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Let X 1 , . . . , X n be n independent observations drawn from a multivariate probability density f with compact support S f . This paper is devoted to the study of the estimator Ŝn of S f defined as unions of balls centered at the X i and of common radius r n . Using tools from Riemannian geometry, and under mild assumptions on f and the sequence (r n ), we prove a central limit theorem for λ(S n ∆S f ), where λ denotes the Lebesgue measure on R d and ∆ the symmetric difference operation.

Introduction

Let X 1 , . . . , X n be independent and identically distributed observations drawn from an unknown probability density f defined on R d . It is assumed that d ≥ 2 throughout this paper. We investigate the problem of estimating the support of f , i.e., the closed set

S f = {x ∈ R d : f (x) > 0},
based on the sample X 1 , . . . , X n . Here and elsewhere, A denotes the closure of a Borel set A. This problem is of interest due to the broad scope of its practical applications in applied statistics. These include medical diagnosis, machine condition monitoring, marketing and econometrics. For a review and a large list of references, we refer the reader to Baíllo, Cuevas, and Justel (2000), [START_REF] Biau | Exact rates in density support estimation[END_REF] and [START_REF] Mason | Asymptotic normality of plug-in level set estimates[END_REF].

Devroye and Wise (1980) introduced the following very simple and intuitive estimator of S f . It is defined as

S n = n i=1 B(X i , r n ), (1.1) 
where B(x, r) denotes the closed Euclidean ball centered at x and of radius r > 0, and where (r n ) is an appropriately chosen sequence of positive smoothing parameters. For x ∈ R d , let

f n (x) = n i=1 1 B(x,rn) (X i )
be the (unnormalized) kernel density estimator of f . We see that

S n = {x ∈ R d : f n (x) > 0}.
In other words, S n = S fn , i.e., it is just a plug-in-type kernel estimator with kernel having a ball-shaped support. [START_REF] Baíllo | Set estimation and nonparametric detection[END_REF] argue that this estimator is a good generalist when no a priori information is available about S f . Moreover, from a practical perspective, the relative simplicity of the estimation strategy (1.1) is a major advantage over competing multidimensional set estimation techniques, which are often faced with a heavy computational burden.

Biau, Cadre, and Pelletier (2008) proved, under mild regularity assumptions on f and the sequence (r n ), that for some explicit constant c,

nr d n Eλ(S n ∆S f ) → c,
where △ denotes the symmetric difference operation and λ is the Lebesgue measure on R d . In the present paper, we go one step further and establish the asymptotic normality of λ(S n △S f ). Precisely, our main Theorem 2.1 states, under appropriate regularity conditions on f and (r n ), that

n r d n 1/4 λ (S n △S f ) -Eλ (S n △S f ) D → N (0, σ 2 f ),
for some explicit positive σ 2 f .

Denoting by ∂S f the boundary of S f , it turns out that, under our conditions, λ(∂S f ) = 0 and f > 0 on the interior of S f . Therefore, we have the equality

S f = x ∈ R d : f (x) > 0 almost everywhere.
Thus, λ(S n △S f ) may be expressed more conveniently as

λ(S n △S f ) = R d 1{f n (x) > 0} -1{f (x) > 0} dx.
This quantity is related to the so-called vacancy V n left by randomly distributed spheres (see [START_REF] Hall | Three limit theorems for vacancy in multivariate coverage problems[END_REF][START_REF] Hall | Introduction to the Theory of Coverage Processes[END_REF], which in this notation is

V n = λ (S f -S n ) = S f 1{f n (x) > 0} -1{f (x) > 0} dx.
Hall (1985) has proved a number of central limit theorems for V n . One of them, his Theorem 1, states that if f has support in [0, 1] d and is continuous then, as long as nr d n → a where 0 < a < ∞, for some 0

< σ 2 a < ∞, √ n (V n -EV n ) D → N (0, σ 2 a ).
As pointed out in Hall's paper, and to the best of our knowledge, the case when nr d n → ∞ has not been examined, except for some restricted cases in dimension 1. It turns out that, by adapting our arguments to the vacancy problem, we are also able to prove a general central limit theorem for V n when nr d n → ∞, thereby extending Hall's results. For more about large sample properties of vacancy and their applications consult Chapter 3 [START_REF] Hall | Introduction to the Theory of Coverage Processes[END_REF].

