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HEISENBERG GROUP

Hajer Bahouri, Clotilde Fermanian Kammerer,
Isabelle Gallagher

Abstract. — A class of pseudodifferential operators on the Heisenberg group is defined.
As it should be, this class is an algebra containing the class of differential operators. Fur-
thermore, those pseudodifferential operators act continuously on Sobolev spaces and the loss
of derivatives may be controled by the order of the operator. Although a large number of
works have been devoted in the past to the construction and the study of algebras of variable-
coefficient operators, including some very interesting works on the Heisenberg group, our ap-
proach is different, and in particular puts into light microlocal directions and completes, with
the Littlewood-Paley theory developed in [7] and [5], a microlocal analysis of the Heisenberg

group.

RESUME. Nous définissons une classe d’opérateurs pseudo-différentiels sur le groupe de
Heisenberg. Comme il se doit, cette classe constitue une algébre contenant les opérateurs
différentiels. De plus, ces opérateurs pseudo-différentiels sont continus sur les espaces de
Sobolev et I'on peut controler la perte de dérivée par leur ordre. Siun grand nombre de travaux
ont été déja consacrés a la construction et a 1’étude d’algebres d’opérateurs a coefficients
variables, y compris des travaux tres intéressants sur le groupe de Heisenberg, notre approche
est différente et en particulier elle conduit a la notion de direction microlocale, et complete
Pélaboration d’une analyse microlocale sur le groupe de Heisenberg commencée dans [7] et [5]
par le développement d’une théorie de Littlewood-Paley.
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CHAPTER 1

INTRODUCTION AND MAIN RESULTS

1.1. Introduction

1.1.1. The Heisenberg group. — The Heisenberg group is obtained by constructing the
group of unitary operators on L%(R™) generated by the n-dimensional group of translations
and the n-dimensional group of multiplications (see for instance the book by M. Taylor [63]).
It is an unimodular, nilpotent Lie group whose Haar measure coincides with the Lebesgue
measure, and its remarkable feature is that its representation theory is rich as well as simple in
structure. It is actually the first locally compact group whose infinite-dimensional, irreducible
representations were classified (see [24]). It can be identified with a subgroup of the group
of (n +2) x (n+ 2) real matrices with 1’s on the diagonal and 0’s below the diagonal.

It has a dual nature, in the sense that it may be realized as the boundary of the unit ball in
several complex variables (thus extending to several complex variables the role played by the
upper half plane and the Hilbert transform on its boundary) as well as being closely tied to
quantum theory (via the Heisenberg commutators). We refer to the book by E. Stein [62],
Chapter XII, for a comprehensive presentation of that duality.

Harmonic analysis on the Heisenberg group is a subject of constant interest, due on the one
hand to its rich structure (though simple compared to other noncommutative Lie groups), and
on the other hand to its importance in various areas of mathematics, from Partial Differential
Equations (see among others [7], [13], [17] [36], [37], [53], [54], [69], [70]) to Geometry
(see [2], [20], [38], [56]) or Number Theory (see for instance [51], [65]). Many research
articles and monographs have been devoted to harmonic analysis on the Heisenberg group,
and we shall give plenty of references as we go along.

1.1.2. Microlocal analysis on R". — Microlocal analysis in the euclidian space appeared
in the early seventies ([60]-[61]), and has at its foundation the theory of pseudodifferential
operators. The main idea of microlocal analysis is to study a function simultaneously in the
space variables of the physical space and in the Fourier variables. Indeed, some phenomenon
need both analysis to be correctly understood. As an example, let us consider the obstuctions

r—z
to the convergence to zero in L2(R?) of two sequences, one of the form u, = h,, /24, (T(])
n
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and the other of the form v, = exp (th &0

) ¢(z) where h, — 0 and ¢ is in the Schwartz

n
class for example. Of course, the point xg is a point of concentration in the space variables

for the sequence u,, and as such, a point of obstruction to strong convergence to zero of the
sequence. Similarly the oscillations in the direction &y correspond to concentration in Fourier
variables for the sequence v,, and they are also an obstruction to the strong convergence of
the sequence.

With this point of view, it appears crucial to be able to use localization operators in space
variables and in frequencies: the latter are Fourier multipliers. The theory of pseudodifferential
operators provides a framework in which both points of view are unified: multiplication
operators and Fourier multipliers are indeed pseudodifferential operators. More precisely, a
pseudodifferential operator is defined by its symbol which is a function on the phase space:
the symbol of the operator of multiplication by ¢(x) is the function (z,£) — ¢(z) and the
symbol of the Fourier multiplier x(D) is the function (z,&) — x(§).

With pseudodifferential operators comes the concept of properties which hold microlocally.
A function f satisfies a property (P) locally if for any cut-off function x, the function xf
satisfies (P); similarly, replacing the function x by a pseudodifferential operator with symbol
supported in a given subset € of the phase-space, one gets a property satisfied microlocally
in 2. This notion allows a closer perception of the singularities of a function: in the 70’s was
developed the notion of wave front (analytic, C* etc.). The idea is to associate with a given
function f a region of the phase space where, microlocally, f is analytic or C*°, etc. This
region is by definition the complement of the wave front set.

One should notice that the phase space corresponds to the space of positions-impulsions of
Quantum Mechanics, and thus enjoys nice geometric properties. It can be understood as the
cotangent space to R? (or to a submanifold if one works on a manifold) and is a symplectic
space once endowed with the appropriate symplectic form. This geometric aspect has been
used successfully in numerous works and is one of the satisfying aspects of microlocal analysis
(see for example the development of microlocal defect measures, semi-classical measures and
Wigner measures as in [41] and [42] for example).

Microlocal analysis allowed for a very general study and classification of linear Partial Dif-
ferential Equations with variable coefficients, using for example Littlewood-Paley operators
which select a range of frequencies; such operators are pseudodifferential operators. In the
case of nonlinear Partial Differential Equations, the situation is of course much more compli-
cated, but paradifferential calculus ([14]) turned out to be a very powerful tool, for instance
to analyze the propagation of singularities of solutions to such equations, or to study the
associate Cauchy problem (see for instance [3], in the case of quasilinear wave equations).

1.1.3. Microlocal analysis on the Heisenberg group. — The development of microlo-
cal tools adapted to the geometric situation at hand is an important issue: we refer for instance
to the work of S. Klainerman and I. Rodnianski [48] in the case of the Einstein equation, where
the construction of an adapted Littlewood-Paley theory is a crucial tool to reach optimal reg-
ularity indexes for the initial data. Microlocal theory on R"™ easily passes to submanifolds.
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Other constructions have been performed on the torus, or more general compact Lie groups
(see for instance [59]).

A number of articles can be found in the literature, which develop a pseudodifferential calculus
on the Heisenberg group. For example, in [62], [63], this question is investigated through the
angle of the Weyl correspondence (see also the previous work [44]): as recalled above, that
correspondence is one of the rich features of the Heisenberg group, and is thoroughly developed
in those references. The important work [40] consists in constructing an analytic calculus
enabling one to obtain parametrices for a class of operators which are analytic hypoelliptic;
we also refer to [52] and [9] as well as [19] where a parametrix is constructed for sum-of-
squares type operators. One also must mention the series of papers by P. Greiner and his
coauthors (see for instance [10], [39] and [43] and and the references therein) in which in
particular symbols of left-invariant vector fields are constructed, from the point of view of
Laguerre calculus as well as using the Hermite basis and the recent works [26]-[28], where
a symbolic calculus on the Heisenberg group is developped, related to contact manifolds.
Finally, we refer to the work [23] where is constructed a pseudodifferential calculus based on
Hormander calculus, using exclusively the convolution rather than the Fourier transform.

Our approach here is not quite of the same nature as in the works refered to above, as we
aim at defining an algebra of operators on functions defined on the Heisenberg group, which
contains differential operators and Fourier multipliers, and which has a structure close to
that of pseudodifferential operators in the Euclidian space. The difficulty in this approach
is that there is no simple notion of symbols as functions on the Heisenberg group H, since
the Fourier transform is a family of operators on Hilbert spaces depending on a real-valued
parameter A\. Those operators are built using the so-called Bargmann representation, or the
Schrodinger representation (obtained from the previous one by intertwining operators). One
can easily check that what may appear as the symbol associated with a left-invariant vector
field is itself a family of operators. This family reads in the Schrodinger representation of H?
as a family of differential operators belonging to a class of operators of order 1 for the Weyl-
Hormander calculus (see [46]) of the harmonic oscillator. That basic observation is the heart
of the matter achieved in this paper. Let us point out that in fact symbols on the Heisenberg
group cannot depend only on the harmonic oscillator, and this has to do with the dependence
on the parameter A. This induces a number of technical problems that are dealt with by
introducing also a specific calculus in the A direction.

A symbol on the Heisenberg group is thus a function on H? valued in the space of families of
symbols of the Weyl-Hormander class associated to the harmonic oscillator, indexed by the
parameter A. Then, to this symbol, one associates a pseudodifferential operator as is usually
done by use of the inverse Fourier transform as well as the family of Weyl-quantized operators
associated with the symbol.

Once those pseudodifferential operators have been defined, we first prove that they are oper-
ators on the Schwartz class, which results from classical Fourier analysis on the Heisenberg
group. We then prove that the adjoint of a pseudodifferential operator and the composition
of two pseudodifferential operators are also pseudodifferential operators. Our arguments here
are deeply inspired by the analysis of the classical case as developped for instance in the book
of S. Alinhac and P. Gérard [1]. We analyze first the link between the kernel of a pseudo-
differential operator and its symbol, using the Fourier transform and its inverse. Then, it is
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possible to compute the function which could be the symbol of the adjoint of a pseudodiffer-
ential operator or of the composition of two pseudodifferential operators and to prove that it
actually is a symbol. This comes from the careful analysis of oscillatory integrals. We also
give asymptotic formula for the symbol of the adjoint or of the composition. These formulas
result from a Taylor formula in the spirit of what is done in the Euclidian space but adapted
to the case of the Heisenberg group; in particular, we crucially use functional calculus. The
specific feature of these asymptotic formula is that there is no gain on the Heisenberg group:
the commutator of two horizontal vector fields is a derivation.

We also study the action of pseudodifferential operators on Sobolev spaces. We prove in
particular that zero order operators are bounded on LQ(Hd) and more generally a pseudod-
ifferential operator is continuous from one Sobolev space to another, the link between the
regularity exponents of the Sobolev spaces being controled by the order of the symbol. The
arguments of this proof are inspired by the Euclidian proof of R. Coifman and Y. Meyer [22]
whose approach consists mainly in decomposing the symbol of the pseudodifferential operator
on R" (which is a function on the phase space 7" R") into a convergent series of reduced sym-
bols for which the continuity is a consequence of paradifferential calculus of J.-M. Bony [14].
The main interest of this approach is that it requires little regularity on the symbol and that
it can be carried out when the pseudodifferential calculus has no gain, which is the case in our
situation. Roughly speaking, the proof of R. Coifman and Y. Meyer is done in three steps.
In the first step, a symbol is decomposed using a dyadic partition of unity. This reduces the
problem to the study of symbols compactly supported in the frequency variable. Next, using
a Fourier series expansion, the symbol is expressed as a sum of reduced symbols which are
much easier to deal with. Finally, taking advantage of the Littlewood-Paley decomposition
on R™ the continuity on Sobolev spaces of the associate operator is established. To adapt
that method to the setting of the Heisenberg group H?, we begin by decomposing the symbol
associated with a given operator (defined as explained above via the Weyl-Hérmander calculus
of the harmonic oscillator), using a suitable dyadic partition of unity. Then, we use Fourier se-
ries to write the symbol as a convergent series of reduced symbols. But, in contrast to the R"
setting, the reduced symbols in that case cannot be treated as a sum of Littlewood-Paley
operators on the Heisenberg group. To overcome this difficulty, we use Mehler’s formula to
prove that these operators can be related in some sense to the reduced symbols obtained in
the R™ case. This allows us to finish the proof in more or less the same way as in the R" case,
up to the fact that an additionnal microlocalization is needed because the spectral parameter
is made of two different variables — as pointed out above, this is due to the special structure
of the Heisenberg group.

This paper completes, with the Littlewood-Paley theory developed in [7] and [5], a microlocal
analysis of the Heisenberg group. It calls for developments : a significant application would
be the generalization of the concept of wave front set to the setting of the Heisenberg group,
in order to obtain results related to the propagation of singularities as in [67] for instance.
One can also expect a construction of parametrices, as well as the development of a notion of
microlocal defect measure (or H-measure). Such studies are postponed to a future work.

Generalizations to other locally compact Lie groups should also be considered. The general-
ization of the Littlewood-Paley decomposition is in itself a challenge : although it is known
(see [47]) that a frequency localization process can be defined in general as a convolution
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product with a function of the Schwartz class, Bernstein inequalities seem very difficult to
obtain in general (and these inequalities are the crucial property that allow to construct
a Littlewood-Paley theory). Once that difficulty is overcome, the next step should be the
understanding of the phase space in more general contexts.

1.1.4. Structure of the paper. — The structure of the paper is the following. The rest of
this chapter is devoted to a recollection of the main facts on the Heisenberg group which will be
useful for us, as well as to the statement of the main results. More precisely, in Section 1.2.1,
we introduce our notation and give the basic definitions and in Section 1.2.2, we recall the
definition of the Fourier transform, using irreducible representations. The purpose of the next
section of this chapter is to provide the setting for symbols and operators on the Heisenberg
group, and it also contains the statement of the main results; for this some elements of Weyl-
Hormander calculus are required, and the necessary definitions are recalled. The main results
stated in this chapter (in Section 1.4) concern the continuity of pseudodifferential operators
on Sobolev spaces, along with the fact that those classes of operators form an algebra.

The second chapter is devoted to the analysis of examples and to the proof of some funda-
mental properties of pseudodifferential operators, such as their action on the Schwartz class,
the study of their kernel, their composition with differentiation operators.

In the third chapter, we prove that the classes of pseudodifferential operators defined in the
previous chapter are stable by adjunction and composition and prove asymptotic expansion
of their symbol.

In the fourth chapter we give an outline of the basic elements of Littlewood-Paley theory on
the Heisenberg group developed in [7] and [5] recalling in that framework the properties of
Besov spaces that we shall need later on. Next, we compare Littlewood-Paley operators with
pseudodifferential operators. This is of crucial importance in the next chapter. More precisely,
we prove that in some sense, a pseudodifferential operator associated to a truncated symbol,
in the Weyl-Hérmander calculus of the harmonic oscillator, is close to a Littlewood-Paley
operator.

In the fifth chapter, we prove the continuity on Sobolev spaces, by a (non trivial) adaptation
of the technique of R. Coifman and Y. Meyer [22] to the case of the Heisenberg group; in
particular an additional microlocalization is required, compared to the classical case.

Finally this paper comprises two appendixes. Appendix A is devoted to the proof of some
technical lemmas and formulas concerning the Heisenberg group that are used in the paper. In
Appendix B we prove a number of important results used in the proofs of the main theorems
of this paper, but for which the arguments are too lengthy or too technical to appear in the
main text; they are mainly related to Weyl-Hérmander calculus.

1.2. Basic facts on the Heisenberg group H?

1.2.1. The Heisenberg group. — Before stating the principal results of this paper, let
us collect a few well-known definitions and results on the Heisenberg group H?. We recall
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R2d+1 R2d+1

that it is defined as the space whose elements w € can be written w = (x,y, s)

with (z,y) € R? x R?, endowed with the following product law:
(121) w "U), = (m,y,s) : ('I/ay/asl) = ($+$,,y+y/,8+8/ -2z 'y/ +2y : x,) )

where for z,2/ € R% z -2’ denotes the Euclidean scalar product of the vectors z and z’.
Equipped with the standard differential structure of the manifold R?*!, the set HY is a non
commutative Lie group with identity (0,0). Note also that

Vow= (x’y’ S) € Hd, wil = (_x’ -Y, _S)-
The Lie algebra of left invariant vector fields (see Section A.1 of the Appendix) is spanned by
the vector fields

. def def def

Xj = Oy +2y;0s, Y; = 0y, — 21505 with j € {1,...,d}, and S = 0s= Y}, X}]

1
4
for j € {1,...,d}. In the following, we will denote by X the family of vector fields generated
by X; and by X;,4 =Y for j € {1,...,d}. Then for any multi-index o € {1,...,2d}*, we
write

(1.2.2) X

Using the complex coordinate system (z, s) obtained by setting z; = x; + iy;, we note that

V((z,9),(,5)) € HY x HY, (z,8)-(2,8) = (2 + 2, s+ s 4+ 2Im(z - 7)),

def
L S o

where 2z -7/ = Z;lzl z]E;. Furthermore, the Lie algebra of left invariant vector fields on the

Heisenberg group H? is generated by the vector fields:

Zj = 0., +1z;0s, Zj=0z, —iz0s, withje{l,...,d} and S=0,=—[Z; 7]

1
2i
Denoting by Z the family of vector fields generated by Z; and by Zj4 = Z; for j € {1,...,d},
we write for any multi-index a € {1,...,2d}*

def

(1.2.3) zo ¥y Za,.
One can easily check that for all j € {1,...,d},
(124) Xj = Zj +7] and Y} = ’L(ZJ _7]')-

The space H? is endowed with a smooth left invariant measure, the Haar measure, which in

the coordinate system (z,y, s) is simply the Lebesgue measure dw def dx dy ds. It satisfies the
fundamental property:

(1.2.5) Vf e LYHY), Yo' € HY, / f(w) dw = / f(w' - w) dw.
H He

The convolution product of two functions f and g on H? is defined by
def

frg) [ v gito = [ gt wd
H H

It should be emphasized that the convolution on the Heisenberg group is not commutative.
Moreover if P is a left invariant vector field on H?, then one has

(1.2.6) P(fg) = f*(P(9)).



1.2. BASIC FACTS ON THE HEISENBERG GROUP H¢ 15

Indeed, thanks to the classical differentiation theorem, we have

P(f xg)(w / fv w))dv.
Due to (A.1.2), one can write

P(gv™" -w)) = (Pg)(v™" - w),
which yields (1.2.6). However in general f x (P(g)) # (P(f)) * g.

Note that the usual Young inequalities are nevertheless valid on the Heisenberg group, namely
11 1

V(p,q,7) € 1,00, 1 * 9l ey < I pouayllgl pomay, 1+ - + s

In fact, Young inequalities are more generally available on any locally compact topological
group endowed with a left invariant Haar measure p which satisfies in addition

(A1) = p(A) for all borelian sets A.

