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bound for the sum of the Betti numbers of a fewnomial hypersurface in R N > .

In the book "Fewnomials" [6], A. Khovanskii gives bounds on the Betti numbers of varieties X in R n or in the positive orthant R n > . These varieties include algebraic varieties, varieties defined by polynomial functions in the variables and exponentials of the variables, and also by even more general functions. Here, we consider only algebraic varieties. For these, Khovanskii bounds the sum b * (X) of Betti numbers of X by a function that depends on n, the codimension of X, and the total number of monomials appearing (with non zero coefficients) in polynomial equations defining X.

For real algebraic varieties X, the problem of bounding b * (X) has a long history. O. A. Oleinik [START_REF] Oleȋnik | Estimates of the Betti numbers of real algebraic hypersurfaces[END_REF] and J. Milnor [START_REF] Milnor | On the Betti numbers of real varieties[END_REF] used Morse theory to estimate the number of critical points of a suitable Morse function to obtain a bound. R. Thom [START_REF] Thom | Sur l'homologie des variétés algébriques réelles, Differential and Combinatorial Topology[END_REF] used Smith Theory to bound the mod-2 Betti numbers. This Smith-Thom bound has the form b * (X) ≤ b * (X C ), where X C is the complex variety defined by the same polynomials as X. For instance, if X ⊂ R n is defined by polynomials of degree at most d, then Milnor's bound is b * (X) ≤ d(2d -1) n . If X ⊂ (R \ {0}) n is a smooth hypersurface defined by a polynomial with Newton polytope P , then the Smith-Thom bound is b * (X) ≤ b * (X C ) = n! • Vol(P ), where Vol(P ) is the usual volume of P . We refer to [START_REF]Risler Les nombres de Betti des ensembles algébriques réels[END_REF] for an informative history of the subject, and to the book [START_REF] Benedetti | Real algebraic and semi-algebraic sets[END_REF] for more details.

These bounds are given in term of degree or volume of a Newton polytope which are numerical deformation invariants of the complex variety X C . In contrast, the topology of a real algebraic variety depends on the coefficients of its defining equations, and in particular, on the number of monomials involved in these equations. For instance, Descartes's rule of signs implies that the number of positive roots of a real univariate polynomial is less than its number of monomials, but the number of complex roots is equal to its degree. Khovanskii's bound can be seen as a generalization of this Descartes bound. It is smaller than the previous bounds when the defining equations have few monomials compared to their degrees. While it has always been clear that Khovanskii's bounds are unrealistically large, it appears very challenging to sharpen them. Some progress has been made recently for the number of non degenerate positive solutions to a system of n polynomials in n variables [START_REF] Bihan | New fewnomial upper bounds from Gale dual polynomial systems[END_REF]. Here, we bound b * (X), when X is a fewnomial hypersurface.

Suppose that X ⊂ R n > is a smooth hypersurface defined by a Laurent polynomial with n+l+1 distinct monomial terms. Khovanskii [6] (Corollary 4, p. 91) showed that

(1) b * (X) ≤ (2n 2 -n + 1) n+l (2n) n-1 2 ( n+l 2 ) .
We use the new upper bound [3] of e 2 +3 4 2 ( l 2 ) n l on the number of non degenerate positive solutions to a system of n polynomials in n variables having n+l+1 monomial terms, together with stratified Morse theory for a manifold with corners [START_REF] Goresky | Stratified Morse theory[END_REF] to give a new bound for the sum b * (X) of the Betti numbers of a fewnomial hypersurface. Fix positive integers N ≥ n and l.

Theorem 1. Let X be a hypersurface in R N > defined by a polynomial with n+l+1 monomials whose exponent vectors have affine span of dimension n.

Then b * (X) < e 2 + 3 4 2 ( l 2 ) • n i=0 n i i l .
The bound of Theorem 1 is bounded above by the simpler expression

(2) (e 2 + 3)2 ( l 2 ) n l • 2 n-3 , which is smaller than the bound on the number of connected components (zeroth Betti number) proven in [START_REF] Bihan | Sharpness of fewnomial bounds and the number of components of a fewnomial hypersurface[END_REF].

The idea of the proof is as follows. If X ⊂ R n is compact, then a generic monomial function will be a Morse function on X. The critical points of this Morse function are positive solutions to a polynomial system with the same initial monomials and we may apply the bound [START_REF] Bihan | New fewnomial upper bounds from Gale dual polynomial systems[END_REF]. If X is non compact, consider its image Z = Log(X) under the coordinatewise logarithmic map (a homeomorphism) and take the intersection with a sufficiently large simplex ∆ so that b * (Z) = b * (Z ∩ ∆). The intersection of Z with faces of ∆ are parts of fewnomial hypersurfaces about which we have a control on the number of variables and monomials. The singular space Z ∩ ∆ is stratified by these hypersurfaces in the faces of ∆. In fact Z ∩ ∆ is a manifold with corners.

