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Abstract

We prove that the quintic Schrödinger equation with Dirichlet boundary con-
ditions is locally well posed for H

1
0 (Ω) data on any smooth, non-trapping domain

Ω ⊂ R
3. The key ingredient is a smoothing effect in L

5
x(L2

t ) for the linear equa-
tion. We also derive scattering results for the whole range of defocusing subquintic
Schrödinger equations outside a star-shaped domain.

1 Introduction

The Cauchy problem for the semilinear Schrödinger equation in R
3 is by now relatively

well-understood: after seminal results by Ginibre-Velo [10] in the energy class for en-

ergy subcritical equations, the issue of local well-posedness in the critical Sobolev spaces

(Ḣ
3
2
− 2

p−1 ) was settled in [7]. Scattering for large time was proved in [10] for energy sub-

critical defocusing equations, while the energy critical (quintic) defocusing equation was

only recently successfully tackled in [9]. The local well-posedness relies on Strichartz esti-

mates, while scattering results combine these local results with suitable non concentration

arguments based on Morawetz estimates. On domains, the same set of problems remains
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1 INTRODUCTION 2

an elusive target, due to the difficulty in obtaining Strichartz estimates in such a setting.

In [2], the authors proved Strichartz estimates with an half-derivative loss on non trapping

domains: the non trapping assumption is crucial in order to rely on the local smoothing

estimates. However, the loss resulted in well-posedness results for strictly less than cu-

bic nonlinearities; this was later improved to cubic nonlinearities in [1] (combining local

smoothing and semiclassical Strichartz near the boundary) and in [11] (on the exterior of

a ball, through precised smoothing effects near the boundary). Recently there were two

significant improvements, following different strategies:

• in [16], Luis Vega and the second author obtain an L4
t,x Strichartz estimate which

is scale invariant. However, one barely misses L4
t (L

∞(Ω)) control for H1
0 data, and

therefore local wellposedness in the energy space was improved to all subcritical

(less than quintic) nonlinearities, but combining this Strichartz estimate with local

smoothing close to the boundary and the full set of Strichartz estimates in R
3 away

from it. Scattering was also obtained for the cubic defocusing equation, but the lack

of a good local wellposedness theory at the scale invariant level (Ḣ
1
2 ) led to a rather

intricate incremental argument, from scattering in Ḣ
1
4 to scattering in H1

0 ;

• in [13], the first author proved the full set of Strichartz estimates (except for the

endpoint) outside stricly convex obstacles, by following the strategy pioneered in

[17] for the wave equation, and relying on the Melrose-Taylor parametrix. In the

case of the Schrödinger equation, one obtains Strichartz estimates on a semiclassical

time scale (taking advantage of a finite speed of propagation principle at this scale),

and then upgrading to large time results from combining them with the smoothing

effect (see [3] for a nice presentation of such an argument, already implicit in [19]).

Therefore, one obtains the exact same local wellposedness theory as in the R
3 case,

including the quintic nonlinearity, and scattering holds for all subquintic defocusing

nonlinearities, taking advantage of the a priori estimates from [16].

In the present work, we aim at providing a local wellposedness theory for the quintic

nonlinearity outside non trapping obstacles, a case which is not covered by [13]. From

explicit computations with gallery modes ([12]), one knows that the full set of optimal

Strichartz estimates does not hold for the Schrödinger equation on a domain whose bound-

ary has at least one geodesically convex point; while this does not preclude a scale invariant

Strichartz estimate with a loss (like the L4
t (L

∞
x ) estimate in R

3 which is enough to solve

the quintic NLS), it suggests to bypass the issue and use a different set of estimates, which

we call smoothing estimates: in R
3, these estimates may be stated as follows,

‖ exp(it∆)f‖L4
x(L2

t ) . ‖f‖
Ḣ−

1
4
, (1.1)
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from which one can infer various estimates by using Sobolev in time and/or in space.

Formally, (1.1) is an immediate consequence of the Stein-Tomas restriction theorem in R
3

(or, more accurately, its dual version, on the extension): let τ > 0 be a fixed radius, one

sees f̂(ξ) as a function on |ξ| =
√
τ , and applies the extension estimate, with δ the Dirac

function and F the space Fourier transform

‖F−1(δ(τ − |ξ|2)f̂(ξ))‖L4
x

. ‖f̂(ξ)‖L2(|ξ|=√τ).

Summing over τ yields the L2 norm of f on the RHS, while on the left we use Plancherel in

time and Minkowski to get (1.1). A similar estimate holds for the wave equation, replacing√
τ = |ξ| by τ = ±|ξ|, and usually goes under the denomination of square function (in

time) estimates. In a compact setting (e.g. compact manifolds) a substitute for the Stein-

Tomas theorem is provided by Lp eigenfunction estimates, or better yet, spectral cluster

estimates. In the context of a compact manifold with boundaries, such spectral cluster

estimates were recently obtained by Smith and Sogge in [18], and provided a key tool for

solving the critical wave equation on domains, see [4, 6]. In this paper, we apply the same

strategy to the Schrödinger equation:

• we derive an L5(Ω;L2
I) smoothing estimate for spectrally localized data on compact

manifolds with boundaries, from the spectral cluster L5(Ω) estimate; here I is a time

interval whose size is such that |I||√−∆D| ∼ 1;

• we decompose the solution to the linear Schrödinger equation on a non trapping

domain into two main regions: close to the boundary, where we can view the region

as embedded into a 3D punctured torus, to which the previous semi-classical estimate

may be applied, and then sumed up using the local smoothing effect; and far away

from the boundary where the R
3 estimates hold.

• Finally, we patch together all estimates to obtain an estimate which is valid on the

whole exterior domain. Local wellposedness in the critical Sobolev space Ḣ
3
2
− 2

p−1

immediatly follows for 3+2/5 < p ≤ 5, and together with the a priori estimates from

[16], this implies scattering for the defocusing equation for 3 + 2/5 < p < 5. The

remaining range 3 ≤ p ≤ 3 + 2/5 is sufficiently close to 3 that, as alluded to in [16],

a suitable modification of the arguments from [16] yields scattering as well, and we

do not pursue this matter here.

Remark 1.1. Clearly, such smoothing estimates are better suited to large values of p: the

restriction 3 + 2/5 < p for the critical wellposedness is directly linked to the exponent 5 in

the spectral cluster estimates; in R
3, where the correct (and optimal !) exponent is 4, one
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may solve down to p = 3 by this method, while the Strichartz estimates allow to solve at

scaling level all the way to the L2 critical value p = 1 + 4/3.

