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EULER CHARACTERISTIC OF REAL NONDEGENERATE TROPICAL COMPLETE INTERSECTIONS

We define nondegenerate tropical complete intersections imitating the corresponding definition in complex algebraic geometry. As in the complex situation, all nonzero intersection multiplicity numbers between tropical hypersurfaces defining a nondegenerate tropical complete intersection are equal to 1. The intersection multiplicity numbers we use are sums of mixed volumes of polytopes which are dual to cells of the tropical hypersurfaces. We show that the Euler characteristic of a real nondegenerate tropical complete intersection depends only on the Newton polytopes of the tropical polynomials which define the intersection. Basically, it is equal to the usual signature of a complex complete intersection with same Newton polytopes, when this signature is defined. The proof reduces to the toric hypersurface case, and uses the notion of E-polynomials of complex varieties.

Introduction

Tropical geometry appeared recently in various fields of mathematics (See [START_REF] Richter-Gebert | First steps in tropical geometry, Idempotent mathematics and mathematical physics[END_REF], [START_REF] Einsiedler | Non-archimedean amoebas and tropical varieties[END_REF], [START_REF] Pachter | Tropical geometry of statistical models[END_REF], [START_REF] Mikhalkin | Enumerative tropical algebraic geometry in R 2[END_REF]). Tropical varieties can be defined as the topological closure of the image under the valuation of algebraic varieties over the field of Puiseux Series K. For example T is a tropical hypersurface if there exists an algebraic hypersurface Z K in (K * ) n such that T = V (Z) where V is the coordinatewise valuation (we rather take minus the valuation). By a theorem due to Kapranov (see Theorem 3.2) tropical hypersurfaces are nonlinearity loci of piecewise-linear convex functions on R n of the form f trop (x) = max ω∈Ω (< x, ω > -a ω ) where Ω is a finite subset of Z n and a ω a real number. One of the important application of tropical geometry is due to Mikhalkin [START_REF] Mikhalkin | Enumerative tropical algebraic geometry in R 2[END_REF] who gave a combinatorial way to count the number of curves of given degree and genus passing through the appropriate number of given generic points. Mikhalkin's proof uses a complexification of tropical curves and a patchworking principle. The algorithm exposed in [START_REF] Mikhalkin | Enumerative tropical algebraic geometry in R 2[END_REF] has a real counterpart for which it is necessary to introduce the real part of complexified tropical curves. The relation between these real tropical objects and objects appearing in Viro combinatorial patchworking method is very deep (see [START_REF] Viro | Dequantization of real algebraic geometry on logarithmic paper[END_REF], for example). Actually nonsingular real tropical hypersurfaces are equivalent from the topological point of view to the so called primitive T -hypersurfaces appearing in the combinatorial Viro method.

In [START_REF] Sturmfels | Viro's theorem for complete intersections[END_REF], Bernd Sturmfels generalized the combinatorial patchworking method to complete intersections (see Section 2). The above definition also applies for tropical varieties. Namely, one can define a tropical variety to be the image of an algebraic variety over K under the valuation map (see Section 3). This leads also to the notion of complex tropical variety and real tropical variety (see Section 6). In Section 5 we give a definition for the notion of nondegenerate tropical complete intersection which builds upon the definition of a nonsingular tropical hypersurface in a manner similar to the classical complex situation, recalled in Section 1. We extend in Section 4 the definition of tropical intersection multiplicity numbers which was introduced by Mikhalkin Bertrand was partially supported by the European research network IHP-RAAG contract HPRN-CT-2001-00271 and whishes to thank Max Planck Institut für Mathematik for excellent working conditions. in [START_REF] Mikhalkin | Tropical Geometry and its applications[END_REF] and show that our definition is consistent with the classical situation. In particular, all intersection multiplicity numbers which occur in a nondegenerate tropical complete intersection are equal to 1 (or 0). We think that our definition of tropical intersection multiplicity numbers can be of independent interest. The goal of this paper is to extend a previous result of the first author (see [START_REF] Bertrand | Euler characteristic of primitive T-hypersurfaces and maximal surfaces[END_REF]) from the case of hypersurfaces to the case of complete intersections. Roughly speaking, we prove that if f 1 , . . . , f k are polynomials in K[z 1 , . . . , z n ] which define a nondegenerate tropical complete intersection Y trop , then the Euler characteristic of the corresponding real tropical complete intersection RY trop depends only on the Newton polytopes ∆ 1 , . . . , ∆ k of the polynomials and is equal to the mixed signature σ(Y ) of a generic complex intersection Y defined by complex polynomials with the same Newton polytopes. The precise statement is given in Theorem 8.1. The notion of mixed signature is defined by means of the so called E-polynomials (see Section 7). When Y is a projective complete intersection of even dimension (over C), then the mixed signature σ(Y ) is equal to the usual signature σ(Y ) = p+q=0 [START_REF] Bertrand | Hypersurfaces et intersections complètes maximales dans les variétés toriques[END_REF] (-1) p h p,q (Y ), where the h p,q (Y ) are Hodge numbers. One advantage of the mixed signature is that it is defined even for a non-projective variety and is additive, as it is the case for the Euler characteristic. With the help of this additivity property, we are able to reduce the proof of the main result to a proof of the toric hypersurface case. The proof of the toric hypersurface case uses heavily results obtained by V. Batyrev and L. Borisov in the paper [START_REF] Victor | Borisov Mirror duality and string-theoric Hodge numbers[END_REF].

Toric geometry

We fix some notations and recall some standard properties of toric geometry. We refer to [START_REF] Fulton | Introduction to toric varieties[END_REF] for more details. Let N ≃ Z n be a lattice of rank n and M = Hom Z (N, Z) be its dual lattice. The associated complex torus is where each m belongs to M and only a finite number of c m are nonzero. We will usually have

T N := Spec(C[M ]) = Hom Z (M, C * ) = N ⊗ Z C * ≃ (C * ) n . Let f ∈ C[M ]
M = Z n , so that C[M ] = C[x ±1 1 , . . . , x ±1 n ].
The support of f is the subset of M consisting of all m such that the coefficient c m is nonzero. The convex hull of this support in the real affine space generated by M is called the Newton polytope of f . This is a lattice polytope, or a polytope with integer vertices, which means that all the vertices of ∆ belong to M . In this paper all polytopes will be lattice polytopes and the ambient lattice M will be clear from the context. We denote by M (∆) the saturated sublattice of M which consists of all integer vectors parallel to ∆ and by N (∆) the dual lattice. The dimension of ∆ is the rank of M (∆), or equivalently the dimension of the real vector space M (∆) R generated by ∆. The polynomial f (or rather x -m f ∈ C[M (∆)] for any choice of m in the support of f ) defines an hypersurface Z f in the torus T N (∆) . Let X ∆ denote the projective toric variety associated with ∆. The variety X ∆ contains T N (∆) as a dense Zarisky open subset and we denote by Zf the Zarisky closure of Z f in X ∆ . Let Γ be any face of ∆. If f Γ is the truncation of f to Γ, that is, the polynomial obtained from f by keeping only those monomials whose exponents belong to Γ, then Zf ∩ T N (Γ) = Z f Γ and Zf ∩ X Γ = Zf Γ . We have the classical notion of nondegenerate Laurent polynomial. Definition 1.1. A polynomial f with Newton polytope ∆ is called nondegenerate if for any face Γ of ∆ of positive dimension (including ∆ itself ), the toric hypersurface Z f Γ is a nonsingular hypersurface.

Note that if Γ is a vertex of ∆, then Z f Γ is empty. In the previous definition, one may equivalently consider f Γ as a polynomial in C[M ] and thus look at the corresponding hypersurface of the whole torus T N . Indeed, this hypersurface of T N is the product of Z f Γ ⊂ T N (Γ) with the subtorus of T N corresponding to a complement of M (Γ) in M . If ∆ is the Newton polytope of f , then the projective hypersurface Zf ⊂ X ∆ is nonsingular if and only if f is nondegenerate and X ∆ has eventually a finite number of singularities which are zero-dimensional T N (∆) -orbits corresponding to vertices of ∆. Consider polynomials f 1 , . . . , f k ∈ C[M ] and denote by ∆ i the Newton polytope of f i . Let ∆ be the Minkowsky sum of these polytopes

∆ = ∆ 1 + • • • + ∆ k . Each polynomial f i seen as a polynomial in C[M (∆)] defines a toric hypersurface Z f i ,∆ in T N (∆)
and it makes sense to consider the toric intersection

(1.1) Z f 1 ,∆ ∩ • • • ∩ Z f k ,∆ ⊂ T N (∆) .
Denote by Zf i ,∆ the Zarisky closure in X ∆ of Z f i ,∆ . For each i = 1, . . . , k there is a toric surjective map ρ i :

X ∆ → X ∆ i such that Z f i ,∆ = ρ -1 i (Z f i ) and Zf i ,∆ = ρ -1 i ( Zf i ). This leads to (1.2) Zf 1 ,∆ ∩ • • • ∩ Zf k ,∆ ⊂ X ∆ .
Each face Γ of ∆ can be uniquely written as a Minkowsky sum

(1.3) Γ = Γ 1 + • • • + Γ k where Γ i is a face of ∆ i . Substituting the truncation g i := f Γ i i to f i and Γ i to ∆ i gives the toric intersection (1.4) Z g 1 ,Γ ∩ • • • ∩ Z g k ,Γ ⊂ T N (Γ) .
which leads to

(1.5) Zg 1 ,Γ ∩ • • • ∩ Zg k ,Γ ⊂ X Γ .
Similarly to the hypersurface case the intersection of (1.2) with T N (Γ) (resp., X Γ ) coincides with (1.4) (resp., (1.5)). Moreover, the intersection (1.2) is the union over all faces Γ of ∆ of the toric intersections (1.4).

The Cayley polynomial associated with f 1 , . . . , f k is the polynomial

F ∈ C[M ⊕ Z k ] defined by (1.6) F (x, y) = k i=1 y i f i (x).
Its Newton polytope is the Cayley polytope associated with ∆ 1 , . . . , ∆ k and will be denoted by

(1.7) C(∆ 1 , . . . , ∆ k ) ⊂ M R × R k .
Since F is a homogeneous (of degree 1) with respect to the variable y, the polytope C(∆ 1 , . . . , ∆ k ) lies on a hyperplane and has thus dimension at most n + k -1. In fact, the dimension of 

C(∆ 1 , . . . , ∆ k ) is dim(∆) + k -1.
y i f Γ i i (x)
such that ∅ = I ⊂ {1, . . . , k} and Γ = i∈I Γ i is a face of i∈I ∆ i with Γ i a face of ∆ i for each i. We will call admissible such a collection (Γ i ) i∈I . Note that by face we do not mean proper face. In particular (∆ i ) i∈I is admissible for any non empty subset I of {1, . . . , k}. If (Γ i ) i∈I is admissible, we also call admissible the collection of polynomials (f Γ i i ) i∈I and the corresponding toric intersection

(1.8) i∈I Z f Γ i i ,Γ ⊂ T N (Γ) . Definition 1.2. The collection (f 1 , . . . , f k ) is nondegenerate if the associated Cayley polynomial F (x, y) = k i=1 y i f i (x) is nondegenerate.
The following result is based on the classical Cayley trick (see, for example, [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications[END_REF]).