Let us also point out that on the Heisenberg group H?, there is a notion of dilation defined
for a > 0 by

(1.2.7) da(z, 5) def (az,a’s).
Observe that for any real number a > 0, the dilation J, satisfies
8a(2,8) - 64(2',8) = 8al(2,5) - (¢, 8))
and that the vector fields Z; change the homogeneity in the following way:
(1.2.8) Zi(foda)=0a(Z;f) o dq.
This fact is crucial in order to obtain Bernstein or Hardy inequalities [4] (see Chapter 4).

Let us also remark that the Jacobian of the dilation &, is a where N def 2d + 2 is called the
homogeneous dimension of H.

Let us now recall how Sobolev spaces on the Heisenberg group are associated with the system
of vector fields X for nonnegative integer indexes.

Definition 1.1. — Let k be a nonnegative integer. We denote by Hk(Hd) the inhomogeneous
Sobolev space on the Heisenberg group of order k which is the space of functions u in L2(Hd)
(for the Haar measure) such that

Xy € L?  for any multi-index o € {1,...,2d}" with |a| < k.

Moreover, we state

def a
(1.2.9) lall ey = | D 10l Fa g0,

o <k
Remark 1.2. — FEquivalently, powers of the Laplacian-Kohn operator defined by

d d d
(1.2.10) N (XZ+Y7) =2 (Z;Z;+Z,;Z;) =4 (Z;Z; +i0y),
j=1

Jj=1 J=1
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can be used to define those Sobolev spaces, which take into account the different role played by

the s-direction. Thus
k
2

ell ey ~ N[(1d = Agga)

where ~ stands for equivalent norms.

uHLQ(Hd)

Note that homogeneous norms may also be defined, where the summation in (1.2.9) is replaced

by a summation over |a| =k, and above (Id — AHd)% is replaced by (—AHd)g.

When o is any nonnegative real number one can, as in the case of classical Sobolev spaces
on R"™, define the space H?(H?) by complex interpolation (see for instance [12]). As in the
euclidian case, other equivalent definitions of Sobolev spaces H? (Hd) can be used: the defini-
tion using integrals and kernels (see [58] and [62]), or the definition using Weyl-Hérmander
calculus (see [19]). Finally, a definition using the Littlewood-Paley theory on the Heisenberg
group, in the same spirit as in the Euclidian case and due to [7], will be given in Section 4.4.2.

There is a natural Heisenberg distance to the origin defined by

plz5) E (12l + 591,
d
where |z|2 = Z 2jZj. Similarly, we define the Heisenberg distance by
j=1
(1.2.11) d(w,w') =p (w™t ).
The distance d incorporates left translation invariant properties
(1.2.12) Vo e HY, d ({D Cw, W - w') = d(w,w’).

To define Holder spaces on the Heisenberg group, we shall introduce another distance on He.
Denote by P = P(Xj,...,Xaq) the set of continuous curves which are piecewise integral
curves of one of the vectors fields £X71,...,+X5;. To any such curve v : [0,7] — H¢, we

associate its length [(7) 2f 7 1t is known (see for instance [34, 35]) that, for any couple of
points w and w’ of H?, there exists a curve of P joining w to w’ and that the function

(1.2.13) d(w,w') = min{l(w), ~v € P, ~ joining w to w/}

is a distance on the Heisenberg group, which turns out to be equivalent to the one introduced
in (1.2.11).

Now, up to the change of the Euclidean distance into cz the definition of Hélder spaces on the
Heisenberg group is similar to the definition of Holder spaces on R€.

Definition 1.3. — Let r = k + o, where k is an integer and o €]0,1]. The Hélder
space C”"(Hd) on the Heisenberg group is the space of functions v on H? such that
[ X%u(w) — Xu(w’)|

. d:Sllp<XaZLLoo+Sup = )<oo,
l[ullcr may P [l s T )7

where d denotes the distance on the Heisenberg group defined by (1.2.13).
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Remark 1.4. — Thanks to (1.2.12) and the fact that the distances d and d are equivalent,
the spaces C"(H?) are invariant under left translations. It will be useful to point out that
Hoélder spaces on the Heisenberg group can be also defined using the Littlewood-Paley theory
on the Heisenberg group, in the same way as in the Euclidian case (see Section 4.4.2).

Finally let us define the Schwartz space.

Definition 1.5. — The Schwartz space S(Hd) is the set of smooth functions u on H® such
that, for any k € N, we have

d .
|ullk,s def sup {ZO‘ ((\z[Q — zs)znu(z,s))‘ < 00.
|o| <k,n<k
(z,s)eHd

The Schwartz space on the Heisenberg group S(Hd) coincides with the classical Schwartz
space S(R?¥H1). This allows to define the space of tempered distributions S’ (H¢). The weight
in (z,s) appearing in the definition above is linked to the Heisenberg distance to the origin p

defined above.

1.2.2. Irreducible representations and the Fourier transform. — Let us now recall
the definition of the Fourier transform. We refer for instance to [29], [54], [62], [63] or [64]
for more details. The Heisenberg group being non commutative, the Fourier transform on H¢
is defined using irreducible unitary representations of H?. As explained for instance in [63]
Chapter 2, all irreducible representations of H? are unitarily equivalent to one of two rep-
resentations: the Bargmann representation or the L? representation. The representations
on L?(R?%) can be deduced from Bargmann representations thanks to intertwining operators.
The reader can consult J. Faraut and K. Harzallah [29] for more details. Both representations
will be used here.

1.2.2.1. The Bargmann representations. — They are described by (u*, H,), with A € R\{0},
where H) is the space defined by

H def {F holomorphic on c?, [ F[3, < oo},

with
det (20 _ >
(12.14) 171, 2 (220) [ 2R P
s cd
while ©* is the map from H? into the group of unitary operators of H, defined by
{ W JF(€) € F(E —2)d M tME1/2) for )\ >0,

wd F(€) C (e — 2)es2ME1E/D for ) <0,

Let us notice that Hy equipped with the norm || - ||z, defined in (1.2.14) is a Hilbert space.
The monomials

(1.2.15)

Fo

)

M L WVEREE e

constitute an orthonormal basis of H.

The Fourier transform of an integrable function of H? is given by the following definition.
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Definition 1.6. — For f € L'(HY), we define

def
FHmE [
H
The function F(f), which takes values in the space of bounded operators on Hy, is by definition
the Fourier transform of f.

f(w)u dw.

Note that one has
F(f xg)(A) = F(F)A) o F(g)(N).

We recall that an operator A(\) of H) such that
> AN Fan, Fap)a,| < 400

aeN?
is said to be of trace-class. One then sets
def
(1.2.16) tr(AN) S D (AN Fan, Far)n,-

aeN?

We recall that if besides the operator A(\) has a kernel, namely that if there exists a func-
tion k) (&, &) such that

(1217) VF et ANF(E = [ B(EE)FE)aE,
then its trace is given by
(1.2.18) r (A(N)) = /C (€. )de.

Now if A(A)*A()N) is trace class, then A(\) is said to be a Hilbert-Schmidt operator. The
quantity

2

A a5y = | D2 AR Fanl?
aeN?
is then a norm on the vector space of Hilbert-Schmidt operators. The following property on
Hilbert-Schmidt norms, which can be found in [55] (Volume 1 Chapter VI.6) will be of frequent
use in what follows. Let A and B be two bounded operators on H), with A Hilbert-Schmidt.
Then

(1.2.19) I1BA[ sy + 1ABl Hs@) < 1Bzl Al msoe)-
Similarly if A and B are two Hilbert-Schmidt operators, then AB is trace-class and
(1.2.20) [tr(AB)| < [[AM) lasan) 1B sy

These notions are important for stating the Plancherel theorem for the Heisenberg group.
The proofs of the two following results can be found for instance in [29].

Theorem 1. — Let A denote the Hilbert space of one-parameter families A = {A(N) }xer\{0}
of operators on Hyx which are Hilbert-Schmidt for almost every A € R, with [[A(N)||gsen,)
measurable and with norm

1
def 2d71 o B
410 (L [ A s ar) < oo
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The Fourier transform can be extended to an isometry from LQ(Hd) onto A and we have the
Plancherel formulas:

2d—1 00

(1221) 19 Baety = Zarr [ WFDO sy AN and
d—1 e

(12.22) e = zarr [ (FGO) FEO) A

Remark 1.7. — If A= {A(\ )}AeR\{O} and B = {B(A\)}xer\{0} are two families in A, then

[ 1A BONI N < 4] 15,

Moreover, the following inversion theorem holds.

Theorem 2. — If a function f satisfies

(122 > [ IFOWFasla A < oc
a€N? >
then we have for almost every w,

2d71

flw) = 2 [ (s F(O) i

Remark 1.8. — The above hypothesis (1.2.23) is satisfied in S(HY) (see for example [6)).
Therefore, if we consider for wy € He, the Dirac distribution in wy, Ow (W), defined by

VfeSMHY), <buy, f>= flw),

we have an expression of oy, as a singular integral
2d71

m/w tr (u . )|>\|dd>\.

Now let us study the action of the Fourier transform on derivatives. Straightforward compu-
tations (performed in Lemma A.3 page 101 for the convenience of the reader), show that

F(Zi N = F(£H(NQ},
where Q;‘ is the operator on H) defined by
QFn © V2N F 1Faq, 0 A0
(1.2.25) © AN Fy 1,0 HA<O

and in the same way,

(1.2.24) Sy (W) =

A

F(Zi[)N) = F(FHNQ;,
where @j\ is the operator on H) defined by

—A def .
QiFar = V2 Fa,n ifA>0
def .
(1.2.26) = V2NV + 1Fq, 0 ifA<0,

while we have written v £ 1; = 8 where 8 = o, if k # j and 3; = a; £ 1.
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1 R
Observe that <;Q;‘> = ;Q;\ and that
A 2Ng it A >0, =X | O if A>0,
(1.2.27) @ _{ 8, it A <0, and G5 =\ 5 if A <o,

We therefore can write

F(=Duaf)N) = F(f)A) o Dy where Dy € 23°(Q,Q; +Q,0))
J

Using (1.2.25) and (1.2.26) we notice that

(1.2.28) Ya € N4 Dy Fax € aN|(2lal + d) Fyy.

Powers of —Aya can therefore be defined in the following way: for any real number p,
F((=Aya)?f)(A) = F(f)(N) o D and
F(Ad = Aga)?f)(A) = F(£)(A) o (Id + Dy)”.

Notice that (1.2.28) shows that the quantity |A|(2]a|+ d) may be considered as a ”frequency”
on the Heisenberg group. Finally one sees easily that

F (05 [)A) = iAF(f)(A)-

This explains why the partial derivative J; is usually considered as a second-order operator,
though one notices here that its ”strength” is somewhat weaker than that of the Laplacian
since its action, in Fourier space, corresponds to a multiplication by A while the Laplacian
produces 4|\|(2|a| 4 d).

(1.2.29)

Finally it will be useful later on to notice that due to formulas (1.2.25), (1.2.26) and (1.2.28),
the operators D;m/ ’5 (Q;‘)m and D;m/ ?5 (@j\)m are uniformly bounded on #, for any

integer m.

Note that one can also prove, in the same fashion as in the Euclidean case, relations be-
tween F ((is — |z[?)f) () and F(f)(A); we refer to Proposition 1.11 below for formulas.

Remark 1.9. — The above computations show that for any function f € S(Hd),
2d—1

Zifw) = T [ (o FH0Q)) A

d—1 700
Zif(w) = %/_ tr (w2 F(NG; ) Nax,  and

d—1 o)
Apaf) = o /_ ur (aF (D)D) A

In particular, if we consider the derivatives of the Dirac distribution d,,(w) defined as usual
by duality through

< Zj6woaf >=—-< 5100’ij >= —ij(’wo) and

< Zjbuor f >= — < Oug, Zif >= —Z;f(wy)
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for all f € S(Hd) and for some fized wo € H?, we obtain an expression of the derivatives of
the Dirac distribution as singular integrals

24-1 oo A A 1y 1d
Zj5w0(w) = —m/_ootr <uwo,1ij) ’)\’ d)\7
o 2d71 0 N . J
7 0y (w) = —m/_mtr <uw0_1ij)|)\| d\, and

2d—1
_AHd5w0 (U)) = m /

[e.e]

K <u;\UO_IwD)\> IA[4dA.

It turns out that for radial functions on the Heisenberg group, the Fourier transform becomes
simplified. Let us first recall the concept of radial functions on the Heisenberg group.

Definition 1.10. — A function f defined on the Heisenberg group H® is said to be radial if it
is invariant under the action of the unitary group U(d) of C?, meaning that for any u € U(d),
we have

f(z,8) = f(u(2),s), Y(z,s) cH.

A radial function on the Heisenberg group can then be written under the form
f(Z, s) = g("z‘? s).
Then it can be shown (see for instance [54]) that the Fourier transform of radial functions
of L(H%), satisfies the following formula:
]:(f)()‘)Fa,)\ = R|a\()‘)Fa,)\

where

def m+d—1 -1 : 2
Rm<A>=e( o ) / ¢ f(z,5)Lin D (2[A]|2*)e M dzds,

and where L%) are Laguerre polynomials defined by

def \- k( m+p\t* 2
(1.2.30) L%)(t)—kz_o(—l) (m_kﬁ’ t20, (mp) €N

Note that in that context, Plancherel and inversion formulas can be stated as follows:

1
271 mad—1Y [ :
115200 = (WUT (") [ iR

and
241 —iXs (d-1) 2\ —|A[|2[2 |y (d
(1.2.31) £z, s) = ﬁZ/e Ron (N LD (2]A[|2[2)e M2 A [,

wd

The context of radial functions allows to compute the Fourier transform of (is — |z|?)f, as
stated below (see [7] for a proof).



22 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

Proposition 1.11. — For any radial function f € S(HY), we have for any m > 1,

Fllis — 2P f)(m,\) = %}'f(m,A)—%(}'f(m,)\)—}"f(m—l,)\)) FA>0, and

) d +d .
1.2.2.2. The L? representation. — In order to define pseudodifferential operators, it will

be useful to use rather the L? (or Schrédinger) representations, denoted in the following
by (vi‘,s £)(€), where € belongs to R? and f to L?*(RY). As recalled above, the representa-

tions vi‘,s and ui"s are equivalent. The intertwining operator is the Hermite-Weber trans-
form Ky : Hy — L*(R?) given by
def ‘)\‘d/4 A 1e? 1 0 EOVITSE
1.2.32 K e KA N P - = A€l
(1.232) (r)6) S RGNS o (g ) eI

which is unitary and intertwines both representations: we have indeed K Aui‘,s = 1)2‘7 <K and
(1.2.33) V2 f(€) = eMTRUEW £e_0) YA ER™.

A short proof of this fact is given in Appendix A.2 for the convenience of the reader (see Propo-
sition A.1 page 98). We also recall that the inverse of K is known as the Segal-Bargmann
transform (see for instance [30]). Let us denote by h,, the multidimensional Hermite function

defined by

Vo= (a1, aq) € NG V= (t, - ta) € RE ha(t) ¥ ha, (1) - ha, (ta),

with

hi(t) def (2" n! \/7_1)71/2 e_tQ/ZHn(t) and H,(t) def ov2 <—%> (e_tQ) .

Introducing the scaling operator

(1.2:34) Vf e LARY), Taf(€) A F(AT 2,
and setting ho x = T\ he we observe that
(1.2.35) Va € N, K\Foy = hax

where h, ) is an eigenfunction of the rescaled harmonic oscillator —Ag 4 |A||£|?. This implies
by straightforward computations that
K\Q} K5 =0, — |M¢ and  K\Qj K} = 0g; + |N&; if A >0,
s .
KA\QIK5 =0, + |M& and  KnQ K} = 0, — [Aly; if A <0.
Defining the operator

(1.2.36) YK,

and observing that
To(=A¢ + [EPIAP)TY = A(—A¢ + [€7),
we infer that
* =A * .
QM5 =N (9, — &) and  \Q;J5 = /N (0, +&) if A>0

(1.2.37) & '
DM =N (9, + &) and @, J5 = /N (9, — &) it A<0,
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which finally implies that
(1.2.38) IADyJ; = 4I\(—Ag + [€]%).

In view of Remark 1.9, the Laplacian —Aya is associated with the operator Dy of H in the
Bargmann representation; by Equation (1.2.38), it is associated with the harmonic oscillator
in the L2(R%) framework.

These computations indicate that symbolic calculus on H) is, via the unitary operator Jy,
equivalent to symbolic calculus on the harmonic oscillator. That theory is well understood:
it consists in Weyl-Hormander calculus associated with a harmonic oscillator metric. This is
made precise in the next section.

Before proceeding further, it is instructive to compute the Fourier transform for instance of the
function Z;Z; f for f € S(H?). Indeed, we notice that with the previous notations, for A > 0,

F(=iZi)(—iZ) )N = F(=iZ; YNNI (=i, +i&5) I
= F(YNIXIA(—i0¢; —i&;)(—i0¢; + i&;) I
= F(NHNIIAE = G, + 1)

This implies that symbols on the Heisenberg group must not only include harmonic oscillator
type symbols, but also functions such as powers of .

1.3. Weyl-Hormander calculus

Let us recall in this section some results on the Weyl-Hormander calculus of the harmonic
oscillator which we shall be using. We shall only state the definitions that will be needed
in the following, and for further details, we refer for instance to [15], [16], [19], [21], [46]
and [50].

1.3.1. Admissible weights and metrics. — Let us denote by w[©,0'] the standard

symplectic form on T*R? (which we shall identify in the following to R??) : if @ = (£,7)

and ©' = (¢,7), then w[O©, O] d:efn - L

For any point © = (&,7) in R2?, we consider a Riemannian metric go (which depends mea-
surably on ©) to which we associate the conjugate metric gg by
w|T, T
VT e R%, $(THY? = su |7’
(g@( )) Tle]jg?d g@(TI)1/2

We also define the gain factor

(1.3.1) Ao = inf

Definition 1.12. — We shall say that the metric g is of Hormander type if it is:

1. Uncertain: For all © € R??, Ag > 1.
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2. Slowly varying: There is a constant C > 0 such that

go(® -0 < C = sup (g@(T) >i1 <C.
- rer2d \gor(T) -

3. Temperate: There are constants C > 0 and N € N such that for all (0,0') € R,

g@(T) - w NN
. (om) <eu oo

In the following any constant depending only on C and N will be called a structural constant.

In the definition above we have used the notation

+1
(9@(T) > def go(T) | go(T)
ger(T) gor(T) ~ go(T)
We also define a weight as a positive function on R?? satisfying the same type of conditions
as a Hormander metric.

Definition 1.13. — Let g be a metric in the sense of Definition 1.12. A positive function m
on R?? is a g-weight if there are structural constants C" >0 and N' € N such that

1. g6(6-0)<CT ' = <Z((S,))>ﬂ <C.

m(@) = rai w /
2. (m(@,)> <C(1+g50© -0,

It is easy to see that the set of g-weights has a group structure (for the usual product of
functions).