2 Statement of results

Let Θ be a compact, non-trapping obstacle in R
3 and set Ω = R

3 \ Θ. By ∆D we denote

the Laplace operator with constants coefficients on Ω. For s ∈ R, p, q ∈ [1,∞] we denote

by Ḃs,q
p (Ω) = Ḃs,q

p the Besov spaces on Ω, where the spectral localization in their definition

is meant to be with respect to ∆D. We write Lp
x = Lp(Ω) and Ḣσ = Ḃs,2

2 for the Lebesgue

and Sobolev spaces on Ω. It will be useful to introduce the Banach-valued Besov spaces

Ḃs,q
p (Lr

t ), and we refer to the Appendix for their definition. Whenever Lp
t is replaced by

Lp
T , it is meant that the time integration is restricted to the interval (−T, T ).

We aim at studying wellposedness for the energy critical equation on Ω × R, with

Dirichlet boundary condition,

i∂tu+ ∆Du = ±|u|4u, u|∂Ω = 0, u|t=0 = u0 (2.1)

and more generally

i∂tu+ ∆Du = ±|u|p−1u, u|∂Ω = 0, u|t=0 = u0 (2.2)

with p < 5.

Theorem 2.1. (Well-posedness for the quintic Schrödinger equation) Let u0 ∈ H1
0 (Ω).

There exists a unique solution u ∈ C([−T, T ], H1
0 (Ω))∩ Ḃ1,2

5 (L
20
11
T ), to the quintic nonlinear

equation (2.1). Moreover, the solution is global in time and scatters in H1
0 if the data is

small.

The previous theorem extends to the following subcritical range:

Theorem 2.2. Let 3 + 2
5
< p < 5, sp = 3

2
− 2

p−1
and u0 ∈ Ḣsp. There exists a unique

solution u ∈ C([−T, T ], Ḣsp) ∩ Ḃ
sp,2
5 (L

20
11
T ), to the nonlinear equation (2.2). Moreover the

solution is global in time and scatters in Ḣsp if the data is small.

Finally, we consider the long time asymptotics for (2.2) in the defocusing case, namely

the + sign on the left.

Theorem 2.3. Assume the domain Ω to be the exterior of a star-shaped compact obstacle

(which implies Ω is non trapping). Let 3 + 2
5
< p < 5, and u0 ∈ H1

0 (Ω). There exists a

unique solution u ∈ C(R, H1
0 (Ω)) ∩ Ḃsp,2

5 (L
20
11
t ), to the nonlinear equation (2.2). Moreover,

there exists two scattering states u± ∈ H1
0 (Ω) such that

lim
t←±∞

‖u(x, t) − eit∆Du±‖H1
0 (Ω) = 0.
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3 Smoothing type estimates

We start with definitions and notations. Let ψ(ξ2) ∈ C∞0 (R \ {0}) and ψj(ξ
2) = ψ(2−2jξ2).

On the domain Ω, one has the spectral resolution of the Dirichlet Laplacian, and we

may define smooth spectral projections ∆j = ψj(−∆D) as continuous operators on L2.

Moreover, these operators are continuous on Lp for all p, and if f is Hilbert-valued and

such that ‖‖f‖H‖Lp(Ω) < +∞, then the operators ∆j are continuous as well on Lp(H).

We refer to [14] for an extensive discussion and references. We simply point out that if

H = L2
t , then ∆j is continuous on all Lp

xL
q
t by interpolation with the obvious Lp

t (L
p
x) bound

and duality.

In this section we concentrate on estimates for the linear Schrödinger equation on Ω×R

with Dirichlet boundary conditions,

i∂tuL + ∆DuL = 0, uL|∂Ω = 0, uL|t=0 = u0 (3.1)

Theorem 3.1. The following local smoothing estimate holds for the homogeneous linear

equation (3.1),

‖∆juL‖L5
xL2

t
. 2−

j
10‖∆ju0‖L2

x
. (3.2)

Moreover, let 2 ≤ q ≤ ∞, then

‖∆juL‖L5
xLq

t
. 2−j( 2

q
− 9

10
)‖∆ju0‖L2

x
. (3.3)

Consider now the inhomogeneous equation,

i∂tv + ∆Dv = F, v|∂Ω = 0, v|t=0 = 0. (3.4)

From Theorem 3.1, we will obtain the following set of estimates:

Theorem 3.2. Let 2 ≤ q < r ≤ +∞, then

‖∆jv‖Ct(L2
x) + 2j( 2

q
− 9

10
)‖∆jv‖L5

xLq
t
. 2−j( 4

r
− 9

5
)‖∆jF‖

L
5
4
x Lr′

t

, (3.5)

with 1/r + 1/r′ = 1.

Combining the previous theorems with the results from [16], we finally state the set of

estimates which will be used later for

i∂tu+ ∆Du = F, u|∂Ω = 0, v|t=0 = u0. (3.6)

Theorem 3.3. Let 2 < r ≤ +∞, then

‖∆ju‖Ct(L2
x) + 2

j
10‖∆ju‖L5

xL2
t
+ 2−

3
4
j‖∆ju‖L4

t,x
. ‖∆ju0‖L2

x
+ 2−j( 4

r
− 9

5
)‖∆jF‖

L
5
4
x Lr′

t

, (3.7)

with 1/r + 1/r′ = 1.
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3.1 Proof of Theorem 3.1

Let ψ̃ ∈ C∞0 (R \ {0}) be such that ψ̃ = 1 on the support of ψ: hence, if ∆̃j denotes the

corresponding localization operator, ∆̃j∆j = ∆j . We now split the solution of the linear

equation ∆juL(t, x) = ∆̃j∆juL as a sum of two terms ∆̃jχ∆juL + ∆̃j(1 − χ)∆juL, where

χ ∈ C∞0 (R3) is compactly supported and it is equal to 1 near the boundary ∂Ω.

3.1.1 Far from the boundary: ∆̃j(1 − χ)∆juL

Set wh(t, x) = (1 − χ)∆je
−it∆Du0(x). Then wh satisfies

{

i∂twh + ∆Dwh = −[∆D, χ]∆juL,
wh|t=0 = (1 − χ)∆ju0.

(3.8)

Since χ is equal to 1 near the boundary ∂Ω, we can view the solution to (3.8) as the

solution of a problem in the whole space R
3. Consequently, the Duhamel formula writes

wh(t, x) = e−it∆(1 − χ)∆ju0 −
∫ t

0

e−i(t−s)∆[∆D, χ]∆juL(s)ds, (3.9)

where ∆ is the free Laplacian on R
3 and therefore the contribution of e−it∆(1 − χ)∆ju0

satisfies the usual Strichartz estimates. We have thus reduced the problem to the study of

the second term in the right hand-side of (3.9). Ideally, one would like to remove the time

restriction s < t and use a variant of the Christ-Kiselev lemma. However, this would miss

the endpoint case q = 2. Instead, we recall the following lemma:

Lemma 3.1 (Staffilani-Tataru [19]). Let x ∈ R
n, n ≥ 3 and let f(x, t) be compactly

supported in space, such that f ∈ L2
t (H

− 1
2 ). Then the solution w to (i∂t + ∆x)w = f with

w|t=0 = 0, is such that

‖w‖
L2

t (L
2n

n−2
x )

. ‖f‖
L2

t (H−
1
2 )
. (3.10)

In fact, one may shift regularity in (3.10) without difficulty. Now, the proof in [19] relies

on a decomposition into traveling waves, to which homogeneous estimates are then applied.

