¢ : RT\ {0} xS"~! — X\{O} is the diffeomorphism of condition D and (21,2, ..., 2y)
are the standard coordinates of R™ restricted to S*!.

We will need the following lemma,

Lemma 4

HY  =H"n () KerDg).

wmax
€9+

Proof : the first inclusion H ik c Hqn ( M Ker Dg) is the definition of a highest

max tegy
weight vector.
Let u € H*N( N Ker D¢),sou € HF = D HE and we write u = > Uy
feat wk o Lw=wk . wk o Lw=wk .

with u, € HE. For all £ € gz with 8 > 0, we have, thanks to the lemma [J, D¢u,, € H§+ﬁ.
By hypothesis, we have
Deu = Z Deuy, =0,

k k
Winin ju}j(“}maac

and, as the previous sum is direct, we get for all w :
V¢ € gy Deu, = 0.

Moreover, for all w, by the definition of H¥, u,, is an eigenvector for the action of all the
D¢, £ € h. Thus by the definition of a highest weight vector, we have u, = 0 except for
U and in conclusion u € H fjk O

k
w.
max maz

4.2 TIsoresonant potentials

Let
LX) =PL®" o Hj
keN

and note P the corresponding projections into L?(R*) @ H fjk

max

Theorem 3

Let (X, g) a Riemannian manifold of dimension n > 3, with an isometric action of SO(n),
verifying condition D. We assume that we have condition Ay, for some N > 0 with a
function p invariant under the action of SO(n).
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Let V' be the potential,
o0
V=> W
k=1
where Vi, € L*(RY) @ HE,  and sup || Vi [|so< +00. If V wverifies condition By, ,, and for
max k

all X € D, \ Res(A), p~ NIV Ro(AN)pN is in a Schatten class Sy, ¢ € N\ {0},

then, in DY, Res(A + V) = Res(A) with the same multiplicities.

The Euclidean space R", the hyperbolic space H™, asymptotically hyperbolic spaces
and manifolds with asymptotically cylindrical ends with an action of SO(n), are examples
where this theorem can be applied.

REMARK 7

If X has an isometric action of SO(n) it has also an isometric action of S'. With the
condition D, X is diffeomorphic to Rt \ {0} x S"~! and SO(n) acts on the factor S*~1.
Taking, on S"~', the hyperspherical coordinates (¢1,...,¢n-1) € [=5, Z]" 72 x [0,27), we
can consider the action of S' on X, corresponding to one of the inclusions S! € SO(n),

defined by '
619‘(,,“’ ¢1 s anfl) = (Ta ¢1 cee a¢n71 - 9)
If we consider the components Vi, € L?>(RT) ® Hﬁk of V', they have the following form

n—2
Vk(’l“, G1e--s gbnfl) = Sk("ﬂ)vﬁmam«ﬁl e a¢n71) = Sk(r)(H COS ¢i)k€2k¢nil-
i=1
n—2 n—2
In fact we have vE, . = (x1+ixo)* withx; = ([ cos ¢;) cos ¢,_1 and x5 = ( [] cos ¢;)sin ¢,_1.
i=1 i=1
So Vj, is S homogeneous of weight k for the previously described S' action.
In conclusion the family of potentials constructed thanks to the action of SO(n) is

included into the potentials constructed with the action of S'.

So, why look at the SO(n) action ? In fact, as we will see, using the SO(n) action
simplifies the proof of isoresonance. In particular we don’t need the lower bound of the
spectrum of the Laplacian on functions of weight j i.e. the proposition | This allows us
to add to the free Laplacian a real SO(n)-invariant potential Vi not compactly supported
but just decreasing at infinity in order to continue Ry, (compare with remark [)).