Proposition 1.3. The collection (f 1 , . . . , f k ) is nondegenerate if and only if any admissible toric intersection (1.8) is a complete intersection.

Proof. As mentionned earlier, we can consider the polynomials f Γ i i occurring in (1.8) as polynomials in C[M ] and thus look at the corresponding intersection in the whole torus T N . An easy computation shows that if hypersurfaces defined by polynomials g i ∈ C[M ], i ∈ I, do not intersect transversally at a point X ∈ T N , then there exists λ = (λ j ) j∈J ∈ (C * ) |J| with J ⊂ I so that j∈J y j g j (x) defines an hypersurface with a singular point at (X, λ) ∈ T N × (C * ) |J| . Similarly, if a truncation i∈I y i g i (x) of F to a face of C(∆ 1 , . . . , ∆ k ) defines an hypersurface with a singular point (X, λ) in the corresponding torus, then the hypersurfaces defined by g i for i ∈ I will not intersect transversally at X ∈ T N .

Combinatorial patchworking

The combinatorial patchworking, also called T -construction, is a particular case of the Viro method. The general Viro method starts with a convex polyhedral subdivision of a polytope ∆ contained in the positive orthant (R + ) n of R n . Recall that in this paper all polytopes, including those of a polyhedral subdivision, are lattice polytopes. Here, the ambient lattice is Z n . Definition 2.1. A polyhedral subdivision of a polytope ∆ of dimension n is called convex (or coherent) if there exists a convex piecewise-linear function ν : ∆ → R whose maximal domains of linearity coincide with the n-polytopes of the subdivision.

We begin with a brief description of the combinatorial patchworking in the hypersurface case (see, for example, [START_REF] Itenberg | Maximal real algebraic hypersurface of projective space[END_REF], [START_REF] Viro | Patchworking Real Algebraic varieties[END_REF] or [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications[END_REF]). Let ∆ ⊂ (R + ) n be a polytope of maximal dimension n. Start with a convex triangulation S of ∆ and a sign distribution δ : vert(S) → {±1} at the vertices of S. Let ν : ∆ → R be any function which certifies the convexity of S and consider the polynomial

f t (x) = vert(S) δ(w)t ν(w) x w
where the sum is taken over the set of vertices of S. Such a polynomial is called a T-polynomial.

Denote by s (i) the reflection about the i-th coordinate hyperplane in R n . Let ∆ * be the union of the 2 n symmetric copies of ∆ via compositions of these reflections and extend S uniquely to a triangulation S * which is symmetric with respect to the coordinate hyperplanes. Extend the sign distribution δ to a sign distribution δ * at the vertices of S * so that a vertex of S * and its image under a reflection s (i) have the same sign if and only if the i-th coordinate of the vertex is even. If σ is an n-simplex of S * whose vertices have different signs, select the hyperplane piece which is the convex hull of the middle points of the edges of σ with endpoints of opposite signs. The union of all these selected pieces produces a piecewise-linear hypersurface H * in ∆ * .

We perform identifications on the boundary of ∆ * in the following way. Let Γ be any proper face of ∆ and consider the cone generated by all outward real vectors which are orthogonal to the facets of ∆ incident to Γ. The integer vectors in this cone form a finitely generated semigoup. Identify two points lying on two symmetric copies of Γ whenever they are symmetric via s (1)

v 1 • s (2) v 2 • • • • • s (n)
vn for some v = (v 1 , . . . , v n ) in this semi-group. Denote by ∆ the result of these identifications. By a classical result (see, for example, [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications[END_REF] Theorem 5.4 p. 383 [START_REF] Sturmfels | Viro's theorem for complete intersections[END_REF] Proposition 2), there is an homeomorphism between the real part RX ∆ of X ∆ and ∆. Moreover, this homeomorphism can be choosen so that it respects the stratification by torus orbits in the sense that the real torus orbit corresponding to a face Γ of ∆ is sent to the image under the previous identifications of the union of the symmetric copies of the interior of Γ. In particular, the dense real torus (R * ) n ⊂ RX ∆ is sent to the union of the symmetric copies of the interior of ∆. Denote by H the image of H * in ∆.

Theorem 2.2 (T-construction, O. Viro). For t > 0 sufficiently small, the polynomial f t is nondegenerate. Moreover, there exists an homeomorphism RX ∆ → ∆ which respects the stratification by torus orbits and induces an homeomorphism between the real part of the hypersurface Zf ⊂ X(∆) and H.

We now describe the extension of the combinatorial patchworking to the case of complete intersections due to B. Sturmfels [START_REF] Sturmfels | Solving polynomial equations[END_REF]. Start with k ≥ 2 polytopes ∆ 1 , . . . , ∆ k in (R + ) n . Assume that each ∆ i comes with a convex polyhedral subdivision S i induced by a convex piecewiselinear map ν i : ∆ i → R. These functions ν 1 , . . . , ν k define a convex polyhedral subdivision of the Minkowsky sum ∆ = ∆ 1 + • • • + ∆ k in the following way (see [START_REF] Sturmfels | Viro's theorem for complete intersections[END_REF], [START_REF] Sturmfels | On the Newton polytope of the resultant[END_REF] or [START_REF] Bihan | Viro method for the construction of real complete intersections[END_REF]). Let ∆i be the convex hull of the set {(x,

ν i (x)), x ∈ ∆ i } in R n × R . Let ∆ ⊂ R n × R be the Minkowski sum ∆1 + • • • + ∆k .
Let MS be the convex polyhedral subdivision of ∆ induced by ν. Each lower face Γ of ∆ can be uniquely written as a Minkowsky sum Γ1 + • • • + Γk of lower faces of ∆1 , . . . , ∆k . Projecting to ∆, this gives a representation of each polytope Γ of MS as Γ = Γ 1 + • • • + Γ k with Γ i ∈ S i for i = 1, . . . , k. Such a representation is not unique in general, and we shall always use the one obtained by projecting lower faces of ∆. The polyhedral subdision MS together with the associated representation of each of its polytopes is called a convex or coherent mixed subdivision. Sturmfels' theorem requires the following genericity condition. Namely, assume that each subdivision S i is a triangulation and that

dim Γ = dim Γ 1 + • • • + dim Γ k for any Γ = Γ 1 + • • • + Γ k ∈ MS with Γ i ∈ S i .
We call such a mixed subdivision a convex tight mixed subdivision. (See [START_REF] Bihan | Viro method for the construction of real complete intersections[END_REF][START_REF] Bihan | Viro method and Cayley trick[END_REF] for other versions of the Viro method for complete intersections).

Suppose now that for i = 1, . . . , k a sign distribution δ i : vert(S i ) → ±1 is given. Consider the T-polynomials associated with these data

f i,t (x) = vert(S i ) δ i (w)t ν i (w) x w .
Extend MS to a subdivision MS * of ∆ * by means of the reflections about coordinate hyperplanes. Hence MS * consists of the polytopes s(Γ) = s(Γ 1 ) + • • • + s(Γ k ) where s is a composition of coordinate hyperplane reflections and Γ = Γ

1 + • • • + Γ k ∈ MS (Γ i ∈ S i ).
Extend δ i to a sign distribution δ * i at the vertices of S * i using the rule described above. Define a sign distribution

δ : vert(MS) → {±1} k by assigning (δ 1 (v 1 ), . . . , δ k (v k )) to each vertex v of MS with represen- tation v = v 1 + • • • + v k .
Extend δ to a sign distribution δ * at the vertices of MS * so that the i-th sign of a symmetric copy s(v)

of v = v 1 + . . . + v k is δ * i (s(v i ))
. For any i = 1, 2, . . . , k, let H * i ⊂ ∆ * i be the piecewise-linear hypersurface constructed via the combinatorial patchworking from S i and δ i . Let H ∆, * i ⊂ ∆ * be the union over all polytopes Sturmfels). For t > 0 sufficiently small the collection (f 1,t , . . . , f k,t ) is nondegenerate. Moreover, there exists an homeomorphism RX ∆ → ∆ which respects the stratification by torus orbits and induces for each i an homeomorphism between the real part of the hypersurface Z∆ f ⊂ X(∆) and H ∆ i . These two versions -for hypersurfaces and complete intersections -of the combinatorial patchworking are related by the so-called combinatorial Cayley trick. Consider the Cayley polynomial

s(Γ) = s(Γ 1 ) + . . . + s(Γ k ) ∈ MS * of ⊕ j =i s(Γ j ) + H * i ∩ s(Γ i ) ⊂ s(Γ). Let H ∆ i denote the image of H ∆ i in ∆. Theorem 2.3 (B.
F t ∈ R[x, y] associated with (f 1,t , . . . , f k,t ) F t (x, y) = k i=1 y i f i,t (x) .

Its Newton polytope is the Cayley polytope

C(∆ 1 , . . . , ∆ k ) ⊂ R n+k + . Let (a, b) be coordinates on R n+k = R n × R k . Consider the subspace B of R n+k defined by b 1 = b 2 = • • • = b k = 1/k and identify it with R n via the projection (a, b) → a. This identifies B ∩ C(∆ 1 , . . . , ∆ k ) with ∆ = ∆ 1 + • • • + ∆ k dilated by 1/k.
Note that the space defined by b i = 1 and b j = 0 for j = i intersects C(∆ 1 , . . . , ∆ k ) along a face which can be identified with ∆ i via the projection. Consider a polyhedral subdivision of C(∆ 1 , . . . , ∆ k ). If F is a polytope of maximal dimension dim ∆ + k -1 in this subdivision, then it intersects the space defined by b i = 1 and b j = 0 for j = i along a nonempty face F i , which projects to a (nonempty) subpolytope Γ i of ∆ i . Then F ∩ B is identified via the projection with the polytope Γ

= Γ 1 + • • • + Γ k ⊂ ∆ dilated by 1/k. This gives a correspondence between polyhedral subdivisions of C(∆ 1 , . . . , ∆ k ) and mixed subdivisions of ∆ = ∆ 1 + • • • + ∆ k .
It is easily seen that triangulations of C(∆ 1 , . . . , ∆ k ) are sent to tight mixed subdivision via this correspondence. The following result can be found, for example, in [START_REF] Sturmfels | On the Newton polytope of the resultant[END_REF].