Another result closely related to ours is the following special case of the main theorem in [START_REF] Mason | Asymptotic normality of plug-in level set estimates[END_REF]. For any 0 < c < sup{f (x) :

x ∈ R d }, let C(c) = {x ∈ R d : f (x) > c} and Ĉn (c) = {x ∈ R d : fn (x) > c},
where fn denotes a kernel estimator of f . Then

λ Ĉn (c)△C(c) = R d 1{ fn (x) > c} -1{f (x) > c} dx.
Mason and Polonik (2009) prove, subject to regularity conditions on f , as long as nr d+2 n → γ, with 0 ≤ γ < ∞ and nr d n / log n → ∞, where γ = 0 in the case d = 1, then for some 0

< σ 2 c < ∞, n r d n 1/4 λ Ĉn (c)△C(c) -Eλ Ĉn (c)△C(c) D → N (0, σ 2 c ).
The paper is organized as follows. In Section 2, we first set out notation and assumptions, and then state our main results. Section 3 is devoted to the proofs.

2 Asymptotic normality of λ(S n ∆S f )

Notation and assumptions

Throughout the paper, we shall impose the following set of assumptions.

Assumption Set 1

(a) The support S f of f is compact in R d , with d ≥ 2. (b) f is of class C 1 on R d , and of class C 2 on the interior • S f of S f . (c) The boundary ∂S f of S f is a smooth submanifold of R d of codimension 1. (d) The set {x ∈ R d : f (x) > 0} is connected. (e) f > 0 on • S f .
Under Assumption 1-(c), ∂S f is a smooth Riemannian submanifold with Riemannian metric, denoted by σ, induced by the canonical embedding of ∂S f in R d . The volume measure on (∂S f , σ) will be denoted by v σ . Furthermore, (∂S f , σ) is compact and without boundary. Then by the tubular neighborhood theorem (see e.g., [START_REF] Gray | Tubes[END_REF]Bredon, 1993, p. 93), ∂S f admits a tubular neighborhood of radius ρ > 0,

V(∂S f , ρ) = x ∈ R d : dist(x, ∂S f ) < ρ ,
i.e., each point x ∈ V(∂S f , ρ) projects uniquely onto ∂S f . Let {e p ; p ∈ ∂S f } be the unit-norm section of the normal bundle T ∂S ⊥ f that is pointing inwards, i.e., for all p ∈ ∂S f , e p is the unit normal vector to ∂S f directed towards the interior of S f . Then each point x ∈ V(∂S f , ρ) may be expressed as

x = p + ve p , (2.1) 
where p ∈ ∂S f , and where v ∈ R satisfies |v| ≤ ρ. Moreover, given a Lebesgue integrable function ϕ on V(∂S f , ρ), we may write

V(∂S f ,ρ) ϕ(x)dx = ∂S f ρ -ρ ϕ(p + ve p )Θ(p, u)du v σ (dp), (2.2) 
where Θ is a C ∞ function satisfying Θ(p, 0) = 1 for all p ∈ ∂S f . (See Appendix B in Biau, Cadre, and Pelletier, 2008.)

Denote by D 2 ep the directional differentiation operator of order 2 on V(∂S f , ρ) in the direction e p . The following additional smoothness assumptions on f will be needed.

Assumption Set 2

(a) There exists ρ > 0 such that, for all p ∈ ∂S f , the map

u → f (p + ue p ) is of class C 2 on [0, ρ]. (b) There exists ρ > 0 such that 0 < sup p∈∂S f sup 0≤u≤ρ D 2 ep f (p + ue p ) < ∞. (c) There exists δ > 0 such that sup Hf (x) : x ∈ • S f and dist(x, ∂S f ) ≥ δ < ∞,
where Hf (x) denotes the Hessian matrix of f at the point x.