In the way to prove the theorem [ first, note that Vj, maps L*(R*) ® HY, into
w.
L>(RT) ® Hﬁjfk . As for the action of S, this shift will be the key of the proof.

max

4.3 From L*(X) to L*(X)"

Let x € C°(X) invariant under the action of SO(n). As for the circular action we begin
studying Res(A + xV), on D]\L,. We can write the Lipmann-Schwinger equation and get
that if Ag € Res(A + xV) N (D}, \ Res(A)) then there exists a nontrivial u € L?(X) such
that B

(I + prXvRo()\o)pN)u =0.

We want to prove that we can choose u in L?(X)* :
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Lemma 5
For A\ € Res(A + xV) N (D}, \ Res(A)), there exists a non trivial w € L*(X)* such that

(I+ p_NXvﬁo()\o)pN)w =0.

Proof : as p*NXvﬁo()\o)pN : L?(X) — L%*(X) is a compact operator, we have H_ :=
Ker(I+ p~NxVRy(\o)p") is finite dimensional.

In addition, for all £ € g4, D¢ maps H_; into itself. Indeed, by definition of highest
[ee]

weight vector, we have D¢V = 3 D¢Vj, = 0. Moreover, as the action of SO(n) is isometric,
k=1

D¢ commutes with the Laplacian and so with Eo()\o). D¢ commutes also with p and x
because they are SO(n)-invariant. So, if u € H_; then u = —p~NxV Rg(Ao)p™Nu and
Deu = —p~VxDe(V Ro(Ao)p™u)
= —p "X(De(V) Ro(Xo)p™u+ V De(Ro(ho)p" u)
= —p NXVRo(Xo)p" Deu,
and finally Deu € H_;.
So H_; is a finite representation of g. Moreover gy is a nilpotent algebra. It’s coming

from the fact that there is only a finite number of positive roots of g and from the following
calculation : if £ € g, and ¢ € gg then ad(€)(¢) € ga+p- To see this, for all o € h, we have

ad(o)([¢, ¢]) = [0, [¢, Il = [&, [0 Il + [[o, €], €]
= [€,8(0)C] + [a(0)¢, ]
= (a+B)(0)[¢, ¢
Then by Engel’s theorem (see [FHOI] p.125) there exists a nonzero vector w € H_; such

that Dgw = 0 for all £ € gy.
We can decompose w :

w= Zwk, wy € L*(RY) @ H”,
keN

and for £ € g4 we have

Dew = Zpgwk =0,
keN

with Dewy, € L?(RY) ® H*. As the previous sum is direct, we have, for all k, w; €
(L*(RT)@HF) ﬂ(f N Ker D). But, with the lemma ], we have (L*(RT)@H*) ﬂ(5 N Ker D) =
€gt €9+

L>(RT) ® Hk . In conclusion, for all k, wy, € Hﬁk and w € L2(X)*. O

ax

4.4 The end of the proof of theorem

We assume that there exists Ag € Res(A + xV) N (D}, \ Res(A)), and we take a non
trivial w € L?(X)T whose existence is given by the lemma [J and which satisfies

(I + ,O_NXVE()()\()) N)w =0.

For all j € N, we denote w; := Pjw € L*(R") ® Hj . The P; commute with p, x

max

because they are both invariant under the action of SO(n) and Ro(\g) because the action
is isometric. We have

wj = Pj(—p~ NV Ry(Ao)p™ w) = Zp VkpNRo()\o)p w).
k=1
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Moreover we have already seen that, for all { € gi, D¢ commute with ﬁo(Ao) and p.
Thus, if w € L*X)* then pVRo(Mo)pVw € L*(X)T and we have p Ro(No)pNw =

> Po(p™ Ro(o)pN w).
=0
We use the shift created by highest weight vectors i.e. :

Vi: PRY) @ HL,  — L*RY) @ H I

azx max

So

wj == p NV Pk (pN Ro(ho)p™Nw) = = p N xVip™ Ro(ho)p™ Py p(w).
k=1 k=1

Thanks to the hypothesis sup || Vi [oo< +00, the operators p~2NxVip™N Ro(Ao)p are
k

uniformly bounded in k£ and consequently there exists a constant C' such that, for all
JeN,

o
[w; < CY N wjg |-
k=1

With this inequality and the fact that w; = 0 for all j < 0, we get w; = 0 for all j € N
and thus w = 0 which is in contradiction with our hypothesis.

