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Abstract
We investigate the asymptotic properties of posterior distributions when the model is
misspecified, i.e. it is comtemplated that the observations x1, ..., xn might be drawn
from a density in a family {hσ, σ ∈ Θ} where Θ ⊂ IRd, while the actual distribution
of the observations may not correspond to any of the densities hσ . A concentration
property around a fixed value of the parameter is obtained as well as concentration
properties around the maximum likelihood estimate.

1. Introduction Let x1, x2, · · · be independent and identically distributed observa-
tions on some topological space X , with common law Q on (X ,B(X )), where B(Ω)
denotes the borel σ-field of any topological space Ω. Throughout the paper, we assume
that Q is absolutely continuous with respect to some probability ν on (X ,B(X )) and
we denote by q its density. Let {hσ, σ ∈ Θ} (the model) be a set of densities with
respect to ν and π a prior distribution on the set (Θ,B(Θ)).

Strasser (1976) studied the asymptotic of the posterior distribution when the model
is correctly specified i.e. q is equal to hθ for some θ ∈ Θ. In particular, it is shown
that the posterior distribution of a univariate parameter is close to a normal distribution
centered at the maximum likelihood estimate when the number of observations is large
enough. If one does not assume that the probability model is correctly specified, it is
natural to ask what happens to the properties of the posterior distribution. This question
was apparently first considered in Berk (1966, 1970) where conditions under which a
sequence of posterior distributions weakly converge to a degenerate distribution are
given.

In this paper, we consider the multivariate case where Θ ⊂ IRd with a misspecified
model, i.e. the observations are drawn from a distribution with density q which is not
assumed to correspond to any of the densities hσ. The proofs are inspired by the proofs
in Strasser (1976) and analogous asymptotic properties of the posterior distribution of
a multivariate parameter are obtained under weaker assumptions. The technical results
contained in this paper are given without proof in Abraham and Cadre (2002). They
are, in some sense, the foundations of an article (Abraham and Cadre, 2004) in which
we study the asymptotic of three measures of robustness in Bayesian Decision Theory.
More precisely, let D be the decisions space, l : D × Θ → IR be a loss function in
a class L and denote by dn

l a minimizer of the posterior expected loss associated with

1



l. By using the results of the present paper, we provide in Abraham and Cadre (2004)
the asymptotic behavior of supl∈L ‖dl

n − dθ
l ‖, where dθ

l is a minimizer of l(., θ) and θ
is the true value of the parameter. This last expression can be viewed as a measure of
global robustness with respect to the loss function. It can be noted that loss robustness
includes prior robustness as a particular case.

The paper is organized as follows. In section 2, we set up the notations and the assump-
tions. Section 3 is dedicated to the concentration properties of the posterior distribution
around a fixed value of the parameter and around the maximum likelihood estimate. In
section 4, we study the convergence of posterior expectations.

2. Notations and hypotheses

Throughout the paper,Q⊗n (resp. Q∞) denotes the usual product distribution defined
on (Xn,B(Xn)) (resp. (X∞,B(X∞))), where Xn =

∏n
k=1 X and X∞ =

∏

k≥1 X .
The space of parametersΘ ⊂ IRd is assumed to be convex for the norm ‖.‖ where ‖u‖
denotes the maximum of the absolute values of the coordinates of a vector or a matrix
u with real entries. If g is anyQ-integrable borel function on X , we write:

Q(g) =

∫

g(x)Q(dx).

For notational simplicity, any sup, inf or integral taken over a subset T of IRd is un-
derstood to be a sup, inf or integral over T ∩Θ. Finally, we let for σ ∈ Θ and x ∈ X :

fσ(x) = − log hσ(x),

and

f
′

σ(x) =
( ∂

∂σi
fσ(x)

)

i=1,··· ,d
and f

′′

σ (x) =
( ∂2

∂σi∂σj
fσ(x)

)

i,j=1,··· ,d
,

when it can be defined.

