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Abstract

Let X1, . . . , Xn be n independent observations drawn from a multi-
variate probability density f with compact support Sf . This paper is

devoted to the study of the estimator Ŝn of Sf defined as unions of
balls centered at the Xi and of common radius rn. Using tools from
Riemannian geometry, and under mild assumptions on f and the se-
quence (rn), we prove a central limit theorem for λ(Sn∆Sf ), where λ

denotes the Lebesgue measure on R
d and ∆ the symmetric difference

operation.
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1 Introduction

Let X1, . . . , Xn be independent and identically distributed observations dra-
wn from an unknown probability density f defined on R

d. It is assumed that
d ≥ 2 throughout this paper. We investigate the problem of estimating the
support of f , i.e., the closed set

Sf = {x ∈ Rd : f(x) > 0},

based on the sample X1, . . . , Xn. Here and elsewhere, A denotes the closure
of a Borel set A. This problem is of interest due to the broad scope of its
practical applications in applied statistics. These include medical diagnosis,
machine condition monitoring, marketing and econometrics. For a review
and a large list of references, we refer the reader to Báıllo, Cuevas, and Jus-
tel (2000), Biau, Cadre, and Pelletier (2008) and Mason and Polonik (2009).

Devroye and Wise (1980) introduced the following very simple and intuitive
estimator of Sf . It is defined as

Sn =
n
⋃

i=1

B(Xi, rn), (1.1)

where B(x, r) denotes the closed Euclidean ball centered at x and of ra-
dius r > 0, and where (rn) is an appropriately chosen sequence of positive
smoothing parameters. For x ∈ R

d, let

fn(x) =
n
∑

i=1

1B(x,rn)(Xi)

be the (unnormalized) kernel density estimator of f . We see that

Sn = {x ∈ R
d : fn(x) > 0}.

In other words, Sn = Sfn
, i.e., it is just a plug-in-type kernel estimator with

kernel having a ball-shaped support. Báıllo, Cuevas, and Justel (2000) argue
that this estimator is a good generalist when no a priori information is avail-
able about Sf . Moreover, from a practical perspective, the relative simplicity
of the estimation strategy (1.1) is a major advantage over competing mul-
tidimensional set estimation techniques, which are often faced with a heavy
computational burden.
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Biau, Cadre, and Pelletier (2008) proved, under mild regularity assumptions
on f and the sequence (rn), that for some explicit constant c,

√

nrd
n Eλ(Sn∆Sf ) → c,

where △ denotes the symmetric difference operation and λ is the Lebesgue
measure on R

d. In the present paper, we go one step further and establish
the asymptotic normality of λ(Sn△Sf ). Precisely, our main Theorem 2.1
states, under appropriate regularity conditions on f and (rn), that

(

n

rd
n

)1/4
(

λ (Sn△Sf ) − Eλ (Sn△Sf )
)

D→ N (0, σ2
f ),

for some explicit positive σ2
f .

Denoting by ∂Sf the boundary of Sf , it turns out that, under our conditions,
λ(∂Sf ) = 0 and f > 0 on the interior of Sf . Therefore, we have the equality

Sf =
{

x ∈ R
d : f(x) > 0

}

almost everywhere.

Thus, λ(Sn△Sf ) may be expressed more conveniently as

λ(Sn△Sf ) =

∫

Rd

∣

∣

∣
1{fn(x) > 0} − 1{f(x) > 0}

∣

∣

∣
dx.

This quantity is related to the so-called vacancy Vn left by randomly dis-
tributed spheres (see Hall 1985, 1988), which in this notation is

Vn = λ (Sf − Sn) =

∫

Sf

∣

∣

∣
1{fn(x) > 0} − 1{f(x) > 0}

∣

∣

∣
dx.

Hall (1985) has proved a number of central limit theorems for Vn. One of
them, his Theorem 1, states that if f has support in [0, 1]d and is continuous
then, as long as nrd

n → a where 0 < a < ∞, for some 0 < σ2
a < ∞,

√
n (Vn − EVn)

D→ N (0, σ2
a).

As pointed out in Hall’s paper, and to the best of our knowledge, the case
when nrd

n → ∞ has not been examined, except for some restricted cases in
dimension 1. It turns out that, by adapting our arguments to the vacancy
problem, we are also able to prove a general central limit theorem for Vn

when nrd
n → ∞, thereby extending Hall’s results. For more about large sam-

ple properties of vacancy and their applications consult Chapter 3 of Hall
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(1988).

