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Abstract
We investigate the asymptotic properties ofposterior distributions when the model is
misspecified, i.e. it is comtemplated that the observations x\,..., xn might be drawn
from a density in afamily {ha, a G 0} where 0 C Md, xvhile the actual distribution
of the observations may not correspond to any of the densities ha. A concentration
property around a fixed value of the parameter is obtained as well as concentration
properties around the maximum likelihood estimate.

L Introduction Let xi,X2, • • • be independent and identically distributed observa-
tions on some topological space X, with common law Q on (X, B(X)), where B(£l)
dénotés the borel cr-field of any topological space O. Throughout the paper, we assume
that Q is absolutely continuous with respect to some probability v on (X, B(X)) and
we dénoté by q its density. Let {ha, a G 0} (the model) be a set of densities with
respect to v and 7r a prior distribution on the set (0, B(Q)).

Strasser (1976) studied the asymptotic of the posterior distribution when the model
is correctly specified i.e. q is equal to ho for some 9 G 0. In particular, it is shown
that the posterior distribution of a univariate parameter is close to a normal distribution
centered at the maximum likelihood estimate when the number of observations is large
enough. If one does not assume that the probability model is correctly specified, it is
natural to ask what happens to the properties of the posterior distribution. This question
was apparently first considered in Berk (1966,1970) where conditions under which a
sequence of posterior distributions weakly converge to a degenerate distribution are
given.

In this paper, we consider the multivariate case where 0 C Md with a misspecified
model, i.e. the observations are drawn from a distribution with density q which is not
assumed to correspond to any of the densities ha. The proofs are inspired by the proofs
in Strasser (1976) and analogous asymptotic properties of the posterior distribution of
a multivariate parameter are obtained under weaker assumptions. The technical results
contained in this paper are given without proof in Abraham and Cadre (2002). They
are, in some sense, the foundations of an article (Abraham and Cadre, 2004) in which
we study the asymptotic of three measures of robustness in Bayesian Decision Theory.
More precisely, let V be the decisions space, l : T> x 0 —> M be a loss function in
a class C and dénoté by df a minimizer of the posterior expected loss associated with
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1. By using the results of the présent paper, we provide in Abraham and Cadre (2004)
the asymptotic behavior of supteJr \\dln — df\\, where df is a minimizer of /(., 9) and 9
is the true value of the parameter. This last expression can be viewed as a measure of
global robustness with respect to the loss function. It can be noted that loss robustness
includes prior robustness as a particular case.

The paper is organized as follows. In section 2, we set up the notations and the assump-
tions. Section 3 is dedicated to the concentration properties of the posterior distribution
around a fixed value of the parameter and around the maximum likelihood estimate. In
section 4, we study the convergence of posterior expectations.

2. Notations and hypothèses

Throughout the paper, Q®n (resp. Q°°) dénotés the usual product distribution defined
on (Xn,B(Xn)) (resp. (X°° ,B(X°°))), where = nLi x and x°° = llfc>i x-
The space of parameters 0 c Md is assumed to be convex for the norm ||. || where ||u||
dénotés the maximum of the absolute values of the coordinates of a vector or a matrix
u with real entries. If g is any Q-integrable borel function on X, we write:

Q(g) = J g(x)Q{dx).
For notational simplicity, any sup, inf or intégral taken over a subset T of Md is un-
derstood to be a sup, inf or intégral over T fl 0. Finally, we let for a € 0 and x E X:

fa(x) = — log ha(x),

and

d and L(x)
when it can be defined.

Denoting by 0 the closure of 0 in a compact set containing © and by 0 the inte-
rior of 0, we introduce the following assumptions on the model:

1 a) Ver G 0, 3r > 0 such that sup{/S) ||s — cr|| < r} is Q-integrable;
b) 30 G ê,V(T G 0 with 9 ^ a : Q(fe) < Q(/a);
c) Væ G X, the application a fa{x) defined on 0 is continuous and twice
continuously différentiable on 0;
d) V<7 G 0,3h > 0 such that sup{||/s ||, ||s — cr|| < h} is Q-integrable;
e) Ver 6 0, the matrix Aa = Q(fa ) is positive definite and the matrix le defined
by Ag1Q(fefeT)AQ1 exists, and is invertible.