For such metrics and weights, one can then define the class S(m,g) of smooth functions a
on R?? such that, for any integer n,

def |0, ...07,a(O)|
1.3.2 allp:Sim.a) = su —7 7 < oo,
(132 Jolhsiong & _sup | ERET
ge(T;)<1

where Ora denotes the map (da,T). Now, if a is a symbol in S(m, g), then its Weyl quanti-
zation is the operator which associates to u € S(R?) the function op®(a)u defined by

d w def o \—d i), (€€ de!
(133 VEeR (@) © T en [ O (ST ) ue)igan
The main interest of this quantization is that op™(a)* = op®(a).

Observe also that if a(§,n) = a(§), the operator op”(a) is the operator of multiplication by
the function @ and if a(§,n) = a(n), the operator op”(a) is the Fourier multiplier a(D). In

1
particular one has opw(nf) = (—,(9§j> for any k£ € N.
i
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Besides, for all symbols a € S(mq,g) and b € S(mg,g) where m; and meo are g-weights, we
have the following composition formulas:

op®(a) o op”(b) = op”(a#b) with a#b € S(mimse,g) and

(1.3.4) (a#b)(©) = =4 / o ¢~ 2wI0=01.8-02]1(9,)h(0,)dOdOs.
R R

The (non commutative) bilinear operator # is often referred to as the Moyal product.

This leads to an asymptotic formula

1
(1.3.5) a#b:ab+—,{a,b}+---+7~N,

where ab belongs to S(mima,g) and — {a b} belongs to S(A~1mima, g), recalling that {a, b}

is the usual Poisson bracket
d
{a,b} & Z O, a0, b — Dg;a0p,b) -

Finally for any integer N, the remainder ry belongs to S(A~Nmyma, g).

Let us mention that the operator op”(a) has a kernel k(¢,&’) defined by

— i(E—E")- + !
(1.3.6) 6. €) = (2 [ g <5 i m) n
which is linked to its symbol through
! /
(13.7) o€ = [ e (s +8e- 5—) '

Remark 1.14. — As pointed out in [62] (Chapter VI.7.A), the mapping a — op”(a) extends
to an isomorphism from S'(R??) to L(S(RY); S'(RY)). Such symbols may be called “generalized
symbols”.

Let us also point out that a concept of Sobolev space H(m,g) was introduced by R. Beals
in [8]. We will use the following characterization of those spaces.

Definition 1.15. — Let g and m be respectively a Hormander metric and a g-weight, in the
sense of Definitions 1.12 and 1.13. We denote by H(m,g) the set of all tempered distribu-
tions u on R? such that, for any a € S(m,g), we have op®(a)u € L*(RY). In particular H(1, g)
coincides with L*(RY).

Note that the study of Sobolev spaces associated with a Héormander metric g and a g-weight
has been developed in [8], [15], [16], [19] and [63] and in particular in [15], it was shown
that these spaces are “almost independent” of the metric g. The Weyl quantization defined
by (1.3.3) can be extended to an operator on S'(R?) which acts on the Sobolev spaces H (m, g)
in the following way.
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Proposition 1.16. — Let g be a Hormander metric, and let m and my be g-weights. There
exists a constant C, depending only on the structural constants of Definitions 1.12 and 1.183,
such that the following holds. Let a be in S(my,g). Then, there exist an integer n and a
constant C' such that for any u in H(m,g), we have

Hopw(a)uHH(mmfl,g) < CHaHn;S(ng)HUHH(m,g)'

In particular, there exist an integer n and a constant C' such that if a € S(1,g), then for any
u € L2(RY) one has

(1.3.8) llop® (@)ull rogey < C llallns1,g) el 2 gay:

1.3.2. The case of the harmonic oscillator. — As pointed out in Section 1.1.2.2, it is
natural to base the quantization of symbols on the Heisenberg group on the calculus related
to the harmonic oscillator. In that case one is considering the metric defined by

def d€2 + dn?

1.3.9 VO = (¢,n) € R?, dé,dn) = ————
(1.3.9) (&m) gods,dn) = a5
while the g-weight is

(1.3.10) VO = (&,n) e R*, m(0) L 1+ +97)2.

It is an exercise to check that ¢ is a Hormander metric in the sense of Definition 1.12, and
that m is a g-weight in the sense of Definition 1.13. This will in fact be performed in the
proof of Proposition 1.21 below in a more general setting.

We will be interested in the class of symbols belonging to S(m#, g) for some real number p,
where we notice that (1.3.2) can simply be written equivalently in the following way:

def 18l=n
(1.3.11) lallseeg < sup (1L+€8+07) 7T |0 a6 )] < oo
Bl<n,EmeR

Remark 1.17. — Let us note that the operator 1d — A¢ + €2 has for symbol m?. As proved
in [45], Chapter 4, for any pn € R there exists a function m, € S(m*,g) such that

2(Id — Ag + M2 = op®(m,,).

We also refer to [11] in a more general context than the harmonic oscillator.

It can be useful to write the Weyl symbol of functions of the harmonic oscillator on L?(R%).
The formula for such symbols is derived using Mehler’s formula (see [31] for instance)

(1.3.12) e TR — (cn )~ op (o7 (EFIIRE)

Unfortunately the symbol obtained is not a classical symbol, but a generalized one in the
sense of Remark 1.14. More precisely, we have the following result, whose proof is postponed
to Appendix B (see page 108).
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Proposition 1.18. — Consider R a smooth function satisfying a symbol estimate:
(1.3.13) eER, VneN, IC>0, [[(1+] N"HO"R| g < C-
Then one has formally

R(€* — A¢) = op”(r(€ +17°))

where 1 is smooth outside x = 0 and is given by the formula

! / (cos 7) "% @&TEN R(€)dr dE.
R xR

"o

Besides r satisfies the symbol estimates of the class S(m*, g), in the sense of (1.3.13).

(1.3.14) r(z)

Note that r is not well defined at x = 0 in general. Actually we shall obtain in Appendix B
a description of r near zero.

One also has the inverse formula

1 4
(1.3.15) op¥ (r(y2 + 772)) =5 /?(7')eZ (3/27A)Amg7(1 + 7'2)7d/2d7'.

T
This yields that the operator Jiop”(r(y* + n?))J) is diagonal in the basis (Fax) qene and
thus commutes with operators of the form x(D,) for all continuous bounded functions Yy,
where x(D,) is the operator

(1.3.16) X(Dx)Fa = x(4[A|(2]e + d)) Fa

1.4. Main results: pseudodifferential operators on the Heisenberg group

In this section, motivated by the examples studied in the previous sections of this chapter, we
shall give a definition of symbols, and pseudodifferential operators, on the Heisenberg group.
Then we will state the main results proved in this paper concerning those operators.

1.4.1. Symbols. — Our approach inspired by the Euclidian strategy of R. Coifman and
Y. Meyer [22] allows to consider symbols with limited regularity with respect the Heisenberg
variable. Therefore, in what follows, we shall define a positive, noninteger real number p,
which will measure the regularity assumed on the symbols (in the Heisenberg variable). This
number p is fixed from now on and we emphasize that the definitions below depend on p. We
have chosen not to keep memory of this number on the notations for the sake of simplicity.

Definition 1.19. — A smooth function a defined on H? x R* x R%? is a symbol if there is a
real number p such that for all n € N, the following semi norm is finite:

d 18l 18l=p
lalls, oo 2 sup sup ATF (LHAL+O2) 2 [[(Ad0)D5al- A O) ey
MAO |l +k<n
OcR

Besides, one additionally requires that the function

(1.4.1) (X&) = o(@)(w, A\ &m) Z a <W’A’Sgn“)\/%’ ﬁ)

is smooth close to A\ = 0 for any (w,&,n) € HY x R?L. In that case we shall write a € Spga(p).
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Remark 1.20. — The additional assumption (1.4.1) is necessary in order to guarantee that
pseudodifferential operators associated with those symbols are continuous on S(H?) (see Propo-
sition 2.6). It is also required to obtain that the space of pseudodifferential operators is an
algebra.

In the remainder of this section, we shall discuss two points of view. The first consists in
considering the symbol a € Sya(p) as a symbol on R?? depending on the parameters (w, \)
in H? x R and belonging to a A-dependent Hérmander class (see Proposition 1.21). The second
point of view consists in emphasizing the function o(a) (see Proposition 1.23). Both points
of view are in fact interesting, and both will be used in the following.

Let us first analyze the properties of a € Sya(p) for a fixed A. The following proposition is
proved in Appendix B (see page 105).

Proposition 1.21. — The (\-dependent) metric g defined by

A (d€? + dn?)
YA £0. VO ¢ R2¢ N (ae. d d:ef|—
7é ) € ) g@ ( 57 77) 1+|)\|(1—|—@2)

is a Hormander metric in the sense of Definition 1.12, and the function
def 1/2
mM(©) = (1+ (1 +6?%)

is a g™ -weight. Moreover the constants C and N of Definitions 1.12 and 1.13 are independent
of \.

Finally if a is a smooth function defined on HY x R* x R??, then a belongs to Sya(p) if and
only if (1.4.1) defines a smooth function and for any k € N, the function (A0 )*a is a symbol
of order 1 in the Weyl-Hormander class defined by the metric ¢ and the g™ -weight m™,
uniformly with respect to A.

Proposition 1.21 has important consequences which are stated below. The first one will be
used often in the sequel and states that the continuity constants of Weyl quantizations of
symbols are independent of A and w.

Corollary 1.22. — Let a be a symbol in Sya(p). Then for any w € H? and A € R*, the
operator op®(a(w,\)) is continuous from H(m,g™) into H (m(mo‘))_“,g()‘)) for any g™ -
weight m, and the constant of continuity is uniform wih respect to A and w. In particular
for = 0, the operator op®(a(w,))) maps L*(R?) into itself uniformly with respect to w
and \.

The second consequence concerns the stability of our class of symbols with respect to the
Moyal product (see (1.3.4)): if a € Sga(p1) and b € Sya(p2), then the functions ab and a # b
are symbols in the class Sga(u1 + p2). Besides, the asymptotic formula can be written

1 1 1
i “”_Z( T Tt~ e ont) +
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Let us also point out that if a belongs to Sya(u), then for any j € {1,...,d} the func-
1 1
tions —=0,a and —=0,,a belong to Sya(p —1).

VIA VIN

Let us now mention a property of the function o(a) defined in (1.4.1). The following proposi-
tion, which is proved in Appendix B (see page 107), will be useful in the proofs of Chapter 3.

Proposition 1.28. — A function a belongs to Sga(u) if and only if o(a) € C>°(H? x R?4T1)
satisfies: for all k,n € N, there exists a constant Cypj > 0 such that for any 8 € N satisfy-
ing |B] < n, and for all (w, \,y,n) € H? x R¥+1,

n—18]
2 2
(1.4.2) |0kt (e (a))] eogany < Ok (LA €241 ORI
1.4.2. Operators. — We define pseudodifferential operators as follows.
Definition 1.24. — To a symbol a of order i in the sense of Definition 1.19, we associate

the pseudodifferential operator on H? defined in the following way: for any f € S(H?),

d—1
(1.4.3) vw e HY,  Op(a)f(w) % idﬂ /R tr <u3},1}‘(f)(>\)AA(w)) A9 d),
where
(1.4.4) Ax(w) @ T3 o (alw, A &) Ty if A0,

while Jy is defined in (1.2.536), page 22.

Examples of pseudodifferential operators are provided in Section 2.1 of Chapter 2.

Observe that the operator Op(a) has a kernel

2d71 00
T [ o (e anw)

since by definition of the Fourier transform, one can write

(1.4.6) Op(a) f(w) :/ ko(w,w') f(w') dw'.
Hd
We shall prove in Chapter 2 an integral formula giving an expression of the kernel in terms

of the function o(a) defined in (1.4.1): see Proposition 2.4 page 36.
(A

Let us denote by m,; ) the function

d f
(1.4.7) mM (&,n) = mu(VINE VA,
where m,, is defined in Remark 1.17, page 26.

(1.4.5) ko(w,w') =

Then we note that if a is a symbol of order u, then the operators
Ax(Id + Dy)"H? = Jfop®(a(w, )\) # m(,)‘!)L)JA and

(1d + Dy) /24, = J5op® (m®) # a(w, A))Jx
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are uniformly bounded on H ) (see Corollary 1.22, page 28). More precisely we have, for some
integer n,

(1.4.8) 14N (d + D) 72| 230 + 1(0d + Do) 2 Axl £30,) < Crllallnisa -

1.4.3. Statement of the results. — Let us first state a result concerning the action of
pseudodifferential operators on the Schwartz class. This theorem is proved in Chapter 2.

Theorem 3. — If a is a symbol in Syi(p) with p = 400, then Op(a) maps continuously
S(HY) into itself.

Notice that Theorem 3 allows to consider the composition of pseudodifferential operators, as
well as their adjoint operators. The following result therefore considers the adjoint and the
composition of such operators. It is proved in Chapter 3.

Theorem 4. — Consider Op(a) and Op(b) two pseudodifferential operators on the Heisen-
berg group of order p and v respectively.

— If p > 2(2d+1)+|p|, then the operator Op(a)* is a pseudodifferential operator of order
on the Heisenberg group. We denote by a* its symbol, which is given by (3.1.2).

— If p > 2(2d+1)+|p|+|v|, then the operator Op(a)oOp(b) is a pseudodifferential operator
of order less or equal to pn+v. We denote by a #ya b its symbol.

We have the following asymptotic formulas for A € R,

(1.4.9) R > (zga, my+igy +{Zja. n;—i&}) +n
2vIAL Sz
(14.10) a#yab = b#a
booe 3 (24 (. my +i6)) + Zib# ({auny — i) + 7o
2V G

where 1 (resp. ro) depends only on Z%a (resp. Z%b) for |a| > 2.

The interested reader can find precise formulas for a* and a #gab respectively in (3.1.3)
and (3.3.3).

The first term appearing in the asymptotic formula for a#ab is not a#b as could be expected:
this is due to the fact that in Definition (1.4.3) the Fourier transform is composed on the right.

Note that the asymptotic formulas only make sense when the semi norms ||+ ||,,.s, , () are finite
for p > 0 large enough. Let us also emphasize that due to (1.4.10), the pseudodifferential
operator [Op(a), Op(b)] is of order p+v. Actually the same phenomenon occurs when Op(a)
and Op(b) are differential operators: there is no gain in the order of the commutators.

It is also important to point out that the asymptotics of (1.4.9) (respectively of (1.4.10)) can
be pushed to higher order, as shown in Section 3.4 of Chapter 3. We will discuss in that
section in which sense the formula are asymptotic. In fact, in the case where Op(a) is a
differential operator, one obtains a complete description in (1.4.9) and in (1.4.10) since the
asymptotic series are in fact finite.
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Finally, we point out that even if a is real valued, a* is generally different from a.

The final result of this paper concerns the action of pseudodifferential operators on Sobolev
spaces.

Theorem 5. — Let pu be a real number, and p > 2(2d + 1) be a noninteger real number.
Consider a symbol a in Sya(p) in the sense of Definition 1.19. Then the operator Op(a) is
bounded from H*(H?) into H*~H(HY), for any real number s such that |s — pu| < p. More
precisely there exists n € N such that

HOP(Q)||£(Hs(Hd),st(Hd)) = CnHaHn;SHd(u)'
If p > 0, then the result holds for 0 < s —pu < p.

Remark 1.25. — The weaker result for small values of p is due to the fact that the adjoint
of a pseudodifferential operator is also a pseudodifferential operator is only known to be true
under the assumption that p is large enough. A way of overcoming this difficulty would be
to have a quantification, stable by adjonction (of the type of the Weyl quantization in the
Euclidean space). Unfortunately, the non commutativity of the Heisenberg group seems to
make such a quantization difficult to define.

Theorem 5 is proved in Chapter 5. The idea of the proof consists, as in the classical case, in
decomposing the symbol into a series of reduced symbols. The new difficulty here compared
to the classical case is that an additionnal microlocalization, in the A direction, is necessary in
order to conclude. This requires significantly more work, as paradifferential-type techniques
have to be introduced in order to ensure the convergence of the truncated series (see for
instance Proposition 4.15, page 77).






CHAPTER 2

FUNDAMENTAL PROPERTIES OF
PSEUDODIFFERENTIAL OPERATORS

The main part of this chapter is devoted to the proof a number of important properties
concerning pseudodifferential operators on H¢ defined in Definition 1.24 page 29, which will
be crucial in the proof of the main results of this paper. Before stating those properties, we
first present several elementary examples of pseudodifferential operators, and analyze their
action on Sobolev spaces. Then, we study the action of pseudodifferential operators on the
Schwartz space, and prove Theorem 3 stated in the introduction.

2.1. Examples of pseudodifferential operators

Let us give some examples of pseudodifferential operators and their associate symbols. In this
section and more generally in this article we will make constant use of functional calculus.

2.1.1. Multiplication operators. — It is easy to see that if b is a smooth function on HY,
then Op(b) is the multiplication operator by b(w) and clearly maps H*(H?) into itself provided
that there exists p > |s| and a constant C' such that ||bl|c» < C.

2.1.2. Generalized multiplication operators. — Consider b(w, \) a C*(H?) real-valued
function depending smoothly on A so that for some C' > 0,

sup 160, Ml o ey < C-

If b is rapidly decreasing in A in the sense that
vk EN, supl|(1+ IADFORB(, Ml o ey < 00,
€

then b is a symbol of order 0 and the operator op® (b(w, \)) is the operator of multiplication
by the constant b(w, ), which does not depend on (y,7n). Therefore, Ay(w) = b(w,\) is a
uniformly bounded operator of Hy. Moreover, if f € L*(H?) then {F(f)(\) o Ax(w)}y € A
(as defined in Theorem 1, page 18), then

[F(F)A) o Ax(w)lasrey) = 10(w, I IF(H)Masae) < CIFE)Mase)
which implies that
HOP(b)fHL2(Hd) <C Hf”L2(Hd)-
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Besides, one observes that for all m € N and all j € {1,...,d}, we have by Lemma A.3,
F(Z7"(0p0) ) (A) = F(Opd)f)(A) o (@)™
= b(w,\) F ((~Aga)™2F) () 0 D™ 0 (@)™
with D;m/ 2o(Q;‘)m uniformly bounded on H,. A similar fact occurs for Z;. This computation

shows that Theorem 5 is easily proved for all s, by interpolation and duality. More precisely,
there exists a constant C' such that

1OPO) fll s ety < C 11 s gy

2.1.3. Differentiation operators. — Let us prove the following result, which provides the
symbols of the family of left-invariant vector fields.