Another result closely related to ours is the following special case of the main
theorem in Mason and Polonik (2009). For any 0 < c < sup{f(x) : x ∈ R

d},
let C(c) = {x ∈ R

d : f(x) > c} and Ĉn(c) = {x ∈ R
d : f̂n(x) > c}, where f̂n

denotes a kernel estimator of f . Then

λ
(

Ĉn(c)△C(c)
)

=

∫

Rd

∣

∣

∣
1{f̂n(x) > c} − 1{f(x) > c}

∣

∣

∣
dx.

Mason and Polonik (2009) prove, subject to regularity conditions on f , as
long as

√

nrd+2
n → γ, with 0 ≤ γ < ∞ and nrd

n/ log n → ∞, where γ = 0 in
the case d = 1, then for some 0 < σ2

c < ∞,

(

n

rd
n

)1/4
(

λ
(

Ĉn(c)△C(c)
)

− Eλ
(

Ĉn(c)△C(c)
))

D→ N (0, σ2
c ).

The paper is organized as follows. In Section 2, we first set out notation and
assumptions, and then state our main results. Section 3 is devoted to the
proofs.

2 Asymptotic normality of λ(Sn∆Sf)

2.1 Notation and assumptions

Throughout the paper, we shall impose the following set of assumptions.

Assumption Set 1

(a) The support Sf of f is compact in R
d, with d ≥ 2.

(b) f is of class C1 on R
d, and of class C2 on the interior

◦

Sf of Sf .

(c) The boundary ∂Sf of Sf is a smooth submanifold of R
d of codimension

1.

(d) The set {x ∈ R
d : f(x) > 0} is connected.

(e) f > 0 on
◦

Sf .

Under Assumption 1-(c), ∂Sf is a smooth Riemannian submanifold with Rie-
mannian metric, denoted by σ, induced by the canonical embedding of ∂Sf

in R
d. The volume measure on (∂Sf , σ) will be denoted by vσ. Furthermore,
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(∂Sf , σ) is compact and without boundary. Then by the tubular neighbor-
hood theorem (see e.g., Gray, 1990; Bredon, 1993, p. 93), ∂Sf admits a
tubular neighborhood of radius ρ > 0,

V(∂Sf , ρ) =
{

x ∈ R
d : dist(x, ∂Sf ) < ρ

}

,

i.e., each point x ∈ V(∂Sf , ρ) projects uniquely onto ∂Sf . Let {ep ; p ∈ ∂Sf}
be the unit-norm section of the normal bundle T∂S⊥

f that is pointing inwards,
i.e., for all p ∈ ∂Sf , ep is the unit normal vector to ∂Sf directed towards the
interior of Sf . Then each point x ∈ V(∂Sf , ρ) may be expressed as

x = p + vep, (2.1)

where p ∈ ∂Sf , and where v ∈ R satisfies |v| ≤ ρ. Moreover, given a Lebesgue
integrable function ϕ on V(∂Sf , ρ), we may write

∫

V(∂Sf ,ρ)

ϕ(x)dx =

∫

∂Sf

∫ ρ

−ρ

ϕ(p + vep)Θ(p, u)du vσ(dp), (2.2)

where Θ is a C∞ function satisfying Θ(p, 0) = 1 for all p ∈ ∂Sf . (See Ap-
pendix B in Biau, Cadre, and Pelletier, 2008.)

Denote by D2
ep

the directional differentiation operator of order 2 on V(∂Sf , ρ)
in the direction ep. The following additional smoothness assumptions on f
will be needed.

Assumption Set 2

(a) There exists ρ > 0 such that, for all p ∈ ∂Sf , the map u 7→ f(p + uep)
is of class C2 on [0, ρ].

(b) There exists ρ > 0 such that

0 < sup
p∈∂Sf

sup
0≤u≤ρ

D2
ep

f(p + uep) < ∞.

(c) There exists δ > 0 such that

sup

{

‖Hf(x)‖ : x ∈
◦

Sf and dist(x, ∂Sf ) ≥ δ

}

< ∞,

where Hf(x) denotes the Hessian matrix of f at the point x.

(d) There exists ρ > 0 such that

inf
p∈∂Sf

inf
0≤u≤ρ

D2
ep

f(p + uep) > 0.
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We note that Assumption Sets 1 and 2 are the same as the ones used in Biau,
Cadre, and Pelletier (2008). In particular, we assume throughout that the
density f continuous on R

d. Thus, we are in the case of a non-sharp boundary,
i.e., f decreases continuously to zero at the boundary of its support.