Finally we have proved that for all x € C2°(X) invariant under the action of SO(n), we
have D NRes(A + xV) C Res(A).

In a second part we pass from xV to V like in the case of the S' action. We introduce
a family of smooth and compactly supported functions (x,) invariant under the action of
SO(n) such that || (x, — 1)p[l tends to O when r tends to +-00. We use the assumption
p~NFDVRy(M)pN € S, in order to characterize the resonances of A + V as the zeros
of the holomorphic function in A, F(V, ) := dety(I + p_NVEO(A)pN). Finally with the
Rouché’s theorem we prove that if Ry has a pole in D\ Res(A) then, there exists r
such that EXTV has also a pole which is in contradiction with the previous part. So

D NRes(A + V) C Res(A).
To conclude, we prove D3, N Res(A) C Res(A + V) and, in fact the equality with

multiplicity, using the Agmon’s perturbation theory of resonances exactly in the same
way as in the case S'. This achieves the proof of theorem B

5 Isoresonant potentials on the catenoid

We are going to construct isoresonant potentials on the catenoid. In this case we use
complex scaling defined by Wunsch and Zworski in [fWZ0(] instead of the Agmon’s theory.

5.1 Statement of the result

The catenoid is the surface X diffeomorphic to the cylinder R x S! with the metric
g =dr? + (r? + a?)da? where (r,¢"*) € R x St and a € R\ {0}. We take z = ﬁ outside
{r = 0} as the function defining the boundary at infinity of X, 0 X, which is two copies

(1+a2z?)da?
22

of S!. Near the boundary, we have g = C%f +
Melrose’s sens ([Mel95]).

: it’s a scattering metric in the
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The catenoid is an example in the Wunsch and Zworski article [WZ0(] so we can use
their results. They proved that there exists g > 0 such that the resolvent of the free
Laplacian, (A — 2)~!, has a finite-meromorphic continuation from {z € C ; Imz < 0} to
{z € C; argz < 20y} with values in operators from L2(X) to HZ,.(X). We denote Ry this
continuation. Like in the previous part we call resonances its poles and we denote their
set Res(A).

The group S' acts isometrically on X by its trivial action on the factor S' : 3 (r, ') =
(7, ei(‘”ﬁ)). Using this action we are going to construct isoresonant potentials :

Theorem 4

Let X be the catenoid (R x S',dr? + (r? + a?)da?) with (r,¢*) € R x S' and a € R\ {0}.
We take x = ‘—71"‘ outside {r = 0} as the function defining the boundary at infinity of X.
Let V € L*>(X) defined by

= Z Vin(r)e™®, (r,e*) € R x S,

where, for all m, V,,, € L®(R). We assume that, in a neighborhood of 0. X, V(z,e'®)
with all its partial sums have a analytic continuation in U x W where U is an open set of
C including {¢ € C ; [¢|< 1, 0 < arg( < 0o} with 6y > 0 and W is a neighborhood of S*
i C. We also assume that, in X and in all compacts of U x W, the partial sums of V
tend to V in infinite norm.

Then the resolvent (A +V — z)~! has a finite-meromorphic continuation from {z €
C; Imz <0} to {z € C; argz < 20p} with values in operators from L%(X) to HE (X),
and moreover, in this open set, Res(A + V) = Res(A) with the same multiplicities.

We give an example of isoresonant potential on the catenoid :

(1o m—1 zma
Vo) = 2=

with0<p<landU=C, W ={weC; |w|<p '}

5.2 Complex scaling

We will use twice the complex scaling : to continue the resolvent of A 4+ V and to study
perturbations of resonances. So we begin with the description of this construction. We
will follow [WZ00] where the construction is done for the free Laplacian. It is also valid
when we add a potential V' € xL>°(X).