Proposition 2.1. — We have for 1 < j <d and 4 € R,

%Zj = Op (\/W(m +isgn(\) 5;‘)) , 1.7]‘ =Op (\/W(Wj — isgn(A) 5j)> ’
= Op(2isgn(A \/|T77J Y; = —Op(2i \/méj)’
S:OMM%—%¥W=4OPGMmz+g»7

(Id — Aga) 2 = Op(mM (€, m)).

In particular Z;, 7j, X; and Y; are pseudodifferential operators of order 1, while S and Aya
are of order 2 and (Id — Aya)* is of order 2.

1 1— -

Observe that if —~Z; = Op(d;), —Z; = Op(d;), we have using the map o defined in (1.4.1)
i i

page 27,

a(dj) (& m) =n; +1i&; and o(d;)(&n) = o(d;)(&n) = n; —i&;.

Proof. — We perform the proof for Z;. For A > 0, we have from (1.2.37) along with
Lemma A.3 stated page 101,

- sz f> 0 = %f(fw) °Q}

= OJ}\\/|)\ ( 6@ )J)\

= F(HHYN) o J5 op® (VN (n; + iﬁj))JA

On the other hand, for A < 0,
]—" @zjf) N = FHR) e KV ( 0, + 1@) I
= F(HN) o Jiop" (v I\ — i€;)) ]

The other cases are treated similarly, except for the operators (Id — AHd) , for which we refer
to Remark 1.17, page 26. This concludes the proof of Proposition 2.1. U
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2.1.4. Fourier multipliers. — A Fourier multiplier is an operator K acting on S (Hd) such
that

FK)A) = F()A) o Uk(X)

for some operator Ug (A) on Hy.

For instance, the differentiation operators Z; and Z; are Fourier multipliers, and Ug()) is

respectively equal to Q;‘ and @;\ as given in formulas (1.2.25) and (1.2.26) page 19. Similarly
the Laplacian —Apya is a Fourier multiplier, with Ux (\) = D) according to (1.2.29).

Another class of Fourier multipliers which are also pseudodifferential operators, is built with
functions b in S(m*, g) with u > 0 in the following way.

Proposition 2.2. — If a(w,\,&,n) =b (sgn ) EVARNISRVARY 77) with b € S(m*, g) and > 0,
then a belongs to Sya(p), and the operator Op(a) is a Fourier multiplier. Moreover,

(2.1.1) Yu € HY(H?), [[0p(a)ull gs—n ey < Cllbln;s s g) 4l e azay.

Finally o(a) = b as given in Definition 1.19.

Proof. — The fact that a belongs to Sya(x) and that the operator Op(a) is a Fourier multiplier
are straightforward. Now let us prove (2.1.1). We have

2d71

Op(a)u(u) = 27 /Rtr (s F) M)Ay ) A1 ax,
with Ay = J5 op®(a) Jx.

In view of the Plancherel formula (1.2.21) recalled page 19, to estimate the H®* -norm
of Op(a)u, we evaluate the Hilbert-Schmidt norm of F ((Id - AHd)%Op(a)u> (N). We have

F((1d = Ag)F0p(a)u) (A) = Fu)(\)Ar(1d + D)) F*
= F((1d- Ag)tu) ()(1d+ Dy)"F4,(1d + Dy) "
In light of (1.4.8) page 30, the operators (Id + Dy) "2 Ay(Id + Dy) 2 are uniformly bounded

on L(Hx) by C|[b|ln;s(mn,q) Which ends the proof of the estimate thanks to property (1.2.19),
recalled page 18. This ends the proof of Proposition 2.2. ]

More generally, a pseudodifferential operator which is a Fourier multiplier has a symbol which
does not depend on w. For this reason, Theorem 4 is easy to prove in that case.
Proposition 2.3. — Consider a and b two symbols of Sya(p) which do not depend on the
variable w. Then Op(a)* = Op(a) and Op(a) o Op(b) = Op(b#a).

Proof. — By the Plancherel formula,
d—1

(Op(a)f,g) = 2d+1Atr((f(g)(A))*f(f)(A)Ax)|>\|dd>\
with Ay = J{op™(a(A))Jx. Therefore,
F(Op(a)"g) (A) = F(g)(N) A3
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The fact that A3 = J{op™(a(\))Jy gives the first part of the proposition.

Let us now consider Op(a) o Op(b). We have
F(Op(a) 0 Op(b) f)(A) = F(f)(A) o By o Ax
with By = J{op"(b(\))Jx. The fact that op”(b) o op"(a) = op" (b#a) finishes the proof. [

2.2. The link between the kernel and the symbol of a pseudodifferential operator

The kernel of a pseudodifferential operator on the Heisenberg group is given by (1.4.5) page 29.
The following proposition provides an integral formula for the kernel of a pseudodifferential
operator, as well as a formula enabling one to recover the symbol of an operator, from its
kernel.

Proposition 2.4. — The kernel of the pseudodifferential operator Op(a) is given by

1 ; / / N (ot . / . ,
bw,e!) = 5oy [ N7 (@) A € QN DRy g dg,

where o(a) is defined in (1.4.1), page 27.
Conversely, one recovers the symbol a through the formula

(2.2.1) o(a)(w, N, &,n) :/ AW ET M A L (4 ()T du’
Hd

Before proving the proposition, we notice that it allows to obtain directly the symbol of a
pseudodifferential operator if one knows its kernel: the following corollary is obtained simply
by using Proposition 2.4 and Relation (1.4.1) between a and o(a).

Corollary 2.5. — Let Q be an operator on H? of kernel k(w,w") such that for some p € R,
the function defined for (w,&,n) € H? x R?? by

(2.2.2) a(w, N 6) 9 / 27/ (s €21 i k(1 (')~ e’
Hd
belongs to Sya(p). Then Q@ = Op(a).

Proof of Proposition 2.4. — Let us start by recalling (1.4.5), which states that

/ 2d_1 A * W d
bw,w) = S [ (uw,lw,JAop (a(w,)\))J,\> I\|9dA.

Note that everywhere in the proof, integrals are to be understood as oscillatory integrals.
The Bargmann representation u) and the Schrodinger representation v, are linked by the

intertwining formula uj, = K}v}, Ky, so using the operator T\ = Jy\K} we have

/ 24-1 A * W d
kE(w,w") = —T tr (vwflw,T)\op (a(w,)\))TA> |A|“dN.

By rescaling it is easy to see that

(2.2.3) T5op®” (a(w,\)) T\ = op" (a <w, VA W)) ,




2.2. THE KERNEL AND THE SYMBOL OF A PSEUDODIFFERENTIAL OPERATOR 37

SO we get

n_ 27t - L a
(2.2.4) k(w,w") —I tr | vy-1,00" | @ w,)\,\/m,\/m |A|“dA.

In order to compute the trace of the operator vz\u,lw,opw <a (w, AV W) ) , we shall

start by finding its kernel 6(&,¢’), and then use the formula (1.2.18) page 18, giving the trace
of an operator in terms of its kernel.

So let us first compute 0(&, &), which we recall is defined by

v op? la | w, A\, )\-,% = [0, ¢ Nde'.
A 1P ( ( VI m))f(&) [oeernene

We also recall that
W<<wﬁ )) )= [ Ae&r1€) ae'

where as stated in (1.3.6) page 25,

A €) = amt [ o0 <w A \/\T<“5'> , J:W) 0=

Finally using Formula (1.2.33) page 22 defining vi‘) we get

—1w/,

—_—
—

N~ os ~ o en — 27 ! = = =l
6(575,) _ (27T)—dez)\(s—2x-y+2y-§) /a (w )\ \/,T( X +§ > 7 |)\|> ez:~(§—2x—f )dE’

where w def w~lw’. Using the relation (1.2.17) given page 18 between the trace and the kernel
of an operator and (2.2.4) above, we infer that

_ 1 IA(5—2T-y429-£)—2i=-T ~
k(w,w') = W/e( +25:¢) a w,)\,\/|)\|(£—az),\/W

)wwa

—
=
—

>|AWdAdEdg

1 ING+2iG 2—2iC-F ?
= ——— | e a | w,\, ——s
27T2d+1 / /‘)\‘ g /’)\

T = isgn()\), and 2 = (.

where we have performed the change of variables £ — B

To end the proof of the proposition, one just needs to notice that

1

k(w, w(w) ™) = 572071

[ ) w3, 2, Odz d d

and to apply an inverse Fourier transform (in the Euclidean space). U
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2.3. Action on the Schwartz class

The aim of this section is to prove Theorem 3, stating that if a belongs to Sy () and p = 400,
then Op(a) maps continuously S(H?) into S(H?).

Before entering the proof of that result, let us point out that the smoothness condition (1.4.1)
(see page 27) is necessary in order for Op(a) to act on S(H?). A counterexample is provided
in the proof of the next statement. Actually one can define Op(a) without that condition,
and typically the counterexample provided below provides an operator which is continuous
on all Sobolev spaces.

Proposition 2.6. — Let p be an odd integer. There is a function a such that ||all,;s_,.) is

finite for all integers n, and such that the operator Op(a) is not continuous over S(H?).

Proof. — Let us define y = 2k+1 and the function a(w, A, £,n) = A(X), where A(\) = |)\|k+%.
Let f be defined by

F(HINFor = oM Foxn, F(f)AN)Far=0 VYa#0,

where ¢ is a nonnegative, smooth, compactly supported function such that ¢(0) = 1. An easy
computation shows that f € S(HY). Indeed writing

2d—1

fw) = T [ (b FHO)) A

and using the definition of the Fourier transform of f given above, a simple computation
shows that for some constant C,

f(w) = C'/«‘B_i)‘sgb()\)e—)\||Z|2 </ o—2IAlI€12 d§> A dx

which gives the result since ¢ is smooth and compactly supported. Now let us consider Op(a)f.
A similar computation shows that if IV is any integer, then for some fixed constants C’ and C”
one has

sNOp(a) f(w) = C'/sNe_i)‘S(b()\)A()\)e_M22\)\\‘1 dA
= o [ R M AN V) ax
For any fixed z, this is the (real) Fourier transform at the point s of the function

A O (@A) AP A(N)e IR,

Let us evaluate this integral at the point z = 0. Taking N large enough, the result is clearly
not bounded in s. O

Proof of Theorem 3. — Consider f € S(H?), and let us start by proving that Op(a)f belongs
to L>®(H). By definition of Op(a), we need to find a constant Cy such that for all w € HY,

(2.3.1) ‘ / tr (- PN Ar () |)\|dd)\‘ < Co.
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Consider x a frequency cut-off function defined by x(r) = 1 for |r| < 1 and x(r) = 0 for |r| > 2.
We write

[ (i F N0 AN@) Par= 11+ 1,
where
1 [ (o F OO A (w)) AN
and we deal separately with each part.

Let us first observe that for any k£ € N and by Remark 1.7 stated page 19, we have

Jun

nl < ([ I F O+ D s, W)

-

2
(232 ([ 10+ D) D) AWy )
Besides, using (1.2.19) page 18, there exists a constant C' such that
[+ F(F)YN)Ad + Dy [ gseyy < CIFNAD + D) sy )

and
1(Id + D)X (D) Ax (W)l sy < (1 + Dy) ™2 Ay (w)| gy | (Id + D2) =X (D) (34

B
< C|Id+ D)z x(Dx)ll msy)
We then observe that on the one hand

F(HNAd + Dy)* = F((1d = Aga)* f)(A)
so that by the Plancherel formula

AN

2d71
v / IFCH) A + D) 534, A A = 111 = Agga) 117 530

On the other hand

/H(Id‘|'D)\)%_kX(D)\)H%‘{S(H,\)|>‘|dd>‘ = > /H(Id+D)\)%_kX(DA)Fa,)\H%-l,\|)‘|dd)‘
aeN?
B
= > /(1+\/\\(2!0¢\+d))2 "X(AI2lal + d)A|%dA,
aeN?
hence

/ 11d + D)5 *x(D) s A A

<CY @m+ d)d‘l/(l A2+ d) 5 E (N 2m + d))|A[4d
meN

where we have used that the number of a € N? such that |a| = m is controlled by m?~!.

Then, the change of variables § = (2m + d)\ gives

—k 2 d
/H(Id—i—DA)“ X(DM)[rslAl®dr < C <Z 1+ m2

meN

) [ xsb + jsiyE+rds,
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Therefore, (2.3.2) becomes

7n€Nil+_Wl

1 u
L] < €11 — Aga) £ 2z (Z —) / X(BN(L + [8)E++4ds < Cy

for any k.

A similar argument applies to I5 and allows to get

1 ~ o
meN

~ . ~ 3 ~
where Y is a frequency cut-off function defined by x(r) = 1 for |r| > 7 and x(r) = 0
1
for |r| < 5% The choice k > 1+ d + 4§ achieves the estimate of the term Is.

The end of the proof of Theorem 3 is a direct consequence of the following lemma. We will
emphasize later other formulas of that type which will be useful in the following sections. [

) 4

Lemma 2.7. — For any symbol a € Sga(p) and j € {1,...,d}, there are symbols b] :b;

belonging to Sga(p + 1) and c§1)7c§2) € Sya(p—1) and p € Sya(p) such that

2, Op(a)] = Op(S"), [Z;, Op(a)] = Op(b}"),

23 Op(a)] = Op(c}), [; Op(a)] = Op(cf?),
[is, Op(a)] = Op(p).
In particular, one has
bg’l) = Zja+ /|A{a,n; +isgn(N)§;} and b§2) = Zja+ v/|\{a,n; — isgn(\)§;},

(1) 1 . (2) 1 .

c;’' = ———={a,i&; — sgn(A)n;} and ¢’ = a,1€; + sgn(N)n;}.

i =5 W{ & — sgn(M)n;}t ¥ 2\m{ &5 + sgn(A)n; }
Remark 2.8. — Notice that contrary to the classical case (see [1] for instance), [Z;, Op(a)]
is an operator of order u + 1 instead of u, due to the additionnal Poisson bracket appearing

in the definition of bg-l) (and the same goes for [Z;, Op(a)]).

On the other hand, [z; , Op(a)| and [Z;, Op(a)| are of order j— 1 as in the classical setting,
but [s,Op(a)] is only of order .

Let us now prove Lemma 2.7.

Proof. — Let us consider a function f in S(Hd), and a symbol a belonging to Sya(n). We
have for 1 < j <d,

2d—1
2,001 (w) = 2z [ o1 (Zi )0 F DOV W) + 0 FIINZ Ar(w) ) N A

with Z; Ay (w) = J{op™ (Zja(w, X)) J.
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Thanks to Lemma A.3 page 101, we have Z; ) S Q _1, recalling that Q)‘ is de-
fined in (1.2.25) page 19. Therefore, since .7-"(Z ) = f(f)( )Q7}, and using the fact
that tr(AB) = tr(BA), we obtain

2d71

2, 0p(@f () = 2z [ (PO ([An0). Q)] + Zis(@)) ) I
We then use (1.2.37) page 22 to find, for A > 0,
[An@), @] = 5 [op" (a(w, X)) . VI, — )] J
and for A < 0,
[Axw), Q)] = 5 [op"(alw, N) VAP, + )] 7

Therefore, by standard symbolic calculus, using in particular the fact that if b is a polynomial
of degree one in (§,7), then

(2.3.3) [op*(a), op® (b)] = —Op ' ({a,b}),

we get
<[A>\(w),Q?] + ZjAA(w)> = Jlop® (\/X{a(w,A),nj +ig} + Zja(w,)\)) for A >0,
([AA(w), Qj.] + ZjA,\(w)> = Jrop® (\/—_A{a(w, A — i€} + Zia(w, A)) for A <0,

which are the expected formula. We moreover observe that if a € Sga(p) and 1 < j < d,
then \/|A[0¢,a and \/|\|9y;a are symbols of order p + 1. Indeed since a is of order p, there
exists a constant C' such that, for k € N and 3 € N*¢,

B8
‘)\BA A \/])\35@‘ < oV N+ P + )
1—|8|

VI (1 A IR+ )

p=8|-1
2

IN

A similar computation gives the result for [Z;, Op(a)].

Let us now consider the other types of commutators. For f € S (Hd) and 1 < j < d, we have

d—1
2, Op(a) ) = 2y / (25 = 2t (1)1 A()) ) NN

By Lemma A.2 page 100, we have z] [Qj, w] Therefore, setting @ = w™w’ = (Z, 3),

we get, using (1.2.37) page 22 along with the fact that Ay(w) = Jiop™(a(w, \))Jx,

tr <2ju)‘mA)\(w)> - Qtr([J;(a§j+ sgn(A)gj)JA,ug]AA(w))

S D * * w
= 0t (3106, + sen(N)g, T Jilop" (a(w, X))y )

ok

— 5 1|)\|tr ([opw(a(w,)\)), sgn(A)0, + §j]J,\uf‘DJ§> .
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By standard symbolic calculus, this implies that

(2.3.4) tr (Zupanw) = 1| e (whT300" ({a, sen(\n; — i€ 1)1 )

which gives the announced formula. Besides, the same argument as before gives that if a is a

1 1
symbol in Sya(p) and if 1 < j < d, then W@gja and —=0,,,a are symbols of Sya(p —1).

VI

Indeed, for k € N and § € N2¢

k o8 1
()\({9)\) 6(5777) (\/Wagja>

A similar argument gives the result for the multiplication by z;. In particular, one finds for
all A € R*,

p=1Bl=1

< CAPHE+ N+ €2 + )

(2.3.5) tr <Zuf‘;}A>\(w)> = ! tr (uf‘bJj\‘opw({a,sgn(A)m + ifj})JA) .

5

Finally, let us consider the last commutator. We have

d—1
5. 0@ () = Zgp [l = tr (whor, Anw)) S(0) NdAw

Since with @ = w™'w’, we have § = s’ — s — 2Im(22/) and in view of the preceding results, it

is enough to observe
2d—1
a1 /iétr (ung,A)\(w)) fw) |)\|dd)\dw'

2d71 \ .
= L /tf (“w—lw/Ji‘Opw(g)JA(w)) fw') |\|4ddw’

where we have used Lemma A.4 stated page 102 and where g is defined by (A.2.4), whence
the fact that [is, Op(a)] is a pseudodifferential operator of order u. O

We then observe that the arguments of the proof above give the following proposition.
Proposition 2.9. — For j € {1,...,d} and a € Sya(p) in CP(H?) with p > 1, we have
Zi0p(a) = Op (Za+att/IN(—sgn(Ng; +iny))
Op(@)Z; = Op (VIN(=sgn(Ng + inj)#a)
Z;0p(a) = Op(Zja+a#y/NissnNg +imy)) |
Op(@)Z; = Op (vIN(sgn(Ng; +inj)#a)

Besides, for N € N and p > 2N, then (—Aga)NOp(a) and Op(a)(—Aga)V are pseudodiffer-
ential operators of order i+ 2N. If k € R and p > 2k then Op(a)(Id — Aga)* and (Id —
AHd)kOp(a) are pseudodifferential operators of order p+ 2k.