We can therefore use the L4
x(L

2
t ) smoothing estimate, Sobolev in space, and obtain, under

the same hypothesis

‖w‖L5
x(L2

t ) . ‖f‖
L2

t (H−
1
2−

1
10 )

We take f = −[∆D, χ]∆juL ∈ L2H
−1/2−1/10
comp (Ω) and

‖[∆D, χ]∆juL‖L2H
−1/2−1/10
comp

. ‖∆juL‖L2Ḣ1/2−1/10(Ω) . ‖∆ju0‖Ḣ1/10(Ω),
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from which the smoothing estimates follow

‖(1 − χ)∆juL‖L5(R3)L2
t

. ‖(1 − χ)∆ju0‖Ḣ−
1
10 (R3)

+ ‖[∆D, χ]∆juL‖L2H
−1/2−1/10
comp

. ‖∆ju0‖Ḣ−
1
10 (Ω)

. (3.11)

We conclude using the continuity properties of ∆̃j which were recalled at the beginning of

the section (see [14, Cor.2.5]). In fact, using (3.11), we get

‖∆̃j(1 − χ)∆juL‖L5
xL2

t
. ‖(1 − χ)∆juL‖L5

xL2
t

. 2−
j
10‖∆ju0‖L2(Ω),

where we have used the spectral localization ∆j to estimate

‖∆ju0‖Ḣσ(Ω) ≃ 2σj‖∆ju0‖L2(Ω).

3.1.2 Close to the boundary: ∆̃jχ∆juL

For l ∈ Z let ϕl ∈ C∞0 (((l − 1/2)π, (l + 1)π)) equal to 1 on [lπ, (l + 1/2)π]. We set

vj = ∆̃jχ∆juL and for l ∈ Z we set vj,l = ϕl(2
jt)vj . We have

‖vj‖2
L5(Ω)L2(R) = ‖

∑

l∈Z

vj,l‖2
L5

xL2
t
≃ ‖‖

∑

l∈Z

vj,l‖2
L2

t
‖

L
5/2
x

. ‖
∑

l∈Z

‖vj,l‖2
L2

t
‖

L
5/2
x

≤
∑

l∈Z

‖vj,l‖2
L5

xL2
t
, (3.12)

where for the first inequality we used the fact that the supports in time of ϕl are almost or-

thogonal. In order to estimate ‖vj‖2
L5

xL2
t

it will be thus sufficient to estimate each ‖vj,l‖2
L5

xL2
t
.

The equation satisfied by ṽj,l := ϕl(2
jt)χ∆juL is

i∂tṽj,l + ∆Dṽj,l = −(ϕl(2
jt)[∆D, χ]∆juL − i2jϕ′l(2

jt)χ∆juL), (3.13)

where we stress that ṽj,l vanishes outside the time interval (2−j(l−1/2)π, 2−j(l+1)π). We

denote Vj,l the right hand side in (3.13) where we set

Vj,l := −ϕl(2
jt)[∆D, χ]∆juL − i2jϕ′l(2

jt)χ∆juL. (3.14)

Let Q ⊂ R
3 be an open cube sufficiently large such that ∂Ω is contained in the interior

of Q. We denote by S the punctured torus obtained from removing the obstacle Θ (recall

that Ω = R
3 \ Θ) in the compact manifold obtained from Q with periodic boundary

conditions on ∂Q. Notice that defined in this way S coincides with the Sinäı billiard. Let

also ∆S :=
∑3

j=1 ∂
2
j denote the Laplace operator on the compact domain S.
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Remark 3.1. Notice that in a neighborhood of the boundary, the domains of ∆S and ∆D

coincide, thus if χ̃ ∈ C∞0 (R3) is supported near ∂Ω then

∆Sχ̃ = ∆Dχ̃.

Moreover, there exists χ1 ∈ C∞0 (R3) supported near the boundary and equal to 1 on the

support of χ̃ such that

χ1∆̃jχ̃ = χ1∆̃
S
j χ̃. (3.15)

On S, we may define a spectral localization operator using eigenvalues λk and eigen-

vectors ek of ∆S: if f =
∑

k ckek, then

∆S
j f = ψ(2−2j∆S)f =

∑

k

ψ(2−2jλ2
k)ckek. (3.16)

In what follows let χ̃ ∈ C∞0 (R3) be equal to 1 on the support of χ and be supported

in a neighborhood of ∂Ω such that on its support the operator −∆D coincide with −∆S .

From their respective definition, ṽj,l = χ̃vj,l, Vj,l = χ̃Vj,l, consequently ṽj,l will also solve

the following equation on the compact domain S

{

i∂tṽj,l + ∆S ṽj,l = Vj,l,
ṽj,l|t<h(l−1/2)π = 0, ṽj,l|t>h(l+1)π = 0.

(3.17)

Writing the Duhamel formula for the last equation (3.17) on S, applying ∆̃j and using

that vj.l = ∆̃j ṽj,l, χ̃ṽj,l = ṽj,l and ∆̃jχ̃ = χ1∆̃
S
j χ̃+ (1 − χ1)∆̃jχ̃ yields

vj,l(t, x) = ∆̃j ṽj,l = ∆̃jχ̃ṽj,l

= χ1∆̃
S
j χ̃ṽj,l + (1 − χ1)∆̃jχ̃ṽj,l = χ1∆̃

S
j ṽj,l + (1 − χ1)∆̃j ṽj,l

= χ1

∫ t

h(l−1/2)π

e−i(t−s)∆S ∆̃S
j Vj,l(s, x)ds

+ (1 − χ1)

∫ t

h(l−1/2)π

∆̃je
−i(t−s)∆SVj,l(s, x)ds. (3.18)

Denote by vj,l,m the first term in the second line of (3.18) and by vj,l,f the second one.