2.2 Main result

Let

σ2
f = 2d

∫

∂Sf

∫ ∞

0

∫

B(0,1)

Γ(p, t, u)dudtvσ(dp), (2.3)

with

Γ(p, t, u) = exp
(

−ωdD
2
ep

f(p)t2
)

[

exp

(

β(u)D2
ep

f(p)
t2

2

)

− 1

]

,

ωd denoting the volume of B(0, 1) and

β(u) = λ (B(0, 1) ∩ B(2u, 1)) .

Remark. Let Γ be the Gamma function. We note that β(u) has the closed
expression (Hall, 1988, p. 23)

β(u) =







2π(d−1)/2

Γ
(

1
2

+ d
2

)

∫ 1

|u|

(1 − y2)(d−1)/2dy, if 0 ≤ |u| ≤ 1

0, if |u| > 1,

which, in particular, gives

β (0) = ωd =
πd/2

Γ
(

1 + d
2

) .

We are now ready to state our main result.

Theorem 2.1 Suppose that both Assumption Sets 1 and 2 are satisfied. If
(r.i) rn → 0, (r.ii) nrd

n → ∞, and (r.iii) nrd+1
n → 0, then

(

n

rd
n

)1/4
(

λ (Sn△Sf ) − Eλ (Sn△Sf )
)

D→ N (0, σ2
f ),

where σ2
f > 0 is as in (2.3).
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Theorem 2.1 assumes d ≥ 2 (Assumption 1-(a)). We restrict ourselves to
the case d ≥ 2 for the sake of technical simplicity. However, the case d = 1
can be derived with minor adaptations. In fact, the one-dimensional setting
has already been explored in the related context of vacancy estimation (Hall,
1984). As we pointed out in the introduction, the quantity λ(Sn△Sf ) is
closely related to the vacancy Vn (Hall 1985, 1988), which is defined by

Vn = λ (Sf − Sn) =

∫

Sf

∣

∣

∣
1{fn(x) > 0} − 1{f(x) > 0}

∣

∣

∣
dx.

A close inspection of the proof of Theorem 2.1 reveals that, by taking inter-
section with Sf in the integrals, the asymptotic behaviors of λ(Sn△Sf ) and
Vn are similar. As a consequence, we obtain the following result:

Theorem 2.2 Suppose that both Assumption Sets 1 and 2 are satisfied. If
(r.i) rn → 0, (r.ii) nrd

n → ∞, and (r.iii) nrd+1
n → 0, then

(

n

rd
n

)1/4

(Vn − EVn)
D→ N (0, σ2

f ),

where σ2
f > 0 is as in (2.3).

Surprisingly, the limiting variance σ2
f remains as in (2.3). Theorem 2.2 was

motivated by a remark by Hall (1985), who pointed out that a central limit
theorem for vacancy in the case nrd

n → ∞ remained open.

3 Proof of Theorem 2.1

Our proof of Theorem 2.1 will borrow elements from Mason and Polonik
(2009).

Let γn = r
(1−2d)/8
n → ∞, and set

εn =
γ2

n

nrd
n

. (3.1)

Observe that, from (r.ii) and (r.iii), the sequence (εn) satisfies (e.i) εn → 0
and (e.ii) εn

√

nrd
n → ∞ (since d ≥ 2). For future reference we note that

from (r.i) and (r.iii), we get that

rn

εn

→ 0. (3.2)
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Set
En = {x ∈ R

d : f(x) ≤ εn}.
Furthermore, let

Ln(εn) =

∫

En

∣

∣

∣
1{fn(x) > 0} − 1{f(x) > 0}

∣

∣

∣
dx

and

Ln(εn) =

∫

Ec
n

∣

∣

∣
1{fn(x) > 0} − 1{f(x) > 0}

∣

∣

∣
dx.

Noting that, under Assumption Set 1, λ(Sn∆Sf ) = Ln(εn)+Ln(εn), our plan
is to show that

(

n

rd
n

)1/4
(

Ln(εn) − ELn(εn)
)

D→ N (0, σ2
f ) (3.3)

and
(

n

rd
n

)1/4
(

Ln(εn) − ELn(εn)
)

P→ 0, (3.4)

which together implies the statement of Theorem 2.1. To prove a central limit
theorem for the random variable Ln (εn), it turns out to be more convenient
to first establish one for the Poissonized version of it formed by replacing
fn(x) with

πn(x) =
Nn
∑

i=1

1B(x,rn)(Xi),

where Nn is a mean n Poisson random variable independent of the sam-
ple X1, . . . , Xn. By convention, we set πn(x) = 0 whenever Nn = 0. The
Poissonized version of Ln (εn) is then defined by

Πn(εn) =

∫

En

∣

∣

∣
1{πn(x) > 0} − 1{f(x) > 0}

∣

∣

∣
dx.