Stratified Morse theory as developed by M. Goresky and R. MacPherson extends classical Morse theory to compact stratified spaces. While it is complicated to apply this theory in general, this is quite simple for manifolds with corners. A stratified Morse function is a function whose restrictions to strata are usual Morse functions. By stratified Morse theory, b * (Z ∩ ∆) is bounded from above by the total number of critical points of the restrictions to the strata of a stratified Morse function. We use a generic linear function as a stratified Morse function on Z ∩ ∆. Such a linear function comes from a monomial function on X, and the number of critical points for each stratum may be estimated by the bound [START_REF] Bihan | New fewnomial upper bounds from Gale dual polynomial systems[END_REF] as in the compact case.

Khovanskii's bound ( 1) is a special case of more general bounds which he obtains for fewnomial complete intersections. It remains an important open problem to adapt the methods of [START_REF] Bihan | New fewnomial upper bounds from Gale dual polynomial systems[END_REF] to fewnomial complete intersections. We remark that our results hold for polynomials with real-number exponents. In fact, our proofs (and the proofs in [START_REF] Bihan | New fewnomial upper bounds from Gale dual polynomial systems[END_REF]) involve this added generality. We first describe Morse theory for a manifold with corners in Section 1 and prove Theorem 1 in Section 2.

We would like to thank Jean-Jacques Risler for providing us useful historical references on the subject.

Morse theory for a manifold with corners

In classical Morse theory, the topology of a compact differentiable manifold X is inferred from critical points of a sufficiently general smooth function f : X → R, called a Morse function. For example, b * (X) is bounded above by the number of critical points of any Morse function. Goresky and MacPherson [START_REF] Goresky | Stratified Morse theory[END_REF] develop a version of Morse theory for stratified spaces. This is particularly simple for manifolds with corners, which for us will be the intersection of our fewnomial hypersurface with a large simplex whose every face meets it transversally.

We begin with sketches of classical and of stratified Morse theory, and then explain how stratified Morse theory applies to a manifold with corners. For further discussion and proofs see [START_REF] Goresky | Stratified Morse theory[END_REF].

A smooth function f : X → R on a compact differential manifold is a Morse function if its critical values (in R) are distinct and each critical point (in X) of f is non degenerate (the Hessian matrix of second partial derivatives has full rank). This implies that the critical points are discrete and there are finitely many of them. For each c ∈ R, set

X c := f -1 (-∞, c].
If c is smaller than any critical value, then X c is empty, and if c is greater than all critical values, then X = X c . The Morse Lemmata describe how the topological type of X c changes as c increases from -∞ to ∞. The first Morse Lemma asserts that the topological type of X c is constant for all c lying in an open interval that contains no critical values. The second Morse Lemma asserts that if (a, b) contains a unique critical value c = f (p), then the pair (X b , X a ) is homeomorphic to the pair

(D λ × D n-λ , (∂D λ ) × D n-λ ).
Here, X has dimension n, D m is a closed disc of dimension m, and λ is the number of negative eigenvalues of the Hessian matrix of f at p. The long exact sequence of a pair and induction on the critical values c shows that the sum of the Betti numbers of X is bounded above by the number of critical points of f . Suppose now that X is a Whitney stratified space, which we assume is embedded in an ambient manifold W . A smooth function f : X → R is the restriction to X of a smooth function on W . A critical point of f is a critical point of the restriction of f to any stratum. (Each stratum in a Whitney stratified space is a manifold.) A Morse function f : X → R is a smooth function on X whose critical values are distinct, and at each critical point p of F , the restriction of f to the stratum containing p is non degenerate at p. There is a third condition that the differential of f at p does not annihilate any limit of tangent spaces to any stratum other than the stratum containing p.

In stratified Morse theory, the first Morse Lemma holds as before and the second Morse Lemma is modified as follows. Let p be a critical point of f lying in a stratum S of X. Then let D(p) be a small disk in W transversal to the stratum S such that D(p)∩S = {p} and call its intersection N (p) with X the normal slice to S at p. Normal Morse data at p are a pair (A, B), where A is the set of points x in N (p) for which |f ( (Recall that the product (A, B)

× (A ′ , B ′ ) of pairs is the pair (A × A ′ , A × B ′ ∪ A ′ × B).)
In general, we must have detailed information about the interaction between the Morse function and the stratification to use stratified Morse theory. Such detailed information is available for manifolds with corners. Let R ≥ := [0, ∞) be the non negative real numbers and R m ≥ be the non negative orthant in R m . A manifold with corners is a compact topological space X with a covering by charts, each homeomorphic to R m ≥ × R n , where m + n is the dimension of X. Each point of X has a well-defined tangent space isomorphic to R m+n , and has a tangent cone isomorphic to R m ≥ × R n . Points with tangent cone isomorphic to R m ≥ × R n for m fixed form a submanifold of dimension n. All such submanifolds form the boundary strata of X.