2.3. ACTION ON THE SCHWARTZ CLASS 43

Proof. — The four first relations are by-product of the preceding proof and they directly imply
that (—Aye)VOp(a) and Op(a)(—Aye)Y are pseudodifferential operators. Then for k € R,

we write
d—1
Op(a)(1d — Aya) f(w) = idﬂ /R tr (PO + Dy Ay () [\ %A,

Observing that

(Id + Dy)F Ay (w) = Jyop" <m§2)#a(w, )\)) Iy,

where mg;) is the symbol defined by (1.4.7) page 29, we obtain that Op(a)(Id — Aga)* is a

pseudodifferential operator of order u + 2k. We argue similarly for Op(a)(Id — Aga)¥. O






CHAPTER 3

THE ALGEBRA OF PSEUDODIFFERENTIAL
OPERATORS

This chapter is devoted to the analysis of the algebra properties of the set of pseudodifferential
operators. The two first sections are devoted to the study of the adjoint of a pseudodifferential
operator: we first compute what could be its symbol, and then prove that it actually is a
symbol. In order to prove that fact, the method consists in writing the formula giving the
symbol as an oscillatory integral, and in writing a dyadic partition of unity centered on the
stationary point of the phase appearing in that integral. This creates a series of oscillatory
integrals which are all individually well defined (since each integral is on a compact set). The
convergence of the series is then obtained by multiple integrations by parts using a vector
field adapted to the phase, as in a stationary phase method.

The approach is similar for the analysis of the composition of two pseudodifferential operators
and this is achieved in the third section. Finally, asymptotic formulas for both the adjoint
and the composition are discussed in the last section. These formulas result from a Taylor
expansion in the spirit of what is done in the Euclidian space but adapted to the case of the
Heisenberg group.

3.1. The adjoint of a pseudodifferential operator

In this section, we prove that the adjoint of a pseudodifferential operator is a pseudodifferential

operator. We first observe that if a € Syga(u), then A def Op(a) has a kernel kg(w,w’) as
given in (1.4.5) page 29, and the kernel of A* = Op(a)* is k(w,w’) = ka(w’,w), whence

2d_1 * X W *
]C(’U),ZU/) = W/Rtr <(U€\w/)_1w) J)\Op (a(w/,)\)) J)\) |>\|dd)\
2d_1 A * W (—=( ] d
(311) = m Rtr <U(w)_1w/ J)\Op ((Z(’U) ,)\)) J)\> |>\| d)\

where we have used the fact that tr(AB) = tr(BA), the formula for the adjoint of a Weyl

symbol, and tr(B) = tr(B*). Therefore, in view of Corollary 2.5 stated page 36, if Op(a)* is a



46 CHAPTER 3. THE ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS

pseudodifferential operator, its symbol a* will be given for all (w, \,&,n) € H? x R* x R?? by

2d_1 2 / / : /
* = 2 i/ [A(sen(N)y'-E—"-n)+ids
a (w’ A? 5? 77) 7Td+1 /I\% Hd €
(3.1.2) X tr <u(w) 1 Jyop® ( (w(w /)—1’)\/)) J,\/) \)\/‘dd)\/dw/.

It remains to prove that the map a — a* which is well defined on S(H? x R?¥*1) can be
extended to symbols a € Sya(p) and that for such a, their image a* is also in Spga(p).
Therefore, it is enough to prove the following proposition.

Proposition 3.1. — The map a — a* extends by continuity to Sya(p) since for all k € N
there exists n € N and C' > 0 such that

Va € Sya(p)s la™ k50 < Cllallns )

It is not at all obvious that the formula (3.1.2) for a* gives the expected result for the examples
studied in Section 2.1 of Chapter 2. To see that more clearly, it is convenient to transform
the expression of a* into an integral formula.

Lemma 3.2. — Let a € S(H? x R?*1), then the symbol a* of Op(a)* given in (3.1.2) can
also be written

a*(w,\, &,n) = IAl(sgn(N)y'-E—a’-n)+is' (A—=N)—2iy/| N |(sgn(N)z-y/ —¢-2')

1
Qr2d+1 /R2d+1 % Hd
x @ (ww) N, 2,¢) |N|4d¢ dz dN dw'.

The formula given in Lemma 3.2 allows to revisit the examples of Section 2.1, Chapter 2.
Indeed if a = a(\, &, n), then integration in s’ gives A = X, then integration in z’ (resp. y/'))
gives ¢ =1 (resp. z = y'); whence a*(w, \,&,n) = a(\ &, n).

If a = a(w), then integration in ¢ (resp. &) gives 2/ = 0 (resp. ¥’ = 0); then integration in s’
gives A = X, whence a*(w) = a(w) as expected.

Remark 3.3. — Let o(a) be defined by (1.4.1) page 27, then o(a*) and o(a) are related by

« _ 1 iy’ -(6—2)—2ia’ - (n—C)+is' A—N)
313 el wNEn) = g [
x o(a) (ww) N, 2,¢) d¢ dzdN dw'.
Proof of Lemma 3.2. — The first step consists in computing the trace term using the link

between the trace and the kernel stated in (1.2.18) page 18. So let us start by studying the
kernel of our operator. Using Jy = T\ K/, we write

(3.1.4) tr< Ulyry—1 Jxop® (a(w, X)) JX) =tr (Kxu(w) VK3 Tyop® (a(w, X)) T,\/>

where W = w(w’)* and we observe that Kxu(w,),lK;, = UE\;,),I where UE\;,),I is the
Schrodinger representation given by (1.2.33) page 22. We shall use the same type of method

as for the proof of Proposition 2.4. We recall that if U is an operator on Lz(Rd) of kernel
ku(€,€'), then the kernel of the operator

U:’U(w) 10U
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is the function k; given by
kg (€,€7) = e VORI oy (6 120 ).
This comes from the definition of the kernel in (1.2.17), page 18, and the definition of v()‘z;/)_l
in (1.2.33), page 22. We take now
U =Ty o0p” (E(w(w')_l, N,&n)) T
As in (2.2.3) page 36, we have

T;;Opw (E(w(w')*l, )\/7 &, 77)) Ty = op® (a(w(wl)17 )‘I7 \/W& \/7)\—/|>

and using (1.3.6) page 25 this gives

(6. ¢)=@n" [ a <w<w'>1,x, NGy (f ! 5’) i) =) 4,

¥y

This implies
w@) = [ k(6o
]Rd
_ / e_i)\’(s/+2$/'y/+2y/'§) kU(g + 256/5 £)d£
]Rd

_ (%)d/ o= N (s' 420y +2y )+ 2iEa' 5 (w(w/)1’ NoAVIN|(€+ ), |X|> d= dg.
R2d

We finally obtain via (3.1.2) and (3.1.4)

(1]

a*(w \ € 77) _ 1 o2 [A|(sgn(N\)y'-E—a'-n)+is' (A=N)—2iN (2’ -y +y'-€)+2iz’ -2
T 2n2d+1 [poay1 o pa

(1]

xa<w<w'>-1,x,\/|N|<s+x'>, 5

The change of variable /|N|(£ + 2') = sgn(\)z and = = /|N|( gives the formula of the

lemma. O

) |N|4d=Z d¢ dN duw'.

3.2. Proof of Proposition 3.1

To prove Proposition 3.1, we shall use Remark 3.3 and Proposition 1.23. Our aim is to analyze
the symbol properties of the oscillatory integral of (3.1.3) in order to prove that what should
be the symbol of the adjoint actually is a symbol. More precisely, we want to prove that for
all k € N, there exists a constant C' > 0 and an integer n such that for any multi-index 8 € N%¢
and for all m € N, if m + || < k, then

1Bl—p

VY € R* WA #£0, (1+|A\(1+Y?) < Cllalln;s

|Qonmef, , o@ Ay a1

P (H?)

The first step consists in proving this inequality when k = 0, then, in a second step, we will
suppose k > 1 and consider derivatives of the symbol o(a*).
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We follow the classical method of stationary phase, as developed for instance in [1]. Noticing
that the phase in (3.1.3) is stationary at the point (0,0,0,&,7,A) in R? x R? x R x R? x R? x R,
we introduce a partition of unity centered at zero:

1=u) + Zi/}(Q*pu), Vu € RA4H2

peN

where 1 is compactly supported in a ring and ¢ in a ball. Then decomposing the inte-
gral (3.1.3) using that partition of unity, we notice that each integral

def 1 _ _ _ _ _ _
bp(w, A, €, m) = W/Rmﬂxww(z Pa!,27Py 2P 27P(2 — €),27P(C — 1), 2P (N — \))
x @2 (6=2) =2l n=OFis' A=N) 5 (4 (w(w') ™1, N, 2,¢) d¢ dz dN du

is well defined since it is on a compact set. Notice that this is not the usual Heisenberg
change of variables as could be expected, but for technical reasons this change of variables
seems more appropriate. The convergence of the series ZpGN b, will come from integrations

by parts which will produce powers of 27P. Indeed, the change of variables
o =2X, y =2PY, s =28, 2 =&+ 2Pu, ( =n+2Pv, N =\ +2PA

gives with w(p) def . (2P X, 2rY, 2P S)~1

by (w, A ) = 24d+2)p ¥ (X,Y,S A) —i22P (2Y -u—2X -v+SA)
p’U), 55577 _W R2A11 o y Xy, U, U, €

xo(a) (w(p), A+ 2PA, &+ 2Pu,n + 2Pv) dudv dX dY dA dS.

Let us define the differential operator

def 1

1 1 1 1
L= (X2 4 Y2+ 8% +u? +02 4 A% <§Xav + v0x = 5Y 0y — Fudy — SO\ — A65> :

1
which satisfies
Lefi22p(2Y-u72X-v+SA) _ 22pefi22p(2Y-u72X-v+SA)

We remark that the coefficients of (L*)" are uniformly bounded on the support of ¢. Per-
forming N integration by parts (here we assume that p > N) we obtain

b o 9~P(2N—4d-2) —i22P(2Y u—2X v+SA)
p(w7 75777) - W /RQd-H « H¢ ¢

X (L)Y (0 (X,Y, 8,u,0,4) (@) (w(p), A + 2°A, € + 27w, + 27v) ) dudv dX dY dAdS.
We then use that o(a) satisfies symbol estimates, so
((L*)NW (w(p), A + 2PN, & + 2Pu,n + 2%)‘
< C2N fally a0 (1+ A+ 2PA] + [€ + 22uf? + |y + 270 )%
Peetre’s inequality
(L4 A+ 2PA] + [€ + 27uf? + |y + 200 2) "/
< (1 AL+ €+ 02) " (14 |22A] + [22uf? + |270?) 12
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yields
(14 N+ € 4 07) 7 [(0)V5Ta) (wlp), A+ 274, + 2w +2%)

< Clall s, (1+12PA] + [2Puf? + j27u]2) /2.
Therefore,
(14 A+ + 1) 2 by w, A €.m)| < C lallns, gy 272N,

which gives the expected inequality for £ = 0 choosing N > 4d + 2 + |u|.

Let us now consider derivatives of o(a*). We observe that by integration by parts,
8A0(a*)(w7 )‘7 57 77)

_ v iy (E—2)—2iz'-(n—C)+is’ A=XN) 1 7.\ _
— 27T2d+1 /R2d+1XHd62y (6 ) 2 (77 <)+ ()\ )\)Slo,(a) (w(w/) 17)\/,2,6) dCdZd)\/dw/

1

= 53T /de+1 y 2 (€=2)=2ix"- (1) +is' A=N) g, , (a(a) (w(w’)’l,)\',z,C)) d¢ dz dXN dw'.
X

Since for m € N, 0}'c(a) satisfies the same symbol estimates as o(a), the arguments developed
just above allow to deal with the derivatives in A. Similarly, integrating by parts

2121 E0g, 0/ (a*) (w, A, €,)
— 21 /RQd+1 o eQiy,~(§—z)—Qix/-(n—f)-i-’is/()\—)\/)y;cgj U(a) (@7)\/,2,6) dC dZ d)\/ dw/
X

o /ﬂw T ET ORI Oy (9, — 2iz;) (o(a) (X, 7,0) ) dC dz X duf
X

~.

— 5 /]RQdJF1 » e?iy’-(gf?«’)*%x’-(77*()4’@'5’()\7)\’)8?%(ay} _ QZZJ) (U(a) (?I},)\I,Z,C)) dC dz d)\l dw,
X

with @ = w(w')~. So, for m € N and o € N*@, (¢;0¢,)™0(a) satisfies the same symbol esti-
mates as o(a), thus we can treat these derivatives as above with exactly the same arguments.
Besides, it is also the case for derivatives in . This concludes the proof of Proposition 3.1. [

3.3. Study of the composition of two pseudodifferential operators

We consider now two pseudodifferential operators Op(a) and Op(b) and study their com-
position. We shall follow the classical method (see for instance [1]) consisting in studying
rather Op(a) o Op(c)*, where ¢ is such that Op(c)* = Op(b).

We recall that if A (resp. B) is an operator of kernel ka(w,w') (resp. kp(w,w’)), then the
kernel of Ao B is

bacr(w0) = [ Katw. W )ka (W, )
If moreover B = C* with C' of kernel ko (w,w’), then

kp(w,w') = ke (w', w).
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Those (well-known) results applied to A = Op(a) and C = Op(c), imply that the opera-
tor Op(a) o Op(c)* has a kernel k(w,w’) given by

(3.3.1) k(w,w'") = /Hd ka(w, W)k (w', W) dW.

If Op(a)oOp(c)* is a pseudodifferential operator of symbol d, then, by Proposition 2.4 page 36,
the symbol d is given by its associated function o(d) which satisfies,

(3.3.2) o(d)(w,\, &) = / 2 =2 IS () (') 7Y du'.
H4
We shall now study the map (a,c) — d which is well defined for a,c € S(HY).

Proposition 3.4. — The map (a,c) — d extends by continuity to Sya(p) X Sya(p') since for
all k € N there exist n € N and C' > 0 such that

Hde;SHd(u-i-u’) <C HaHn;SHd(u) HCHn;SHd(u’)'

Note that the Proposition implies that the symbol d of A o B satisfies

Hde;SHd(u-I—M’) <cC HaHn;SHd(u) Han;SHd(u’)

since ¢ is the symbol of B* and ||c|l,,;5_,(u) < C [[blln;s,, for all n € N by Proposition 3.1.

a(w alp’)
Proof. — The proof is very similar to the one for the adjoint written in the previous sec-
tion: one writes the function o(d) as an oscillatory integral that we study with standard
techniques. We first obtain, thanks to Proposition 2.4 page 36, (3.3.1) and (1.2.1), that the
kernel of Op(a) o Op(c)* is

m/U(a)(u%Al&hﬁ)%(@,)\z,zm@)

Xei)\181+2iy1~Z1—2ix1-C1—i>\282—2iy2~Z2+2iC2-x2d)\1 dXs dzy dzo dCy dCy AW

k(w,w) =

where w™'W = (z1,y1,51) and @ 'W = (22, y2, 52). Therefore, recalling that

O'(d)(w, )\, é-, 77) _ / e?i(y/.gfm/_n}ki)\s’k(w’ ’U)(’U)/)il) dw/

Hd
where k is the kernel given above, we get

333) o A\&n) = G [ @z OrE ) e 2.¢)

x W MAez1,22.00:62) gy dNg dzy dizg dCy dCa W du,
where the phase function ® (depending on w, A, £ and 7) is given by
(334)® = A"+ Xis1 — Aaso +2(y - E+y1- 21 —y2-2) —2(2" - n+ 21 -G — 22 ()
with wy = (z1,41,81) = w W and wy = (x2,Y2,82) = w'w™'W; in particular wy = w'w; so
writing W = (X,Y,S) and using the group law on H¢, we have
ri=X-z, xo=X—-a+2, =Y -y, ypp=Y —y+1vy,51=85—5s5—2Xy + 22Y,
(335) s9=8S—-s+5 20" —2) Y +20 —y) - X +22" - y—2¢ - 2.
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The function @ is polynomial of degree 3 in its variables and straightforward computations
give
O\ P =51, 00, =—592, 0,,2=2y1, 0,, =20
0 ® = =21, 0r,® =2x2, 0g® =X— X2, 05P = A1 — Ay
Op® = =2(n—C) +2X(Y —y), Op® =2(£ — 22) — 2X2(X — )
Ox® = —2((1 — () — 20y + 2y(Na — A1), Oy ® = 200z’ — 22 (A2 — A1) + 2(21 — 22).

Therefore, one can check easily that the phase ® satisfies d® = 0 if and only if
w=W,w =0, A=A =X, z1=20=¢&, (=0 =n1.
In the following we shall denote by Uy € RP that critical point, with D = 4(2d + 1):

def
UO :e (x7y78707)‘7)‘7§7§7n7n)'

By a tedious but straightforward computation, we check that ®(Uy) = 0, d®(Up) = 0 and
that d?®(Up) is invertible for all (w,\,&,n): computing the Hessian matrix d?®(Uy) one
notices easily that each lign of the matrix has at least one constant term (and the others are
either zero or linear in A, z,y).

We then argue as in the proof for the adjoint by use of a partition of unity centered in the
point Uy where ® degenerates. For simplicity we denote the new set of variables by
V= (X’Y’Xax/,y,,sl,)‘la)‘Q,ZlaZQ,CI,CQ) € RP.

In the phase ® there are terms of order 3 and we observe that the only derivatives of order 3
which are non zero are

8}9’(7>\27y/@ = —2 and 633/,)\271./q) = 2.
We write, for any point U € RP, ®(U) = &¢(U —Uy)+G(U —Up) where by a direct application
of Taylor’s formula, one has

def 1

W ERP, @(V)E IV -V and G(V) def

= Q= N(Y -y’ = (X —2)y).
We are therefore reduced to the study of an integral under the form
I= [ f)e*Wqu,
RD

where we have defined

(3.3.6) VU €RP, f(U) = a(a)(w, A1, 21, 1)o(0) (w(w') ™, Ao, 22, Co).
We shall decompose this integral into a series of integrals by a partition of unity:
I = F(@)e YU - Uy)dU + Z/ F()e®W¢(2=9(U — Uy))dU
R® en /RY

= | FO)* U - Uo)dU + Y27 / (U + 20V )¢(V)e B VIHEEV) gy,
R R
qeN

where ¢ and ¢ are functions defining a partition of unity, in the sense that they are nonnegative,
smooth compactly supported functions (¢ in a ball and ¢ in a ring) such that

VU eRP, ((U-To)+ Y ¢(27UU - Up)) =1.
qeN
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Each integral is now well defined, and the main problem consists in proving the convergence
of the series in ¢ € N, as well as in proving symbol estimates. We shall concentrate on the
second integral and leave the (easier) computation in the case of ¢ to the reader.