When the model is correctly specified, q — he where 9 is defined by lb) and q is the
density of Q with respect to u . In such a case, the matrix le defined in le) reduces to
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the inverse of the usual Fisher’s information matrix under the classical assumption that
BHPH
In the foliowing, let 9n dénoté a maximum likelihood estimate. Under a misspeci-
fied model, it is known from white (1982) that 9n is a natural estimator for the value
of the parameter which minimizes the Kullback-Leibler Information Critérium a —>

Q(fcr) E- Q(— log(ç)). Assumption lb) ensures that such a minimizer does exist and
that it is equal to 9. Taking into account the previous remark, we can assume the fol-
lowing property for which sufficient conditions can be found in white (1982).

2 There exists a sequence qn Z oo when n Z °o such that Q°°-a.s., qn(9rM-9) —>
0.

Finally, dénoté the prior distribution by n and assume the following assumptions.

3 On some neighborhood of 9, n is absolutely continuous with respect to the
Lebesgue measure, the density p is continuous at 9 and p(9) > 0;

4 There exists t > 0 such that Q°°-a.s.:

We let 7rn be the posterior distribution i.e. for ail U G B(Q):

(TT) IuU^=ihZxi)7r(da)

The existence of 7rn is studied in Berk (1970). Note that from la), for every a G O, ha
is positive Q-a.s. and the denominator of the posterior distribution is positive Q®n-a.s.
as well. Thus, the posterior distribution does exist Q®n-a.s. since the denominator is
finite Q®n-a.s. by the absolute continuity of Q with respect to u.

3. Concentration properties for the posterior distribution

3.1 Posterior concentration around the true parameter

Theorem 1 Let g G Li(ir) be a positive fonction. Under assumptions la)-lc) and 3),
for ail S > 0 there exists rj > 0 such that:

Q<8>n g{a)Ttn{dcr) > e vn 1^0.

We hâve divided the proof into a sequence of lemmas.

Lemma 1 Under the assumptions of Theorem l,for à > 0, there exists e > 0 such
that:

Q (gin B - E S Q(fe) + £ o.
1er—0||><5 n

i— 1
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Proof Let C = {r G 0 : ||r — 6\\ > 5} and fix r G C. According to la) and lb), there
exists an open bail centered at r with radius less than r(r), denoted by U (r), such that
Q{fe) < <2Ma€t/(r) fa)- Let:

RH ffl (q( inrfr H ~ Qife)] > 0,Z 3=l,-” \ a&Uj J

where {Uj, j = 1, • • • , m} is a finite cover from {U(r), r G C}. Then, for ail n > 1:

m ( ^ n

< Q®n |J < - ^2 inrfr aS 1 Q( M fa) - I

and the rightmost term vanishes according to la) and the law of large numbers. □

Lemma 2 Under the assumptions ofTheorem l,for ail 0 > 0, there exists a > 0 such
that:

Q®n sup —
la—0||<a ^

1 "

V fa(%i) ! Q(fo)+P
i—1

o.

Proof According to la), le) and Jennrich (1969, Theorem 2), one has for some a > 0:

sup
\a—6\\<oc

i fl
n <

i-1

0, Q°°—a.s.