Suppose that f : X → R is a Morse function. Let p be a point in a boundary stratum locally homeomorphic to R m ≥ ×R n . The normal slice N (p) to such a point is a neighborhood of the origin in the cone R m ≥ . Due to the third condition on Morse functions, there are exactly two possibilities for the normal Morse data (A, B) at p. The first component A is homeomorphic to the m-simplex

∆ m := {x ∈ R m ≥ : |x| := x 1 + • • • + x m ≤ 1} (≃ D m )
and the second component B is either the empty set ∅ (if f (p) is locally the minimum value of f on N (p)) or a contractible subset of the (m-1)-simplex |x| = 1 otherwise. (If f (p) is a local maximum, then B is the full (m-1)-simplex.) We illustrate this in Figure 1.

A p B = ∅ A p B A p B f R - Figure 1. Normal Morse data
Observe that in the case when B = ∅, we have

(A, B) × (D λ × D n-λ , (∂D λ ) × D n-λ ) ≃ (D λ × D m+n-λ , (∂D λ ) × D m+n-λ )
Thus this critical point could contribute to the sum of the Betti numbers of X. On the other hand, when B = ∅, the pair (B, B) is a deformation retract of (A, B), and so the critical point p does not contribute to the sum of the Betti numbers of X, as the topology of X a does not change as a passes f (p). Under this isomorphism monomials x α correspond to exponentials e z•α , and so the fewnomial f = i c i x α i corresponds to the exponential sum

ϕ := n+l i=0 c i e z•α i .
Let Z := V(ϕ) ⊂ R N be the hypersurface defined by which is homeomorphic to X. For exponential sums, it is quite natural to allow the exponents α i to be real vectors. We will prove Theorem 1 in these logarithmic coordinates and with real exponents.

Theorem 1 ′ . The sum of the Betti numbers of a hypersurface in R N defined by an exponential sum with n+l+1 terms whose exponent vectors have affine span of dimension n is at most

e 2 + 3 4 2 ( l 2 ) • n i=0 n i i l .
Multiplying ϕ by e -z•α 0 , we may assume that α 0 = 0. Then α 1 , . . . , α n+l span an ndimensional linear subspace of R N . After a linear change of coordinates, we may assume that ϕ only involves the first n variables, and thus the hypersurface Z becomes a cylinder

Z ≃ {z ∈ R n : ϕ(z) = 0} × R N -n .
Thus it suffices to prove Theorem 1 ′ when N = n.

Since the exponents α 1 , . . . , α n+l span R n , we may assume that the first n are the standard unit basis vectors in R n , and thus ϕ includes the coordinate exponentials e z i for i = 1, . . . , n. Let M := (M 0 , M 1 , . . . , M n ) be a list of positive numbers and set

∆ M := {z ∈ R n : z i ≥ -M i , i = 1, . . . , n and i z i ≤ M 0 } ,
which is a non empty simplex. We will use stratified Morse theory to bound the Betti numbers of Y := Z ∩ ∆ M when M is general. Theorem 4. For M general, the sum of the Betti numbers of Y is at most

e 2 + 3 4 2 ( l 2 ) • n i=0 n i i l .
Proof of Theorem 1 ′ . For any r > 0, set

Z r := {z ∈ Z : z < r} .
By [4, Corollary 9.3.7], there is some R > 0 such that if r ≥ R then Z r is deformation retract of Z and Z R is a deformation retract of Z r . Choose M and r > R so that ∆ M is sandwiched between the balls of radius R and r centered at the origin. Let ρ : Z r → Z R be the retraction. We have the maps

Z R ֒→ Y = Z ∩ ∆ M ֒→ Z r ρ --→ Z R ,
whose composition is the identity. The induced maps on the ith homology groups,

H i (Z R ) -→ H i (Y ) -→ H i (Z r ) ρ * --→ H i (Z R ) ,
have composition identity. This gives the inequality

dim H i (Y ) ≥ dim H i (Z R ) = dim H i (Z) .
Summing over i shows that Theorem 1 ′ is a consequence of Theorem 4.

Proof of Theorem 4. Given positive numbers M = (M 0 , M 1 , . . . , M n ), define affine hyperplanes in R n H 0 := {z : i z i = M 0 } and H i := {z : z i = -M i } , for i = 1, . . . , n .