Proposition 2.4. The correspondence described above is a bijection between the set of convex polyhedral subdivision of C(∆ 1 , . . . , ∆ k ) and the set of mixed subdivisions of

∆ = ∆ 1 + • • • + ∆ k . Precisely, let ν : C(∆ 1 , . . . , ∆ k ) → R
be any convex piecewise-linear function and let ν i denote its restriction to ∆ i identified with a face of C(∆ 1 , . . . , ∆ k ) via the projection (a, b) → a. Then the correspondence described above sends the coherent polyhedral subdivision of C(∆ 1 , . . . , ∆ k ) defined by ν to the coherent mixed subdivision of ∆ defined by (ν 1 , . . . , ν k ).

Note that in the situation of Theorem 2.3, the Cayley polynomial F t is a T-polynomial. The non degeneracy of (f 1,t , . . . , f k,t ) in Theorem 2.3 follows from Proposition 1.3 and Theorem 2.2 applied to F t .

Standard definitions and properties in tropical geometry

The setting and notation here are the same as in [START_REF] Bertrand | Euler characteristic of primitive T-hypersurfaces and maximal surfaces[END_REF]. A detailed exposition can be found in [START_REF] Mikhalkin | Enumerative tropical algebraic geometry in R 2[END_REF] and in [START_REF] Itenberg | Lecture notes of the Oberwolfach seminar[END_REF], for example. Let K be the field of Puiseux series. An element of K is a series g(t) = r∈R b r t r where each b r is a complex number and R ⊂ Q is bounded from below and contained in an arithmetic sequence. Consider the valuation val(g(t)) := min{r | b r = 0}. Using Mikhalkin's conventions, we rather use minus the valuation v(g) :=val(g). Define

V : (K * ) n -→ R n z -→ (v(z 1 ), . . . , v(z n )). Let f be a polynomial in K[z 1 , . . . , z n ] = K[z]. It is of the form f (z) = ω∈A c ω z ω with A a finite subset of Z n and c ω ∈ K * . Let Z f = {z ∈ (K * ) n | f (z) = 0} be the zero set of f in (K * ) n . Definition 3.1. The tropical hypersurface Z trop f associated to f is the closure (in the usual topology) of the image under V of Z f : Z trop f = V (Z f ) ⊂ R n .
There are other equivalent definitions of a tropical hypersurface. Namely, define

ν : A -→ R ω -→ -v(c ω )
Its Legendre transform is the piecewise-linear convex function

L(ν) : R n -→ R x -→ max ω∈A (x • ω -ν(ω)) Theorem 3.2 (Kapranov). The tropical hypersurface Z trop f is the corner locus of L(ν).
The corner locus of L(ν) is the set of points at which it is not differentiable. Another way to define a tropical hypersurface is to use the tropical semiring Rtrop, which is R ∪ {-∞} endowed with the following tropical operations. The tropical addition of two numbers is the maximum of them, and thus its neutral element is -∞. The tropical multiplication is the ordinary addition with the convention that x + (-∞) = -∞ + x = -∞. Removing the neutral element for the tropical addition, we get the one dimensional tropical torus

Trop := R = Rtrop \ {-∞}. A multivariate tropical polynomial is a polynomial in R[x 1 , . . . , x n ]
where the addition and multiplication are the tropical ones (strictly speaking, the coefficients are in Rtrop, but as usual we omit the monomials whose coefficients are the neutral element for the addition). Hence, a tropical polynomial is given by a maximum of finitely many affine functions whose linear parts have integer coefficients and constant parts are real numbers. The tropicalization of a polynomial

f (z) = ω∈A c ω z ω ∈ K[z]
where the coefficients c ω ∈ K are all nonzero is the tropical polynomial

Trop(f )(z) = ω∈A v(c ω )z ω ∈ R[z].
This tropical polynomial coincides with the piecewise-linear convex function L(ν) defined above. Therefore, Theorem 3.2 asserts that Z trop f is the corner locus of Trop(f ). Conversely, the corner locus of any tropical polynomial is a tropical hypersurface (just take a polynomial in K[z] whose coefficients have the right valuations). For these reasons, we will sometimes speak about the tropical hypersurface defined by a polynomial f without specifying if f is in K[z] or if f is a tropical polynomial (the tropicalization of the latter).

The Newton polytope of the tropical hypersurface Z trop f is the convex hull of A and will be denoted by ∆. One can associate to Z trop f a polyhedral subdivision S of ∆ in the following way.

Let ∆ ⊂ R n × R be the convex hull of all points (ω, v(c ω )) with ω ∈ A. Define (3.1) ν : ∆ -→ R x -→ min{y | (x, y) ∈ ∆}.
The domains of linearity of ν form a convex polyhedral subdivision S of ∆. The hypersurface Z trop f is an (n -1)-dimensional piecewise-linear complex which induces a polyhedral subdivision Ξ of R n . We will call cells the elements of Ξ. Note that these cells have rational slopes. The n-dimensional cells of Ξ are the closures of the connected components of the complement of Z trop f . The lower dimensional cells of Ξ are contained in Z trop f and we will just say that they are cells of Z trop f . Both subdivisions S and Ξ are dual in the following sense. There is a one-to-one correspondence between Ξ and S, which reverses the inclusion relations, and such that if

σ ∈ S corresponds to ξ ∈ Ξ then (1) dim ξ + dim σ = n, (2) 
the cell ξ and the polytope σ span orthonogonal real affine spaces, (3) the cell ξ is unbounded if and only if σ lies on a proper face of ∆. Note that under this correspondence the cells of Z trop f correspond to positive dimensional polytopes of S. We now underline some similarities between complex toric hypersurfaces and tropical hypersurfaces. As in the complex case, we can start with a polynomial f whose exponent vectors belong to a lattice M ≃ Z n . Then, in view of the definition of L(ν) and Theorem 3.2, the tropical hypersurface lies in the real vector space N R ≃ R n generated by the lattice N dual to M . This real vector space N R can be interpreted as the tropical torus Trop N associated with the lattice N , so that Z trop For the sake of completness, we recall the definition of a tropical variety in N R (see, for example, [START_REF] Einsiedler | Non-archimedean amoebas and tropical varieties[END_REF] and [START_REF] Gathmann | Tropical algebraic geometry[END_REF]). for f ∈ I (see [START_REF] Speyer | The tropical Grassmannian[END_REF][START_REF] Payne | Fibers of tropicalization[END_REF]). There exists a finite number of polynomials f 1 , . . . , f k ∈ I ⊂ K[z] so that Z trop I is the common intersection of the corresponding tropical hypersurfaces (see [START_REF] Bogart | Computing Tropical Varieties[END_REF][START_REF] Hept | Tropical bases by regular projections preprint[END_REF]). Such a collection of polynomials is called a tropical basis of Z trop I . On the other hand, it is known that the common intersection of tropical hypersurfaces is not always a tropical variety.

Intersection multiplicity numbers between tropical hypersurfaces

Recall that all polytopes under consideration have vertices in the underlying lattice M ≃ Z n . A k-dimensional simplex σ with vertices m 0 , m 1 , . . . , m k is called primitive if the vectors m 1m 0 , . . . , m km 0 form a basis of the lattice M (σ), or equivalently, if these vectors can be completed to form a basis of M . Obviously, the faces of a primitive simplex are themselves primitives simplices.

Consider a k-dimensional vector subspace of M R with rational slopes. It intersects M in a saturated subgroup γ of rank k and coincides with the real vector space γ R generated by γ. Any basis of γ produces an isomorphism between γ and Z k , and then by extension an isomorphism between γ R and R k . Let Vol γ be the volume form on γ R obtained as the pull-back via such an isomorphism of the usual Euclidian k-volume on R k . For simplicity, we will write Vol k instead of Vol γ since the lattice γ will be clear from the context. Note that Vol k does not depend on the isomorphism γ ≃ Z k since two basis of γ are obtained from each other by integer invertible linear map which has determinant ±1. Any basis (γ 1 , . . . , γ k ) of γ generate a k-dimensional parallelotope P ⊂ γ R (isomorphic to the cube [0, 1] k ⊂ R k ) called fundamental parallelotope of γ and which verifies Vol k (P ) = 1. Two primitive k-simplices on γ R have the same volume under Vol k (they are interchanged by an invertible integer linear map), and this volume is 1 k! since a fundamental parallelotope of γ can be subdivided into k! primitive k-simplices. We will often use the normalized volume

vol k ( • ) := k! • Vol k ( • )
on γ R . This normalized volume takes all nonnegative integer values on polytopes (with vertices in γ), and we have vol k (σ) = 1 for a polytope σ if and only if σ is a k-dimensional primitive simplex. We will use the following elementary fact. Remark 4.1. Let γ be a subgroup of a free abelian group Λ of finite rank. Assume that Λ and γ have the same rank k, so that the index [Λ : γ] of γ in Λ is well-defined. Then, for any basis (γ 1 , . . . , γ k ) of γ and any basis e = (e 1 , . . . , e k ) of Λ we have

[Λ : γ] = Vol k (G) = vol k (g) = | det(G ij )|,
where G (resp., g) is the k-dimensional parallelotope (resp., k-dimensional simplex) generated by γ 1 , . . . , γ k and (G ij ) is the k × k-matrix whose j-th column is the vector of coordinates of γ j with respect to (e 1 , . . . , e k ). Recall that any polytope σ ∈ MS comes with a privileged representation

σ = σ 1 + • • • + σ k with σ i ∈ S i .
The above duality-correspondence applied to the (tropical) product of the tropical polynomials gives rise to the following fact.

Proposition 4.2.

There is a one-to-one duality correspondence between Ξ and S, which reverses the inclusion relations, and such that if σ ∈ MS corresponds to ξ ∈ Ξ then (1) if ξ = k i=1 ξ i with ξ i ∈ Ξ i (and ξ lies in the relative interior of ξ i ) for i = 1, . . . , k, then

σ has representation σ = σ 1 + • • • + σ k where each σ i is the polytope dual to ξ i . (2) dim ξ + dim σ = n, (3) 
the cell ξ and the polytope σ span orthonogonal real affine spaces, (4) the cell ξ is unbounded if and only if σ lies on a proper face of ∆.