We deal with them separately. To estimate the L5
xL

2
t norm of the vj,l,f we notice that it

is supported far from the boundary therefor the estimates for the L5
xL

2
t norms will follow

as shown in the previous section. Notice that since ṽj,l solves also the equation (3.13) on

Ω hence we can replace ∆S by ∆D in the integral defining vj,l,f and from Section 3.1.1 we

deduce

‖(1 − χ1)∆̃je
−i(t−s)∆DVj,l‖L5

xL2
t

. ‖∆̃jVj,l‖Ḣ−1/10(Ω) ≃ 2−
j
10‖∆̃jVj,l‖L2(Ω). (3.19)
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We then apply the Minkowski inequality to deduce

‖(1 − χ1)

∫ t

h(l−1/2)π

∆̃je
−i(t−s)∆DVj,l(s, x)ds‖L5

xL2
t

≤ 2−j/2(

∫

Ij,l

‖(1 − χ1)∆̃je
−i(t−s)∆DVj,l(s, .)‖2

L5(Ω)L2(Ij,l)
ds)1/2, (3.20)

where we denoted Ij,l = [2−j(l − 1/2)π, 2−j(l + 1)π] and we used the Cauchy-Schwartz

inequality. Using (3.19) we finally get

‖vj,l,f‖L5(Ω)L2(Ij,l) ≤ 2−j(1/2+1/10)‖∆̃jVj,l‖L2(Ij,l)L2(Ω). (3.21)

To estimate the L5
xL

2
t norm of the main contribution vj,l,m we need the following:

Proposition 3.1. Let j ≥ 0, Ij = (−π2−j, π2−j), χ̃ ∈ C∞0 (R3) be supported near ∂Ω

and V0 ∈ L2(Ω). Then there exists C > 0 independent of j such that for the solution

e−it∆S∆̃S
j χ̃V0 of the linear Schrödinger equation on S with initial data ∆̃S

j χ̃V0 we have

‖e−it∆S∆̃S
j χ̃V0‖L5(S)L2(Ij) ≤ C2−

j
10‖∆̃S

j χ̃V0‖L2(S). (3.22)

We postpone the proof of Proposition 3.1.

Using the fact that vj,l is supported in time in Ij,l = [2−j(l − 1/2)π, 2−j(l + 1)π], the

Minkowski inequality, Proposition 3.1 with χ̃ = 1 on the support of χ and with V0 = Vj,l,

and since χ̃1vj,l,m = vj,l,m for any χ̃1 ∈ C∞(R3) with χ̃1 = 1 on the support of χ1, we obtain

‖vj,l,m‖L5(Ω)L2(Ij,l) =‖χ̃1vj,l,m‖L5(Ω)L2(Ij,l) = ‖vj,l,m‖L5(S)L2(Ij,l)

≤
∫ 2−j(l+1)π

2−j(l−1)π

‖e−i(t−s)∆S∆̃S
j Vj,l(s, .)‖L5(S)L2(Ij,l)ds

≤2−
j
10

∫

Ij,l

‖∆̃S
j Vj,l(s)‖L2(S)ds

≤2−
j
10

∫

Ij,l

‖∆̃S
j χ̃Vj,l(s)‖L2(S)ds

≤2−
j
10

∫

Ij,l

‖χ1∆̃jVj,l(s) + (1 − χ1)∆̃
S
j Vj,l(s)‖L2(S)ds

.2−
j
10

∫

Ij,l

‖∆̃jVj,l(s)‖L2(Ω)ds

+ 2−
j
10

∫

Ij,l

‖(1 − χ1)∆̃
S
j Vj,l(s)‖L2(S)ds (3.23)

where this time we wrote ∆̃S
j χ̃ = χ1∆̃jχ̃+ (1 − χ1)∆̃

S
j χ̃ and Vj,l = χ̃Vj,l.
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Using the Cauchy-Schwartz inequality in (3.23) yields

‖vj,l,m‖L5(Ω)L2(Ij,l) . 2−j(1/2+1/10)(‖∆̃jVj,l‖L2(Ij,l)L2(Ω)

+ ‖(1 − χ1)∆̃
S
j Vj,l(s)‖L2(Ij,l)L2(S)). (3.24)

We deal with the second term in (3.24). Using the precise form of Vj,l given in (3.14)

together with the spectral localization ∆̃S
j we have

‖(1 − χ1)∆̃
S
j Vj,l(s)‖L2(Ij,l)L2(S) . (2j/2‖ϕl(2

jt)[∆D, χ]∆juL‖L2(Ij,l)H−1/2(S)

+ 2j/2‖ϕ′l(2jt)χ∆juL‖L2(Ij,l)H1/2(S)), (3.25)

and since the supports are localized near the boundary we can take the norms over Ω. On

the other hand, again thanks to the spectral cutoff ∆̃j, we obtain

‖∆̃jVj,l‖L2(Ij,l)L2(Ω) =‖ϕl(2
jt)∆̃j [∆D, χ]∆juL + i2jϕ′l(2

jt)∆̃jχ∆juL‖L2(Ij,l)L2(Ω)

.2j/2‖ϕl(2
jt)∆̃j [∆D, χ]∆juL‖L2(Ij,l)H

−1/2
0 (Ω)

+ 2−j/2‖2jϕ′l(2
jt)∆̃jχ∆juL‖L2(Ij,l)H

1/2
0 (Ω)

. (3.26)

Using the estimates (3.25) and (3.26) we obtain the same bounds for both terms in the

right hand side of (3.24). Precisely, we have

‖∆̃jVj,l‖L2(Ij,l)L2(Ω) + ‖(1 − χ1)∆̃
S
j Vj,l(s)‖L2(Ij,l)L2(S)

. 2j/2‖ϕ̃l(2
jt)∆̃jχ̃∆juL‖L2(Ij,l)H

1/2
0 (Ω)

, (3.27)

where χ̃ and ϕ̃l are equal to 1 on the supports of χ and ϕl, respectively.

Let us recall the following local smoothing result on a non trapping domain:

Lemma 3.2. (Burq, Gérard, Tzvetkov [2, Prop.2.7]) Assume that Ω = R
3\Θ, where Θ 6= ∅

is a non-trapping obstacle. Then, for every χ̃ ∈ C∞0 (R3), one has

‖χ̃∆juL‖L2(R,Ḣ1/2(Ω)) ≤ C‖∆ju0‖L2(Ω), (3.28)

where, as usual, uL(t, x) = e−it∆Du0(x).

Using (3.12), (3.21), (3.24), (3.27) and Lemma 3.2, we deduce

‖∆̃jχ∆juL‖2
L5(Ω)L2

t
. 2−2j(1/2+1/10)

∑

l∈Z

‖∆̃jVj,l(s)‖2
L2(Ij,l)L2(Ω)

. 2−
2j
10

∑

l∈Z

‖ϕ̃lχ̃∆juL‖2
L2(Ij,l)Ḣ1/2(Ω)

. 2−
2j
10‖∆̃ju0‖2

L2(Ω). (3.29)
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3.1.3 End of the proof of Theorem 3.1

Until now we have prove Theorem 3.1 only for q = 2. We shall use the Gagliardo-Nirenberg

inequality in order to deduce (3.3) for every q ≥ 2. We have

‖∆juL‖L∞

t
. ‖∆juL‖1/2

L2
t
‖∆j∂tuL‖1/2

L2
t
.

which gives, taking the L5
x norms and using the Cauchy-Schwartz inequality

‖∆juL‖5
L5

xL∞

t
. ‖∆juL‖5/2

L5L2
t
‖∆j∂tuL‖5/2

L5
xL2

t
. (3.30)

It remains to estimate ‖∆j∂tuL‖L5
xL2

t
: notice that since uL = e−it∆Du0

∆j∂tuL = −i∆D∆juL = i22j∆̃juL,

where ∆̃j is defined with ψ1(x) = xψ(x) ∈ C∞0 (R \ {0}). Therefore

‖∆j∂tuL‖L5
xL∞

t
≤ C2j(2−1/10)‖∆̃ju0‖L2(Ω), (3.31)

consequently

‖∆j∂tuL‖L5
xLq

t
≤ C2−j(2/q−9/10)‖∆ju0‖L2(Ω)

and Theorem 3.1 is proved.