For each proper subset S ⊂ {0, . . . , n}, define an affine linear subspace

H S := i∈S H i .
Since each M i > 0, this has dimension n -|S|, and these subspaces are the affine linear subspaces supporting the faces of the simplex ∆ M . Choose M generic so that for all S the subspace H S meets Z transversally. For each S, set Z S := Z ∩ H S . This is a smooth hypersurface in H S and therefore has dimension

n -|S| -1. The boundary stratum Y S of Y = Z ∩ ∆ M lying in the face supported by H S is an open subset of Z S .
For a non zero vector u ∈ R n , the directional derivative

D u ϕ is n+l i=1 (u • α i )c i e z•α i ,
which is an exponential sum having the same exponents as ϕ. Let L u be the linear function on R n defined by z → u • z.

The critical points of the function L u restricted to Z are the zeroes of the system

ϕ(z) = 0 and D v ϕ(z) = 0 for v ∈ u ⊥ .
When u is general and we choose a basis for u ⊥ , this becomes a system of n exponential sums in n variables, all involving the same n+l+1 exponents. By the fewnomial bound in [START_REF] Bihan | New fewnomial upper bounds from Gale dual polynomial systems[END_REF], the number of solutions is at most

e 2 + 3 4 2 ( l 2 ) n l .
We use this to estimate the number of critical points of the function L u restricted to Z S . The restriction of ϕ to H S defines Z S as a hypersurface in H S . We determine this restriction. If i ∈ S with i > 0 then we may use the equation z i = -M i to eliminate the variable z i and the exponential e z i from ϕ. If 0 ∈ S, then we choose j ∈ S and use the equation i z i = M 0 to eliminate z j from ϕ. Let ϕ S be the result of this elimination. It is an exponential sum in n -|S| variables and its number of terms is at most

(n -|S|) + l + 1 if 0 ∈ S (n -|S|) + (l + 1) + 1 if 0 ∈ S Thus if u is a general vector in R n , then the number of critical points of the linear function L u | H S on Z S is at most e 2 +3 4 2 ( l 2 ) (n -|S|) l if 0 ∈ S e 2 +3
4 2 ( l+12 ) (n -|S|) l+1 if 0 ∈ S We use this estimate and stratified Morse theory to bound the Betti numbers of Y .

Let u be a general vector in R n such that L u is a Morse function for the stratified space Y . By Proposition 2, the sum of the Betti numbers of Y is bounded by the number of critical points p of L u for which L u achieves its minimum on the normal slice N (p) at p. Since the strata Y S of Y are open subsets of the manifolds Z S , this number is bounded above by the number of such critical points of L u on the manifolds Z S . We argue that we can alter u so that no critical point in any Z S with 0 ∈ S contributes. That is, change u so that for no critical point p in a stratum Z S with 0 ∈ S is p the local minimum of L u on the normal slice N (p).

Suppose that p is a critical point of L u on a stratum Z S with 0 ∈ S. Then p lies in H 0 , and so the linear function L (1,...,1) restricted to the normal slice N (p) at p takes its maximum value M 0 at p. If we replace u by u + λ(1, . . . , 1) we change L u on H S by the constant λM 0 and p will still be a critical point for L u+λ(1,...,1) on Z S . If λ is sufficiently large, then L u+λ(1,...,1) does not achieve its minimum value on N (p) at p.

There are finitely many critical points p of L u on strata Z S with 0 ∈ S. Hence, there is a positive number λ so that at each of these critical points p, L u+λ(1,...,1) does not achieve its minimum value on N (p) at p. We may further choose λ so that L u+λ(1,...,1) is a Morse function for the stratified space Y . Since only the critical points on strata Z S with 0 ∈ S can contribute to the Betti numbers of Y , we see that its sum of Betti numbers is bounded above by Since n i = n n-i , we replace i by ni to complete the proof of Theorem 4. We remark that the idea of cutting a fewnomial variety with a monomial hypersurface, which preserves the fewnomial structure, is not ours, but may be found in papers of Rojas [START_REF] Rojas | Some speed-ups and speed limits for real algebraic geometry[END_REF] and Perrucci [START_REF] Perrucci | Some bounds for the number of components of real zero sets of sparse polynomials[END_REF], who used this to bound the number of connected components of a fewnomial variety.

We deduce the formula (2) from Theorem 1. Observe that Substituting this into the formula of Theorem 1 gives (2).

  x)f (p)| ≤ ǫ and B is that part of the boundary of A where f (x) = f (p)ǫ, and ǫ is any sufficiently small positive number. The tangential Morse data at p are the pair (D λ × D n-λ , (∂D λ ) × D n-λ ) appearing in the second Morse Lemma for the Morse function f restricted to the stratum S, which is a manifold of dimension n. The second Morse Lemma in stratified Morse theory asserts that if the interval (a, b) contains a unique critical value c = f (p), then the pair (X b , X a ) is homeomorphic the product of pairs (3) (normal Morse data at p) × (tangential Morse data at p) .

Proposition 2 .Example 3 .-Figure 2 .

 232 Figure 2. Morse function on the cannoli shell

  sum is a decreasing function of l. When l = 1, this sum is
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