We put weights on the cells of each subdivision Ξ i in the following way. If ξ i ∈ Ξ i is a cell of maximal dimension n (which means that ξ i is not a cell of the tropical hypersurface Z trop f i ), then its weight is defined by w(ξ i ) := 0. If ξ i ∈ Ξ i is a cell of positive codimension d i , then

w(ξ i ) := vol d i (σ i )
where σ i ∈ S i is the polytope corresponding to ξ i . We now define weights on the cells of Ξ in the following way. Consider a cell ξ ∈ Ξ ξ = k i=1 ξ i where ξ i ∈ Ξ i for i = 1, . . . , k (and ξ lies in the relative interior of each ξ i ). Let σ i ∈ S i be the polytope corresponding to ξ i . Set d i := codim ξ i = dim σ i and d := codim ξ = dim σ. Recall that for a polytope P ⊂ M R , we denote by M (P ) the subgroup of M consisting of all integer vectors which are parallel to P . Definition 4.3. The weight of ξ is defined as follows.

• (Tranversal case.) If

d 1 + • • • + d k = d, then w(ξ) = k i=1 w(ξ i ) • [M (σ) : M (σ 1 ) + • • • + M (σ k )] = k i=1 vol d i (σ i ) • [M (σ) : M (σ 1 ) + • • • + M (σ k )] • (General case.
) Translate the tropical hypersurfaces by small generic vectors so that all intersections emerging from ξ are transversal intersections. Define w(ξ) as the sum of the weights at the transversal intersections emerging from ξ and which are cells of codimension d.

Our weights are similar to those introduced by Mikhalkin in [START_REF] Mikhalkin | Tropical Geometry and its applications[END_REF] in order to define tropical cycles. Note that in [START_REF] Mikhalkin | Tropical Geometry and its applications[END_REF] only top-dimensional cells are equipped with weights. In our situation, the top-dimensional cells of the cycle corresponding to the intersection of our tropical hypersurfaces are cells ξ ∈ Ξ of codimension d = k. It follows straightforwardly from the definitions and Lemma 4.4 below that on these top-dimensional cells our weights coincide with those of Mikhalkin. We will show in Theorem 4.5 that our weight does not depend (in the non transversal case) on the translation vectors. It is then natural to interpret w(ξ) as being the intersection multiplicity number between the tropical hypersurfaces Z trop f 1 , . . . , Z trop f k along the cell ξ.

Lemma 4.4. Let γ 1 and γ 2 be saturated subgroups of a free group N such that γ 1 + γ 2 and N have same rank. Then the index of γ 1 + γ 2 in N satisfies to

[N : γ 1 + γ 2 ] = [(γ 1 ∩ γ 2 ) ⊥ : γ ⊥ 1 + γ ⊥ 2 ]
, where γ ⊥ denotes the subgroup of the dual lattice M = Hom Z (N, Z) consisting of all elements of M which vanish on a subgroup γ of N .

Proof. If γ 1 ∩ γ 2 = {0} then (γ 1 ∩ γ 2 ) ⊥ = M and the corresponding equality has been proven in [START_REF] Katz | A Tropical Toolkit[END_REF]. The general case reduces to this case in the following way. Let n be the rank of N . If γ 1 and γ 2 are saturated then so is γ 1 ∩ γ 2 . This implies that the quotient N/(γ 1 ∩ γ 2 ) is a free group of rank nrk (γ 1 ∩ γ 2 ). We have a group isomorphism

N γ 1 + γ 2 ≃ N/(γ 1 ∩ γ 2 ) (γ 1 + γ 2 )/(γ 1 ∩ γ 2 )
and also (γ

1 + γ 2 )/(γ 1 ∩ γ 2 ) = γ 1 γ 1 ∩ γ 2 + γ 2 γ 1 ∩ γ 2 .
The group dual to N/(γ 1 ∩ γ 2 ) is isomorphic to (γ 1 ∩ γ 2 ) ⊥ ⊂ M . It remains to note that if γ 1 and γ 2 are saturated subgroups of N , then for i = 1, 2 the subgroup γ i γ 1 ∩γ 2 of N γ 1 +γ 2 is also saturated.

Let P 1 , . . . , P ℓ be polytopes with vertices in a saturated lattice γ of rank ℓ. The map (λ 1 , . . . , λ ℓ ) → Vol ℓ (λ 1 P 1 + • • • + λ ℓ P ℓ ) is a homogeneous polynomial map of degree ℓ. The coefficient of the monomial λ 1 • • • λ ℓ is called the mixed volume of P 1 , . . . , P ℓ and is denoted by M V ℓ (P 1 , . . . , P ℓ ).

A famous theorem due to Bernstein states that this mixed volume is the number of solutions in the torus associated with the lattice γ of a generic polynomial system f 1 = . . . = f ℓ = 0 where each f i has P i as Newton polytope. Note that M V ℓ (P 1 , . . . , P ℓ ) = 0 if P = P 1 + • • • + P ℓ has not full dimension ℓ or if at least one P i has dimension zero. We may also consider mixed volumes associated with any number m ≤ ℓ of polytopes among P 1 , . . . , P ℓ (see [START_REF] Cox | Using Algebraic Geometry[END_REF]). Namely, let P 1 , . . . , P m be m ≤ ℓ polytopes with vertices in a lattice of rank ℓ and let t = (t 1 , . . . , t m ) be a collection of positive integer numbers such that m i=1 t i = ℓ. Then define M V ℓ (P 1 , . . . , P m ; t) := M V ℓ (P 1 , . . . , P ),

where on the right each P i is repeated t i times. We note that [START_REF] Cox | Using Algebraic Geometry[END_REF], page 327).

1 t 1 !•••tm! • M V ℓ (P 1 , . . . , P m ; t) is the coefficient of λ t 1 1 • • • λ tm m in the homogeneous degree ℓ polynomial map (λ 1 , . . . , λ m ) → Vol ℓ (λ 1 P 1 + • • • + λ m P m ) (see
We are now able to state a formula for the weight w(ξ) defined above which shows in particular that this weight does not depend on the chosen translation vector. Theorem 4.5. Let ξ be a cell of Ξ and w(ξ) be its weight as defined in Definition 4.3. If ξ is not a cell of ∩ k i=1 Z trop f i , or equivalently if at least one d i is zero, then w(ξ) = 0. Assume now that all d i are positive integer numbers.

• If the tropical hypersurfaces intersect transversally along ξ, which means that

d = d 1 + • • • + d k , then letting d := (d 1 , . . . , d k ) we have (4.2) w(ξ) = M V d (σ 1 , . . . , σ k ; d) • In the general case, we have d ≤ d 1 + • • • + d k and (4.3) w(ξ) = t , t 1 +•••+t k =d M V d (σ 1 , . . . , σ k ; t) As a particular case, if d = codim ξ = k then (4.4) w(ξ) = M V k (σ 1 , . . . , σ k ).
Note that in the hypersurface case we have ξ = ξ 1 and thus w(ξ

) = M V d 1 (σ 1 , . . . , σ 1 ) = d 1 ! • Vol d 1 (σ 1 ) = vol d 1 (σ 1 )
as required. Before giving a proof of Theorem 4.5, we need some intermediate results.

A Minkowsky sum

Q 1 + • • • + Q ℓ of polytopes such that dim(Q 1 + • • • + Q ℓ ) = dim Q 1 + • • • + dim Q ℓ is called a direct Minkowsky sum and is denoted by Q 1 ⊕ • • • ⊕ Q ℓ . A convex mixed subdivision MS of a polytope P = P 1 + • • • + P ℓ is called pure if for any polytope Q ∈ MS with (privileged) representation Q = Q 1 + • • • + Q ℓ we have Q = Q 1 ⊕ • • • ⊕ Q ℓ .
A convex tight mixed subdivision is a convex pure mixed subdivision with the additional property that each Q i is a simplex. Tight and pure convex mixed subdivisions are generic within all convex mixed subdivisions of a given collection of polytopes. Lemma 4.6.

Let P = P 1 + • • • + P ℓ ⊂ M R ≃ R ℓ .
(1) For any convex pure mixed subdivision of P = P 1 + • • • + P ℓ , we have

(4.5) MV ℓ (P 1 , . . . , P ℓ ) = Vol ℓ (Q 1 ⊕ • • • ⊕ Q ℓ )
where the sum is taken over all polytopes

Q = Q 1 ⊕ • • • ⊕ Q ℓ of the mixed subdivision with dim Q 1 = • • • = dim Q ℓ = 1.
(2) More generally, for any convex mixed subdivision of P = P 1 + • • • + P ℓ , we have

(4.6) MV ℓ (P 1 , . . . , P ℓ ) = MV ℓ (Q 1 , . . . , Q ℓ )
where the sum is taken over all polytopes

Q = Q 1 + • • • + Q ℓ of the mixed subdivision.
Proof. Formula (4.5) is well-known (see, for example, [START_REF] Cox | Using Algebraic Geometry[END_REF], Ch. 7) and not difficult to prove from the definition of mixed volume given above. Formula (4.6) is a simple consequence of (4.5). Indeed, we may perturb slightly functions ν 1 , . . . , ν ℓ determining a given convex mixed subdivision of P = P 1 + • • • + P ℓ so that the new functions induce pure mixed subdivisions of each polytope We prove Formula (4.2) with the help of Bernstein's theorem. Consider a generic polynomial system (4.7) 

Q = Q 1 + • • • + Q ℓ of
f 1,1 = • • • = f 1,d 1 = • • • • • • = f k,1 = • • • = f k,d k = 0 of d = d 1 +• • •
• • • + M (σ k ) is the product N = k i=1 N i
where N i is the number of solutions in the complex torus associated with M (σ i ) to the system

f i,1 = . . . = f i,d i = 0. By Bernstein's theorem we have N i = MV d i (σ i , . . . , σ i ) = d i ! • Vol d i (σ i ) = vol d i (σ i ).
Let (e 1 , . . . , e d ) be a basis of M (σ) and identify the associated complex torus with (C * ) d via this basis. Let z 1 , . . . , z N be the solutions to (4.7) in the subtorus of (C * ) d associated with M (σ 1 ) + • • • + M (σ k ). Then the solutions to (4.7) in (C * ) d are obtained by solving for each z l a system This proves Formula (4.2).

x m i = z l,i , i = 1, . . .
Consider now the general case. We have obviously

d ≤ d 1 + • • • + d k . let ν i : ∆ i → R, i = 1, .
. . , k, be the functions given by the tropical hypersurfaces and which induce the corresponding mixed subdivision MS of ∆ = ∆ 1 + • • • + ∆ k . Denote by S i the convex polyhedral subdivision of ∆ i induced by ν i . Translations of the tropical hypersurfaces by a small generic vector correspond to small perturbations νi of the functions ν i so that for each i = 1, . . . , k the polyhedral subdivision of ∆ i induced by the resulting function νi coincide with S i . The intersections between the tropical hypersurfaces which emerge from ξ after such small perturbations are transversal intersections if and only if the mixed subdivision of σ = σ 1 + • • • + σ k induced by ν1 , . . . , νk is a pure mixed subdivision MS(σ). Then each polytope Γ ∈ MS(σ) has a privileged representation

(4.8) Γ = Γ 1 ⊕ • • • ⊕ Γ k
where each Γ i ∈ S i and the weight of ξ is by definition the sum of weights of the cells corresponding to polytopes Γ ∈ MS(σ) such that dim Γ = d. Suppose that d i = 0 for some i = 1, . . . , k.