3.2 Proof of Theorems 3.2 and 3.3

We recall a lemma due to Christ and Kiselev [8]. We state the corollary we will use, with

only the time variable: we refer to [5] for a simple direct proof of all the different cases we

use, with Banach-valued Lp
t (B) spaces or B(Lp

t ). Its use in the context of reversed norms

Lq
x(L

p
t ) goes back to [15] and it greatly simplifies obtaining inhomogeneous estimates from

homogeneous ones.

Lemma 3.3. (Christ and Kiselev [8]) Consider a bounded operator

T : Lr(R) → Lq(R)

given by a locally integrable kernel K(t, s). Suppose that r < q. Then the restricted operator

TRf(t) =

∫

s<t

K(t, s)f(s)ds

is bounded from Lr(R) to Lq(R) and

‖TR‖Lr(R)→Lq(R) ≤ C(1 − 2−(1/q−1/r))−1‖T‖Lr(R)→Lq(R).

From the lemma, the proof of the inhomogeneous set of estimates in Theorem 3.2

is routine from the homogeneous estimates in Theorem 3.1 and the Duhamel formula.

Combining both homogeneous and inhomogeneous estimates yields Theorem 3.3.
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3.3 Proof of Proposition 3.1

Let S denote the compact domain defined above. Recall (en)n is the eigenbasis of L2(S)

consisting of eigenfunctions of −∆S associated to the eigenvalues λ2
n. Following [4], we

define an abstract self adjoint operator on L2(S) as follows

Ah(en) := −[hλ2
n]en,

where [λ] is the integer part of λ. We first need to establish estimates for the linear

Schrödinger equation on the compact domain S with spectrally localized initial data.

We now set h = 2−j and state estimates on the evolution equation where h∆D is

replaced by Ah.

Lemma 3.4. Let 0 < h ≤ 1, q ≥ 2, Ih = (−πh, πh), χ̃ ∈ C∞0 (R3) be supported near ∂Ω

and V0 ∈ L2(Ω). There exists C > 0 independent of h such that

‖ei t
h

Ah∆̃S
j χ̃V0‖L5(S)Lq(Ih) ≤ Ch2/q−9/10‖∆̃S

j χ̃V0‖L2(S). (3.32)

We postpone the proof of Lemma 3.4 and proceed with the proof of Proposition 3.1.

Denote by Vh(t, x) := e−it∆S∆̃S
j χ̃V0(x), then

(ih∂t + Ah)Vh = (ih∂t + h∆S)Vh + (Ah − h∆S)Vh = (Ah − h∆S)e−it∆S∆̃S
j χ̃V0.

Writing Duhamel formula for Vh yields

Vh(t, x) = ei t
h

Ah∆̃S
j χ̃V0(x) −

i

h

∫ t

0

ei
(t−s)

h
Ah(Ah − h∆S)e−is∆S∆̃S

j χ̃V0(x)ds. (3.33)

Using (3.32) with q = 2, (3.33), the Minkowski inequality and boundedness of the operator

‖ei t
h

Ah∆̃S
j ‖L2(S)→L5(S)L2(Ih) . 2−

j
10 ∼ h1/10

(which follows from the proof of Lemma 3.4), we obtain

‖e−it∆S∆̃S
j χ̃V0‖L5(S)L2(Ih) . h

1
10

(

‖∆̃S
j χ̃V0‖L2(S)

+
1

h
‖(Ah + h∆S)e−is∆S∆̃S

j χ̃V0‖L1(−hπ,hπ)L2(S)

)

, (3.34)

where to estimate the second term in the right hand side of (3.33) we used the fact that

Ah commutes with the spectral localization ∆̃S
j . Changing variables s = hτ in the second

term in the right hand side of (3.34) yields

1

h
‖(Ah + h∆S)e−is∆S∆̃S

j χ̃V0‖L1(−hπ,hπ)L2(S) =

∫ π

−π

‖(Ah + h∆S)e−iτh∆S∆̃S
j χ̃V0‖L2(S)dτ

. 2π‖∆̃S
j χ̃V0‖L2(S), (3.35)
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where we used the fact that the operator (Ah + h∆S) is bounded on L2(S) and the mass

conservation of the linear Schrödinger flow. If follows from (3.34) and (3.35) that

‖e−it∆S∆̃S
j χ̃V0‖L5(S)L2(Ih) . h1/10‖∆̃S

j χ̃V0‖L2(S),

which ends the proof of Proposition 3.1.

We now return to Lemma 3.4 for the rest of this section. Writing ∆̃S
j V0 =

∑

n ψ̃(h2λ2
n)Vλnen,

we decompose (for 0 < h ≤ 1/4)

ei t
h

Ah∆̃S
j V0(t, x) =

∑

k∈N

ei t
h

kvk(x)

with

vk(x) =

((k+1)2j )1/2−1
∑

λ=(k2j)1/2

∑

λn∈[λ,λ+1)

Ψ̃(h2λ2
n)Vλnen =

((k+1)2j)1/2−1
∑

λ=(k2j)1/2

Πλ(∆̃
S
j V0),

where Πλ denotes the spectral projector Πλ = 1√−∆S∈[λ,λ+1). Let us estimate the L5(S)Lq(Ih)

norm of ei t
h

Ah∆̃S
j V0:

‖ei t
h

Ah∆̃S
j V0‖2

L5(S)Lq(Ih) . h2/q‖‖eisAh∆̃S
j V0‖2

Lq
s(−π,π)‖L5/2(S)

. h2/q‖‖eisAh∆̃S
j V0‖2

H1/2−1/q(s∈(−π,π))‖L5/2(S)

. h2/q‖
∑

k∈N

(1 + k)2( 1
2
− 1

q
)‖eiskvk(x)‖2

L2
s(−π,π)‖L5/2(S)

. h2/q
∑

k∈N

(1 + k)1−2/q‖eiskvk(x)‖2
L5(S)L2(−π,π)

. h2/q
∑

k∈N

(1 + k)1−2/q‖eiskvk(x)‖2
L2(−π,π)L5(S),

where we used Sobolev injection in the time variable H1/2−1/q ⊂ Lq and Plancherel in time.

We recall a result of [18] of Smith and Sogge on the spectral projector Πλ:

Theorem 3.4. (Smith and Sogge [18]) Let S be a compact manifold of dimension 3, then

‖Πλ‖L2(S)→L5(S) ≤ λ2/5.