Denoting by Θ̄ the closure of Θ in a compact set containing Θ and by Θ̊ the inte-
rior of Θ, we introduce the following assumptions on the model:

1 a) ∀σ ∈ Θ, ∃r > 0 such that sup{fs, ‖s − σ‖ ≤ r} is Q-integrable;
b) ∃θ ∈ Θ̊, ∀σ ∈ Θ̄ with θ += σ : Q(fθ) < Q(fσ);
c) ∀x ∈ X , the application σ ,→ fσ(x) defined on Θ̄ is continuous and twice
continuously differentiable on Θ̊;
d) ∀σ ∈ Θ, ∃h > 0 such that sup{‖f ′′

s ‖, ‖s − σ‖ ≤ h} is Q-integrable;
e) ∀σ ∈ Θ, the matrixAσ = Q(f

′′

σ ) is positive definite and the matrix Iθ defined
by A−1

θ Q(f
′

θf
′T
θ )A−1

θ exists, and is invertible.

When the model is correctly specified, q = hθ where θ is defined by 1b) and q is the
density of Q with respect to ν . In such a case, the matrix Iθ defined in 1e) reduces to
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the inverse of the usual Fisher’s information matrix under the classical assumption that
Q(f

′

θf
′T
θ ) = Q(f

′′

θ ).

In the following, let θn denote a maximum likelihood estimate. Under a misspeci-
fied model, it is known from white (1982) that θn is a natural estimator for the value
of the parameter which minimizes the Kullback-Leibler Information Criterium σ →
Q(fσ) − Q(− log(q)). Assumption 1b) ensures that such a minimizer does exist and
that it is equal to θ. Taking into account the previous remark, we can assume the fol-
lowing property for which sufficient conditions can be found in white (1982).

2 There exists a sequence qn ↗ ∞when n ↗ ∞ such thatQ∞-a.s., qn(θn−θ) →
0.

Finally, denote the prior distribution by π and assume the following assumptions.

3 On some neighborhood of θ, π is absolutely continuous with respect to the
Lebesgue measure, the density p is continuous at θ and p(θ) > 0;

4 There exists t > 0 such that Q∞-a.s.:

lim inf
n

ntπ
(

{σ ∈ Θ : ‖σ − θn‖ ≤
1√
n
}
)

> 0.

We let πn be the posterior distribution i.e. for all U ∈ B(Θ):

πn(U) =

∫

U

∏n
i=1 hσ(xi)π(dσ)

∫

Θ

∏n
i=1 hσ(xi)π(dσ)

.

The existence of πn is studied in Berk (1970). Note that from 1a), for every σ ∈ Θ, hσ

is positiveQ-a.s. and the denominator of the posterior distribution is positiveQ⊗n-a.s.
as well. Thus, the posterior distribution does exist Q⊗n-a.s. since the denominator is
finite Q⊗n-a.s. by the absolute continuity of Q with respect to ν.

3. Concentration properties for the posterior distribution

3.1 Posterior concentration around the true parameter

Theorem 1 Let g ∈ L1(π) be a positive fonction. Under assumptions 1a)-1c) and 3),
for all δ > 0 there exists η > 0 such that:

Q⊗n

(

∫

‖σ−θ‖≥δ
g(σ)πn(dσ) > e−ηn

)

→ 0.

We have divided the proof into a sequence of lemmas.

Lemma 1 Under the assumptions of Theorem 1, for all δ > 0, there exists ε > 0 such
that:

Q⊗n

(

inf
‖σ−θ‖≥δ

1

n

n
∑

i=1

fσ(xi) ≤ Q(fθ) + ε

)

→ 0.
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Proof Let C =
{

τ ∈ Θ̄ : ‖τ − θ‖ ≥ δ
}

and fix τ ∈ C. According to 1a) and 1b), there
exists an open ball centered at τ with radius less than r(τ), denoted by U(τ), such that
Q(fθ) < Q(infσ∈U(τ) fσ). Let:

ε =
1

2
min

j=1,··· ,m

(

Q( inf
σ∈Uj

fσ) − Q(fθ)

)

> 0,

where {Uj, j = 1, · · · , m} is a finite cover from {U(τ), τ ∈ C}. Then, for all n ≥ 1:

Q⊗n

(

inf
‖σ−θ‖≥δ

1

n

n
∑

i=1

fσ(xi) ≤ Q(fθ) + ε

)

≤ Q⊗n





m
⋃

j=1

{

1

n

n
∑

i=1

inf
σ∈Uj

fσ(xi) ≤ Q( inf
σ∈Uj

fσ) − ε

}



 ,

and the rightmost term vanishes according to 1a) and the law of large numbers. !