We begin with the construction of a family (Xg)o<p<g, of submanifolds of C x C with
the 6y of the statement of theorem []. They will be totally real i.e., for all p € X,
T,Xp NiT, X9 = {0}, and of maximal dimension. We define them as follows.

Let € > 0 and (to,t1) €]0,1[? with tg < t1, then there exists a smooth deformation of
[0,1) in U, denote it v4(t),t € [0,1) satisfying the following properties :
Yo(t) = te® for 0 <t <t
Yo(t) =t fort >t
argyg(t) = 0 (5)
0 < argyy(t) —argyy(t) < e
0 < 2argy(t) — argyy(t) <0
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Now we can define Xy := (79 X 0o X) U (X N{z > 1}).

On a neighborhood of 04, X, the metric g has the form dmif + x—hQ where h = (1+a’2?)da?
continues holomorphically to U x W. So consider PV := A+V, which is first an operator on
X. If V verifies the hypothesis of theorem [, then its coefficients continue holomorphically
in U x W. We denote PV the differential operator coming from this continuation. Since
X, is totally real and of maximal dimension, we can define without ambiguity (cf [EBZ99))
the differential operator PHV by

Vu € C%(Xy), P)u=(P"a)y,
where u is an almost analytic extension of u, that is

ueC®UxW), ty,=u, 9ux,=0(d(,Xp)"), forall N.
We have

Proposition 6

With V € xL>(X), for all 0 < 6 < 6y, P} has a discrete spectrum in C\ e*’R*.
Moreover, for 8 such that 0 < 0y < 6 < 6y, the spectrum of PGV in {0 < argz < 203} with
its multiplicity do not depend on 0. This spectrum doesn’t depend too on the choice of a

¢ verifying ().

Proof : Following exactly the Wunsch and Zworski proof in [WZ0(] we can prove that,
for all z € C\ e*RY, P} — 2 : H*(Xy) — L*(Xy) is a Fredholm operator with index
zero. The unique difference is the presence of our potential V. But, since it is null at the

boundary of Xy (= 0-X), it doesn’t change the principal symbol and the normal symbol
of Ay — z.

5.3 Continuation of the resolvent

We want to get the meromorphic continuation of the resolvent Ry (z) := (A+V —2)~!
from {z € C ; Imz < 0} to {z € C; argz < 26y} with values in operators from L?(X) to
H2 (X).

loc

Let z with arg z < 26y which is not an eigenvalue of ng . Take f € L2(X). With the
proposition [|, we can choose g, and more precisely the ¢; in the definition f] such that,
on the support of f, Xp, coincides with X. Then f € L?(Xg,) and there exists an unique
solution ug, € H%(Xg,) of

(Py, — 2)ug, = f.

We give a lemma whose proof is given in [SBZ95],

Lemma 6

Let Q C C™ an open set, a compact K C € and a continuous family Xy, t € [0,1] of totally
real submanifolds of Q of maximal dimension such that X; N (Q\ K) = Xy N (Q\ K) for
all t,t' € [0,1]. Let P a differential operator with holomorphic coefficients in ) such that
Px, (the restriction of P on X;) is elliptic for all t € [0,1]. If u is a distribution on X

and if Px,u continues as an holomorphic function on a neighborhood of |J X, then the
t€0,1]
same is true for u.
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f has an holomorphic continuation to |J Xpy, because deformations occur outside its
6€[0,00]
support. Since PGV — z is elliptic for all 6 € [0, 6], we can apply the previous lemma ], and

get an holomorphic continuation of ug, on |J Xy. We denote by G this continuation.
0€[0,00)
Then we define the continuation to the resolvent by

Ry(2)f = G, € H*(X).