Using Theorem 3.4 we have

‖ei t
h

Ah∆̃S
j V0‖2

L5(S)Lq(Ih) . h2/q
∑

1/4h−1≤k≤4/h

(1 + k)1−2/q+4/5‖∆̃S
j V0‖2

L2(S)

.
∑

hk∈[1/4,4]

k1−4/q+4/5‖∆̃S
j V0‖2

L2(S)

. ‖∆̃S
j V0‖2

Ḣ2/q−9/10(S)
,
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since for hk > 4 or h(k + 1) < 1/4 and λn ∈ [(k2j)1/2, ((k+ 1)2j)1/2) we have Ψ̃(h2λ2
n) = 0

and on the other hand for these values of k we have

k/
√

2 ≤ (k2j)1/2 ≤ λn ≤ ((k + 1)2j)1/2 ≤
√

2(k + 1), h ≤ 5(k + 1)−1.

This completes the proof of Lemma 3.4.

4 Local existence

In this section we prove Theorem 2.1.

Definition 4.1. Let u ∈ S ′(R × Ω) and let ∆j = ψ(−2−2j∆D) be a spectral localization

with respect to the Dirichlet Laplacian ∆D in the x variable, such that
∑

j ∆j = Id and

let Sj =
∑

k<j ∆j. We introduce the ”Banach valued” Besov space Ḃs,q
p (Lr

t ) as follows: we

say that u ∈ Ḃs,q
p (Lr

t ) if
(

2js‖∆ju‖Lp
xLr

t

)

∈ lq,

and
∑

j ∆jf converges to f in S ′. If Lr
t is replaced by Lr

T , the time integration is meant to

be over (−T, T ). Moreover, when s < 0, ∆j may be replaced by Sj in the norm and both

norms are equivalent.

Applying Theorem 3.1 with q = 2, 5 and taking s = 1 in the definition above we obtain

uL ∈ Ḃ
1+ 1

10
,2

5 (L2
t ) ∩ Ḃ

1
2
,2

5 (L5
t ) and ∂tuL ∈ Ḃ

− 3
2
,2

5 (L5
t ).

From this, by Gagliardo-Nirenberg in the time variable, one should have

uL ∈ Ḃ1,2
5 (L

20
9

t ) ∩ Ḃ3/20,2
5 (L40

t ) ⊂ L20/3
x L40

t ,

and consequently

u4
L ∈ L5/3

x L10
t as well as |uL|4uL ∈ Ḃ1,2

5
4

(L
20
11
t )

which should be enough to iterate. However, our spaces are Banach valued Besov spaces

(if one sees time as a parametrer) and justifying Berstein-like inequalities and Sobolev

embedding is not entirely trivial (but doable, using the estimates from [14]). We choose

an apparently complicated space in order to set up the fixed point, but the little gain in

regularity from the smoothing estimate will turn out to be crucial for subcritical scattering.

Remark 4.1. By this choice, we only restrict the uniqueness class. It is likely that one may

prove a better result, but there is no immediate benefit in the present setting, except proving

additional estimates. We retained, however, the uniqueness class that would provided by
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the argument above in the Theorems’statements. Another remark is that one may dispense

with the use of Lemma 3.1, miss the endpoint q = 2 and still get the exact same nonlinear

results, as there is room (due to the use of Sobolev embedding) in all mapping estimates.

Moreover, as soon as we use an estimate with a (however small) gain in regularity, we do

not need Lemma 4.5, as we could use a simpler embedding in a Besov space of negative

regularity and play regularities against each other. In fact, in the same spirit as [15] one

could replace the critical Sobolev norm by a Besov norm Ḃ
sp,∞
2 .

For T > 0 let

XT := {u | u ∈ Ḃ
1+ 1

10
,2

5 (L2
T ) ∩ Ḃ

1
2
,2

5 (L5
T ) and ∂tu ∈ Ḃ

− 3
2
,2

5 (L5
T )}. (4.1)

and for u ∈ XT set F (u) := |u|4u.

Proposition 4.1. Define a nonlinear map φ as follows,

φ(u)(t) :=

∫

s<t

ei(t−s)∆DF (u(s))ds.

Then

‖φ(u)‖CT (Ḣ1
0 ) + ‖φ(u)‖XT

. ‖F (u)‖
Ḃ1,2

5/4
(L

20/11
T )

,

‖φ(u) − φ(v)‖XT
. ‖F (u) − F (v)‖

Ḃ1,2
5/4

(L
20/11
T )

.

The estimate for the inhomogeneous problem writes

‖
∫

e−is∆DF‖L2
x
≤ C‖F‖

Ḃ0,2
5/4

(L
20/11
t )

,

Shifting the regularity to s = 1 and using the Christ-Kiselev lemma provides both mapping

estimates, as the difference estimate is identical to the first one (since we have an integer

power). On the other hand,

‖F (u)‖
Ḃ1,2

5/4
(L

20/11
T )

. ‖u‖5
XT
. (4.2)

One may now set up the usual fixed point argument in XT if T is sufficiently small.

We now consider local wellposedness for p < 5, e.g. Theorem 2.2. The critical Sobolev

exponent w.r.t. scaling is sp = 3/2 − 2/(p − 1). We aim at setting up a contraction

argument in a small ball of

XT := {u | u ∈ Ḃ
sp+ 1

10
,2

5 (L2
T ) ∩ Ḃsp− 1

4
,2

4 (L4
T ) and ∂tu ∈ Ḃ

sp− 1
4
−2,2

4 (L4
T )}. (4.3)

The important fact (if we were to ignore issues with Banach valued Besov spaces) would

be that XT ⊂ Ḃ
sp,2
5 (L

20/9
T ) ∩ L5(p−1)/3

x L
10(p−1)
T .
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Remark 4.2. Some numerology is in order: if one were only to have the L5
xL

2
t smoothing

estimate and use Sobolev (in time and in space), it would require 5(p− 1)/3 ≥ 5, namely

p ≥ 4. However, we have the Strichartz estimate from [16], which allows 5(p− 1)/3 ≥ 4,

or p ≥ 3 + 2/5.

From the appendix, the nonlinear mapping verifies

‖F (u) − F (v)‖
Ḃ

sp,2

5/4
(L

20/11
T )

. ‖u− v‖XT
(‖u‖p−1

XT
+ ‖v‖p−1

XT
)

and existence and uniqueness follow by fixed point again.

We now deal with scattering in the same range of p: from [16], we have an a priori

bound

‖Sju‖4
L4

t L4
x

. ‖u‖4
L4

tL4
x

. ‖u0‖3
L2

x
sup

t
‖u‖H1

0
≤M

3
2E

1
2 ,

where M and E are the conserved charge and hamiltonian,

M =

∫

Ω

|u|2 dx and E =

∫

Ω

|∇u|2 +
2

p+ 1
|u|p+1 dx.

Notice how this estimate is below the critical scaling sp, as the RHS regularity is s = 1/4.

From the energy a priori bound and Sobolev embedding, one has on the other hand

‖Sju‖L∞

t,x
. 2

j
2 sup

t
‖u‖H1

0
. 2

j
2E

1
2 .