Consider

Iy % 2 / f (U +20V)g (V) R aWay,
We shall use a stationary phase method, which will be implemented differently according to
whether in the phase 2290 (V) 4 23G(V), the dominant term is the first or the second of the
two terms. More precisely, let § €0, 5[ be any real number and let us cut the integral I, into
two parts depending on whether [VG(V)| < 2791%9) or not. For this, we introduce a smooth
cut-off function x € C§°(R) compactly supported on [—1,1] and write I, = I(} + Ig, where

o

<

24D / X (22q(1+5) |VG(V)|2) F(Uy + 29V)C(V)e2 PoW)+2XGV) gy and

12 o0 [ (PUITOVIR) (U + 20V )g(V)e 00260 gy,

Let us first analyze [ ql. We introduce the differential operator

def 1 V&o(V)

= TVae Y

which satisfies
N [61‘22‘1%(\/)] — 92Nqi229%o (V)

Note that the computation of the Hessian mentioned above allows easily to obtain a bound
of the following type for V®:

C
3.3.7 VV eSS , IVee(V)|It <

where C' is a constant. It follows that L is well defined, and its coefficients are at most
linear in A\, x and 3. One therefore checks easily that on the support of ¢ the operator (L*)Y
has uniformly bounded coefficients (the bound is uniform in V" as well as in w, \,§ and 7).
Therefore one can write

I(} _ 2qD22Nq/ei22fJCI>O(V) (L*)N [C(V)X <22q(1+5)|VG(V)|2) eiQSQG(V)f(UO + 2qv)} dV.
Using the Leibniz formula, we have
(338) @)Y [Cx (AIVGV)2) 200 f (U + 217 |

<c > U2V |onE@ V)| for (x (224 vav)) ) | IEv)
|€]-+lm|+|n|<N

where ¢,m,n are multi-indexes in N” and where ¢ is a function, compactly supported on a
ring, defined by
C(V) = sup [97¢(V)].

l7I<N
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Now the difficulty consists in estimating each of the three terms containing derivatives on the
right-hand side of the above inequality. Recalling that f is defined by (3.3.6), f satisfies the
following symbol-type estimate:

O (f(Wo+29V))| < €29 sup (L [N+ 29V, |+ € + 27V, P+ [ + 29V, %)
{j1,--je}€{1,...D}¢

=3
2

’
B
2

(3.3.9) X (14 A+ 29V, |+ 1€+ 29V5 [P + [n + 29V, [*) = .

Now let us prove an estimate for the second term. We use Faa-di-Bruno’s formula, which in
general can be stated as follows:

DY, hn) = D0 Y D r';

Ip!
ocon p=1 7’1+"'+7"p:N 1 -Tp.p.
X eF(V) [DTIF(V)(hJ(1)7 cee 7ho(r1))7 cee 7DTPF(V)(}LJ(N,TP+1), ey hO’(N))]

But on the support of (, the function G is bounded as well as its derivatives, so this implies
that on the support of ¥,

n|

|an(ei23‘1G(V))| < CZ Z 1 ; '23(Ip <2*Q(1+5))K

|
r1:...TypiPD:
p:l r1+...+7»p:|n‘ pp

where K & card{j, r; = 1} is the number of integers j in {1,--- ,p} such that r; = 1. We
notice that the worst situation corresponds to the case when {j, r; = 1} = (), which means
in particular that r; > 2 for all j (in the above summation it is implicitly assumed that
the r; are not zero). The largest possible p for which such a situation may occur is p = |n|/2
(or (Jn] —1)/2 if |n| is odd). But one notices that since § < 1/2,

o2 < 92Inlp=dlnlp
so using the fact that for any p < |n| one has clearly 22P4—Pe° < 22nla=Inl49 e infer that

(3.3.10) 07 (2G| < ¢p2nla=Inlad

Finally let us consider the last term, namely 9™ (X <22q(1+6)]VG(V)\2)) . Taking |m| = 1

and writing 0; for any derivative in RP we have
D
Loy (x (2209 [wav)2)) = 220049 (200409 (v)P) S 62 G(V)aG(V
595 (X IVGV)I7)) = X IVG(V)]?) D 05G(V)aiG(V)
=1

which can be written
D
15 2q(1+4) 2)\ — 9a(1+9) . (9a(1+96) 2
505 (x (220 vG)R) ) =2 Z; hi (210°9VG(V)) 2 G(V),
where h; is the smooth, compactly supported function defined by
YU eRP, mi(U) € UN(UP).

So, using that the derivatives of G are bounded and by Leibniz formula, one gets

‘Bj (X <22q(1+5)\VG(V)\2))‘ < 02a(1+9)
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and arguing in the same way for higher order derivatives one finds finally
(3.3.11) ‘am <x <22‘1(1+5>|VG(V)|2)>( < Colmla(i+9),
Plugging (3.3.9), (3.3.10) and (3.3.11) into (3.3.8), we get
9—2qN+qD ‘(L*)N [C(V)x (22q(1+5)]VG(V)]2) ei23qG(V)f(U0 I 2qv)] ‘

<C sup 9ltlg92|nlg—|n|gdgm|q(1+6)
{1536 }e{ LD} g L | n| < N

(SIS

X (14 A +29Vj, [+ 1€ + 29V, * + [n + 29V, )

L
2

X (L A+ 29V, |+ 1€+ 29V 2 + [ + 27V, )
Noticing that
9—2qN+qD Z 9ltlag2inla=Inladglmla(1+9) < coal(9=Nad 4 9Na(0-1))
|€]+|m|+|n|<N

it suffices to choose IV large enough and to use Peetre’s inequality as in the case of the adjoint
to conclude on the summability of the series, and on the symbol estimate on I, (}

Let us now focus on Ig. In that case ®( is no longer predominant, so we shall use the full

operator

(V) def 1 V& (V) +29VG(V)
1 i |[V®(V) +2aVG(V)|?

which is well defined on the support of ( and satisfies

-V

Ly(V) |:ei22q<1>o(V)+i23¢JG’(V)] _ 924 (2900 (V) +i2G(V)

q
This implies that [ q2 is equal to
0= [ (1, (V) (1) (20T 1T + 2V R0+,

and it is not difficult to prove by induction that for N € N, the operator (L;)N is of the form

. 2q 2k (VY
k=0 |a|<N-—k

where the f; are uniformly bounded functions on the support of . As in the case of [ 1, we
apply the Leibniz formula to write

o [ =) (2HVGV)P) (U +2V)e(V)]|

<C Y P U+2V)| om (@ -0 (2200 vew) ) )| V)
1+ mI<lo]

where ¢ and m are multi-indexes in N” and where ¢ is a function, compactly supported on a
ring. The first term of the right-hand side was estimated in (3.3.9), and the second one may
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be estimated similarly to (3.3.11) since as soon as |m| > 1, the support of 0™ (1 — x)(V) is in
a ring far from zero. It follows that

o [(1 =) (PENYTGV)P) (W +2v)((V)|[ <0 3 2llagimiai)

|€]+|m|<|e

x sup (L4 (A 429V, | + € + 29V, [* + [0 + 29V, )
{j1,---je}e{1,...D}¢

J=3
2

I
2

X (L A+ 29V €+ 20V 2 + I+ 29V ) >
Since on the other hand, on the support of (1 — y) (221+94|VG(V)|?) and on the support
of ¢,
foV) +20f1(V) + - 2Y fi(V)
[@o(V) + 20VG(V)[**

' < 02—19QQ2/€Q(1+5)’
this implies that
def *
XN E (L)Y [(1 —X) <22(1+5)‘1\VG(V)\2) f(Uo+ 2qV)C(V)]

may be bounded by

N
IXC],VI < CZ Z Z 9—kag2k(1+38)agltlaglm|q(1+6)

k=0 |o| SN~k [¢]+]m| <o

(SIS

X osup (L AR 20V | [+ 20V o [+ 2V, )
{j1,--je}€{1,...D}4

) |1\

X (L4 N+ 29V, |+ 1€ + 29V 1 + [+ 27V %) 7
Since
N
Z Z Z 2~ kag2k(1+d)q9ltlaglmla(1+d) < 9Na92Ndq
k=0 |o| <N—k |¢|+|m| <|a|

we conclude that

(SIS

Xp S O NS qup (L A2V I 29 20V
{j1,--jere{1,...D}d
5

X (14 X429V, | + €429V, [ + In + 29V [*) = .

The choice of ¢ €]0,1/2[ allows to conclude as in the previous proof via Peetre’s inequality.

The analysis of derivatives of o(d) is very similar. Let us for the sake of simplicity only deal
with the A-derivative, and leave the study of the other derivatives to the reader. Taking a
partial derivative of o(d), defined in (3.3.3), in the A direction produces a factor is’ in the
integral, namely

Gy [ W@ I ww) e,

Xei<I>(W,w’,>\1,)\2,21,z2,C17C2)d)\1 dXo dzy dzo d(y dCo dW dw'.

aAU(d)(wa )" 5, 77) =
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But one notices that

8}\2(ei<1>(W7w/7>\1,)\27z1,227C17C2)) S (S T Y 2yX — 2x’(Y . y) + 2y'(X . x))

. ’
w ! @Ww' A1, A2,21,22,C1,(2)

which can also be written, using (3.3.5)
is'e’® = (=0, — is1)e’® —i(=22"y; + 2y'z1)e™®.

On the other hand an easy computation, using the formula defining ® in (3.3.4) above, allows
to write that

is1e'® = (%\leicp, Qiylem’ =0, ¢®  and  — 2iz1e™® = 8<1ei¢
so we find the following identity:
is'e’® = (=0, — Or, + 205, + 90, )e™®.
Finally (2727+1)20\0(d)(w, A, €,7) is equal to
/eiq)(%\g@(w(w/)_l, A2, 22, G2)o(a)(w, A1, 21, C1)dAy dAg dzy dzg Ay dCo AW du’

+ / ey, o(a)(w, A1, 21, C1)o(c) (w(w') ™, Ao, 20, Ca)dAy dAg dzy dzy dCy dCo AW du

- / €9, 0(a)(w, A1, 21,0)(z — 2o (c) (w(w) ™1, g, 22, G2 )dA1 dg dzy dzo dCy dCo W duw'

- /eiq)xazl o(a)(w, A1, 21, C1)o(c) (w(w') ™!, Mg, 22, () dAy dAg dzy dzo d(y do W du

- / "0, 0(a)(w, M\, 21, () (Y — y)o(e) (w(w') ™, Aa, 22, (2)dN\ dAa dzy dze Ay dCa AW dw'

a / ei¢y3C1U(a)(w7 )‘17 21, Cl)U(C) (w(w,)_17 )‘27 22, CQ)d)‘l d)\2 d21 dZQ dCl dCQ dw dw/'

Since o(a) and o(c) satisfy symbol estimates, the expressions above can be dealt with exactly
by the same arguments as those developed above. One proceeds similarly for all the other
derivatives. Details are left to the reader. O

3.4. The asymptotic formulas

In this section, we give the asymptotics for the symbol of the adjoint and of the composition,
up to one order more than in Theorem 4. The proof that we propose does not use the integral
formula obtained for a* and a# b but relies more precisely on functional calculus, which
suits more to the Heisenberg properties to our opinion.
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Proposition 3.5. — Let a € Sya(p1) and b € Sya(pa). Then the symbol of the adjoint
of Op(a) is given by

* — 1 7 *\— 1 7 * 7 *\—
a = a—i-ﬁ Z (ZjTj—i-ZjTj)a-i-m Z (Zjﬂ+Zj7})(Zka+Zka)a
| |1Sde 1<jk<d
1 1 _ .
+a —)\(9)\—1—5 Z (njanj +£ja§j) Sa+r1
1<j<d

whereas the symbol of the composition Op(a) o Op(b) is given by

1 —
afgad = b#Fa+—— > (Zb#Tja+ Z;b#T}a)
2VIA 1<j<d
1 — = \ - — s
O > (ZiZeb# TiTha + Z;Zeb# T Tia + Z; Zpb # TyTia + Z; Zkb # T; Tra)
1<j,k<d

1 1 .
+ Sb# —)\8,\+§1<Jz<d(nj8m+§j0§j) a+ 7o

where S denotes s, T1 (resp. T2) depends only on Z% (resp. Z%b) for |a| > 3 and finally
where

1
Tja df ~0p;a — sgn(A)9g; a.
i

Recall that formulas for a* and a #yab are provided respectively in (3.1.3) and (3.3.3).

In view of the second term of the asymptotic expansion, one understands better in what sense
these formula are asymptotics. Let us comment the development of a*. The first term is a
symbol of order p — 1, it is of order strictly smaller than a.

The first part of the second term is of order u — 2; however, the second part of this term is
the product of A~! by a symbol of the same order p. This is a smaller term only for large
values of A. In view of the proof below, it is easy to see that one could obtain an expansion
to any order and that the term of order k& will be the sum of terms of the form: A~/ times a
symbol of order y — k + 25 for 0 < 25 < k. It is in this sense that this asymptotic has to be
considered.

We shall not discuss here the precise feature of the remainder and will discuss this point in
further works for applications where these asymptotic expansions could be useful.

We point out that the asymptotic formula for a* and a#yab have their counterpart for o(a*)
and o (a#yab). By the definition of the function o(a) associated with a symbol a (see (1.4.1)),
the following corollary comes from Proposition 3.5. While the asymptotics of Proposition 3.5
appear as especially useful for large A, the asymptotics on o(a) seems more appropriate for A
close to 0.
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Corollary 3.6. — Let a € Sya(p1) and b € Sya(p1) then
* PSR 1 7 TEN ()
o) = d@+y S (LT + 270
1<j<d
1 . o
+3 > (T + ZiTi ) ZkTh + Zi Ty )o(a)

1<j,k<d
——S (%\0( )+ o(71)

and similarly

o (a#yab) = o(b)#ro(a)+ % Z (Zjo(b) #a Tjo(a) + Zjo(b) #x Tj o (a))

1<5<d

+ }:(Z%a:%Tﬁd)+Zﬁw@#x7ﬁd@
1<] k<d
_ — 1
+ ZZ40(6) # T T 0(a) + Z; Zx0 () #2 T Tra) = —So(b) #2 0r0(a) + o (72)
where 71 (resp. To) depends only on Z% (resp. Z“b) for |a| > 3 and where for all func-
tions f = f(&n) and g = g(§,n)
VO R g(0) Y (mH [ o X000 0l p(y)g(6,)d0, do,
RQ

def 1

Tif Y 2o, 1 - o1

The proof of the corollary is straightforward by (1.4.1) and (1.3.4).

Let us now prove Proposition 3.5.

Proof. — It turns out that the proof of the asymptotic formula for the composition and the
adjoint are identical, so let us concentrate on the product from now on.

In view of (1.4.5) and (1.4.6) page 29, we can write

9d—1 2 ,
(Op(a) 0 0p(8) £(0) = (Zgzz ) [ 11 (1h-su 0 As0)) 1 (i o B ()
x f(w") AN IN[2dA dN dw' dw”
with
Ax(w) = Jyop®¥(a(w, N)) Jy and By(w) = Jy op"(b(w, A)) Jy.
Now, we shall take into account the framework of the Heisenberg group and use the dila-
tion &;(w=tw’), t € [0,1] (see (1.2.7) page 15) to transform b(w’,-) by a Taylor expansion:

b(w', Ay, n) = b (wé (w™ w))\yn)—b(w)\yn)+<dib(w5t(w L'y, A\, )>
t=0

1
+%/(1—t) jgb(wét(w '), Ay, m) dt.

1 [ d? -1,/
+— —b(wét(w w )7)\7:[/777)
2 |t=0 0

dt?
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1

Setting w = (2, 8) = w™w’, we get by the group rule (1.2.1),

%b(wét(u?)) = 218 Sh(w (@) + 3 [8; (3, bluwd (@) + 2u;0,b(w; (D))
1<5<d
+ij; (0, b(w6y () — ijasb(wdt(w)))].

This leads by straightforward computations to

d _ N S
(Eb (wde (w L', A,y,n)) = Z (2,Z; + % Zj)b(w, A\, y,m)
[t=0 1<5<d
d2 — ~ = 7 ~ = =
(Wb (wor(w™ ), Ay, 77)) = Y (52 +%Z)) o (2 Zk + 2k Zr)] bw, A, y,m)
[t=0 1<5,k<d

+25Sb(w, A\, y,n).
Therefore, we deduce that
By(v') = C\(w,w") + Ry(w,w")

where R) depends only on derivatives of order 3 of b and C)(w,w’) depends polynomially
on w:

(341 Oyww!) = Byw) + N w) - (2,3) + P w)(2,3) - (2,7) + 50 (w),
where Cgl)(w) is the 2d dimensional vector-valued operator
(1) def =
Cx" = (ZBa(w), ZBr(w)) .

while C&z) (w) is the 2d x 2d matrix-valued operator

def

c (2,2) ® (2,7)] B(w)

def

and Cig)(w) = SBy(w).

To summarize (Op(a) o Op(b)) f(w) is the sum of two terms:
(Op(a) 0 Op(b)) f(w) = (1) + (J)
with
d— 2
(I) = (%) /tr <uf‘v_1w/A>\(w)> tr <u€‘l/v,)_1w//0)\/(w,w')> F") A [N 2NN du dw”

Let us now focus on the term (I) which will give the terms of the asymptotics in which we
are interested.
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Let us begin by the study of the contribution (I)y of the term of degree 0 of the polynomial
function Oy (w,w’). By (3.4.1), we get

def 24-1 ? A N " dy/|d P
M () [ w <uw,1w,A)\(w)) tr (u(w,),lw,,BN(w)> FIA [N LA du dw

24-1\? /
= <m> /tr <uf‘v_1wﬁuf‘w”)_1w/ tr (uf‘w,)_lw,,B)\/(w)> AA(w))
< f(w") AL N [2dAdN dw' dw” .

The change of variables w’ — w”w’ turns the integral (I)y into

92d=1\? :
(W) / . tr(uju,lw,, [ / ul, tr <u§w,),1BX(w)) \)\’\dd)\’dw'} A,\(w)) Fw") N4 drdw.

By the inverse Fourier formula, we obtain that the term between brackets is
A Y d 201\ 7!
/uw/ tr (U(w/)_lBA/(w)) |)\,| d)\/dw/ — <m> B)\('LU),

which gives
2d71 N d
(I = m/ tr <uw_1w//B>\(w)A>\(w)> F") N dAdw”.

We then use classical Weyl symbolic calculus to write

op" (b(w, X)) o op”(a(w, X)) = op” ((b#a)(w, N)).
Thus we have
Bi(w) o Ax(w) = Jyop” ((b#a)(w, A)) ]y,

whence
2d— 1

(Do = 2z [ 0 (s TRop™ (Ga) w0 X)) S0 YA drds”,

which gives thanks to (1.4.5) and (1.4.6) the first term in the asymptotic formula for the
composition.