The proof of Theorem 2.1 is organized as follows. First (Subsection 3.1), we
determine the exact asymptotic behavior of the variance of Πn (εn). Then
(Subsection 3.2), we prove a central limit theorem for Πn (εn). By means of
a de-Poissonization result (Subsection 3.3), we then infer (3.3). In a final
step (Subsection 3.4) we prove (3.4), which completes the proof of Theorem
2.1. This Poissonization/de-Poissonization methodology goes back to at least
Beirlant, Györfi, and Lugosi (1994).
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3.1 Exact asymptotic behavior of Var(Πn(εn))

Let
∆n(x) =

∣

∣

∣
1{πn(x) > 0} − 1{f(x) > 0}

∣

∣

∣
.

In the sequel, the letter C will denote a positive constant, the value of which
may vary from line to line.

Let (εn) be the sequence of positive real numbers defined in (3.1). In this
subsection, we intend to prove that, under the conditions of Theorem 2.1,

lim
n→∞

√

n

rd
n

Var (Πn(εn)) = σ2
f , (3.5)

where σ2
f is as in (2.3).

Towards this goal, observe first that

Πn(εn) =

∫

Ẽn

∣

∣

∣
1{πn(x) > 0} − 1{f(x) > 0}

∣

∣

∣
dx,

where we set
Ẽn = En ∩ Srn

f ,

with
Srn

f =
{

x ∈ R
d : dist(x, Sf ) ≤ rn

}

.

Clearly,

Var(Πn (εn)) =

∫

Ẽn

∫

Ẽn

C (∆n(x), ∆n(y)) dxdy,

where here and elsewhere C denotes ‘covariance’. Since ∆n(x) and ∆n(y) are
independent whenever ‖x − y‖ > 2rn, we may write

Var (Πn(εn)) =

∫

Ẽn

∫

Ẽn

1 {‖x − y‖ ≤ 2rn}C (∆n(x), ∆n(y)) dxdy.

Using the change of variable y = x + 2rnu, we obtain

Var(Πn (εn))

= 2drd
n

∫

Rd

∫

Rd

1Ẽn
(x)1Ẽn

(x + 2rnu)1B(0,1)(u)C (∆n(x), ∆n(x + 2rnu)) dxdu.

By construction, whenever n is large enough, Ẽn is included in the tubular
neighborhood V(∂Sf , ρ) of ∂Sf of radius ρ > 0. In this case, each x ∈ Ẽn
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may be written as x = p + vep as described in (2.1). Hence, for all large
enough n, we obtain

Var(Πn (εn))

= 2drd
n

∫

∂Sf

∫ ρ

−rn

∫

B(0,1)

1Ẽn
(p + vep)1Ẽn

(p + vep + 2rnu)

× Θ(p, v)C (∆n(p + vep), ∆n(p + vep + 2rnu)) dudvvσ(dp).

For all p ∈ ∂Sf , let κp(εn) be the distance between p and the point x of the
set {x ∈ R

d : f(x) = εn} such that the vector x − p is orthogonal to ∂Sf .

Using the change of variable v = t/
√

nrd
n, we may write

Var (Πn(εn))

=
2drd

n
√

nrd
n

∫

∂Sf

∫

√
nrd

nκp(εn)

−
√

nrd+2
n

∫

B(0,1)

1Ẽn

(

p +
t

√

nrd
n

ep + 2rnu

)

Θ

(

p,
t

√

nrd
n

)

× C

(

∆n

(

p +
t

√

nrd
n

ep

)

, ∆n

(

p +
t

√

nrd
n

ep + 2rnu

))

dudtvσ(dp).

For a justification of this change of variable, refer to equation (2.2) and
equation (4.2) in the Appendix. By conditions (r.i) and (r.iii), nrd+2

n → 0.
Consequently,
√

n

rd
n

Var (Πn(εn))

= o(1)

+ 2d

∫

∂Sf

∫

√
nrd

nκp(εn)

0

∫

B(0,1)

1Ẽn

(

p +
t

√

nrd
n

ep + 2rnu

)

Θ

(

p,
t

√

nrd
n

)

× C

(

∆n

(

p +
t

√

nrd
n

ep

)

, ∆n

(

p +
t

√

nrd
n

ep + 2rnu

))

dudtvσ(dp).

(3.6)

To get the limit as n → ∞ of the above integral, we will need the following
lemma, whose proof is deferred to the end of the subsection.