Interpolating between the two bounds to get the right scaling yields,

‖Sju‖Lq
t,x

. C(M,E)2
j( 1

2
− 5−p

3(p−1)
)
, (4.4)

where 1/q = (5− p)/6(p− 1). In order to proceed with the usual scattering argument, we

need to revisit the fixed point, or more precisely the nonlinear estimate on F (u): indeed,

if we wish to use (4.4), even at a power ε, we cannot afford to use the same regularity

on both sides of the Duhamel formula. Fortunately, we have off diagonal inhomogeneous

estimates, e.g.

‖
∫

ei(t−s)∆DF‖
Ḃ

sp,2
5 (L

20/9
t )∩Ḃ

sp−3/4,2
4 (L4

t )
≤ C‖F (u)‖

Ḃ
sp−

1
10 ,2

5/4
(L2

t )
.

In order to evaluate F (u), one needs to place the Sju factors in such a way that

‖(Sju)
p−1‖

L
5/3
x L20

t
. 2

j
10 .

However, we have from (4.4)

‖(∆ju)
p−1‖

L
6

5−p
t,x

. C(M,E)2j( 5p−13
6

), (4.5)



4 LOCAL EXISTENCE 17

and 6/(5 − p) > 5/3. As such, one may interpolate with

‖∆ju‖L4
xL4

t
. 2−j(sp− 1

4
),

to get (after Sobolev embedding)

‖(∆ju)
p−1‖

L
5
3
x L20

t

. 2
j
10 .

Suming over low frequencies recovers the desired bound. Notice that scaling dictates the

exponents (hence there is no need to compute explicitely the interpolation θ).

Appendix

In order to perform the various product estimates, we need a couple of useful lemma.

Observe that with the spectral localization one cannot take advantage of convolution of

Fourier supports. As a first step and in order to avoid cumbersome notations, we only

consider functions and Besov spaces which do not depend on time. We will then explain

how to re-instate the time dependance in the nonlinear estimates.

It is worth noting at this stage, however, that both ∆j and Sj operators are well-defined

on Lp
tL

q
x and Lq

xL
p
t for all the pairs (p, q) to be considered: this follows from [14] for the

case Lp
tL

q
x where the time norm is harmless. In the case Lq

xL
2
t , the arguments from [14]

apply as well (heat estimates are proved for data in Lp
x(H) where H is an abstract Hilbert

space, and when H = L2
t , the heat kernel is diagonal and therefore Gaussian as well). By

interpolation and duality we recover all pairs (p, q).

Remark 4.3. In R
n, one may perform product estimates in an easier way because of

the convolution of Fourier supports. However, when dealing with non integer power-like

nonlinearities, one cannot proceed so easily: the usual route is to use a characterization

of Besov spaces via finite differences; here, because of the Banach valued Besov spaces, we

perform a direct argument which is directly inspired by computations in [15], where the

same sort of time-valued Besov spaces were unavoidable.

Lemma 4.1. Let fj be such that Sjfj = fj, and ‖fj‖Lp . 2−jsηj, with s > 0 and (ηj)j ∈ lq.

Then g =
∑

j fj ∈ Ḃs,q
p .

We have, by support conditions,

g =
∑

k

∆k

∑

k<j

Sjfj .
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Now,

‖∆k(
∑

k<j

Sjfj)‖p . 2−ks
∑

k<j

2−s(j−k)ηj ,

which by an l1 − lq convolution provides the result.

Lemma 4.2. Let fj be such that (I − Sj)fj = fj, and ‖fj‖Lp . 2−jsηj, with s < 0 and

(ηj)j ∈ lq. Then g =
∑

j fj ∈ Ḃs,q
p .

We have, by support conditions,

g =
∑

k

∆k

∑

k>j

(I − Sj)fj .

Now,

‖∆k(
∑

k>j

(I − Sj)fj)‖p . 2−ks
∑

k<j

2−s(j−k)ηj ,

which by an l1 − lq convolution provides the result.

Lemma 4.3. Consider α = 1 or α ≥ 2, f ∈ Ḃs,q
p and g ∈ Lr, with 0 < s < 1, 1

m
= α

r
+ 1

p
:

let

T α
g f =

∑

j

(Sjg)
α∆jf.

Then

T α
g f ∈ Ḃs,q

m .

We split the paraproduct T α
g f :

T α
g f =

∑

j

Sj((Sjg)
α∆jf) +

∑

j

(I − Sj)((Sjg)
α∆jf);

the first part is easily dealt with by Lemma 4.1. For the second one, Kgf , taking once

again advantage of the spectral supports

∆kKgf = ∆k

∑

j<k

(I − Sj)((Sjg)
α∆jf).

Notice the situation is close to the one in Lemma 4.2, but we don’t have a negative regularity

for summing. We therefore derive

∆DKgf =
∑

j<k

(I − Sj)∆D((Sjg)
α∆jf)

=
∑

j<k

(I − Sj)
(

∆D(Sjg)
α∆jf + (∆D∆jf)(Sjg)

α + 2α(Sjg)
α−1∇Sjg · ∇∆jf

)

=
∑

j<k

(I − Sj)
(

α∆DSjg(Sjg)
α−1∆jf + α(α− 1)|∇Sjg|2(Sjg)

α−2∆jf

+ (∆D∆jf)(Sjg)
α + 2α(Sjg)

α−1∇Sjg · ∇∆jf
)

.
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The first two pieces are again easily dealt with with Lemma 4.2, and the resulting function

is in Ḃs−2,q
p . The remaining cross term is handled with some help from [14]:

∇∆jf = ∇ exp(4−j∆D)∆̃jf,

where the new dyadic block ∆̃j is built on the function ψ̃(ξ) = exp(|ξ|2)ψ(ξ). From the

continuity properties of
√
s∇ exp(s∆D) on Lp, 1 < p < +∞, we immediatly deduce

‖∇∆jf‖p . 2j‖∆̃jf‖p, (4.6)

and taking advantage of s < 1, we can easily sum and conclude. This will be enough to

deal with the critical case, but for differences of nonlinear power-like mappings, we need

Lemma 4.4. Consider α ≥ 3, f, g ∈ X = Ḃs,q
p ∩ Lr, with 0 < s < 1, 1

m
= α−1

r
+ 1

p
: Then,

if F (x) = |x|α−1x or F (x) = |x|α,

‖F (u) − F (v)‖Ḃs,q
m

. ‖u− v‖X(‖u‖α−1
X + ‖v‖α−1

X ).

In order to obtain a factor u− v, we write

F (u) − F (v) = (u− v)

∫ 1

0

F ′(θu+ (1 − θ)v)dθ. (4.7)

In order to efficiently split this difference into two paraproducts involving u− v and F ′(w)

with w = θu+ (1 − θ)v, we need an estimate on F ′(w): write another telescopic series

F ′(w) =
∑

j

F ′(Sj+1w) − F ′(Sjw)

=
∑

j

Sj(F
′(Sj+1w) − F ′(Sjw)) +

∑

j

(I − Sj)(F
′(Sj+1w) − F ′(Sjw))

=S1 + S2.