Let us now consider the second term of the asymptotic expansion which comes from the term
of order 1 of the polynomial function Cy(w,w’). To treat this term, we shall use the following
relations for 1 < j <d,

I~ * w 1 * w -
gitr (whiop” (@l N)) = gt (g op" (o, —i€; + sgn(N)})h)
(3.4.2) = ! tr(u)‘mijopw(J}-a(w,)\)))
2y
= ATk w _ 1 ATk o w .
it (uhiop” (@ N)) = =gt (whKop” (fasi€; + sgn(N)})h)
(3.4.3) =t (uh o (Tja(w, \))
2y :

that come respectively from (2.3.4) and (2.3.5) page 42.
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This allows to write the second term under the following form
2d 1

_ 2
def ! 5 3
O (Zr) [ o (s ts@) e (e 2.3) - O ()
< f(w") N [N |2dAdN dw’ duw”

1 2d71 ,
2,/IN (Wd+1> 1§<d/ tr w1 Jxop® (Tia(w, )\))J)\) tr <u(w) i ZiB(w, )\)>
< f (W) A [N [4dAdN dw' dw”
d—1
+ \/1|T <id+1> Z /tr _1w/J,\0P (T7 a(w, )\))J)\> tr (ui‘;},)_leZjB(w’)\/))
1<j<d
x f(w") NN YN dw'dw”.
Therefore, arguing as for the first term, we get
1 od-1

(I), = Z /tr(ui‘}1w,,J;:0pw(Zjb(w,)\)#Tja(W,)\)

1<j<d
+7jb<w,A)#Tfa(zu,A))A)f(w”)MWdAdw”,
which leads by (1.4.5) and (1.4.6) to the second term in the asymptotic formula for the

composition.

In order to compute the third term of the expansion, we shall consider the terms of order 2
of the polynomial C)(w,w’) and use Lemma A .4 stated page 102. First, let us recall that due
0 (3.4.1), we have

def 2d71 2 / ~ ~ = ~ =
(I)y = (W) / tr <u2},1w,A,\(w)) tr (U?w/)flw// (SCS’) (w) + c? (w)(2,2) - (2, z)))
< f(w) N [N [TdAdN dw’ dw”

where O (w) = By (w) and CP) = 1 [(Z,Z) ® (Z,Z)] Bx(w).

We first focus on the term in C')(\%).

(I)2,1 e <%>2 Z /tr U 1 A (w ))

1<j,k<d

X tr (@w,),lw,, ((3:2; + 52,) (GuZk + EnZ1) By (w))> FwA [N LA du du'.

Let us call (I)2, its contribution, we have

We treat those terms as those of (I);. We shall explain the argument for one of those terms
and leave the analysis of the other terms to the reader. Set

def [ 2471\ : R
(I)QJ,]C :e <m> / tr <ui\v_1w/A)\('LU)) tr <u€\w/)—1w// (Z_]Zk‘Z_]Zk‘)B)\’)>
F N N 2NN dw' duw’.
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Using (3.4.2) and (3.4.3), we obtain

Zj 2 tr <uf‘;}J;0pw(a(w,)\))J>\> = tr <u$J§f0pw(1}Tga(w,)\))J>\>
whence, arguing as for (I);
1 2d71 ? A * o w *
(I)QJ,k = 2—’)\’ <m> / tr (uw_lw/J)\op (T]Tka(w,)\))JA)
fr (@:},),%,, 7,7, B(w, X)) Fw)AE [N [CdAIN du du”
1 2d71

- 9 ’)\’ d+1 / tr <ug—1w”!];0pw <Zj7kb(w, )\)#TjT/:a(w, )\)> J>\> f(w”)|)\|d d\dw'.

To deal with the last term
241\ /
(W) / tr <uf‘v_1w/A>\(w)) tr (uf‘w,)_lw”é c(i”(w)) F") A [N AN du dw”
let us apply Lemma A.4 (see page 102) writing

2d-1 2 / 3
<d—+1> / tr <uf‘u,1w,A>\(w)) tr (uf‘w,),lw,&C(,)(w)) F N N 2dAdN dw' dw”
™

1 (201\? A * o w N (3) Iy d 1"
=~z tr <uw_1w/J)\op (g(w, N)) J>\> tr (u(w,)_lw// N (w)) F)|A]® dAdw"”.
where g is the symbol of Sya(1) given by (A.2.5) (in particular we have o(g) = —0x (o(a)).

Finally, arguing as before we get

9d—1 2 , 5
(W) / tr (ug_lw,A)\(w)> tr <uf‘w/)_1w,,§C(,)(w)> F@") NN AN dw' duw”

1 2d—1
= a1 / tr (uf‘v_lqu;opw (Sb(w, \)#g(w, \)) J)\> )N drdw”.

This ends the proof of the asymptotic formula for the composition. O



CHAPTER 4

LITTLEWOOD-PALEY THEORY

In this chapter, we shall study various properties related to Littlewood-Paley operators, and
their link with various types of pseudodifferential operators.

In the first section, we focus on the Littlewood-Paley theory available on the Heisenberg group.
Similarly to the R case, this theory enable us to split tempered distributions into a countable
sum of smooth functions frequency localized in a ball or a ring (see Definition 4.1 for more
details). In the second section, we recall some basic facts about Besov spaces and introduce
paradifferential calculus. Like in the R? case, it turns out that Sobolev and Holder spaces
come up as special cases of Besov spaces. The paraproduct algorithm on the Heisenberg
group is similar to the paraproduct algorithm on R? built by J.-M. Bony [14] and allows to
transpose to the Heisenberg group a number of classical results (see for instance [4], [5] [6]
and [7]). As already mentioned in Section 2.1 of Chapter 2, the Littlewood-Paley truncation
operators are Fourier multipliers defined using operators which are functions of the harmonic
oscillator. Therefore, it is interesting to analyze the Weyl symbol of such operators; this is
achieved thanks to Mehler’s formula in the third section where we compare Littlewood-Paley
operators with pseudodifferential operators. This will be of crucial use for the next chapter.
Finally in the last paragraph we introduce another dyadic decomposition, in the variable A
only, which will also turn out to be a necessary ingredient in the proof of Theorem 5.

4.1. Littlewood-Paley operators

In [7] and [5] a dyadic partition of unity is built on the Heisenberg group H¢, similar to the
one defined in the classical R? case. A significant application of this decomposition is the
definition of Sobolev spaces (and more generally Besov spaces) on the Heisenberg group in
the same way as in the classical case.

Let us first define the concept of localization procedure in frequency space, in the framework
of the Heisenberg group. We start by giving the definition in the case of smooth functions.
The general case follows classically (see [7] or [5]) by regularizing by convolution, as shown
in the remark following the definition. We have defined, for any set B, the operator 1 D;'B

on Hy by

v e SEHY), Va e N F(FAN1pt pFar E Ljarra150) F(HN) Fax.

)
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Definition 4.1. — Let C(,, ,,) = C(0,71,72) be a ring and B, = B(0,7) a ball of R centered
at the origin. A function f in S(Hd) is said to be

— frequency localized in the ball 2PB /., if
FIFO) = FE M-ty (V)
— frequency localized in the ring 2°C( /i /i), Uf
F()A) = f(f)()‘)1D;122pc(rN2)()‘)-

In the case of a tempered distribution u, we shall say that u is frequency localized in the

ball 2PB . (respectively in the ring 2°C( s 7)), if
uxf=0
for any radial function f € S(HY) satisfying ]:(f)()\)lD;QQpr = 0 (respectively for any f

. d P
in S(H?) satisfying .F(f)()\)lD;122pc(\/ﬁ’ﬁ) =0
the ball 2PB 1 (respectively in the ring 2°C( 7, /), if and only if,

). In other words u is frequency localized in

U= U* Pp,
where ¢, = 2VP¢(d9s-), and ¢ is a radial function in S(H?) such that
F@)N) = F@NR(Dy),
with R compactly supported in a ball (respectively an ring) of R centered at zero.

Let us now recall the dyadic decomposition and paradifferential techniques introduced in [7]
and [5], which we refer to for all details and proofs.

Proposition 4.2. — Let us denote by By and by Cy respectively the ball {T eER, |7 < %} and

the ring {T € R, % < |1 < %} Then there exist two radial functions R* and R* the values of
which are in the interval [0, 1], belonging respectively to D(By) and to D(Cy) such that

(4.1.1) VreR, RY(r)+> R'(2%r)=1
p>0
and satisfying the support properties
p—p/| > 1= supp R*(27%) N supp R*(27") = 0
p>1= supp R* N supp R*(27%.) = 0.

Besides, we have

(4.1.2) VreR, - <RY(r)*+ > R(2 ¥’ <1

p=>0

DN |

The dyadic blocks A, and the low frequency cut-off operators S, are defined as follows similarly
to the R? case.
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Definition 4.3. — We define the Littlewood-Paley operators associated with the func-
tions R* and R*, for p € Z, by the following definitions in Fourier variables:

VpeN, F(S,/)N) = F(HANR (27Dy),
VpeN, F(A/)N) = F(HAR(277Dy),
FALS)A) = F(Sof)(N),
Vp <=2, F(Af)(A) = 0.
The operator S, f may be alternately defined by
Spf = > Af.
q<p-1

Since F(Ap,f)(N) = F(f)(\)R*(272%D,), it is clear that the function A,f is frequency lo-
calized in a ring of size 2P. Along the same lines, one can notice that the function S, f is
frequency localized in a ball of size 2P.

Moreover, according to the fact that the Fourier transform exchanges convolution and com-
position, the operators A, and S, commute with one another and with the Laplacian-Kohn
operator Ayad.

Remark 4.4. — For simplicity of notation, we do not indicate that S, depends on R* and
that A, depends on R*. That is due to the fact that according to Lemma 4.8 below, one can
change the basis functions (hence the Littlewood-Paley operators), keeping only the fact that
one is supported near zero and the other is supported away from zero and satisfying (4.1.1),
while conserving equivalent norms for the function spaces based on those operators.

It was proved in [47], in the more general context of nilpotent Lie groups, that there are radial
functions of S(H?), denoted v and ¢ such that

F@)A) = R*(Dy) and  F(p)(A) = R*(Dy).

We also refer to [7] and [5] for a different proof in the case of the Heisenberg group, the ideas
of which will be used below to prove Lemma 4.17. Using the scaling of the Heisenberg group,
it is easy to see that

Apu = ux2NPp(S-)  and  Spu = u* 2VPe(dgp-)

which implies by Young’s inequalities that those operators map L? into L4 for all ¢ € [1, o]
with norms which do not depend on p.

Let us also notice that due to (1.2.8) (see page 15), if P is a left invariant vector fields then
P(Ayu) = 2P (u* 2P P(p) (80 -)).

This property is the heart of the matter in the estimate of the action of left invariant vector
fields on frequency localized functions (see Lemma 4.7 below).
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4.2. Besov spaces
Along the same lines as in the R? case, we can define Besov spaces on the Heisenberg
group (see [7]).

Definition 4.5. — Let s € R and (q,7) € [1,00]?. The Besov space B;T(Hd) is the space of
tempered distributions u such that

def || ops
lull s ssey < ||2 1890l pagasy |, < o0

Remark 4.6. — It is also possible to characterize these spaces using only the operator S, :
for s > 0, we have

~ ||25P —
(4.2.1) 1, ety ~ 270014 = )l g,
and for s < 0,

~ ||25P

(42.2) 1 ity ~ ||2 1S s,

where ~ stands for equivalent norms.

It is easy to see that for any real number p, the operators (—Aya)? and (Id — Aya)? are con-
tinuous from By, (HY) to B;;Qp (H%). Note that Besov spaces on the Heisenberg group contain
Sobolev and Holder spaces. Indeed, by (4.1.2) and the Fourier-Plancherel equality (1.2.21),
the Besov space BS’Z(Hd) coincides with the Sobolev space H*(H?). When s € Rt \ N, one

can show that Bgom(Hd) coincides with the Hélder space C*(H?) introduced in Definition 1.3.

Let us point out that a distribution f belongs to B;T(Hd) if and only if there exists some
constant C' and some nonnegative sequence (cp)pen of the unit sphere of ¢"(N) such that

(4.2.3) VpeN, 2| Apfllpame) < Cop.
This fact will be useful in what follows.

Arguing as in the classical case, one can prove using this theory many results, such as Sobolev
embeddings, refined Sobolev and Hardy inequalities (see [5],[4]). This is due to the fact that
the dyadic unity decomposition on the Heisenberg group behaves as the classical Littlewood-
Paley decomposition. The key argument lies on the following estimates called Bernstein
inequalities, proved in [5].

Lemma 4.7. — Let r be a positive real number. For any nonnegative integer k, there exists
a positive constant Cy so that, for any couple of real numbers (a,b) such that 1 < a <b > oo
and any function u of L“(Hd) frequency localized in the ball 2PB, sz, one has

1_1
(4.2.4) sup [|X7ul| gz < Cr2PN a0 | o g0,

where XP denotes a product of |B| vectors fields of type (1.2.2), page 14.

Let us also point out that the definition of B;r(Hd) is independent of the dyadic partition of
unity chosen to define this space. This is due to the following lemma proved in [7].
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Lemma 4.8. — Lets € R and (p,r) € [1,00]%. Let (up)pen be a sequence of LI(H?) frequency
localized in a ring of size 2P satisfying

HQPSHUpHLq(Hd) ) < 0,

(N

then u d:Equp belongs to B;T(Hd) and we have
peN

HUHB;T(Hd) < CsH2pSHupHLq(Hd) er(N)

Contrary to the R case, there is no simple formula for the Fourier transform of the product
of two functions. The following proposition (proved in [5]) ensures that spectral localization
properties of the classical case are nevertheless preserved on the Heisenberg group after the
product has been taken.

Proposition 4.9. — Let ro > 11 > 0 be two real numbers, let p and p’ be two integers, and
let f and g be two functions of S’(Hd) respectively frequency localized in the ring 2PC( s /i)

and 2p/C(\/ﬁ,\/@. Then

— there exists a ring C' such that if p'—p > 1 then fg is frequency localized in the ring 2°'C’.
— there exists a ball B’ such that if |p' — p| < 1, then fg is frequency localized in the
ball 2V'B'.

Remark 4.10. — The proof of this proposition is based on a careful use of the link between
the Fourier transform on the Heisenberg group and the standard Fourier transform on R?3+1.
For a detailed proof, see [5].

Proposition 4.9 implies that if two functions are spectrally localized on two rings sufficiently
far away one from the other, then their product stays spectrally localized on a ring.

Taking advantage of this result, one can transpose to the Heisenberg group the paraproduct
theory constructed by J.-M. Bony [14] in the classical case. Let us consider two tempered
distributions « and v on H?. We write

u= ZApu and v = ZAQU.
P q
Formally, the product can be written as
uy = Z Apu Agv

p,q

Paradifferential calculus is a mathematical tool for splitting the above sum into three parts:
the first part concerns the indices (p,q) for which the size of the spectrum of A,u is small
compared to the size of the one of Ajv. The second part is the symmetric of the first part
and in the last part, we keep the indices (p, ¢) for which the spectrum of Apu and Agv have
comparable sizes. This leads to the following definition.
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Definition 4.11. — We shall call paraproduct of v by u and shall denote by T,,v the following
bilinear operator:

(4.2.5) Tyv 1 Z Sq—1uAgv

q
We shall call remainder of u and v and shall denote by R(u,v) the following bilinear operator:
(4.2.6) R(u,v) def Z ApuAgv

lp—ql<1

Remark 4.12. — Just by looking at the definition, it is clear that
(4.2.7) wv = Tyv + Tyu + R(u,v).
According to Proposition 4.9, Sq—1uAgv is frequency localized in a ring of size 29. But, for

terms of the kind ApuAgv with |p — q| < 1, we have an accumulation of frequencies at the
origin. Such terms are frequency localized in a ball of size 29.

The way how the paraproduct and remainder act on Besov spaces is similar to the classical
case. We refer to [5] for more details.
Taking advantage of this theory, one can prove the following useful estimates.

Lemma 4.13. — Let o be a positive, noninteger real number and consider a real number s
such that |s| < o. Then, there exists a positive constant C' such that for all functions f and g,

(4.2.8) 19N irs may < ClUS Nl oo ey 191 s gy -

Moreover, for any integer M there exists a positive constant C such that for any function f,
(4.2.9) 198 fll oy < Clfllomays

(4.2.10) 10 = Sar) fll oo saey < €277 fllo ey

and more generally, for 0 < o < p,

(4.2.11) [(Id = Sar) f ll oo may < CQ_M(p_U)”f”cp(Hd)-

Note that Inequality (4.2.8) is not sharp, but is sufficient for our purposes. The sharper result
(proved by the same type of method) would be

HngHs(Hd) < C(HfHLoo(Hd)Hg”Hs(Hd) + Hcho(Hd)”gHL2(Hd))-

The proof of this lemma is classical: it is the same proof as in R? for the classical Littlewood-
Paley theory and has no specific feature to the Heisenberg group. We provide it here for the
sake of completeness, as it will be used often in the rest of this paper.

Proof. — The first ingredient of the proof of Estimate (4.2.8) is Decomposition (4.2.7) which
consists in writing
f9=Trg+T,yf + R(f,9)-
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Let us begin with the study of Tyg. By definition of the paraproduct and thanks to Proposi-
tion 4.9, one has

ng Z A pflprg),
Ip—q|<No

where Ny is a fixed integer, chosen large enough. We deduce thanks to the continuity of
Littlewood-Paley operators on Lebesgue spaces, that

2q8HAq(Tf9)HL2(Hd) < Z 2qSHAq(Sp—lfAI)Q)HL%Hd)

lp—al<No

<C Z 20.Sp—1.f || oo () | Ap9l 12 a0
lp—al<No

<SC N llgmsy Do 20290 2 gaey-

Ip—q|<No

Using Littlewood-Paley characterization of Sobolev spaces, we infer that

zqsqu(ng)Hm(Hd) <C ”f”Loo(Hd) Z 2(q_p)SQpS”Ang]ﬂ([HId)
lp—ql<No

<C Hf”Loo(Hd) H9||H5(Hd) Z 2la—p)s..
Ip_Q‘SN()

where, as in all what follows, (c,) denotes a generic element of the unit sphere of £2(N). Taking
advantage of Young inequalities on series, we obtain

291 Aq(T )|l 2 (HY) = C”f”Loo(Hd) gl £rs (H4)Cq
which ensures the desired estimate for Tg namely

1T59l sy < CllF llcoggaty 191l s ey

Let us now consider the second term of the above decomposition of the product fg. Again
using spectral localization properties, one can write that

Z A p lgApf)
Ip—q|<No
Therefore
20 Ay (Ty Nl pzsy < 27 D 186(Sp-19 Ap )l 2 ey
Ip—q|<No
< 027 Z 1Sp—191l 12 (a1 Ap.f || oo (g
lp—gq|<No
(4.2.12) < Clflermsy2® D 1Sp-190 L2 a2

l[p—ql<No

By (4.2.2), we have in the case where s < 0,

HSp—lgHL2(Hd) < C”QHHs(Hd)Tpscpv
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where (c,) still denotes an element of the unit sphere of £2(N). We deduce in that case that

2qSHAq(Tgf)HL2(HUZ) <C Hcho(Hd) HQHHs(Hd)QqS Z 277 ep27P7
lp—a|<No

<C HfHCU(Hd) HQHHS(Hd) 9—qo Z 2*(p7q)(o—|s\)cp
|p—q|<No

<C |[flleo ey N9l s ey -

This leads in that case to
1Tg Nl s ey < ClNF Nl o gy 191 s ay-
Let us now estimate T, f in the case where s > 0. We have

HSP*IQHLQ(Hd) <C Z HAP/QHL?(Hd)

p'<p—2
<C Hg”Hs(Hd) Z 277y
p'<p—2
Thus (4.2.12) becomes

QQSHAq(Tgf)HLQ(Hd) S C HfHC’U(Hd) HgHHS(Hd) 2(]8 Z Z 2—po'2—p SCp/
lp—q|<No p' <p—2

<C | fllooe ol o 2 >, 277
Ip—q|<No

<C Hcho(Hd) HQHHs(Hd) 274(7=¢)
< C N fllcomay 19l s (may cq-
This obviously ends the estimate of ||Tj f|| ;s ya for any s satisfying [s| < o.