Then for each Γ = Γ 1 ⊕ • • • ⊕ Γ k ∈ MS(σ)
we have dim Γ i = 0, hence w(ξ) = 0. Assume now that d i ≥ 1 for i = 1, . . . , k. We have then (4.9)

w(ξ) = Γ∈MS(σ) : dim Γ=d M V d (Γ 1 , . . . , Γ k ; (dim Γ 1 , . . . , dim Γ k ))
where the sum is taken over all polytopes Γ = Γ 1 ⊕ • • • ⊕ Γ k ∈ MS(σ) with dim Γ = d and dim Γ i > 0 for i = 1, . . . , k. Let t = (t 1 , . . . , t k ) be any collection of positive integer numbers

such that t 1 + • • • + t k = d. Consider the polytope σ 1 + • • • + σ 1 t 1 + • • • + σ k + • • • + σ k t k
together with the convex mixed subdivision induced by the functions ν1 , . . . , νk , where νi is used for each copy of σ i . This mixed subdivision consists of the polytopes

Γ 1 + • • • + Γ 1 t 1 + • • • + Γ k + • • • + Γ k t k for Γ = Γ 1 ⊕ • • • ⊕ Γ k ∈ MS(σ)
. By Formula (4.6) in Lemma 4.6, we get

M V d (σ 1 , . . . , σ k ; t) = Γ∈MS(σ) M V d (Γ 1 , . . . , Γ k ; t).
This sum can actually be taken over all Γ ∈ MS(σ) such that dim Γ = d and dim

Γ i ≥ 1 for i = 1, . . . , d since otherwise M V d (Γ 1 , . . . , Γ k ; t) = 0. But now if t = (dim Γ 1 , . . . , dim Γ k ) and t 1 + • • • + t k = dim Γ 1 + • • • + dim Γ k , then there exists i ∈ {1, . . . , k} such that dim Γ i < t i and thus vol t i (Γ i ) = 0, which implies that M V d (Γ 1 , . . . , Γ k ; t) = 0. Therefore, M V d (σ 1 , . . . , σ k ; t) = Γ∈MS(σ) : dim Γ i =t i for all i M V d (Γ 1 , . . . , Γ k ; t).
and thus

t : t 1 +•••+t k =d M V d (σ 1 , . . . , σ k ; t) = Γ∈MS(σ) : dim Γ=d M V d (Γ 1 , . . . , Γ k ; (dim Γ 1 , . . . , dim Γ k )).
This proves Formula (4.3). Using our weights as intersection multiplicity numbers, we get a tropical Bernstein theorem directly from Theorem 4.5.

Corollary 4.7. Suppose tropical hypersurfaces Z 1 , . . . , Z n ⊂ N R ≃ R n with Newton polytopes ∆ 1 , . . . , ∆ n intersect in finitely many points. Then the total number of intersection points counted with multiplicities is equal to the mixed volume M V n (∆ 1 , . . . , ∆ n ).

Proof. The common intersection points are in one-to-one correspondence with the polytopes

σ = σ 1 + • • • + σ n in the dual mixed subdivision MS of ∆ 1 + • • • + ∆ n .
Each intersection point is a cell of codimension n, hence by Formula (4.4), Theorem 4.5, the intersection multiplicity number of the tropical hypersurfaces at this point is equal to MV n (σ 1 , . . . , σ n ), where σ = σ 1 + • • • + σ n is the corresponding polytope in the mixed subdivision. Hence the total number of intersection points counted with multiplicities is σ∈MS MV n (σ 1 , . . . , σ n ). But this sum is equal to MV(∆ 1 , . . . , ∆ n ) by Formula (4.6), Lemma 4.6.

Non degenenerate tropical complete intersections

All the definitions in this section build upon the following definition of a nonsingular tropical hypersurface in the same way as definitions in Section 1 built upon that of a nonsingular complex hypersurface. Definition 5.1. A tropical hypersurface is nonsingular if its dual polyhedral subdivision is a primitive (convex) triangulation, that is, a triangulation whose all simplices are primitive.

This definition is well-established in the case of tropical plane curves. In the general case, it can be motivated by the fact that around a vertex corresponding to a primitive n-simplex, a tropical hypersurface coincides with a tropical hypersurface with Newton polytope this simplex. But such a simplex is given by a basis of the ambient lattice M , and identifying M with Z n via this basis identifies the simplex with the standard unit simplex in Z n . Hence, up to a basis change of the ambient lattice, a non singular tropical hypersurface coincides around each vertex with a tropical linear hyperplane. Nonsingular tropical hypersurfaces with a given Newton polytope do not always exist. The simplest example is given by the non primitive tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 2) in R 3 which meets the lattice Z 3 at its vertices and has thus no primitive triangulation (see [START_REF] Bertrand | Asymptotically maximal families of hypersurfaces in toric varieties[END_REF]). Recall that a tropical hypersurface lies in N R ≃ R n , which is the tropical torus associated with some lattice N . Hence, at this point, a tropical hypersurface is in fact a toric tropical hypersurface. A primitive (convex) triangulation of a polytope induces a primitive (convex) triangulation of each of its faces. Recall that the truncation f Γ of a tropical polynomial f to a face Γ of its Newton polytope also defines a tropical hypersurface in the corresponding tropical torus N (Γ) R . Hence, in contrast to the complex case, if f defines a nonsingular tropical hypersurface in the corresponding tropical torus, then so do automatically all its truncations. Comparing with the classical definition 1.1 of a nondegenerate polynomial, this leads to the following definition. Definition 5.2. A tropical polynomial is nondegenerate if all its truncations define nonsingular tropical hypersurfaces in the corresponding tropical tori, or equivalently, if its dual polyhedral subdivision is a primitive triangulation.

Consider now a collection (f 1 , . . . , f k ) of tropical polynomials in R[x 1 , . . . , x n ], or more generally in R[M ] with M ≃ Z n . Let ∆ i be the Newton polytope of f i . Define the associated tropical Cayley polynomial

F ∈ R[M ⊕ Z k ] by (5.1) F (x, y) = k i=1 y i f i (x).
where the operation are the tropical ones. Its Newton polytope is the associated Cayley polytope C(∆ 1 , . . . , ∆ k ). We have the following analogue of the classical definition 1.2.

Definition 5.3. The collection (f 1 , . . . , f k ) of tropical polynomials is nondegenerate if the associated Cayley polynomial F is nondegenerate which means that the dual polyhedral subdivision of C(∆ 1 , . . . , ∆ k ) is a primitive triangulation.

Recall that a collection (Γ i ) i∈I of faces of ∆ 1 , . . . , ∆ k is called admissible if I ⊂ {1, . . . , k} and Γ I = i∈I Γ i is face a of ∆ I = i∈I ∆ i . The faces of C(∆ 1 , . . . , ∆ k ) are exactly the Cayley polytopes of the admissible collections (Γ i ) i∈I . Since a primitive triangulation of a polytope induces primitive triangulations of its faces, it follows that if (f 1 , . . . , f k ) is nondegenerate, then for any admissible collection (Γ i ) i∈I of faces of ∆ 1 , . . . , ∆ k , the collection of tropical polynomials (f Γ i i ) i∈I is also nondegenerate. For simplicity denote by Z i the hypersurface defined by f i . If Γ i is a face of ∆ i , we will denote by Z i,Γ i the tropical hypersurface in N (Γ i ) R , or in N R , defined by the truncation of f i to Γ i . The next result is the tropical analogue of Proposition 1.3.

Proposition 5.4. The collection (f 1 , . . . , f k ) of tropical polynomials is nondegenerate if and only if for any admissible collection (Γ i ) i∈I of faces of ∆ 1 , . . . , ∆ k the hypersurfaces Z i,Γ i have only transversal intersections each with intersection multiplicity number 1.

Proof. If (f 1 , . . . , f k ) is nondegenerate, then the corresponding convex polyhedral subdivision of the Cayley polytope C(∆ 1 , . . . , ∆ k ) is a primitive triangulation, and thus the corresponding convex mixed subdivision MS of ∆ = ∆ 1 +• • •+∆ k is tight. In particular, the mixed subdivision MS is pure which means that the hypersurfaces Z 1 , . . . , Z k have only transversal intersections. These intersections are in one-to-one correspondence with polytopes

σ = σ 1 ⊕ • • • ⊕ σ k ∈ MS such that d i := dim σ i ≥ 1 for i = 1, . . . , k. Letting d = dim σ = d 1 + • • • + d k , the intersection multiplicity number of Z 1 , . . . , Z k along the cell ξ dual to σ is (5.2) w(ξ) = k i=1 vol d i (σ i ) • [M (σ) : M (σ 1 ) + • • • + M (σ k )]
We are going to show that

(5.3) vol d+k-1 (C(σ 1 , . . . , σ k )) = k i=1 vol d i (σ i ) • [M (σ) : M (σ 1 ) + • • • + M (σ k )]
Since C(σ 1 , . . . , σ k ) is a primitive simplex, this will imply that w(ξ) = 1. Each σ i is a simplex as well as C(σ 1 , . . . , σ k ). Thus vol d+k-1 (C(σ 1 , . . . , σ k )) equals the absolute value of a (d + k -1)determinant D whose columns are the coordinates with respect to a basis of M (C(σ 1 , . . . , σ k )) = M (σ)×Z k of vectors spanning C(σ 1 , . . . , σ k ). The corresponding determinant taken with respect to a basis of (M (σ 1 ) + • • • + M (σ k )) × Z k is a determinant D which factors into a product of k determinants D 1 , . . . , D k . Each factor D i has size d i and is a determinant whose columns are the coordinates with respect to a basis of M (σ i ) of vectors spanning the simplex σ i . The absolute value of D i is just vol d i (σ i ). Formula (5.3) follows now from Remark 4.1. The same arguments also work for any admissible (Γ i ) i∈I since if (f 1 , . . . , f k ) is nondegenerate then (f Γ i i ) i∈I is nondegenerate too. This show one implication of Proposition 5.4, let us show the reverse one.