Lemma 2 Under the assumptions of Theorem 1, for all β > 0, there exists α > 0 such
that:

Q⊗n

(

sup
‖σ−θ‖≤α

1

n

n
∑

i=1

fσ(xi) ≥ Q(fθ) + β

)

→ 0.

Proof According to 1a), 1c) and Jennrich (1969, Theorem 2), one has for some α > 0:

sup
‖σ−θ‖≤α

∣

∣

∣

∣

∣

1

n

n
∑

i=1

fσ(xi) − Q(fσ)

∣

∣

∣

∣

∣

→ 0, Q∞−a.s.

The lemma is then obvious since, by 1a) and 1c), the application σ ,→ Q(fσ) is con-
tinuous. !

One can now prove Theorem 1. Its proof is closed to that of Strasser (1976, Theorem
1).

Proof of Theorem 1 Let δ > 0. We then choose ε > 0 as defined in Lemma 1. Fix
η < ε. From β = (ε − η)/2, we also choose α > 0 as defined in Lemma 2. Then, for
all n ≥ 1:
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Q⊗n

(

∫

‖σ−θ‖≥δ
g(σ)πn(dσ) > exp(−ηn)

)

= Q⊗n

(

1

n
log

∫

‖σ−θ‖≥δ
g(σ) exp

(

−
n

∑

i=1

fσ(xi)

)

π(dσ)

−
1

n
log

∫

Θ
exp

(

−
n

∑

i=1

fσ(xi)

)

π(dσ) > −η

)

≤ Q⊗n

(

− inf
‖σ−θ‖≥δ

1

n

n
∑

i=1

fσ(xi) + sup
‖σ−θ‖≤α

1

n

n
∑

i=1

fσ(xi) > −η +
a

n

)

,

where a = log π({σ ∈ Θ : ‖σ − θ‖ ≤ α}) − log
∫

g(σ)π(dσ). Note that, according
to 3), a > −∞. Consequently,

Q⊗n

(

∫

‖σ−θ‖≥δ
g(σ)πn(dσ) > exp(−ηn)

)

≤ Q⊗n

(

−Q(fθ) − ε + sup
‖σ−θ‖≤α

1

n

n
∑

i=1

fσ(xi) > −η +
a

n

)

+Q⊗n

(

inf
‖σ−θ‖≥δ

1

n

n
∑

i=1

fσ(xi) ≤ Q(fθ) + ε

)

,

and the rightmost terms vanish according to Lemmas 1 and 2. !

3.2 Posterior concentration around the maximum likelihood estimate

For any n ≥ 1 and x ∈ Xn, we shall use throughout the following notations:

T (σ) =
√

nI−1/2
θ (σ − θn), σ ∈ Θ;

An(σ) =
1

n

n
∑

i=1

f
′′

σ (xi), σ ∈ Θ;

W k
n =

{

σ ∈ Θ : ‖T (σ)‖ ≤
√

k log n
}

, k > 0;

Vn =

{

σ ∈ Θ : ‖σ − θn‖ ≤
1√
n

}

.

Theorem 2 Assume that 1)-4) hold. Then, for all r > 0 and c > 0, there exists k > 0
such that:

Q⊗n
(

πn(Θ \ W k
n ) > cn−r

)

→ 0.
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The proof will be divided into three steps.

Lemma 3 Assume that 1)-3) hold.
i) For all n ≥ 1, σ ∈ Θ and x ∈ Xn, let θ̂n(σ) ∈ Θ such that ‖θ̂n(σ) − θn‖ ≤
‖θn − σ‖. Then, for all ε > 0, there exists a sequence of events (EN (ε))N≥1 such that
Q∞(EN (ε)c) → 0 as N → ∞. Furthermore, for all ε, k > 0, one has for all N ≥ 1
large enough:

EN (ε) ⊂
⋂

n≥N

{

sup
σ∈Vn

‖An(θ̂n(σ)) − Aθ‖ ≤ ε, sup
σ∈W k

n

‖An(θ̂n(σ)) − Aθ‖ ≤ ε

}

.

ii) For all k > 0, we haveQ∞-a.s.:

sup
σ∈W k

n

‖An(σ) − Aθ‖ → 0.