Exactly as before, the first sum S1 is easily disposed of with Lemma 4.1, as

|F ′(Sj+1w) − F ′(Sjw)| . |∆jw|(|Sj+1w|α−2 + |Sjw|α−2).

The second sum S2 requires the same trick as before; to avoid uncessary cluttering, we set

F (x) = xα, ignoring the sign issue (recall that α ≥ 3, hence F ′′′(x) is well-defined as a

function): we apply ∆D, let β = α− 1 ≥ 2

∆DS2 =
∑

j

(I − Sj)∆D((Sj+1w)α−1 − (Sjw)α−1)

=
∑

j

(I − Sj)
(

β(Sj+1w)β−1∆DSj+1w − β(Sjw)β−1∆DSjw

+ β(β − 1)(Sj+1w)β−2(∇Sj+1w)2 − β(β − 1)(Sjw)β−2(∇Sjw)2
)

.
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We now apply Lemma 4.2 after inserting the right factors: we have four types of differences,

|((Sj+1w)β−1 − (Sjw)β−1)∆DSj+1w| . Cβ|∆jw||∆DSj+1|(|Sj+1w|β−2 + |Sjw|β−2)

|(Sj+1w)β−1∆D∆jw| ≤ |∆D∆jw||Sj+1w|β−2

|((Sj+1w)β−2 − (Sjw)β−2)(∇Sj+1w)2| . C̃β|∆jw|β−2|∇Sj+1w|2

|(Sj+1w)β−2((∇Sjw)2 − (∇Sj+1w)2)| ≤ |∇∆jw|(|∇Sjw| + |∇Sj+1w||Sj+1w|β−2

where on the third line we wrote the worst case, namely 2 ≤ β < 3 (otherwise the power

of ∆jw in the third bound will be replaced by |∆jw|(|Sjw|β−3 + |Sj+1w|β−3)).

By integrating, applying Hölder and using (4.6) to eliminate the ∇ operator, we obtain

as an intermediary result

F ′(w) ∈ Ḃs,q
λ , with

1

λ
=
α− 2

r
+

1

p
.

We may now go back to the difference F (u) − F (v) as expressed in (4.7) and perform

a simple paraproduct decomposition in two terms to which Lemma 4.3 may be applied.

Observe that there is no difficulty in estimating F ′(w) in Lm/(α−1), and that the integration

in θ is irrelevant. This completes the proof.

We now go back to the first nonlinear estimate, namely (4.2). We write a telescopic

series for the product five factors u1, u2, u3, u4, u5 ∈ XT ,

u1u2u3u4u5 =
∑

j

Sj+1u1Sj+1u2Sj+1u3Sj+1u4Sj+1u5 − Sju1Sju2Sju3Sju4Sju5

and we are reduced to studying five sums of the same type, of which the following is generic

S1 =
∑

j

∆ju1Sju2Sju3Sju4Sju5,

and we intend to apply Lemma 4.3, which is trivially extended to a product of several

factors. In principle,

uk ∈ Ḃ1,2
5 (L

20
11
T ) ∩ L

20
3

x L40
T

is enough, using the first space of the ∆j factor and the second one for all remaining Sj

factors, except for the use of (4.6) in the proof. Consider, from u ∈ XT ,

2
11
10

j‖∆ju‖L5
xL2

T
+ 2−

3
2
j‖∂t∆ju‖L5

T L5
x

= µ0
j ∈ l2j .

We will have, using [14],

2
11
10

j‖∇∆ju‖L5
xL2

T
+ 2−

3
2
j‖∂t∇∆ju‖L5

T L5
x

= µ1
j ∈ l2j , with ‖µ1‖l2 . ‖µ0‖l2.
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By Gagliardo-Nirenberg in time, we have the correct estimate for ∆ju, for k = 0, 1

2(1−k)j‖∇k∆ju‖
L5

xL
20
11
T

. µk
j .

We proceed with the low frequencies by proving a suitable Sobolev embedding.

Lemma 4.5. Let u ∈ Ḃ
1
2
,5

5 (L5
T ) and ∂tu ∈ Ḃ

− 3
2
,5

5 (L5
T ). Then u ∈ L

20
3

x L40
T .

Let

2( 1
2
−k)j‖∇k∆ju‖L5

xL5
T

+ 2−(k+ 3
2
)j‖∂t∇k∆ju‖L5

T L5
x

= µk
j ∈ l5j ,

notice we can easily switch time and space Lebesgue norms. Using Gagliardo-Nirenberg in

time, we have

2( 1
6
−k)j‖∇k∆ju‖L5

xL30
T

. µ3
j ∈ l5j . (4.8)

Using now Gagliardo-Nirenberg in space, we also have

2−
j
10‖∆ju‖L∞

x L5
T

. 2−
j
10‖∆ju‖L5

T L∞
x

. µ5
j

and the same thing for 2−2j∂t∆ju (or with an additional 2j∇). Now another Gagliardo-

Nirenberg in time provides

2−(k+ 1
2
)j‖∇k∆ju‖L∞

T,x
. µ6

j . (4.9)

Now, we essentially take advantage of a discrete embedding between l1 and weighted l∞

sequences:

|u| ≤
∑

j<J

|∆ju| +
∑

j≥J

|∆ju|

≤
∑

j<J

2
j
2 sup

j
2−

j
2 |∆ju| +

∑

j≥J

2−
j
6 sup

j
2

j
6 |∆ju|

. 2
J
2 sup

j
2−

j
2 |∆ju| + 2−

J
6 sup

j
2

j
6 |∆ju|

|u|4 . sup
j

2−
j
2 |∆ju|

(

sup
j

2
j
6 |∆ju|

)3

‖|u|4‖
L

5
3
x L10

T

. ‖ sup
j

2−
j
2 |∆ju|‖L∞

T,x
‖ sup

j
2

j
6 |∆ju|‖3

L5
xL30

T

‖u‖
L

20
3

x L40
T

. ‖u|‖
1
4

Ḃ
1
2 ,∞
∞ (L∞

t )
‖u|‖

3
4

Ḃ
1
6 ,5

5 (L30
t )

Notice that the estimate with a gradient is much easier: just interpolate between (4.8) and

(4.9) with k = 1 to obtain

2−j‖∇∆ju‖
L

20
3

x L40
T

. µ7
j ,
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which we can now sum over k < j to obtain control of Sju.

The case p < 5 is handled in an similar way, and we leave the details to the reader,

sparing him the complete set of exponents (depending on p !) that would appear in the

proof. For scaling reasons there is actually no need to perform the computation: the

previous one on the critical case simply illustrates that we can sidestep issues related to

the usual Littlewood-Paley theory by using direct arguments.
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