(d) There exists ρ > 0 such that inf

p∈∂S f inf 0≤u≤ρ D 2 ep f (p + ue p ) > 0.
We note that Assumption Sets 1 and 2 are the same as the ones used in [START_REF] Biau | Exact rates in density support estimation[END_REF]. In particular, we assume throughout that the density f continuous on R d . Thus, we are in the case of a non-sharp boundary, i.e., f decreases continuously to zero at the boundary of its support.

Main result

Let

σ 2 f = 2 d ∂S f ∞ 0 B(0,1) Γ(p, t, u)dudtv σ (dp), (2.3) with Γ(p, t, u) = exp -ω d D 2 ep f (p)t 2 exp β(u)D 2 ep f (p) t 2 2 -1 ,
ω d denoting the volume of B(0, 1) and

β(u) = λ (B(0, 1) ∩ B(2u, 1)) . 
Remark. Let Γ be the Gamma function. We note that β(u) has the closed expression (Hall, 1988, p. 23)

β(u) =    2π (d-1)/2 Γ 1 2 + d 2 1 |u| (1 -y 2 ) (d-1)/2 dy, if 0 ≤ |u| ≤ 1 0, if |u| > 1,
which, in particular, gives

β (0) = ω d = π d/2 Γ 1 + d 2 .
We are now ready to state our main result.

Theorem 2.1 Suppose that both Assumption Sets 1 and 2 are satisfied. If (r.i)

r n → 0, (r.ii) nr d n → ∞, and (r.iii) nr d+1 n → 0, then n r d n 1/4 λ (S n △S f ) -Eλ (S n △S f ) D → N (0, σ 2 f ),
where σ 2 f > 0 is as in (2.3).

Theorem 2.1 assumes d ≥ 2 (Assumption 1-(a)). We restrict ourselves to the case d ≥ 2 for the sake of technical simplicity. However, the case d = 1 can be derived with minor adaptations. In fact, the one-dimensional setting has already been explored in the related context of vacancy estimation [START_REF] Hall | Random, nonuniform distribution of line segments on a circle[END_REF]. As we pointed out in the introduction, the quantity λ(S n △S f ) is closely related to the vacancy V n [START_REF] Hall | Three limit theorems for vacancy in multivariate coverage problems[END_REF][START_REF] Hall | Introduction to the Theory of Coverage Processes[END_REF], which is defined by

V n = λ (S f -S n ) = S f 1{f n (x) > 0} -1{f (x) > 0} dx.
A close inspection of the proof of Theorem 2.1 reveals that, by taking intersection with S f in the integrals, the asymptotic behaviors of λ(S n △S f ) and V n are similar. As a consequence, we obtain the following result:

Theorem 2.2 Suppose that both Assumption Sets 1 and 2 are satisfied. If (r.i) r n → 0, (r.ii) nr d n → ∞, and (r.iii)

nr d+1 n → 0, then n r d n 1/4 (V n -EV n ) D → N (0, σ 2 f ), where σ 2 f > 0 is as in (2.3).
Surprisingly, the limiting variance σ 2 f remains as in (2.3). Theorem 2.2 was motivated by a remark by [START_REF] Hall | Three limit theorems for vacancy in multivariate coverage problems[END_REF], who pointed out that a central limit theorem for vacancy in the case nr d n → ∞ remained open.

3 Proof of Theorem 2.1

Our proof of Theorem 2.1 will borrow elements from [START_REF] Mason | Asymptotic normality of plug-in level set estimates[END_REF].