Lemma 3.1 Let p ∈ ∂Sf , t > 0 and u ∈ B(0, 1) be fixed. Suppose that the
conditions of Theorem 2.1 hold. Then

lim
n→∞

C

(

∆n

(

p +
t

√

nrd
n

ep

)

, ∆n

(

p +
t

√

nrd
n

ep + 2rnu

))

= Γ(p, t, u),

where Γ(p, t, u) is defined in Theorem 2.1.

10



Returning to the proof of (3.5), we notice that by (4.3) in the Appendix and
(e.ii) we have

√

nrd
nκp(εn) → ∞ as n → ∞ and Θ(p, 0) = 1. Therefore, using

Lemma 3.1 and the fact that for all t > 0 and u ∈ B(0, 1)

1Ẽn

(

p +
t

√

nrd
n

+ 2rnu

)

→ 1 as n → ∞,

we conclude that the function inside the integral in (3.6) converges pointwise
to Γ(p, t, u) as n → ∞.

We now proceed to sufficiently bound the function inside the integral in (3.6)
to be able to apply the Lebesgue dominated convergence theorem. Towards
this goal, fix p ∈ ∂Sf , u ∈ B(0, 1) and 0 < t ≤

√

nrd
nκp(εn). Since ∆n(x) ≤ 1

for all x ∈ R
d, using the inequality |C(Y1, Y2)| ≤ 2E|Y1| whenever |Y2| ≤ 1,

we have
∣

∣

∣

∣

∣

C

(

∆n

(

p +
t

√

nrd
n

ep

)

, ∆n

(

p +
t

√

nrd
n

ep + 2rnu

))∣

∣

∣

∣

∣

≤ 2 E ∆n

(

p +
t

√

nrd
n

ep

)

. (3.7)

By the bound in (4.3) in the Appendix, we see that

sup
p∈∂Sf

κp(εn) → 0 as n → ∞. (3.8)

Then, since ep is a normal vector to ∂Sf at p which is directed towards the
interior of Sf , there exists an integer N0 independent of p, t and u such

that, for all n ≥ N0, the point p + (t/
√

nrd
n)ep belongs to the interior of Sf .

Therefore, f(p + (t/
√

nrd
n)ep) > 0 and, letting

ϕn(x) = P (X ∈ B(x, rn)) ,

we obtain

E ∆n

(

p +
t

√

nrd
n

ep

)

= P

(

πn

(

p +
t

√

nrd
n

ep

)

= 0

)

= E

[

P

(

∀i ≤ Nn : Xi /∈ B
(

p +
t

√

nrd
n

ep, rn

)∣

∣

∣

∣

∣

Nn

)]

= E

[

1 − ϕn

(

p +
t

√

nrd
n

ep

)]Nn
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= exp

[

−nϕn

(

p +
t

√

nrd
n

ep

)]

, (3.9)

where we used the fact that Nn is a mean n Poisson distributed random
variable independent of the sample. According to Lemma A.1 in Biau, Cadre,
and Pelletier (2008), for all x ∈ R

d, there exists a quantity Kn(x) such that

ϕn(x) = rd
nωdf(x) + rd+2

n Kn(x) and sup
n

sup
x∈Rd

|Kn(x)| < ∞. (3.10)

Moreover, for all x in V(∂Sf , ρ) written as x = p + uep with p ∈ ∂Sf and
0 ≤ u ≤ ρ, a Taylor expansion of f at p gives the expression

f(x) =
1

2
D2

ep
f(p + ξep)u

2,

for some 0 ≤ ξ ≤ u since, by Assumption 1-(b), Dep
f(p) = 0. Thus, in our

context, expanding f at p, we may write

nϕn

(

p +
t

√

nrd
n

ep

)

= ωdD
2
ep

f(p + ξep)
t2

2
+ nrd+2

n Rn(p, t),

for some 0 ≤ ξ ≤ κp(εn), and where Rn(p, t) satisfies

sup
n

sup
{

|Rn(p, t)| : p ∈ ∂Sf and 0 ≤ t ≤
√

nrd
nκp(εn)

}

< ∞.

Furthermore, by (3.8), each point p + ξep falls in the tubular neighborhood
V(∂Sf , ρ) for all large enough n. Consequently, by Assumption 2-(d) there
exists α > 0 independent of n and N1 ≥ N0 independent of p, t and u such
that, for all n ≥ N1,

inf
p∈∂Sf

D2
ep

f(p + ξep) > 2α.

This, together with identity (3.9) and (r.iii), which implies nrd+2
n → 0, leads

to

E ∆n

(

p +
t

√

nrd
n

ep

)

≤ C exp(−ωdαt2) (3.11)

for n ≥ N1 and all
0 ≤ t ≤

√

nrd
n sup

p∈∂Sf

κp(εn).