Proof i) First note that according to 1c) and 1d), the application σ ,→ Aσ defined on Θ
is continuous. Fix ε > 0. We then have for some r > 0:

sup
‖σ−θ‖≤r

‖Aσ − Aθ‖ ≤
ε

2
.

Let us denote for all n ≥ 1:

Hn(ε) =

{

‖θn − θ‖ >
1

qn
or sup

‖σ−θ‖≤r
‖An(σ) − Aσ‖ >

ε

2

}

,

where qn is defined by 2). According to 1c), 1d), 2) and Jennrich (1969, Theorem 2),
one has:

Q∞





⋂

n≥N

Hn(ε)c



 → 1, as N → ∞.

Let for allN ≥ 1:
EN (ε) =

⋂

n≥N

Hn(ε)c.

The first property of i) is then proved. Moreover, letN ≥ 1 be such that for all n ≥ N ,
n−1/2 + q−1

n < r. One has for all n ≥ N :

EN (ε) ⊂
{

sup
σ∈Vn

‖θ̂n(σ) − θ‖ ≤ r

}

,

by the very definition of θ̂n(σ). Consequently, for all n ≥ N :

EN (ε) ⊂
{

sup
σ∈Vn

‖An(θ̂n(σ)) − Aθ‖ ≤ ε

}

.
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Let now k > 0. In a similar fashion, we can choose N large enough so that for all
n ≥ N :

EN (ε) ⊂

{

sup
σ∈W k

n

‖An(θ̂n(σ)) − Aθ‖ ≤ ε

}

,

hence i).
ii) Note that for all n ≥ 1 and k > 0:

W k
n ⊂

{

σ ∈ Θ : ‖σ − θn‖ ≤ c0

√

log n

n

}

,

where c0 = k1/2
(

inf‖u‖=1 ‖I
−1/2
θ u‖

)−1
. Assertion ii) is then straightforward. !

We introduce now the notations, for all δ > 0, k > 0 and n ≥ 1:

Sk
n(δ) =

{

σ ∈ Θ :
1

s

√

k log n

n
≤ ‖σ − θn‖ ≤ δ

}

;

Bδ = {σ ∈ Θ : ‖σ − θ‖ ≤ δ} ,

where s = sup‖u‖=1 ‖I
−1/2
θ u‖.

Lemma 4 Let θ̂n(σ) be defined as in Lemma 3, for all n ≥ 1, σ ∈ Θ and x ∈ Xn, and
assume that 1c), 1d) and 2) hold. Then, for all c > 0 there exists δ > 0 such that for
all k > 0:

Q⊗n

(

sup
σ∈Sk

n(δ)
‖An(θ̂n(σ)) − Aθ‖ > c

)

→ 0.

Proof Let k, c > 0 and n ≥ 1. By continuity, one has for some δ > 0:

sup
‖σ−θ‖≤3δ

‖Aσ − Aθ‖ ≤
c

2
.

Then,

Q⊗n

(

sup
σ∈Sk

n(δ)
‖An(θ̂n(σ)) − Aθ‖ > c

)

≤ Q⊗n

(

sup
σ∈Sk

n(δ)
‖An(θ̂n(σ)) − Aθ‖ > c, Sk

n(δ) ∪ {θn} ⊂ B2δ

)

+Q⊗n
(

Sk
n(δ) ∪ {θn} not included into B2δ

)

≤ Q⊗n

(

sup
σ∈B3δ

‖An(σ) − Aσ‖ ≥
c

2

)

+ Q⊗n(‖θn − θ‖ > δ)

+Q⊗n
(

Sk
n(δ) ∪ {θn} not included into B2δ

)

.
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The first term on the right-hand side of the inequality vanishes according to Jennrich
(1969, Theorem 2). The second term also vanishes according to 2), hence the lemma.
!

Proof of Theorem 2 For all k, δ > 0 and n ≥ 1, we have:

Θ \ W k
n ⊂

{

σ ∈ Θ : ‖σ − θn‖ ≥
1

s

√

k log n

n

}

⊂ Sk
n(δ)

⋃

{σ ∈ Θ : ‖σ − θn‖ > δ} .