Now take zy an eigenvalue of ng , then it is also an eigenvalue PGV for all arg zg < 20 <
260p. For z near zp and 6 such that arg z < 20 we have the following Laurent expansion

(P —2)7! = I =+ Hy(z, 20),

where A?(ZQ) are finite rank operators and Hy(z, zp) is holomorphic in z near zy. Still
following [WZ0(], we obtain that the continued resolvent has, near each of its pole, a
Laurent expansion with exactly the same form.

In conclusion, a resonance zg € {argz < 20y} of Ax + V', which is first defined as poles
of the continuation of the resolvent, is also characterized as an element of the spectrum
of a PHV with arg zg < 20 < 26y. Multiplicities and orders are the same in the two visions,
so, thanks to the proposition [f, they do not depend on the chosen 6.

5.4 Proof of the isoresonance

5.4.1 Localization of resonances for the truncated partial sums of V

. M .
Let Spr(r,e™) = > Vi (r)e™® and x € C°(X), St invariant. In this part we will prove
1

Res(A + xSy) C Res(A) in DT :={z € C; argz < 26p}.
We take another S! invariant cutoff function y; € C2°(X) such that x; = 1 on the
support of x. Then we have, for 2 € D™\ Res(A),
(A + xSu — 2)Ro(2)x1 = xa(I + xSu Ro(2)x1)-

xSmRo(z)x1 is an holomorphic family of compact operators in Dt \ Res(A) such that

IxSarRo(2)xi 1< 1

with |z | sufficiently large in {z € C ; Imz < 0}. So we can apply the Fredholm analytic
theory and get (I 4 xSarRo(z)x1) ! and thus EXSM (2) == (A + xSy — 2)~! meromorphic
in Dt \ Res(A). Moreover, in Dt \ Res(A), we can characterize poles of EXSM, that is
resonances, with the existence of a non trivial u € L?(X) solution of

(I + xSaRo(2)x1)u = 0.

After, we prove that this non trivial solution u can’t exist. It is exactly the same
proof than for theorem B We use the shift created by the components V;,(r)e™™ on
the spaces L?(X ). There is just two things to verify. First the catenoid satisfies the
condition C'. In fact, all compact K of X is included in a compact manifold with boundary
K = [~R, R] x S! on which we can put the metric § = dr? 4 f(r)da? with f(r) = 2 + a2
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in K and constant near the boundary of K. We also have to verify that ﬁo commutes
with the action of S! in order to have the commutation with the projectors P;. For that,
remember that the complex scaling doesn’t touch the factor d,, X of the catenoid and S!
only acts on this factor. So the action of S! is isometric on all the Xy and so it commutes
with Ro.

Finally we get Res(A + xSy) C Res(A) in DT

5.4.2 Localization of resonances for V

We have to control perturbations of resonances when we pass from x.Sys to V. Instead
of use regularized determinants as before (they were adapted to the weight spaces p L?
but not to cutoff functions), we use complex scaling in order to transform resonances into

eigenvalues.

Assume, ab absurdum, A + V has a resonance zy in DT \ Res(A). Using complex
scaling, it means : zp is an eigenvalue of ng with argzyp < 20 < 26y. Let Q C {z €
C; argz < 20} \ Res(A) an open set, with a smooth boundary I', containing zy and such
that Q@ N Res(A + V) = {2z}. Our aim is to show that there exist a S! invariant cutoff
function , and M such that PGXSM has an eigenvalue in ). If we do that, A+ xSy would
have a resonance in 2 which would be in contradiction with the previous part.