Let

γ n = r (1-2d)/8 n
→ ∞, and set

ε n = γ 2 n nr d n . (3.1)
Observe that, from (r.ii) and (r.iii), the sequence (ε n ) satisfies (e.i) ε n → 0 and (e.ii)

ε n nr d n → ∞ (since d ≥ 2).
For future reference we note that from (r.i) and (r.iii), we get that

r n ε n → 0. (3.2) Set E n = {x ∈ R d : f (x) ≤ ε n }.
Furthermore, let

L n (ε n ) = En 1{f n (x) > 0} -1{f (x) > 0} dx and L n (ε n ) = E c n 1{f n (x) > 0} -1{f (x) > 0} dx. Noting that, under Assumption Set 1, λ(S n ∆S f ) = L n (ε n )+L n (ε n ), our plan is to show that n r d n 1/4 L n (ε n ) -EL n (ε n ) D → N (0, σ 2 f ) (3.3) and n r d n 1/4 L n (ε n ) -EL n (ε n ) P → 0, (3.4) 
which together implies the statement of Theorem 2.1. To prove a central limit theorem for the random variable L n (ε n ), it turns out to be more convenient to first establish one for the Poissonized version of it formed by replacing f n (x) with

π n (x) = Nn i=1 1 B(x,rn) (X i ),
where N n is a mean n Poisson random variable independent of the sample X 1 , . . . , X n . By convention, we set π n (x) = 0 whenever

N n = 0. The Poissonized version of L n (ε n ) is then defined by Π n (ε n ) = En 1{π n (x) > 0} -1{f (x) > 0} dx.
The proof of Theorem 2.1 is organized as follows. First (Subsection 3.1), we determine the exact asymptotic behavior of the variance of Π n (ε n ). Then (Subsection 3.2), we prove a central limit theorem for Π n (ε n ). By means of a de-Poissonization result (Subsection 3.3), we then infer (3.3). In a final step (Subsection 3.4) we prove (3.4), which completes the proof of Theorem 2.1. This Poissonization/de-Poissonization methodology goes back to at least Beirlant, Györfi, and Lugosi (1994).

Exact asymptotic behavior of Var

(Π n (ε n )) Let ∆ n (x) = 1{π n (x) > 0} -1{f (x) > 0} .
In the sequel, the letter C will denote a positive constant, the value of which may vary from line to line.

Let (ε n ) be the sequence of positive real numbers defined in (3.1). In this subsection, we intend to prove that, under the conditions of Theorem 2.1,

lim n→∞ n r d n Var (Π n (ε n )) = σ 2 f , (3.5) 
where σ 2 f is as in (2.3).

Towards this goal, observe first that

Π n (ε n ) = Ẽn 1{π n (x) > 0} -1{f (x) > 0} dx,
where we set Ẽn = E n ∩ S rn f , with

S rn f = x ∈ R d : dist(x, S f ) ≤ r n . Clearly, Var(Π n (ε n )) = Ẽn Ẽn C (∆ n (x), ∆ n (y)) dxdy,
where here and elsewhere C denotes 'covariance'. Since ∆ n (x) and ∆ n (y) are independent whenever xy > 2r n , we may write

Var (Π n (ε n )) = Ẽn Ẽn 1 { x -y ≤ 2r n } C (∆ n (x), ∆ n (y)) dxdy.
Using the change of variable y = x + 2r n u, we obtain

Var(Π n (ε n )) = 2 d r d n R d R d 1 Ẽn (x)1 Ẽn (x + 2r n u)1 B(0,1) (u)C (∆ n (x), ∆ n (x + 2r n u)) dxdu.
By construction, whenever n is large enough, Ẽn is included in the tubular neighborhood V(∂S f , ρ) of ∂S f of radius ρ > 0. In this case, each x ∈ Ẽn may be written as x = p + ve p as described in (2.1). Hence, for all large enough n, we obtain (3.6)

Var(Π n (ε n )) = 2 d r d n ∂S f ρ -rn B(0,
To get the limit as n → ∞ of the above integral, we will need the following lemma, whose proof is deferred to the end of the subsection. Returning to the proof of (3.5), we notice that by (4.3) in the Appendix and (e.ii) we have nr d n κ p (ε n ) → ∞ as n → ∞ and Θ(p, 0) = 1. Therefore, using Lemma 3.1 and the fact that for all t > 0 and u ∈ B(0, 1)

1 Ẽn p + t nr d n + 2r n u → 1 as n → ∞,
we conclude that the function inside the integral in (3.6) converges pointwise to Γ(p, t, u) as n → ∞.