Thus, using inequality (3.11), we deduce that the function on the left hand
side of (3.7) is dominated by an integrable function of (p, t, u), which is

12



independent of n provided n ≥ N1. Finally, we are in a position to apply the
Lebesgue dominated convergence theorem, to conclude that

lim
n→∞

√

n

rd
n

Var (Πn(εn)) = 2d

∫

∂Sf

∫ ∞

0

∫

B(0,1)

Γ(p, t, u)dudtvσ(dp) = σ2
f .

To be complete, it remains to prove Lemma 3.1.

Proof of Lemma 3.1 Let xn = p + (t/
√

nrd
n)ep. Since nrd

n → ∞ and
nrd+2

n → 0, both xn and xn + 2rnu lie in the interior of Sf for all large
enough n. As a consequence, f(xn) > 0 and f(xn + 2rnu) > 0 for all large
enough n. Thus,

C (∆n(xn), ∆n(xn + 2rnu))

= C (1{πn(xn) = 0},1{πn(xn + 2rnu) = 0})
= P (πn(xn) = 0, πn(xn + 2rnu) = 0) − P (πn(xn) = 0) P (πn(xn + 2rnu) = 0)

= P (∀i ≤ Nn : Xi /∈ B(xn, rn) ∪ B(xn + 2rnu, rn))

− P (∀i ≤ Nn : Xi /∈ B(xn, rn)) P (∀i ≤ Nn : Xi /∈ B(xn + 2rnu, rn))

= exp [−nµ (B(xn, rn) ∪ B(xn + 2rnu, rn))]

− exp [−nµ(B(xn, rn)) − nµ(B(xn + 2rnu, rn))] ,

where µ denotes the distribution of X. Let Bn = B(xn, rn)∩B(xn+2rnu, rn).
Using the equality

µ (B(xn, rn) ∪ B(xn + 2rnu, rn)) = ϕn(xn) + ϕn(xn + 2rnu) − µ(Bn),

we obtain

C (∆n(xn), ∆n(xn + 2rnu)) (3.12)

= exp [−n (ϕn(xn) + ϕn(xn + 2rnu))] [exp (nµ(Bn)) − 1] .

Now, µ(Bn) may be expressed as

µ(Bn) = f(xn)λ(Bn) +

∫

Bn

(f(v) − f(xn)) dv.

Since f is of class C1 on R
d, by developing f at xn in the above integral, we

obtain
∫

Bn

(f(v) − f(xn)) dv = rd+1
n Rn,

where Rn satisfies
|Rn| ≤ C sup

K
‖grad f‖,

13



and K is some compact subset of R
d containing ∂Sf and of nonempty interior.

Next, note that λ(Bn) = rd
nβ(u), where

β(u) = λ (B(0, 1) ∩ B(2u, 1)) .

Therefore, expanding f at p in the direction ep, we obtain

µ(Bn) = β(u)
t2

2n
D2

ep
f
(

p + ξ
t

√

nrd
n

ep

)

+ rd+1
n Rn,

where ξ ∈ (0, 1). Hence by (r.iii),

lim
n→∞

nµ(Bn) = β(u)D2
ep

f(p)
t2

2
.

The above limit, together with identity (3.12) and (3.10), leads to the desired
result. �

3.2 Central limit theorem for Πn(εn)

In this subsection we establish a central limit theorem for Πn(εn). Set

Sn(εn) =
an (Πn(εn) − EΠn(εn))

σn

,

where an = (n/rd
n)1/4 and

σ2
n = Var

(

an (Πn(εn) − EΠn(εn))
)

.

We shall verify that as n → ∞

Sn(εn)
D→ N (0, 1). (3.13)

To show this we require the following special case of Theorem 1 of Shergin
(1990).

Fact 3.1 Let (Xi,n : i ∈ Z
d) denote a triangular array of mean zero m-

dependent random fields, and let Jn ⊂ Z
d be such that

(i) Var
(
∑

i∈Jn
Xi,n

)

→ 1 as n → ∞, and

(ii) For some 2 < s < 3,
∑

i∈Jn
E|Xi,n|s → 0 as n → ∞.

Then
∑

i∈Jn

Xi,n
D→ N (0, 1).

14



We use Shergin’s result as follows. Recall the definition of εn and γn in (3.1).
Recall also that

Var(Πn (εn)) =

∫

Ẽn

∫

Ẽn

C (∆n(x), ∆n(y)) dxdy,

with
Ẽn = En ∩ Srn

f .

Under Assumptions 1-(b) and 2-(a),

λ(Ẽn) ≤ C(
√

εn + rn) ≤ C
γn
√

nrd
n

(3.14)

by (3.2). The first part of inequality (3.14) is established in the Appendix,
see inequality (4.4).