We have assumed in theorem [ that, for all M, Sy; has an analytic continuation to U x W,
and V too. Hence we can restrict these two continuations to Xy and now work on Xp.
V € xL*>(X), so V tends to 0 when we reach 0.Xy. Consequently there exists x € C2°(Xp),
S invariant, which continues analytically in U x W, such that || xV — V|| L5(X,) 1S as
small as we want. With the hypothesis of theorem [, we also have that the partial sums

Sy tend to V on Xy in infinite norm. Finally there exist x like we have just described,

and M such that
52

0+ 5=

where 67! = max || (P} — 2)71 || and ¢ is the length of I'. We have been inspired by
z€l

Gohberg and Krejn in [[GKT71]] (theorem 3.1).

We consider the projectors of L?(Xj) associated with the generalized eigenspaces of the
two operators that we are comparing :

HV = 27rz fF S ldz
Mysy, = 27rz Jr PX M- z)"lde

[V = xSum | oo (x5) <

We have (PGXSM —2) P =Py —2) I+ (xSu = V)(P) — z)*l) . Since 6 < 4, for

27r
all z € I', we can be certain of the convergence in

(B =2y = (BY — 2 I+ DIV — xSu) (B — 2)7 ).
j=1

Look at the difference between the two projectors :

1 e iy
sy, =Ty = o— F(p@V —2) Y IV = xSu)(P — 2) e,
j=1

Hence .
(P = 2) " PV = xS [l o (x,)
7 sl 1- (P = 2)" IV = xSwmllzee(xp)

H HXSM
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but || (P)" —2)~!||< 67! by definition of § and ||V — xSas || 1o (x,) < (Sf—l by hypothesis,
27T
hence 1— || (B} — 2) " [V = xSw || oo (xp)> 1 — ﬁ and so

[Mys,, — v [|< 1.

Consequently the ranges of II, and Il,g,, have the same dimension, which is not zero
because zp is an eigenvalue of P), so PGXSM has an eigenvalue in €2 and we have our
contradiction.

5.4.3 Persistence of resonances

To finish the proof of theorem [] we have to show that Res(A) C Res(A + V) in D* =
{z € C; argz < 260p}. This time we use the complex scaling instead of the Agmon’s
perturbation theory of resonances.

Let zg € Dt a resonance of A with multiplicity m. We take Q C {z € C ; argz < 26y}
a domain such that QN Res(A) = {z9}. We consider the family of operators A + tV
with ¢ > 0. Remark that tV verifies the hypothesis of theorem [], so we can localize its
resonances as in the previous part, Res(A +tV) C Res(A), and thus :

Res(A +tV)NQ C {2}

We are going to prove, by connexity, that the following set
E:={ty>0; Yt €[0,%0], Res(A+tV)NQ = {z} with multiplicity m},

is equal to [0,4o00[. It is not empty because 0 € E.

Take tg € F, and 0 such that argzy < 20 < 20y and Q C {z € C; argz < 20}. We
know by complex scaling that the spectrum of P;OV in € exactly corresponds with the
resonances of A + toV with the same multiplicities. Hence

Spec(PY) N Q= {z0}.

Moreover t — ng is an holomorphic family in the sens of Kato for ¢ in a complex
neighbourhood of ¢y because ng = Ag+1tV|x, and V is bounded in Xj. So its eigenvalues
are continuous for ¢ in a neighbourhood of t3. But with the localization of the resonances
of A +tV we obtain that for all ¢

Spec(ng) NQC{z},
so, there exists € > 0, such that for all ¢t €|ty — e, 1o + €],
Spec(ng) NQ={z},

with multiplicity m. Then, thanks to the complex scaling parallel, we get that, for all
t €Jto —e,to + €]
Res(A +tV)NQ = {z},

with multiplicity m and thus |ty — &, tp + ¢[ is included in E which is open.

We show that F is closed too doing the same work with the complementary set of F in
[0, +o00].

In conclusion E = [0, +o0[ and taking ¢t = 1 we have, in €2, Res(A + V) = Res(A) with
the same multiplicities. Doing the same work in the neighbourhood of each resonance of

the free Laplacian we obtain Res(A + V') = Res(A) with the same multiplicities in all D
which finishes the proof of theorem [I.
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