We now proceed to sufficiently bound the function inside the integral in (3.6) to be able to apply the Lebesgue dominated convergence theorem. Towards this goal, fix p ∈ ∂S f , u ∈ B(0, 1) and 0

< t ≤ nr d n κ p (ε n ). Since ∆ n (x) ≤ 1 for all x ∈ R d , using the inequality |C(Y 1 , Y 2 )| ≤ 2E|Y 1 | whenever |Y 2 | ≤ 1, we have C ∆ n p + t nr d n e p , ∆ n p + t nr d n e p + 2r n u ≤ 2 E ∆ n p + t nr d n e p . (3.7) 
By the bound in (4.3) in the Appendix, we see that sup

p∈∂S f κ p (ε n ) → 0 as n → ∞. (3.8)
Then, since e p is a normal vector to ∂S f at p which is directed towards the interior of S f , there exists an integer N 0 independent of p, t and u such that, for all n ≥ N 0 , the point p + (t/ nr d n )e p belongs to the interior of S f . Therefore, f (p + (t/ nr d n )e p ) > 0 and, letting

ϕ n (x) = P (X ∈ B(x, r n )) ,
we obtain

E ∆ n p + t nr d n e p = P π n p + t nr d n e p = 0 = E P ∀i ≤ N n : X i / ∈ B p + t nr d n e p , r n N n = E 1 -ϕ n p + t nr d n e p Nn = exp -nϕ n p + t nr d n e p , (3.9) 
where we used the fact that N n is a mean n Poisson distributed random variable independent of the sample. According to Lemma A.1 in Biau, Cadre, and Pelletier ( 2008), for all x ∈ R d , there exists a quantity K n (x) such that

ϕ n (x) = r d n ω d f (x) + r d+2 n K n (x) and sup n sup x∈R d |K n (x)| < ∞. (3.10)
Moreover, for all x in V(∂S f , ρ) written as x = p + ue p with p ∈ ∂S f and 0 ≤ u ≤ ρ, a Taylor expansion of f at p gives the expression

f (x) = 1 2 D 2 ep f (p + ξe p )u 2 ,
for some 0 ≤ ξ ≤ u since, by Assumption 1-(b), D ep f (p) = 0. Thus, in our context, expanding f at p, we may write

nϕ n p + t nr d n e p = ω d D 2 ep f (p + ξe p ) t 2 2 + nr d+2 n R n (p, t),
for some 0 ≤ ξ ≤ κ p (ε n ), and where R n (p, t) satisfies

sup n sup |R n (p, t)| : p ∈ ∂S f and 0 ≤ t ≤ nr d n κ p (ε n ) < ∞.
Furthermore, by (3.8), each point p + ξe p falls in the tubular neighborhood V(∂S f , ρ) for all large enough n. Consequently, by Assumption 2-(d) there exists α > 0 independent of n and N 1 ≥ N 0 independent of p, t and u such that, for all n ≥ N 1 , inf

p∈∂S f D 2 ep f (p + ξe p ) > 2α.
This, together with identity (3.9) and (r.iii), which implies nr d+2 n → 0, leads to

E ∆ n p + t nr d n e p ≤ C exp(-ω d αt 2 ) (3.11) for n ≥ N 1 and all 0 ≤ t ≤ nr d n sup p∈∂S f κ p (ε n ).
Thus, using inequality (3.11), we deduce that the function on the left hand side of (3.7) is dominated by an integrable function of (p, t, u), which is independent of n provided n ≥ N 1 . Finally, we are in a position to apply the Lebesgue dominated convergence theorem, to conclude that

lim n→∞ n r d n Var (Π n (ε n )) = 2 d ∂S f ∞ 0 B(0,1) Γ(p, t, u)dudtv σ (dp) = σ 2 f .
To be complete, it remains to prove Lemma 3.1.