Clearly, if for any admissible collection (Γ i ) i∈I of faces of ∆ 1 , . . . , ∆ k the hypersurfaces Z i,Γ i have only transversal intersections, then the mixed subdivision MS of ∆ = ∆ 1 +• • •+∆ k is pure. Consider a full dimensional polytope in the polyhedral subdivision of C(∆ 1 , . . . , ∆ k ). It may be written as a Cayley polytope C(σ 1 , . . . , σ k ) for some σ = σ 1 ⊕• • •⊕σ k ∈ MS with dim σ = dim ∆. Set as above d i = dim σ i and d := dim σ = dim ∆. Set I := {i ∈ {1, . . . , k} , d i = 0}. Then σ is dual to a cell ξ of the common intersection of the hypersurfaces Z i for i ∈ I. Moreover, the intersection multiplicity number between these hypersurfaces along ξ is vol

d I +k-1 (C(σ i , i ∈ I)),
where C(σ i , i ∈ I) is the Cayley polytope associated with σ i for i ∈ I and d I is the dimension of i∈I σ i . This Cayley polytope lies on the face

C(∆ i , i ∈ I) of C(∆ 1 , . . . , ∆ k ). One can check that vol d+k-1 (C(σ 1 , . . . , σ k )) = vol d I +k-1 (C(σ i , i ∈ I))
. Thus both members are equal to 1 and it follows that C(σ 1 , . . . , σ k ) is a primitive simplex.

Complex and real tropical varieties

Complex and real tropical varieties were introduced by Mikhalkin in [START_REF] Mikhalkin | Enumerative tropical algebraic geometry in R 2[END_REF]. Here we follow [START_REF] Bertrand | Euler characteristic of primitive T-hypersurfaces and maximal surfaces[END_REF] and reproduce the definition and notations for the reader's convenience. Consider a Puiseux series g = r∈R b r t r ∈ K * . Recall that val(g) is the smallest exponent appearing in g (the usual valuation of g), and that we defined v(g) to beval(g) (see Section 3). Define the argument arg(g) to be the usual argument of the coefficient b val(g) of the monomial with smallest exponent. Consider the map

W : (K * ) n -→ R n × (S 1 ) n z -→ (v(z 1 ), . . . , v(z n ), arg(z 1 ), . . . , arg(z n )).
or alternatively

V C : (K * ) n -→ (C * ) n z -→ (e v(z 1
)+i arg(z 1 ) , . . . , e v(zn)+i arg(zn) ) We will define a complex tropical variety as the topological closure of the image of a variety in (K * ) n under either V C or W . We will call both homeomorphic objects a complex tropical variety and use one and the other in turns depending on the context. For the rest of this section, let f, f 1 , . . . , f k be polynomials in K[z 1 , . . . , z n ]. We denote by Z f the zero set of f in (K * ) n and by Y the common zero set of f 1 , . . . , f k in (K * ) n . Definition 6.1. The complex tropical hypersurface CZ trop f,V C (resp. CZ trop f,W ) associated with f is the topological closure of the image under V C (resp. W ) of the hypersurface Z f . The complex tropical intersection CY trop See [START_REF] Bertrand | Euler characteristic of primitive T-hypersurfaces and maximal surfaces[END_REF] for pictures of real tropical curves. The sign of a Puiseux series g = r∈R b r t r ∈ K * is defined to be the sign of the coefficient b val(g) of the monomial with smallest exponent.

For any = ( 1 , . . . , n ) ∈ {0, 1} n , denote by R( ) the connected component of (R * ) n (called orthant) which consists of all (x 1 , . . . , x n ) such that (-1) i x i > 0 for i = 1, . . . , n. We keep the notation (R + ) n for the positive orthant which corresponds to = (0, . . . , 0). Denote by RZ trop f,V C , the intersection of RZ trop f,V C with R( ). If ∈ {0, 1} n , let ˜ be the element of {0, π} n defined by ˜ i = π ⇔ i = 1, and define RZ trop f,W, ⊂ R n to be the image of

RZ trop f,W ∩ (R n × {˜ }) under the natural identification of R n × {˜ } with R n . If Z trop f is nonsingular one can reconstruct RZ trop f,V C ,
only from the data of Z trop f and the collection of signs of the coefficients of f (see [START_REF] Mikhalkin | Amoebas of algebraic varieties and tropical geometry[END_REF] p. 25 and 37, [START_REF] Viro | Dequantization of real algebraic geometry on logarithmic paper[END_REF], and [START_REF] Mikhalkin | Real algebraic curves, the moment map and amoebas[END_REF] Appendix for the case of amoebas). Consider the tropical hypersurface Z trop f ⊂ R n , the induced subdivision Ξ f of R n and the dual subdivision S f of its Newton polytope ∆ f . Let δ f be the sign distribution at the vertices of S f such that a vertex ω is labelled with the sign of the corresponding coefficient c ω in f (z) = c w z w ∈ K[z 1 , . . . , z n ]. It is worth noting that RZ trop f,W, and RZ trop f,V C , are homeomorphic for each ∈ {0, 1} n . In particular RZ trop f,W and RZ trop f,V C are homeomorphic. We use the notations of Section 2. Let H ⊂ ∆ * be the piecewise-linear hypersurface which is constructed by means of the combinatorial patchworking out of the data S f and δ f . As a direct consequence of Lemma 6.3, we obtain the following result. is a subset of the torus (C * ) n . We may assume without loss of generality that the polytope ∆ has non empty interior. Consider the usual compactification of (C * ) n into the toric variety X ∆ associated with ∆, and let ι : (C * ) n ֒→ X ∆ denote the corresponding inclusion. We define the compactification CY trop V C to be the closure of ι(CY trop V C ) in X ∆ . Note that the stratification of X ∆ into orbits of the action of (C * ) n defines a natural stratification of CY trop V C . We sum up natural maps in the following commutative diagram.

RY trop W ∼ / / _ RY trop V C / / _ (R * ) n _ ι R / / RX ∆ _ CY trop W ∼ / / CY trop V C / / (C * ) n ι / / X ∆ Define RY trop V C to be the intersection of CY trop V C with the real part RX ∆ of X ∆ . Clearly RY trop V C is also the closure of ι R (RY trop V C ) in RX ∆ . One can see that the natural stratification of RY trop V C
induced by the torus action corresponds to the stratification of the T -complete intersection of Theorem 2.3 induced by the face complex of ∆. Consider for i = 1, . . . , k the piecewise-linear hypersurface H ∆ i ⊂ ∆ (see Section 2).

Proof. If X is a nonsingular projective variety then σ(X) = p+q=0 mod 2

(-1) p h p,q (X), where h p,q (X) is the usual Hodge number of type (p, q) of X, and the result follows from the fact that e p,q (X) = (-1) p+q h p,q (X) (see [START_REF] Danilov | Khovansky Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers[END_REF]).

The mixed signature of a complex torus is given by

(7.7) σ((C * ) k ) = (-2) k
The additivity of the E-polynomial implies that of the mixed signature.

Proposition 7.2. If X is a disjoint union of a finite number of locally closed varieties X i , i ∈ I, then σ(X) = i∈I σ(X i )
Following [START_REF] Danilov | Khovansky Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers[END_REF] we show how the mixed signature of a toric complete intersection can be expressed in terms of mixed signatures of toric hypersurfaces.

Consider polynomials

f 1 , f 2 . . . , f k ∈ C[x], x = (x 1 , . . . , x n ), which define a toric complete intersection Y = {f 1 = f 2 = . . . = f k = 0} ⊂ (C * ) n .
Introduce auxiliary coordinates y 1 , . . . , y k and for I ⊂ {1, . . . , k} define the toric hypersurface X I by

X I = i∈I y i f i (x) -1 = 0 ⊂ (C * ) n+|I| . Proposition 7.3. We have σ(Y ) = (-2) n + (-1) k I⊂{1,...,n} σ(X I ). Proof. Denote by X the hypersurface in (C * ) n × C k with equation k i=1 y i f i (x) -1 = 0. The restriction to X of the projection (C * ) n × C k → (C * ) n is a locally trivial fibration over (C * ) n \ Y with each fiber a linear subspace of C k . It follows from the properties of the E-polynomial that E(X; u, v) = E(C k-1 ; u, v) • [E((C * ) n ; u, v) -E(Y ; u, v)] = (uv) k-1 • [(uv -1) n -E(Y )] . Passing to the mixed signature yields σ(X) = (-1) k-1 [(-2) n -σ(Y )] .
By additivity, we have σ(X) = I⊂{1,...,n} σ(X I ) and the result follows.

Assume now that the polynomials f 1 , . . . , f k which define Y are real polynomials so that Y and the hypersurfaces X I are in turn real algebraic varieties. We are interested in the (topological) Euler characteristic of RY . Like the E-polynomial, the Euler characteristic is additive and multiplicative. We have χ((R * ) k ) = (-2) k and thus comparing with (7.7) we obtain

(7.8) σ((C * ) k ) = χ((R * ) k )
Recall that a toric variety is a real variety (defined by polynomial equations with real coefficients) and is the disjoint union of torus orbits. The additivity of the mixed signature and the Euler characteristic together with Formula (7.8) imply the following result, which will be not used after. 

χ(RX) = χ(R k-1 ) • [χ((R * ) n ) -χ(RY )] and thus χ(RX) = (-1) k-1 [(-2) n -χ(RY )] .
By additivity, we have

χ(RX) = I⊂{1,...,n} χ(RX I )
and the result follows.

Statement of the main result

We use the notations of Section In the second part of Theorem 8.1, we invoke the genericity in order to ensure that the intersection of Y alg with any complex torus orbit in X(∆) is a complete intersection in that torus orbit (this latter intersection is defined by polynomials whose Newton polytopes are faces of ∆ 1 , . . . , ∆ k ).

Proof of Theorem 8.1. Part (2) follows from part (1) using the stratification by torus orbits and the additivity of the Euler characteristic and that of the mixed signature. Now, by Proposition 7.3 and Proposition 7.5, to prove part (1) it suffices to prove the case k = 1, that is, the toric hypersurface case. This is the content of the rest of the paper (see Theorem 11.1).

Mixed signature of a complex toric hypersurface

Let f be a nondegenerate Laurent polynomial with Newton polytope ∆ ⊂ R n and assume that ∆ has non empty interior. Denote by Z ⊂ (C * ) n the nonsingular hypersurface defined by f .

Let C ⊂ R n+1 be the cone with vertex 0 over ∆ × {1} ⊂ R n × R. The set of faces of C with the order given by the inclusion and the rank function ρ given by the dimension form an Eulerian poset that we denote by P (See [START_REF] Victor | Borisov Mirror duality and string-theoric Hodge numbers[END_REF], Example 2.3). Hereafter, we refer to [START_REF] Victor | Borisov Mirror duality and string-theoric Hodge numbers[END_REF] for detailed definitions. Taking the dual cones of elements in P , we get the dual poset P * which is an Eulerian poset with rank function ρ * (z * ) = n + 1ρ(z) and rank n + 1. If x ∈ P is any face of C, then we denote by [x, 1] the sub-poset of P formed by all the faces of C having x as a face. This is an Eulerian poset with rank function z → ρ(z)-ρ(x) and rank n+1-ρ(x) = ρ(C)-ρ(x). The dual poset [x, 1] * is an eulerian poset of rank n+1-ρ(x) and with rank function ρ * (z * ) = n+1-ρ(z).