Next, consider the regular grid given by

Ai = (xi1 , xi1+1] × . . . × (xid , xid+1],

where i =(i1, . . . , id), i1, . . . , id ∈ Z and xi = i rn for i ∈ Z. Define

Ri = Ai ∩ Ẽn.

With Jn = {i ∈ Z
d : Ai ∩ Ẽn 6= ∅ } we see that {Ri : i ∈ Jn} constitutes a

partition of Ẽn such that, for all large n and each i ∈ Jn,

λ (Ri) ≤ rd
n,

where
Card (Jn) ≤ C

γn
√

nr3d
n

.

To get the upper bound above, we use the fact that for some ρ̄ > 0, for all
large n, Ẽn ⊂ V

(

∂Sf , ρ̄
√

εn

)

. Thus, since rn/
√

εn → 0 by (3.2),

⋃

i∈Jn

Ai ⊂ V (∂Sf , (ρ̄ + 2)
√

εn)

and, consequently,

rd
n Card (Jn) ≤ λ

(

V (∂Sf , (ρ̄ + 2)
√

εn)
)

≤ C
√

εn.

Keeping in mind the fact that for any disjoint sets B1, . . . , Bk in R
d such

that, for 1 ≤ i 6= j ≤ k,

inf {‖x − y‖ : x ∈ Bi, y ∈ Bj} > rn,

15



then
∫

Bi

∆n(x)dx, i = 1, . . . , k, are independent,

we can easily infer that

Xi,n =

an

∫

Ri

(∆n(x) − E∆n(x)) dx

σn

, i ∈ Jn

constitutes a 1-dependent random field on Z
d.

Recalling that an = (n/rd
n)1/4 and σ2

n → σ2
f as n → ∞ by (3.5) we get, for

all i ∈ Jn,

|Xi,n| ≤
an

σn

λ(Ri) ≤ C(nr3d
n )1/4.

Hence,
∑

i∈Jn

E|Xi,n|5/2 ≤ C (Card (Jn)) (nr3d
n )5/8 ≤ C(nrd+1

n )1/8.

Clearly this bound when combined with (r.iii), namely, nrd+1
n → 0, gives as

n → ∞,
∑

i∈Jn

E|Xi,n|5/2 → 0,

which by the Shergin Fact 3.1 (with s = 5/2) yields

Sn (εn) =
∑

i∈Jn

Xi,n
D→ N (0, 1).

Thus (3.13) holds.

3.3 Central limit theorem for Ln(εn)

Now we shall de-Poissonize the central limit for Πn(εn) to obtain one for
Ln (εn). Observe that

(Sn(εn)|Nn = n)
D
=

an (Ln(εn) − EΠn(εn))

σn

. (3.15)

Our next goal is to apply the following version of a theorem in Beirlant and
Mason (1995) (see also Polonik and Mason, 2009) to infer from (3.13) that

an (Ln(εn) − EΠn(εn))

σn

D→ N (0, 1). (3.16)
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Fact 3.2 Let N1,n and N2,n be independent Poisson random variables with
N1,n being Poisson (nβn) and N2,n being Poisson (n(1−βn)) where βn ∈ (0, 1).
Denote Nn = N1,n + N2,n and set

Un =
N1,n − nβn√

n
and Vn =

N2,n − n(1 − βn)√
n

.

Let (Sn) be a sequence of real-valued random variables such that

(i) For each n ≥ 1, the random vector (Sn, Un) is independent of Vn.

(ii) For some σ2 < ∞, Sn
D→ σZ as n → ∞.

(iii) βn → 0 as n → ∞.

Then, for all x,
P(Sn ≤ x | Nn = n) → P(σZ ≤ x).

Let
Dn = {x ∈ R

d : f(x) ≤ 2εn}.
We shall apply Fact 3.2 to Sn(εn) with

N1,n =
Nn
∑

i=1

1{Xi ∈ Dn}, N2,n =
Nn
∑

i=1

1{Xi /∈ Dn}

and βn = P(X ∈ Dn). Let

M = sup
x∈Rd

d
∑

i=1

∣

∣

∣

∣

∂f (x)

∂xi

∣

∣

∣

∣

.

We see that for all large enough n, whenever x ∈ En and y ∈ B (x, rn), by
the mean value theorem,

f(y) ≤ f(x) + Mrn ≤ εn

(

1 +
Mrn

εn

)

.

This combined with (3.2) implies for all large n

(

⋃

x∈En

B(x, rn)

)

∩ Dc
n = ∅.