Proof of Lemma 3.1 Let x n = p + (t/ nr d n )e p . Since nr d n → ∞ and nr d+2 n → 0, both x n and x n + 2r n u lie in the interior of S f for all large enough n. As a consequence, f (x n ) > 0 and f (x n + 2r n u) > 0 for all large enough n. Thus,

C (∆ n (x n ), ∆ n (x n + 2r n u)) = C (1{π n (x n ) = 0}, 1{π n (x n + 2r n u) = 0}) = P (π n (x n ) = 0, π n (x n + 2r n u) = 0) -P (π n (x n ) = 0) P (π n (x n + 2r n u) = 0) = P (∀i ≤ N n : X i / ∈ B(x n , r n ) ∪ B(x n + 2r n u, r n )) -P (∀i ≤ N n : X i / ∈ B(x n , r n )) P (∀i ≤ N n : X i / ∈ B(x n + 2r n u, r n )) = exp [-nµ (B(x n , r n ) ∪ B(x n + 2r n u, r n ))] -exp [-nµ(B(x n , r n )) -nµ(B(x n + 2r n u, r n ))] ,
where µ denotes the distribution of X. Let B n = B(x n , r n )∩B(x n +2r n u, r n ).

Using the equality

µ (B(x n , r n ) ∪ B(x n + 2r n u, r n )) = ϕ n (x n ) + ϕ n (x n + 2r n u) -µ(B n ),
we obtain

C (∆ n (x n ), ∆ n (x n + 2r n u)) (3.12) = exp [-n (ϕ n (x n ) + ϕ n (x n + 2r n u))] [exp (nµ(B n )) -1] . Now, µ(B n ) may be expressed as µ(B n ) = f (x n )λ(B n ) + Bn (f (v) -f (x n )) dv.
Since f is of class C 1 on R d , by developing f at x n in the above integral, we obtain

Bn (f (v) -f (x n )) dv = r d+1 n R n , where R n satisfies |R n | ≤ C sup K grad f ,
and K is some compact subset of R d containing ∂S f and of nonempty interior. Next, note that λ(B n ) = r d n β(u), where β(u) = λ (B(0, 1) ∩ B(2u, 1)) .

Therefore, expanding f at p in the direction e p , we obtain

µ(B n ) = β(u) t 2 2n D 2 ep f p + ξ t nr d n e p + r d+1 n R n ,
where ξ ∈ (0, 1). Hence by (r.iii),

lim n→∞ nµ(B n ) = β(u)D 2 ep f (p) t 2 2 .
The above limit, together with identity (3.12) and (3.10), leads to the desired result.

3.2 Central limit theorem for Π n (ε n )

In this subsection we establish a central limit theorem for Π n (ε n ). Set

S n (ε n ) = a n (Π n (ε n ) -EΠ n (ε n )) σ n ,
where a n = (n/r d n ) 1/4 and

σ 2 n = Var a n (Π n (ε n ) -EΠ n (ε n )) .
We shall verify that as n → ∞

S n (ε n ) D → N (0, 1). (3.13)
To show this we require the following special case of Theorem 1 of [START_REF] Shergin | The central limit theorem for finitely dependent random variables[END_REF]. Next, consider the regular grid given by

A = (x i 1 , x i 1 +1 ] × . . . × (x i d , x i d +1 ], where i =(i 1 , . . . , i d ), i 1 , . . . , i d ∈ Z and x i = i r n for i ∈ Z. Define R i = A i ∩ Ẽn .
With J n = {i ∈ Z d : A i ∩ Ẽn = ∅ } we see that {R i : i ∈ J n } constitutes a partition of Ẽn such that, for all large n and each i