But, according to 2) and Theorem 1, one has for all r, c, δ > 0:

Q⊗n
(

πn({σ ∈ Θ : ‖σ − θn‖ > δ}) > cn−r
)

→ 0,

and one only needs to prove that for all r, c > 0, there exist k, δ > 0 such that:

Q⊗n
(

πn(Sk
n(δ)) > cn−r

)

→ 0.

Let us first remark that according to 1b) and 2), Q⊗n(θn /∈ Θ̊) → 0. Hence one can
assume without loss of generality that θn ∈ Θ̊ for all n ≥ 1. Since Θ is convex, by
Taylor’s formula, for all n ≥ 1, x ∈ X , σ ∈ Θ, there exists θ̂n(σ) ∈ Θ such that:

fσ(x) = fθn(x) +
1

2
(σ − θn)T f

′′

θ̂n(σ)
(x)(σ − θn), (1)

with

‖θ̂n(σ) − θn‖ ≤ ‖θn − σ‖. (2)

Let δ, k > 0 and n ≥ 1. We have:

πn(Sk
n(δ)) =

Rn(δ, k)

Dn
,

where:

Rn(δ, k) =

∫

Sk
n(δ)

exp(−
n

2
(σ − θn)T An(θ̂n(σ))(σ − θn))π(dσ);

Dn =

∫

Θ
exp(−

n

2
(σ − θn)T An(θ̂n(σ))(σ − θn))π(dσ).

We also denote:

bθ = inf
‖u‖=1

|uT Aθu| and λ = sup
‖u‖=1

(
d

∑

i=1

|ui|)2.

By 1e), one has bθ > 0. On the event
{

sup
σ∈Sk

n(δ)
‖An(θ̂n(σ)) − Aθ‖ ≤

bθ

2λ

}

,
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we have for all τ ∈ Θ and σ ∈ Sk
n(δ):

τT An(θ̂n(σ))τ ≥ τT Aθτ − |τT (An(θ̂n(σ)) − Aθ)τ |
≥ (bθ − sup

σ∈Sk
n(δ)

‖An(θ̂n(σ)) − Aθ‖λ)‖τ‖2

≥
bθ

2
‖τ‖2,

and consequently, one gets on the same event:

Rn(δ, k) ≤
∫

Sk
n(δ)

exp(−
nbθ

4
‖σ − θn‖2)π(dσ)

≤ n−(bθk)/(4s2) π(Bn
δ ), (3)

where Bn
δ = {σ ∈ Θ : ‖σ − θn‖ ≤ δ}. Moreover, according to Lemma 3, there

exists N ≥ 1 such that for all n ≥ N , one has on the event EN (aθ/λ) (where
aθ = sup‖u‖=1 |uT Aθu|), for all τ ∈ Θ and σ ∈ Vn:

τT An(θ̂n(σ))τ ≤ τT Aθτ + |τT (An(θ̂n(σ)) − Aθ)τ |
≤ (aθ + sup

σ∈Vn

‖An(θ̂n(σ)) − Aθ‖λ)‖τ‖2

≤ 2aθ‖τ‖2,

and hence, on the same event:

Dn ≥
∫

Vn

exp(−
n

2
(σ − θn)T An(θ̂n(σ))(σ − θn))π(dσ)

≥ exp(−aθ)π(Vn). (4)

According to (3) and (4), for all n ≥ N , we have on the event

EN

(aθ

λ

)

⋂

{

sup
σ∈Sk

n(δ)
‖An(θ̂n(σ)) − Aθ‖ ≤

bθ

2λ

}

,

the inequality:

πn(Sk
n(δ)) ≤ exp(aθ)π(Bn

δ )
n−(bθk)/(4s2)

π(Vn)
.

Hence, for all n ≥ N , r, c, δ, k > 0:

Q⊗n
(

πn(Sk
n(δ)) > cn−r

)

≤ Q⊗n

(

exp(aθ)π(Bn
δ )

n−(bθk)/(4s2)

π(Vn)
> cn−r

)

+ Q∞
(

EN (
aθ

λ
)c

)

+ Q⊗n

(

sup
σ∈Sk

n(δ)
‖An(θ̂n(σ)) − Aθ‖ >

bθ

2λ

)

.
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For some choice of δ, the latter term vanishes according to Lemma 4. Moreover, the
second term of the right hand side also vanishes by Lemma 3. Finally, the first term of
the right hand side tends to 0 according to assumption 4), if k is such that:

r <
bθk

4s2
− t,

and the proof is complete. !