The lemma is then obvious since, by la) and le), the application a f—> Q(fa) is con-
tinuous. □

One can now prove Theorem 1. Its proof is closed to that of Strasser (1976, Theorem
SI
Proof ofTheorem 1 Let ô > 0. We then choose e > 0 as defined in Lemma 1. Fix

rj < e. From j3 = (e — 77)/2, we also choose a > 0 as defined in Lemma 2. Then, for
ail n > 1 :
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Q®n / g(a)-Kn(da) > exp(-ryn)
ÜBfl

= Q®n - log / 3(0-) exP ~ B9 7r(rfa)
Vn V-0|l><5 V i=i- /

~nl°gJeeXP >

( - inf -V]fa(xi)+ supy lk-0||>« n \w-0\\<a n “
< Xi) > -rj + - !

n /

where a = log7r({cr e © : ||a — 0|| < a}) — log f g(a)n(da). Note that, according
to 3), a > — oo. Consequently,

Q®n ' / g(a)nn(da) > exp(-r/n)J\\cr-0\\>ô

< Q®n f -Q{fo) - e + sup ~y2fcr(Xi) > -r? +V

+0®"[ inf
\Jk-0||>« n J-j' y

and the rightmost terms vanish according to Lemmas 1 and 2. □

3.2 Posterior concentration around the maximum likelihood estimate

For any n > 1 and x G Xn, we shall use throughout the following notations:

T(a)
<M

Bn

An(a)
i " „1 WÊm

i= 1

wkvv n

' l*7 G © :

vn = |cr G © :
<

Theorem 2 Assume that l)-4) hold. Then,for ail r > 0 anfTc^ 0, there exists k > 0
such that:

Q®n (trn(0 \ Wk) > cn~r)

I



The proof will be divided into three steps.

Lemma 3 Assume that 1 )-3) hold.
i) For ail n > 1, o G 0 and x G Xn, let 9n(o) G © such that \\0n(a) — 9n\\ <
\\9n — cr||. Then,for ail e > 0, there exists a sequence ofevents (En (s))n>i such that
Q°°(En(£)c) —> 0 as N —» oo. Furthermore,for ail e, k > 0, one hasfor ail N >1
large enough:

En(e) C n < sup IIAn(9n(a)) - Ae\\ < e, sup IIAn(ên(o-)) - Ae\\ < e > .

n>JV (dp '€W.* J
ii) For ail k > 0, we hâve Q°°-a.s.:

sup-||An(cr) - Ae|| -» 0.
aew*

Proof i) First note that according to le) and ld), the application o Aa defined on ©
is continuons. Fix e > 0. We then hâve for some r > 0:

sup \\Aa - Aq\\ <
— 1

Let us dénoté for ail n > 1:

Hn(e) = < II6L - <911 > — or sup ||An(cr)l- Aa\\ > ^ >,
Qn lU-eiKr z

where qn is defined by 2). According to le), ld), 2) and Jennrich (1969, Theorem 2),
one has:

Q°° p| Hn(e)c gî 1, zsN^oo.
. n>N

Let for ail N > 1:

EN(e) = f| Hn(e)
n>N

The first property of i) is then proved. Moreover, let N > 1 be such that for ail n > N,
n~-/2 + q~1 < r. One has for ail n > N:

En(e) C < sup \\0n(ct) - 0|| < r > ,
Uevn J

by the very définition of 0n(o). Consequently, for ail n> N:

EN(e) c { sup ||An(0n(o)) - Ae|| <e \ .
.crGVn
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Let now k > 0. In a similar fashion, we can choose N large enough so that for ail
n> N:

En(e) C < sup \\An(ên(a)) - Ae\\ < e i ,

[o-ewk
hence i).
ii) Note that for ail n > 1 and k > 0:

W$ C h € e : ||a - 0„|| < >,

where co = k1/2 finf||u||=i \\Ifl^2u\\^j . Assertion ii) is then straightforward. □
We introduce now the notations, for ail ô > 0, k > 0 and n > 1:

s£(«5) = {-eii/^Ha-M^};
Bs = {cr G @ ; ||cj — 9\\ < 5} ,

where s = sup||u||=1 ||Ie I'2u||.
Lemma 4 Let 9n{o) be defined as in Lemma 3, for ail n> 1, a G © and x G Xn, and
assume that le), Id) and 2) hold. Then, for ail c > 0 there exists 5 > 0 such thatfor
ail k > 0:

Q®n ( sup ||An{9n{o)) - Ae\\ > c] -> 0.
\aÇ.S*(ô) J

Proof Let k,c> 0 and n > 1. By continuity, one has for some ô > 0:

sup \\Aa-Ae\\<^.
lier—0||<3<5 z

Then,

Q®n ( sup ||An{èn{o)) - Ae|| > c
\a£S%(ô) J

< Q®"( sup \\An(ên{a))-Ae\\>c, s£(<) U {«„} C
\cres$fô)

+Q®n (Sn(ô) U {9n} not included into B2ô)
< Q®n f sup || An(cr) - Aa|| > + Q®n{\\9n - 9\\ > ô)

\creB3s Z/

+Q®n (Sn(ô) U {0n} not included into B2s) •



10

The first terni on the right-hand side of the inequality vanishes according to Jennrich
(1969, Theorem 2). The second term also vanishes according to 2), hence the lemma.
□

Proof of Theorem 2 For ail k, ô > 0 and n > 1, we hâve:

e\wü c j*ee = ||a-en\\>y^ >
C Si(f)(J{<ree : H<7-#„||>i}.

But, according to 2) and Theorem 1, one has for ail r, c, ô > 0:

Q®n (7Tn({cr G 0 : lier — 6n\\ > 5}) > cn~r) 0,
and one only needs to prove that for ail r, c > 0, there exist k,ô > 0 such that:

Q®n (7r„(S*($)) > cn-r) -> 0.

Let us first remark that according to lb) and 2), Q®n(0n £ ©) —» 0. Hence one can
assume without loss of generality that 6n G 0 for ail n > f. Since @ is convex, by
Taylor’s formula, for ail n > 1, x G X, a G ©, there exists 9n(a) G © such that:

fa{x) B/en(aO + ^(cr -Qn)T- 0n), (1)
with

ll^n(o-)!- 9n\\ < Il6n - cr||.

Let ô,k > 0 and n > 1. We hâve:

(ak(r\\
Dr

where:

Rn(S,k)

Dn

We also dénoté:

'S£(<5)
MB-JB - 9n)TAn(en(a))(a - 9n))7r(da);

Iq exp^_, 2 ^ Art{pn{o-)){a 1 9n))Tr(da).

bg = inf \uTAqu\ and À |E| sup (V^
HN1 M=i

By le), one has bg > 0. On the event

sup ||An(0n(cr)) - A*|| < - ( ,
aES^(S) I

(2)
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we hâve for ail r G © and a G S^(ô):

ttAn(ên(a))r > ttAot - \rT(An(6n(a)) - Ag)r\
> (bg- sup \\An{èn{a)) - A0||à)||t||2

<t6S£(S)

I ^||r||2,
and consequently, one gets on the same event:

Rn(ô,k) < J exp(—
wmm

nbe On\\2)Tr(da)

< n-(^fc)/(4«2) ir(BÊk (3)

where B£ = {a G 0 : ||cr — #n|| < £}• Moreover, according to Lemma 3, there
exists N > 1 such that for ail n > N, one has on the event EN{ae/\) (where
ao = sup||uM=1 \uTAqu\), for ail r G © and a G Vn:

ttAn{èn{a))r < ttA6t + |rT(An(Ôn(a)) - Ae)r\
< (ag + sup \\An{ên(<j)) - A0||A)||r||2
< 2ae||r[|

o-evn
2

and hence, on the same event:

Dn > exp(î|^(<716>n)TAn(§n(a))(a - en))n{da)
> exp(-ae)n(yn).