∈ J n , λ (R i ) ≤ r d n , where Card (J n ) ≤ C γ n nr 3d n .
To get the upper bound above, we use the fact that for some ρ > 0, for all large n, Ẽn ⊂

V ∂S f , ρ√ ε n . Thus, since r n / √ ε n → 0 by (3.2), i∈Jn A i ⊂ V (∂S f , (ρ + 2) √ ε n )
and, consequently,

r d n Card (J n ) ≤ λ V (∂S f , (ρ + 2) √ ε n ) ≤ C √ ε n .
Keeping in mind the fact that for any disjoint sets B 

1 , . . . , B k in R d such that, for 1 ≤ i = j ≤ k, inf { x -y : x ∈ B i , y ∈ B j } > r n , Fact 
U n = N 1,n -nβ n √ n and V n = N 2,n -n(1 -β n ) √ n .
Let (S n ) be a sequence of real-valued random variables such that (i) For each n ≥ 1, the random vector

(S n , U n ) is independent of V n . (ii) For some σ 2 < ∞, S n D → σZ as n → ∞. (iii) β n → 0 as n → ∞.
Then, for all x,

P(S n ≤ x | N n = n) → P(σZ ≤ x). Let D n = {x ∈ R d : f (x) ≤ 2ε n }.
We shall apply Fact 3.2 to S n (ε n ) with

N 1,n = Nn i=1 1{X i ∈ D n }, N 2,n = Nn i=1 1{X i / ∈ D n } and β n = P(X ∈ D n ). Let M = sup x∈R d d i=1 ∂f (x) ∂x i .
We see that for all large enough n, whenever x ∈ E n and y ∈ B (x, r n ), by the mean value theorem,

f (y) ≤ f (x) + M r n ≤ ε n 1 + M r n ε n .
This combined with (3.2) implies for all large n Therefore for all large enough n, the random variables S n (ε n ) and N 2,n are independent. Thus by (3.15) and β n → 0, we can apply Fact 3.2 to conclude that (3.16) holds.

Next we proceed just as in [START_REF] Mason | Asymptotic normality of plug-in level set estimates[END_REF] to apply a moment bound given in Lemma 2.1 of Giné, [START_REF] Giné | The L 1 -norm density estimator process[END_REF] to show that

E a n (L n (ε n ) -EΠ n (ε n )) 2 ≤ 2σ 2 n .
Therefore, since by (3.5), σ 2 n → σ 2 f < ∞, the sequence (a n (L n (ε n ) -EΠ n (ε n ))) is uniformly integrable. Hence we get using (3.16) that a n (EL n (ε n ) -EΠ n (ε n )) → 0.

Thus, still by (3.16),

a n (L n (ε n ) -EL n (ε n )) σ n D → N (0, 1).
This in turn implies (3.3).

Completion of the proof of Theorem 2.1

It remains to verify (3.4). Observe that

L n (ε n ) = E c n 1{f n (x) > 0} -1{f (x) > 0} dx = E c n 1{f n (x) = 0}dx.
We shall begin by bounding, for all x ∈ E c n , P(f n (x) = 0) = (1ϕ n (x)) n ≤ exp (-nϕ n (x)) ,

where we recall that ϕ n (x) = P (X ∈ B(x, r n )) .

Thus, by identity (3.10) and using nr d+2 n → 0 we obtain, for some constant κ > 0 independent of x, (Θ(.))v σ (∂S f ) r n + sup

p∈∂S f κ p (ε n ) ≤ C( √ ε n + r n ), (4.4) 
for some constant C > 0, which justifies the bound on λ( Ẽn ) given in (3.14).

Lemma 3 . 1 C ∆ n p + t nr d n e p , ∆ n p + t nr d n e p

 31p Let p ∈ ∂S f , t > 0 and u ∈ B(0, 1) be fixed. Suppose that the conditions of Theorem 2.1 hold. Thenlim n→∞ + 2r n u = Γ(p, t, u),where Γ(p, t, u) is defined in Theorem 2.1.