4. Convergence of posterior expectations

In the sequel, Fn denotes the law π ◦ T−1 and Kn is the ball in Θ with center 0 and
radius

√
log n.

Theorem 3 Assume that 1)-3) hold. Let g : Θ → IR be a Borel function such that for
some κ > 0:

∫

Θ
|g(σ)| exp(κ‖I1/2

θ σ‖2)Fθ(dσ) < ∞,

where Fθ is a centered normal distribution with variance matrix I−1/2
θ A−1

θ I−1/2
θ .

Then,
∫

Kn

g(σ)Fn(dσ) →
∫

Θ
g(σ)Fθ(dσ), as n → ∞,

in Q⊗n-probability.

ProofWe can assume, with no loss of generality, that
∫

Θ g(σ)Fθ(dσ) = 0.
For n ≥ 1, x ∈ X and σ ∈ Θ, let us introduce again θ̂n(σ) defined in the proof of
Theorem 2, and satisfying (1) and (2). We then have according to (1), ifWn := W 1

n :
∫

Kn

g(τ)Fn(dτ) =

∫

Wn

g(T (σ))πn(dσ) =
Pn

Dn
,

whereDn is the random variable of the proof of Theorem 2 and

Pn =

∫

Wn

g(T (σ)) exp(−
n

2
(σ − θn)T An(θ̂n(σ))(σ − θn))π(dσ).

Let κ1 = 2κ/λ, where λ has been defined in the proof of Theorem 2. Following the
arguments of the proof of (4), one can obtain the existence of N ≥ 1 such that for all
n ≥ N , we have on the event EN (κ1):

Dn ≥ exp(−
1

2
(aθ + κ1λ))π(Vn).

For the sake of simplicity, one can assume by 3) that π admits a density on Vn, and
hence on the same event, we have:

Dn ≥ exp(−
1

2
(aθ + κ1λ)) inf

σ∈Vn

p(σ)2d(dn)−d/2. (5)
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Moreover, note that for all n ≥ 1:

Wn ⊂

{

σ ∈ Θ : ‖σ − θn‖ ≤ c0

√

log n

n

}

,

where c0 =
(

inf‖u‖=1 ‖I
−1/2
θ u‖

)−1
. Consequently, by 2) and 3), one can assume (for

simplicity) that π has a density onWn. Then, for all n ≥ 1:

Pn = n−d/2| det I1/2
θ |

∫

Θ
g(τ) exp(−

1

2
(I1/2

θ τ)T Aθ(I
1/2
θ τ))Xn(τ)dτ,

where for all τ ∈ Θ:

Xn(τ) = IKn(τ)p(T−1(τ)) exp(−
1

2
(I1/2

θ τ)T (An(θ̂n(T−1(τ))) − Aθ)(I
1/2
θ τ)).

But, for all n ≥ N , we have on the event EN (κ1):

Xn(τ) ≤ sup
τ∈Kn

p(T−1(τ)) exp(κ‖I1/2
θ τ‖2), ∀τ ∈ Θ

since T−1(τ) ∈ Wn as soon as τ ∈ Kn. Moreover, according to 2), 3), and Lemma 3,
one also has Q∞-a.s.:

lim
n

Xn(τ) = p(θ), ∀τ ∈ Θ.

We deduce from Lebesgue’s Theorem that on EN (κ1), we haveQ∞-a.s.:

lim
n

nd/2Pn = 0. (6)

Let c > 0. We have for all n ≥ N :

Q⊗n

(

|
∫

Kn

g(σ)Fn(dσ)| > c

)

≤ Q∞

(

|Pn|
Dn

> c, EN (κ1)

)

+ Q∞ (EN (κ1)
c) .

The latter term vanishes by Lemma 3. Finally, according to (5), the first term of the
right hand side is smaller than:

Q∞

(

|Pn| > c exp(−
1

2
(aθ + κ1λ)) inf

σ∈Vn

p(σ)2dn−d/2, EN (κ1)

)

which vanishes according to (6) and assumption 3). !
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