According to (3) and (4), for ail n > N, we hâve on the event

(4)

‘tt sup \\An(6n(a)) - Ag\\ <
r eS£(<5) 4 A

the inequality:.

nn{Sn{S)) < exp(ae)Tr(B%)
n-{bek)/{As2)

ï(vÿ
Hence, for ail n > N,r,c,ô,k > 0:

(ir»(Si(i)) > cn~r) < <?®>*
-(6efc)/(4S2)

*(V„)
> en"

+ Q“(Bjv(y
+ (? ( sup ||An(0n(cr)) - Aô|| > ] •

,o-eS£(<5)
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For some choice of <5, the latter term vanishes according to Lemma 4. Moreover, the
second term of the right hand side also vanishes by Lemma 3. Finally, the first term of
the right hand side tends to 0 according to assumption 4), if A: is such that:

r <
bpk
4 s2 ’

and the proof is complété. □

4. Convergence of posterior expectations

In the sequel, Fn dénotés the law 7r o T-1 and Kn is the bail in © with center 0 and
radius \/logn.

Theorem 3 Assume that 1 )-3) hold. Let g : © —» Mbe a Borel junction such thatfor
some k > 0:

Üflj exp(Av||/y2a 2)Fe(do) < oo,

1/2 A 1 l/2where Fq is a centered normal distribution with variance matrix Ie 7 Af le ' .

Then,

g(o)Fn(do) g(o)Fe(do), as n 00,

in Q®n-probabïlity.

Proof We can assume, with no loss of generality, that JQ g(o)Fp (do) = 0.
For n > 1, x G X and o G 0, let us introduce again 0n(o) defined in the proof of
Theorem 2, and satisfying (1) and (2). We then hâve according to (1), if Wn :=

[ g(r)Fn(dT) =?■ : [ g (T(o)) ttn (do) =JKn JWn '

where Dn is the random variable of the proof of Theorem 2 and

Pn — [ g(T(v)) exp(-^(cr - 6n)TAn(6n(o))(o - 0n))7t(do).JWn Z

Let Ki = 2k/X, where À has been defined in the proof of Theorem 2. Foliowing the
arguments of the proof of (4), one can obtain the existence of iV > 1 such that for ail
n> N, we hâve on the event En(ki):

Dn U exp(g|-(a0 + KiA))7r(14).
For the sake of simplicity, one can assume by 3) that tt admits a density on Vn, and
hence on the same event, we hâve:

Dn > exp(^i(aéi + KiX)) inf p(o)2d(dn)~d^2.2 creVn
(5)
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Moreover, note that for ail n > 1:

fW¥}'
where co = ^inf ||u||=i ||/^1^2w||^ . Consequently,by 2) and 3), one can assume (for
simplicity) that n has a density on Wn. Then, for ail n> 1:

Pn = n~d/2\ det lo^J 9{r) exp(-i(4/2r)T^(4/2r))Xn(r)dr,
where for ail r G @:

Xn{r) = //cn(r)p(T-1(r))exp(-i(41/2r)T(An(0n(T“1(r))) -^0)(4/2r)).
But, for ail n > N, we hâve on the event En(ki):

Xn(r) < sup p(T-1(r)) exp(/t||7^/2r||2), Vr G 0
reKn

Wn C < <7 G ©

since T_1(r) e Wn as soon as r G Moreover, according to 2), 3), and Lemma 3,
one also has Q°°-a.s.:

limXn{r) = p(0), Vr G 0.
n

We deduce from Lebesgue’s Theorem that on En(k\), we hâve Q°°-a.s.:

lim nd/2Pn = 0. (6)

Let c > 0. We hâve for ail n > N:

S(<r)jp„(cia)| >c) I (3“ >c, £w(Kl)j+Q“(SW(«!)C).
The latter term vanishes by Lemma 3. Finally, according to (5), the first term of the
right hand side is smaller than:

Q°° (\Pn\ > cexp(-i(a0 + «iA)) inf p(a)2dn~d/2, En(k i)]\ 2 crEVn J

which vanishes according to (6) and assumption 3). □
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