Let M denote the lattice Z n+1 in which the cone C has its vertices and which contains the vertices of ∆ × {1}. If m ∈ C ∩ M , define x(m) ∈ P to be the minimal face of C containing m and deg m to be the last coordinate of m. Hence, m = (m 0 , deg m) for some m 0 ∈ deg m • ∆. The following result gives a closed formula for E(Z; u, v) in terms of so-called B-polynomials of the sub-posets of P * , which are defined by induction on the rank (see [START_REF] Victor | Borisov Mirror duality and string-theoric Hodge numbers[END_REF], Definition 2.7). By Lemma 11.2 n+1 p=0 (-1) p+1 C n+1-p n+1 (p) l = 0 since l ≤ n. We have (-1) p+1 C i-p-1 n+1 p l = 0 if p = 0 and l = 0, and C i-i-1 n = 0. Hence for l = 0, we get 

  be a Laurent polynomial in the group algebra associated with M f (x) = c m x m ,

f⊂

  Trop N = N R is in fact a toric tropical hypersurface. The polynomial f also defines a toric tropical hypersurface in N (∆) R ≃ R dim ∆ and Z trop f ⊂ N R is the product of this hypersurface with the tropical torus ≃ R n-dim ∆ associated with (the dual of) a complement of M (∆) in M . The unbounded cells of Z trop f gives rise to toric tropical hypersurfaces defined by truncations of f to faces of ∆. Namely, consider a face Γ of ∆ and let γ ⊂ N be the semigroup formed by all elements of N which are identically zero on M (Γ) and are negative on any vector w = m ′m ∈ M (∆) with m ′ ∈ ∆ \ Γ and m ∈ Γ (in other words, γ consists of all integer vectors of N orthogonal to Γ and going outside ∆). Note that N (Γ) is the quotient N γ+(-γ) , where γ + (-γ) is the subgroup of N generated by the semigroup γ. Consider the unbounded cells of Z trop f which intersect any hyperplane {w ∈ M R | v • w = c} with c big enough and v in γ. The cells of the tropical hypersurface Z trop f Γ ⊂ N (Γ) R are exactly the images of these cells under the quotient map N R → N (Γ) R . Comparing with the classical complex situation, this leads to the notion of tropical variety Trop ∆ associated with ∆ with properties analogous to those of the complex projective toric variety X ∆ . Geometrically, one can think about Trop ∆ as being the image of ∆ by the composition of a translation and a dilatation, so that Ztrop f ⊂ Trop ∆ can be obtained from Z trop f by cutting the the unbounded cells of Z trop f along the faces of Trop ∆ .

  Definition 3.3. A tropical variety in N R is the closure of the image under V of the zero set of an ideal I ⊂ K[z 1 , . . . , z n ] = K[z]. We will denote this tropical variety by Z trop I . It turns out that the tropical variety Z trop I is the common intersection of all tropical hypersurfaces Z trop f

  Consider now tropical polynomials f 1 , . . . , f k in R[x 1 , . . . , x n ] or more generally in R[M ] with M ≃ Z n . Denote by ∆ i the Newton polytope of f i . Recall that each tropical hypersurface Z trop f i defines a piecewise linear polyhedral subdivision Ξ i of N R which is dual to a convex polyhedral subdivision S i of ∆ i . The union of these tropical hypersurfaces defines a piecewiselinear polyhedral subdivision Ξ of N R . Any non-empty cell of Ξ can be written as (ξ i ∈ Ξ i for i = 1, . . . , k. Any cell ξ ∈ Ξ can be uniquely written in this way if one requires that ξ lies in the relative interior of each ξ i . We shall always refer to this unique form. Denote by MS the mixed subdivision of ∆ = ∆ 1 + • • • + ∆ k induced by the tropical polynomials f 1 , . . . , f k .

  the initial mixed subdivision. Then these functions define a pure mixed subdivision of P = P 1 + • • • + P ℓ and it remains to apply (4.5) simultaneously to all these pure mixed subdivisions.Proof of Theorem 4.5. Assume first that d = d 1 + • • • + d k (transversal case). If some d i is zero, then it follows directly from Definition 4.3 that w(ξ) = 0. Assume that d i ≥ 1 for i = 1, . . . , k.

  , d, where m 1 , . . . , m d are the vectors of coordinates of a basis of M (σ 1 ) + • • • + M (σ k ) with respect to (e 1 , . . . , e d ) and z l = (z l,1 , . . . , z l,d ) ∈ (C * ) d . The number of solutions to such a system is the absolute value of the (d × d)-determinant |m i,j | which is equal to [M (σ) : M (σ 1 ) + • • • + M (σ)].

  Finally, If k = d, then there is only one collection t = (t 1 , . . . , t d ) of positive integer numbers such that t 1 + • • • + t d = d, namely t = (1, 1, . . . , 1). Hence, we get w(ξ) = M V d (σ 1 , . . . , σ k ; (1, 1, . . . , 1)) = M V d (σ 1 , . . . , σ k ).

Definition 6 . 2 .

 62 CY trop W ) associated with f 1 , . . . , f k is the topological closure of the image under V C (resp. W ) of Y . A polynomial c w z w ∈ K[z 1 , . . . , z n ] is a real polynomial if the coefficients a r of each series c ω = r∈R a r tr are real. Assume from now on that f 1 , . . . , f k and f are real polynomials. The real tropical hypersurface associated with f is the intersection of CZ trop f,V C with (R * ) n , or alternatively the intersection of CZ trop f,W with R n × {0, π} n . More generally, the real tropical complete intersection associated with f 1 , . . . , f k is the intersection of CY trop V C with (R * ) n , or alternatively the intersection of CY trop W with R n × {0, π} n .

Lemma 6 . 3 .

 63 Assume Z trop f is nonsingular. Then its positive part RZ trop f,W,(0,...,0) is the closure of the union of the (n -1)-cells of Z trop f which are dual to edges with vertices getting different signs via δ f . More generally, let ∈ {0, 1} n and define the polynomialf by f (x 1 , • • • , x n ) = f ((-1) 1 x 1 , . . . , (-1) n x n ). Then, RZ tropf,W, is the closure of the union of the (n -1)-cells of Z trop f which are dual to edges with vertices getting different signs via δ f .

Proposition 6 . 4 .Proposition 6 . 5 .

 6465 Assume that Z trop f is nonsingular, or equivalently, that the subdivision S f is a primitive triangulation. Then there exists an homeomorphism h: (R * ) n → (∆ \ ∂∆) * such that h(RZ trop f,W ) = H ∩ (∆ \ ∂∆) * .The same property holds for RZ trop f,V C . Here (∆ \ ∂∆) * is the union of the 2 n symmetric copies of the relative interior of ∆ under the hyperplane reflections. Denote by ∆ 1 , . . . , ∆ k the Newton polytopes of f 1 , . . . , f k , respectively, and set ∆ = ∆ 1 + • • • + ∆ k . Each polynomial f i determines a convex polyhedral subdivision S i of ∆ i and a sign distribution δ i at the vertices of S i . Consider the piecewise-linear hypersurface H ∆, * i ⊂ ∆ * constructed out of these data by means of the combinatorial patchworking for complete intersections (see Section 2). Assume that f 1 , . . . , f k define a nondegenerate tropical complete intersection, which means that the corresponding convex polyhedral subdivision of the Cayley polytope C(∆ 1 , . . . , ∆ k ) is a primitive triangulation. Then, there exists an homeomorphism h :(R * ) n → (∆ \ ∂∆) * such that h(RZ trop f i ,W ) = H ∆, * i ∩ (∆ \ ∂∆) * for i = 1, . . . ,k. The similar property holds for the real tropical hypersurfaces RZ trop f i ,V C . Therefore, RY trop W (resp., RY trop V C ) is homeomorphic to the common intersection inside (∆ \ ∂∆) * of the piecewise-linear hypersurfaces H ∆, * i . Recall that CY trop V C

Proposition 7 . 4 .

 74 For any toric variety X, we haveσ(X) = χ(RX)We obtain the following analogue of Proposition 7.3 for the Euler characteristic of the real part in place of the mixed signature. Proposition 7.5. We haveχ(RY ) = (-2) n + (-1) k I⊂{1,...,n} χ(RX I ).Proof. We adapt the proof of Proposition 7.3. Let X the hypersurface in (C * ) n × C k with equation k i=1 y i f i (x) -1 = 0. Using the projection (C * ) n × C k → (C * ) n together with the additivity and multiplicativity properties of the Euler characteristic yields

Theorem 9 . 1 ((- 1 )are equal to 2 (- 1 )(- 1 )(- 1 )

 9112111 [START_REF] Victor | Borisov Mirror duality and string-theoric Hodge numbers[END_REF], Theorem 3.24).E(Z; u, v) = (uv -1) n uv + (-1) n+1 uv m∈C∩M (vu) ρ(x(m)) B([x(m), 1] * ; u, v) u v t C t k+1 t l+1 .Lemma 11.4. We haveS l,n+1 = -2S l,n if l = 0 C l,n+1 = -2C l,n ,and S 0,n = (-2) n .Proof. We have S 0,n = (-1) n+1 and 0, respectively. This yields S 0,n = (-2) n . We haveS l,n+1 = (-1) p+1 C i-p n+2 p l .Use that C i-p n+2 = C i-p-1 n+1 + C i-p n+1 to obtain (-1) n S l,n+1 = p+1 C i-p-1 n+1 p l + p+1 C i-p n+1 p l .