Therefore for all large enough n, the random variables Sn(εn) and N2,n are
independent. Thus by (3.15) and βn → 0, we can apply Fact 3.2 to conclude
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that (3.16) holds.

Next we proceed just as in Mason and Polonik (2009) to apply a moment
bound given in Lemma 2.1 of Giné, Mason, and Zaitsev (2003) to show that

E
(

an (Ln(εn) − EΠn(εn))
)2 ≤ 2σ2

n.

Therefore, since by (3.5),
σ2

n → σ2
f < ∞,

the sequence (an(Ln(εn) − EΠn(εn))) is uniformly integrable. Hence we get
using (3.16) that

an (ELn(εn) − EΠn(εn)) → 0.

Thus, still by (3.16),

an (Ln(εn) − ELn(εn))

σn

D→ N (0, 1).

This in turn implies (3.3).

3.4 Completion of the proof of Theorem 2.1

It remains to verify (3.4). Observe that

Ln(εn) =

∫

Ec
n

∣

∣

∣
1{fn(x) > 0} − 1{f(x) > 0}

∣

∣

∣
dx =

∫

Ec
n

1{fn(x) = 0}dx.

We shall begin by bounding, for all x ∈ Ec
n,

P(fn(x) = 0) = (1 − ϕn(x))n ≤ exp (−nϕn(x)) ,

where we recall that
ϕn(x) = P (X ∈ B(x, rn)) .

Thus, by identity (3.10) and using nrd+2
n → 0 we obtain, for some constant

κ > 0 independent of x,

P(fn(x) = 0) ≤ C exp(−κεnnrd
n).

Consequently,

an ELn(εn) ≤ C

(

n

rd
n

)1/4

exp(−κεnnrd
n).
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By (r.iii), nrd+1
n → 0, so for all large n,

n

rd
n

=
nrd+1

n

r2d+1
n

≤ r−2d−1
n

and
εnnrd

n = γ2
n = r(1−2d)/4

n .

Hence, for all large enough n,

(

n

rd
n

)1/4

exp(−κεnnrd
n) ≤ Cr−(2d+1)/4

n exp
(

−κr(1−2d)/4
n

)

,

which goes to 0 as rn → 0. This implies that both an ELn(εn) → 0 and

an Ln(εn)
P→ 0, and thus establishes (3.4). The proof of Theorem 2.1 now

follows from (3.3) and (3.4).

4 Appendix: Properties of {x : 0 < f (x) ≤ ε}
Under Assumption Sets 1 and 2, we known that there exists a tubular neigh-
borhood V(∂Sf , ρ) of ∂Sf of radius ρ such that first,

0 < inf
p∈∂Sf

inf
0≤u≤ρ

D2
ep

f(p + uep) ≤ sup
p∈∂Sf

sup
0≤u≤ρ

D2
ep

f(p + uep) < ∞, (4.1)

and second,

inf {f(x) : x ∈ Sf\V(∂Sf , ρ)} = sup {f(x) : x ∈ V(∂Sf , ρ)} := ε0 > 0.

Consequently, for all 0 < ε < ε0, we have

{x ∈ R
d : 0 < f(x) ≤ ε} ⊂ V(∂Sf , ρ).

Moreover, (4.1), together with the fact that f = 0 on ∂Sf , entails that for all
p ∈ ∂Sf , the maps u 7→ f(p + uep) are strictly convex and strictly increasing
on [0, ρ]. Therefore, for all 0 < ε < ε0, and for all p ∈ ∂Sf there exists a
unique real number κp(ε) such that

f(p + κp(ε)ep) = ε.

Note that we also have the relation
⋃

p∈∂Sf

{p + uep : 0 ≤ u ≤ κp (ε)} = {x : 0 < f (x) ≤ ε} ∪ ∂Sf , (4.2)
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for all 0 < ε < ε0.

Since Dep
f(p) = 0 for all p ∈ ∂Sf by assumption, by using a second order

expansion of f at p in combination with (4.1), we have

sup
p∈∂Sf

κp(ε) ≤
[

1

2
inf

p∈∂Sf

inf
0≤u≤ρ

D2
ep

f(p + uep)

]− 1

2 √
ε. (4.3)

Hence for all n large enough

λ(Ẽn) =

∫

∂Sf

∫ κp(εn)

−rn

Θ(p, u)duvσ(dp)

≤ sup
V(∂Sf ,ρ)

(Θ(.))vσ(∂Sf )

[

rn + sup
p∈∂Sf

κp(εn)

]

≤ C(
√

εn + rn), (4.4)

for some constant C > 0, which justifies the bound on λ(Ẽn) given in (3.14).
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