Fact 3 . 1

 31 Let (X i,n : i ∈ Z d ) denote a triangular array of mean zero mdependent random fields, and letJ n ⊂ Z d be such that (i) Var i∈Jn X i,n → 1 as n → ∞, and (ii) For some 2 < s < 3, i∈Jn E|X i,n | s → 0 as n → ∞. Then i∈Jn X i,n D → N (0, 1).We use Shergin's result as follows. Recall the definition of ε n and γ n in (3.1). Recall also thatVar(Π n (ε n )) = Ẽn Ẽn C (∆ n (x), ∆ n (y)) dxdy, with Ẽn = E n ∩ S rn f . Under Assumptions 1-(b) and 2-(a), λ( Ẽn ) ≤ C( √ ε n + r n ) 2). The first part of inequality (3.14) is established in the Appendix, see inequality (4.4).

x∈EnB

  (x, r n ) ∩ D c n = ∅.

P

  (f n (x) = 0) ≤ C exp(-κε n nr d n ).Consequently,a n EL n (ε n ) κε n nr d n ).for all 0 < ε < ε 0 .Since D ep f (p) = 0 for all p ∈ ∂S f by assumption, by using a second order expansion of f at p in combination with (4.1), we have sup , u)duv σ (dp)≤ sup V(∂S f ,ρ)

  1) 1 Ẽn (p + ve p )1 Ẽn (p + ve p + 2r n u)× Θ(p, v)C (∆ n (p + ve p ), ∆ n (p + ve p + 2r n u)) dudvv σ (dp).For all p ∈ ∂S f , let κ p (ε n ) be the distance between p and the point x of the set {x ∈ R d : f (x) = ε n } such that the vector xp is orthogonal to ∂S f .

	Using the change of variable v = t/ nr d n , we may write
	Var (Π n (ε n )) = 2 d r d n nr d n ∂S f		√ -√ nr d n κp(εn) nr d+2 n		B(0,1)	1 Ẽn p +	t nr d n	e p + 2r n u Θ p,	t nr d
	Consequently,								d+2 n	→ 0.
	n n r d	Var (Π n (ε n ))					
	= o(1) + 2 d	∂S f	0	√	nr d n κp(εn)	B(0,1)	1 Ẽn p +	t nr d n	e p + 2r n u Θ p,	t nr d n
		× C ∆ n p +	t nr d n	e p , ∆ n p +	t nr d

n × C ∆ n p + t nr d n e p , ∆ n p + t nr d n e p + 2r n u dudtv σ (dp). For a justification of this change of variable, refer to equation (2.2) and equation (4.2) in the Appendix. By conditions (r.i) and (r.iii), nr n e p + 2r n u dudtv σ (dp).

  3.2 Let N 1,n and N 2,n be independent Poisson random variables with N 1,n being Poisson (nβ n ) and N 2,n being Poisson (n(1-β n )) where β n ∈ (0, 1). Denote N n = N 1,n + N 2,n and set

∆ n (x)dx, i = 1, . . . , k, are independent, we can easily infer that

Recalling that

Hence,

Clearly this bound when combined with (r.iii), namely, nr d+1 n → 0, gives as n → ∞, i∈Jn E|X i,n | 5/2 → 0, which by the Shergin Fact 3.1 (with s = 5/2) yields

Thus (3.13) holds. 4 Appendix: Properties of {x : 0 < f (x) ≤ ε} Under Assumption Sets 1 and 2, we known that there exists a tubular neighborhood

Central limit theorem for

and second,

Consequently, for all 0 < ε < ε 0 , we have

Moreover, (4.1), together with the fact that f = 0 on ∂S f , entails that for all p ∈ ∂S f , the maps u → f (p + ue p ) are strictly convex and strictly increasing on [0, ρ]. Therefore, for all 0 < ε < ε 0 , and for all p ∈ ∂S f there exists a unique real number κ p (ε) such that f (p + κ p (ε)e p ) = ε.

Note that we also have the relation