(- 1 )(- 1 )

 11 n S l,n+1 = p+1 C i-p n+1 p l , with the change of index j = i -1. This gives the equality S l,n+1 = -2S l,n for l = 0.Finally, Let us show that C l,n+1 = -2C l,n . We have C l,n+1 (-1) n-l+1 =

(- 1 )(- 1 )(- 1 )

 111 t t n C t n+1 -t t n C k-t n+1with the change of indices k = (tm) + n + 1. The sums over k and t can actually be taken starting from 0. Moreover the sum over k can be taken until n since for k = n + 1 we getn+1 t=0 (-1) t t n C n+1-t n+1which is zero due to Lemma 11.2. This gives-C n,n = n k=0 k t=0 (-1) t t n C k-t n+1 .On the other hand, we haveS n,n = (-1) p C i-p n+1 p n .Therefore, we get C n,n = (-1) n+1 S n,n which is the desired equality for n odd. Suppose now that n is even. Taking l = n in (11.5), and noting that the first sum can be taken until i = n + 1 due to Lemma 11.2, we get(-1) n S n,n = n+1-k-m C m n+1 (n + 1km) n k-t C t n+1 (kt) n .with the successive changes of indices m = ip, k = n + 1i and t = n + 1m and using that n is even. Suming up the second and last formula yields 2(-1) n S n,n = n+1 k=0 n+1 t=0 (-1) k-t C t n+1 (kt) n

  The faces of C(∆ 1 , . . . , ∆ k ) are themselves Cayley polytopes. Namely, the faces of C(∆ 1 , . . . , ∆ k ) are the Newton polytopes of all polynomials

	i∈I

  +d k equations where each f i,j has σ i as Newton polytope. By Bernstein's theorem, the system (4.7) has M V d (σ 1 , . . . , σ k ; d) solutions in the complex torus associated with M (σ), where d = (d 1 , . . . , d k ). Since σ = σ 1 ⊕ • • • ⊕ σ k , the number of solutions to (4.7) in the complex torus associated with M (σ 1 ) +

  [START_REF] Bihan | Viro method and Cayley trick[END_REF]. Consider real polynomials f 1 , . . . , f k ∈ K[z 1 , . . . , z n ] with Newton polytopes ∆ 1 , . . . , ∆ k . Denote by Y trop the corresponding tropical intersection in (the tropical torus) R n . Let RY trop denote the real tropical intersection with respect to either the map W or the map V C : RY trop = RY trop Recall that Y trop is a nondegenerate tropical complete intersection if and only if the corresponding convex polyhedral subdivision of the Cayley polytope C(∆ 1 , . . . , ∆ k ) is a primitive triangulation.Theorem 8.1. Assume that Y trop is a nondegenerate tropical complete intersection.(1) The Euler characteristic of RY trop depends only on the polytopes ∆ 1 , . . . , ∆ k and is equal to the mixed signature of a complete intersection in the complex torus (C * ) n of algebraic hypersurfaces with Newton polytopes ∆ 1 , . . . , ∆ k , respectively. In other words, if Y alg denotes such a complete intersection in (C * ) n , then its mixed signature σ(Y alg ) depends only on ∆ 1 , . . . , ∆ k and we haveχ(RY trop ) = σ(Y alg ).(2)The Euler characteristic of RY trop depends only on the polytopes ∆ 1 , . . . , ∆ k and is equal to the mixed signature of a generic intersection in the projective toric variety X(∆) of algebraic hypersurfaces with Newton polytopes ∆ 1 , . . . , ∆ k , respectively. In other words, if Y alg denotes such a generic intersection in X(∆), then σ(Y alg ) depends only on ∆ 1 , . . . , ∆ k and we have

	W morphic). χ(RY	or RY trop = RY trop V C	(RY trop W	and RY trop V C	are homeo-

trop ) = σ(Y alg ).

  Lemma 11.5. We have S n,n = C n,n Just notice that the two changes of range do not affect the sum. Then use that1 

									(-1) t C t k+1 t l+1
	=	n k=1	2 n+1 -2 n+1-k k + 1	k+1 t=0	(-1) t C t k+1 t l+1 +	2 n+1 -1 n + 2	n+2 t=0	(-1) t C t n+2 t l+1
	= 2	n k=1	2 n -2 n-k k + 1	k+1 t=0	(-1) t C t k+1 t l+1
	since n+2 t=0 (-1) t C t n+2 t l+1 = 0 by Lemma 11.2
	Proof.							
		C n,n =	n k=1	2 n -2 n-k k + 1	k+1 t=0	(-1) t C t k+1 t n+1
					=	n k=0	2 n -2 n-k k + 1	k+1 t=1	(-1) t C t k+1 t n+1 .
	C t-1 k t n to get								k+1 t n+1 = k+1 C t
			n					k+1
	C n,n =			(2 n -2 n-k )		(-1) t C t-1 k t n
		k=0					t=1

Proposition 6.6. Assume that f 1 , . . . , f k define a nondegenerate tropical complete intersection. Then, there exists an homeomorphism h : RX ∆ → ∆ sending RY trop V C to the common intersection of the piecewise-linear hypersurfaces H ∆ i .

7. E-polynomials and mixed signature

We recall briefly definitions and some properties of so-called E-polynomials, see [START_REF] Victor | Borisov Mirror duality and string-theoric Hodge numbers[END_REF] and [START_REF] Danilov | Khovansky Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers[END_REF]. Let X be a quasi-projective algebraic variety over C. For each pair of integers (p, q), we set e p,q (X) = k≥0 (-1) k h p,q (H k c (X)), where h p,q (H k c (X)) is the dimension of the (p, q)-component of the mixed Hodge structure of the k-th cohomology with compact supports. If X is a nonsingular projective variety then we have e p,q (X) = (-1) p+q h p,q (X) (see [START_REF] Danilov | Khovansky Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers[END_REF]).

The E-polynomial of X is the sum

e p,q (X)u p v q , (see [START_REF] Victor | Borisov Mirror duality and string-theoric Hodge numbers[END_REF], and [START_REF] Danilov | Khovansky Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers[END_REF] where E(X; u, ū) was introduced). We have the following properties.

• If X is a disjoint union of a finite number of locally closed varieties X i , i ∈ I, then

• If π : Y → X is a locally trivial fibration with respect to the Zarisky topology and F is the fiber over a closed point of X, then

In particular, we get (see [START_REF] Danilov | Khovansky Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers[END_REF])

Let us define

(7.6) σ(X) := ϕ(-1).

We will call σ(X) the mixed signature of X. This is justified by the following result.

Proposition 7.1. If X is a nonsingular projective variety then its mixed signature and usual signature coincide:

Define two functions (see [START_REF] Victor | Borisov Mirror duality and string-theoric Hodge numbers[END_REF], Definition 3.5)

where Int(C) is the interior of C. They satisfy the duality relation ( [START_REF] Victor | Borisov Mirror duality and string-theoric Hodge numbers[END_REF], Proposition 3.6)

In fact, S(C, t) is a polynomial of degree n (see, for example, [START_REF] Brion | Points entiers dans les polytopes convexes[END_REF] or Lemma 9.2 below). The sum

can be written as

where Ehr ∆ (λ) is the number of integer points in λ • ∆. The number Ehr ∆ (λ) can be expressed as a polynomial of degree n = dim(∆) in λ called the Ehrhart polynomial of ∆. Let a ∆ l be the coefficient of λ l in this polynomial:

Let ψ i be the coefficient of t i in S(C, t):

The following lemma can be found in Section 4.1 of [START_REF] Dais | All toric local complete intersection singularities admit projective crepant resolutions[END_REF] (see also [START_REF] Dais | All abelian quotient C.I.-singularities admit projective crepant resolutions in all dimensions[END_REF] p. 233) or [START_REF] Bertrand | Euler characteristic of primitive T-hypersurfaces and maximal surfaces[END_REF].

Lemma 9.2. One has

We are now able to state our main formula for the mixed signature of toric hypersurfaces.

Proposition 9.3. One has

Proof. Recall that σ(Z) = ϕ(-1), and that ϕ(u) = [E(Z; 1, u) + E(Z; u, 1)]/2. Writing I m for [x(m), 1] * in Theorem 9.1 yields 

The second and third terms in this sum are easily shown to be equal to (-1) n+1 2u S(C, u) and

T (C, u -1 ), respectively. Now, in view of the duality (9.1), this gives

The result follows then using Lemma 9.2 and putting u = -1.

Euler Characteristic of a real nonsingular tropical toric hypersurface

Let X be a real nonsingular tropical hypersurface with Newton polytope ∆ ⊂ R n where ∆ is assumed to have non empty interior. Hence, the dual polyhedral subdivision S of ∆ is a primitive triangulation.

Lemma 10.1 ([19]

). Consider a k-simplex of S which is contained in the interior of ∆. Its number of non empty symmetric copies is 2 n -2 n-k .

Denote by nb ∆

k the number of k-simplices of S which are contained in the interior of ∆. We will see that these numbers are in fact independent of the chosen primitive triangulation of ∆.

Let S 2 be the Stirling number of the second kind defined by

Proposition 10.2 (see [START_REF] Bertrand | Euler characteristic of primitive T-hypersurfaces and maximal surfaces[END_REF][START_REF] Dais | Über unimodulare, kohärente Triangulierungen von Gitterpolytopen. Beispiele und Anwendungen[END_REF]). We have

Proof. The (k -1)-cells in the cellular decomposition of the T-hypersurface corresponding to X are given by the non-empty symmetric copies of the k-simplices of S contained in the interior of ∆. Hence, this number of (k -1)-cells is equal to nb ∆ k (2 n -2 n-k ) by Lemma 10.1. This gives

Using Proposition 10.2, we obtain

and the result follows.

Main result for a toric hypersurface

Let X be any real nonsingular tropical hypersurface with Newton polytope ∆ ⊂ R n . We may assume without loss of generality that dim ∆ = n. Let Z ⊂ (C * ) n be any nonsingular hypersurface defined by a polynomial with Newton polytope ∆.

Theorem 11.1. We have χ(X) = σ(Z).

This section is mainly devoted to the proof of Theorem 11.1. Before we give two technical results that are repeately used. Lemma 11.2 (See [START_REF] Bertrand | Euler characteristic of primitive T-hypersurfaces and maximal surfaces[END_REF] appendix, and [START_REF] Van Lint | A Course in Combinatorics[END_REF] p. 71). Let l and i be nonnegative integers. Then, for l + 1 ≤ i, one has (11.1) i q=0 (-1) q C q i q l = i q=0 (-1) q C q i (iq) l = 0 and, as a consequence, for any integer p,

(-1) q C q i (pq) l = 0.

Lemma 11.3 (See [3] appendix). One has p t=0 2 p-t C k t = p+1 l=k+1 C l p+1 . Let us now begin the proof of Theorem 11.1. From Proposition 9.3, we have

On the other hand, Proposition 10. Note that the sum on l can be taken from 1 (and in fact from 0) according to Lemma 11. Proof of Theorem 11.1 We have S 0,n = (-2) n by Lemma 11.4 and a ∆ 0 = 1 by definition of the Ehrhart polynomial. Hence, Formula (11.5) can be written as σ(Z) = n l=1 S l,n • a ∆ l . Comparing with Formula (11.6), it remains to prove that S l,n = C l,n for l = 1, . . . , n. But this clearly follows from Lemma 11.4 and Lemma 11.5.