Finally, let us consider the remainder term R(f,g). Taking into account the accumulation of
frequencies at the origin, we can write

Aq(R(f,9)) = Z Z Ag(Apf Apg).
q<p+No |[p—p'|<1
Thus

2% AG(R(f, )l ey < C2% D > ARl oo ey | Apr gl 2 sy
q<p+No |p—p'|<1

< C HfHCg(Hd) HgHHS(Hd) 94s Z Z 9=PI9—p Scp/
q<p+No |p—p'|<1
< CHfHCU(Hd) HgHHS(Hd) 245 Z 2*po2*pscp.

q<p+No
In the case where s > 0, we infer that

2qs||Aq(R(f, 9))‘|L2(Hd) < CHfHCU(Hd) ||gHHS(]HId) Z 2*(1’*‘1)5%‘
q<p+No
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Then, thanks to Young inequalities, we get

29| Aq(R(, g))HL2(Hd) < C”f”ca(Hd) ”gHHS(Hd)cq
which implies that
| R(f 9)||Hs(Hd) < CHcho(Hd) ||9HHs(Hd)-

Now, in the case where s < 0, we have

29[| Ag (R(f, )| 2 szt < CllF o aaty N9l proey2™97 Y, 27 @700 e,
q<p+No

Again, Young inequalities allow to conclude. This achieves the proof of the estimate
IRUE, 9) Loty < CIF oo gty 19 ety
for any |s| < 0.

Let us now turn to the proof of Inequality (4.2.9). By definition of the C”-norm, we recall
that

q
Using commutation properties of A, and Sy, we obtain
||SMchp(Hd) = Sup 2qp||SMAqfHLOO(IHId)
q

< Csup 2qp||Aqf||Loo(Hd)
q

< Ol ey

thanks to the continuity of Littlewood-Paley operators on Lebesgue spaces, which ends the
proof of Estimate (4.2.9). Moreover, it is obvious that

1(1d = San) Fll ooy < D 180l o ey,
q>M—Ny

where V; is a fixed integer, chosen large enough. Therefore, according to definition of the C*-
norm, we get

1(1d = Sar) fll ey <C D 27 f o
q=M—N;y
<C flleoe, >, 2%

q>M—Ny
< C”f”cp(Hd)szp-

This achieves the proof of Inequality (4.2.10). Along the same lines, for 0 < o < p, one has

1A = San) Fllgoay < Y 29701 8g(1d = Sar) £l oo ey
q>M—N;
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Using again the continuity of Littlewood-Paley operators on Lebesgue spaces, it comes

(1 = San) fllgo@sy <C > 2 AGfll oo ey

q>M—N1
< Olfllern 3 200
q>M—N1
< CHchp(Hd)QfM(pio)a
thus the desired estimate. This ends the proof of Lemma 4.13. ]

4.3. Truncation pseudodifferential operators

In this section we shall compare Littlewood-Paley operators with the pseudodifferential oper-
ators Op (®(2722|\|(€? +n?)), for ® compactly supported in a unit ring.

We shall see that Op (®(272|A|(§2 +7?)) is “close” to A, in the sense that the opera-
tor AgOp (®(272|A[(£% 4+ 7?)) is small in L(H*(H%)) norm if |p — q| is large. This is made
precise in the next proposition.

Proposition 4.14. — Let 69 € (0,1) and ® be a smooth function, compactly supported
in 10,00[. There is a constant C' such that the following result holds. For any p > 0, de-
fine the symbol

ap(w,\, €,m) = ©,(IN[(E2 +1?)), where ®,(r) = (27 %r), ¥r > 0.
Then for any integer ¢ > —1 and any real number s,
||Aqop(ap)‘|5(Hs(Hd)) < c2olp=al

where Ay is a Littlewood-Paley truncation, as defined in Definition 4.5.

Proof. — We shall start by reducing the problem to the case s = 0. Let u belong to S (Hd)
and let ¢ > 0 be given (the case ¢ = —1 is obvious). The norm ||A;Op(a,)u| ms is controlled
by the quantity

1/2
218,0p(ap)ul 2 =2 [ IFIOVAR D) By, A )
where Ay = Jyop"(ap)Jy. Defining a smooth, compactly supported (away from zero) func-
tion R such that RR* = R*, one has
IF(u) (N ANR* (279D | sy = IF (@) (A)ANR* (272 DA)R(27* D)) | s (4y) -

But A, is a diagonal operator in the diagonalisation basis of D), thus it commutes with the
operator R*(2724D,). So

IF @)\ AR (22 DR Do)l as4) = IF(Bqu)(N) AR (27 D) | 530,

where ﬁq is the Littlewood-Paley operator associated with R(272¢.). Using (1.2.19) stated
page 18, we get

|F (@) (N AR (272 DA)R(2 D)) | sy < IF Q)N sy AR (272D || 230,



4.3. TRUNCATION PSEUDODIFFERENTIAL OPERATORS 73

and Remark 4.4 gives the expected result: we have reduced the problem to the L? (Hd) case,
and by the Plancherel formula (1.2.21) and Inequality (1.2.19), it is enough to study the norm
as a bounded operator of L?(R?) of the operators

R (27%1A|(€* = A¢)) op”(ap) and  R*(27||(€% — Ag)) op”(ap)-

For this, we use Mehler’s formula to turn op*(a,) into an operator given by a function of the
harmonic oscillator in order to be able to use functional calculus. From now on we suppose
to simplify that A > 0.

We will denote, as in Definition 4.3, by R* and R* the basis functions of the truncation AW
(with R* supported in a unit ball of R and R* supported in a unit ring of R).

In view of (1.3.15) (see page 27), one has

1 N ei(§27A)Arctg(2*2p)\T)

op"” (<I>p()\(£2+772))) = 5 R<I>(7-) (1_‘_(272;;)\7_)2)% dr.

But
[R* (27*IN[(€% — A¢)) 0p™ (ap) | o2 ey = Sup [ Ip(e, M| R*(272|7[(2]a] + d))
«,
and a similar relation holds for ﬁ, so we are reduced to estimating, for a € N? and
A2724(2|a| + d) in a unit ring (or ball if ¢ = —1)
1 . i(2|a|4-d)Arctg(272P A7)
Ip(a,A)d:ef—/cpTe _
o (1+(222Ar)?
and we shall argue differently whether ¢ < p or ¢ > p.

dr,

e The case when ¢ > p. We argue differently depending on whether 272P|\| < 297P
or 27%|\| > 297P. Let us first suppose that 272P|\| < 297P. Noticing that

A i(2lal+d)Arctg(2-2ar) _ 127 PA(2lal +d) oi(2lal+d)Arctg(2-27 A7)

dr 1+ (272P\7)?

we have

i : oy d o(7)
I(a,\) = /ez(2a|+d)Arctg(2 PAT) & dr
P( ) (2‘04’ —|—d)2—2p)\ dT (1 + (272p)\7_)2)%—1

so using the fact that 2|a| +d > 1,

R* ((2la] + d)A272) |L(a, \)| < C22(—0) (/ ()| (1 + (2 2An)D) - Sdr

—4p)\2
/|<1> dT).
(14 (272P\7)2 )
Let us consider the first integral. If d > 2, it is bounded by [|[®/[|;1. On the other hand,
if d =1, we observe that

[@'(M)I(L+ (27Ar))

[NJISH

< C|9'(7)] (1 + 272 A|7)).
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Therefore, since (1 + |7|) |®(7)] € L', there exists a constant C' such that

92(p—q) /|<I> 2”)\7)2)1_5d7 < 22— (1+277) < C2-(a=p),

Let us now concentrate on the last integral. We have clearly

. —4py2 ~
20-0) /@(T),( 2( b <20 [,
1

+(272A7)2)2
whence a constant C such that
—4py2
" q)/|‘1> PN g < co-tam)
< < .
(14 (272rPA7)2)2

We now suppose that [A\|272P > 297 and we perform the change of variables u = A\272P7 in
the integral expression of I,(a, A). We obtain

I \) — 22p)\~1 B (927 )1 1 2)—d/2i(2|a|+d)Arctgu g
p(Oé, )_ It ( u)( +u) ¢ U

Using that |®(7)] < C |7|71%, we get

[ (2227 w)| < CETFIA T,

This yields that there exists a constant C' such that
]Ip(oz, )\)’ < 0(221)’)\’71)50 / ‘u’71+50(1 +u2)—d/2du < 0/2—50((;7;)).

As a conclusion, we have proved that in that case, for all o« € Z,

R* ((2la| + d)X2729) | L, (a, )| < C 9% (1)

e The case when ¢ < p. The idea is to compare I,(a, \) to ®(A\272P(2|a| + d)). Taking the
inverse (classical) Fourier transform we can write

L(a,\) — ®(A\27%P(2]al + d)) = % /R@(T) (

ei(2\a|+d)Arctg(2_2pT)\)

_ ei22p)\7—(2a|+d)> dr
(1+ (@A)
or again
Lo, \) — (A2 (2|a| + d)) = Jp(a, ) + Ry, ),
with
T % 21 /(T)(T) <ez‘(2\a|+d)Arctg(2*2PAT) _ ei2*2”kf(2\a|+d)) dr.
R

T
It is easy to see that

IRy, N)] < 0220 / & (r)] dr
R
so since ® belongs to S(R), we have
R*((2la] + d)A2729) |Ry(a, A)| < CR*((2al + d)A2727) 272P)
< (27209
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using the fact that 2|a| +d > 1. Similarly
R* ((2|e] + d)A) |Ry(a, \)| < C 272,
So now we are left with the estimate of J,, which we shall decompose into two parts:
Jp=Jy+J7, with
J;(% A) def 2i/ @(7) (ei(2|a\+d)Arctg(2*2P>\r) _ ei2*2p)\7—(2|a\+d)) dr.
T J|r2—2r\|<1/2

The estimate of Jg is very easy, since clearly as above
)| < 02 / (7 (r)| dr
R

< 027,
SO

R* ((2a] + d)A2720) |2 (a, \)| < 0272779 and  R*((2]a] + d)A) [J2 (e, A)| < C 272
Now let us concentrate on JI}. We can write

1 S ‘ _2
T o \) = _/ B (r)ei2 PArlal+d) (Gi(Rlal+d272 () _ 1) g
p() 21 Jira-2pa1<1/2 ") < )

with

_1n272p)\7_2n
h(T):T;( )2(n+1 ) )

which is well defined, and analytic, for |[7272\| < 1/2. Observe that the function h depends
on the integer p and on A, and that one has to control this dependance. In particular, we
notice that h/(7) can easily be bounded, by 1/3, on the domain |7272P)\| < 1/2. But

1
QiR+ 1 — j(2)a] + d)27 2 Mh(T) / it @lel+D2TIANT) gy
0
SO

. 1
Jha,A) = - / / O(7)e2 ARl (T HAM) (9o | 4 d)27 % \h(7)dtdr.
2w Jo Jir2-2wa<1/2

Integrating by parts, we get

JHa )\):_i/l/ 0127 2PA2a]+d)(T+th(r)) g ‘T’(T) h(r) | dtdr
P 21 Jo Jira-2eaj<1)2 T\ 1+th(r)

) -
+1/ leiz—2m(z|a+d)(T+th(T))ﬂh
0

— (7’)] dt.
/
27 1+ th/(7) r2=2p31=1/2

Writing the above formula as J; = K; + KS, with

1 ! 322 a P - ‘/1; T
K2 (o, \) = %/ [e 272 A (2]l +d) (T-+th( ))_1 — t(h’)(f) h(T)] dt,
0 |[T2-2P\|=1/2

it is obvious that

~ 1 1
K (o, \)] < C '@(52%1)h(52%1)
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Writing

R o o Vil B2 NS o OV B

=1 2n+1 =1 2n+1

)

we deduce that
~ 1
K2 (a,N)] < 02*2%\@(522%*1)24%*2;
< 027,

where the second estimate comes from the fact that ® is a rapidly decreasing function. To
bound K; we just need to notice that

B :13(7')7'2
1 4+th(T)

(7)
1+ th'(7)

_ ) —1)" 2—2p)\7_ 2n—1
2 2p)\g(7'), with g¢(7) = Z (=1) (2n 1 ) )
n>1

h(r)

SO
1 EI\>(7')7'2
Kl(a,\)| < C272) / / O | —F— drdt < C27%P\.
HKp(en M)l < 0 Iﬂgwgm‘ < +th’(7)g(7)>‘ T

We conclude as previously that
R* ((2a] + d)A2720) [T (@, \)| < C272P=D and  R*((2]a] + d)A) [J2 (e, N)| < C 272
Combining those results, we conclude that if p > ¢, then
R* ((2lal + d)A2720) |® ((2]a] + d)A27%) — L (e, \)| < C 27279,

But clearly R* ((2|a| + d)A2727) @ ((2]|a| 4+ d)A27?) is equal to zero if |p — g is large enough,
so we have proved the expected result if p > q.

That concludes the proof of the proposition. O

4.4. )-truncation operators

We shall use, in the proof of Theorem 5, truncation operators in the variable .

Let us consider ¢ and ¢, two smooth radial functions, the values of which are in the inter-
val [0, 1], belonging respectively to D(B) and D(C), where B is the unit ball of R and C a unit
ring of R, and such that for D =1

(4.4.1) VCERP, 1=9(0)+ > (2 %¢).
p=>0

We set
Ap = Op(6(27%X)) and Ay = Op(v(\)).

We notice that A, commutes with all operators of the form Op(a(X,y,n)), and in particular
with powers of —Aya.

Then the operators A, map continuously H* (H?) into H*(H?) independently of p and we have
the following quasi-orthogonality relation: there exists Ny such that

(4.4.2) ApAy =0 for |p—q| > No,
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which implies that
(4.4.3) [Apull 2 may < cpllull 2ay,

where ¢, is an element of the unit sphere of ¢%(Z). More precisely, there exist constants Cy
and C such that if f belongs to H S(Hd), then the following inequality hold:

(1.4.4) O I ety < 1 sy < Co S A I e

Besides, we are able to say something about the A,,-localization of a product by an easy
adaptation of Lemma 4.1 and of Proposition 4.2 of [5]. More precisely, we have the following
result which ensures that some A,,-spectral localization properties are preserved after the
product has been taken.

Proposition 4.15. — There is a constant My € N such that the following holds. Consider f
and g two functions of S(H?) such that

FHA) = lomc(N)F(f)(A)  and
F@A) = Lypwe(N)F(9R)
for some integers m and m'. If m' —m > M, then there exists a ring C such that
F(f9)A) = Lo g(N)F(f9)(A)-
On the other hand, if |m’ —m| < M, then there exists a ball B such that
F(f9)A) = Lo g(N)F(Fg)(A).

Proof. — The proof of that result follows the lines of the proof of Proposition 4.2 of [5], and
is in fact simpler. We write it here for the sake of completeness. By density, it suffices to
prove Lemma 4.15 for f, g in D(R?*¢1).

For simplicity, we will only deal with the case where A > 0.
By definition of F(f)()\), we have

F(YNFar(§) = - f(z, s)u;\sFa,)\({) dz ds
N / F(2,8)Fa (& — )P t2AE=1217/2) g g,
Hd

Let us write £ = &, + &, and z = 2z, + 125, Where &, 24, & and z, are real numbers.

Straightforward computations show that
QNS F2A(E2—[212/2) _ i (=2X€p-2a—2MEa 2= Xs) o= A ([€—Z7—[€[?)

Then we can observe that

(4.4.5) FNFar() = (AL f) (—20&, —2XEa, —N),

R2d+1

where h denotes the usual Fourier transform of h on and where

(4.4.6) AS [ (2,8) = Fap(€ = 2)e M LR £ ),
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Therefore, one can write

f(fg)()\)Fa,)\(g) = ( g\[,gfg) (_2)‘567 _2)‘5(17 _)‘)
Noticing that for any multi-index 3 of N satisfying 8 < «, we have
Fox(€) = Cap Fap (&) - FpA(€),

S

with Cp g = ( g > , we deduce that Af\‘éfg = Bféf . A?\Eﬁg, where

B f(z,5) = Fya(§ = 2)(2,9)

and f < «. Using the fact that the standard Fourier transform on
and convolution, we get

R24*! exchanges product

(A5.6S9) (=228, 2260, —A) = Cays (BReS ) * (457 0) (~226, ~2260, V),

where  denotes the convolution product in R?**! and still for any multi-index 3 of N satisfy-
ing B < a. The question is then reduced to the study of the supports of the functions (Bf ¢ f )A
and (A3 g).

According to (4.4.5), the support in A of the function (Ai‘gﬁg(z,s)> (—2X&p, —2XEa, —A) is

included in the ring 227'C. Now, Lemma 4.15 readily follows from the properties of the
standard convolution product in R***! for the supports, and from the following lemma, whose
proof is given below.

This ends the proof of Lemma 4.15. U
Lemma 4.16. — Under the hypothesis of Lemma 4.15, we have

(BRef) (=226, =2760, —A) = Lyzmc (V) (BLef ) (~276, —2060—N).

Proof. — By definition of the standard Fourier transform on R??*! we have

(Ber) (-206-2360-0) = [ oD Den B () dads

/ei (2)‘£b'za+2)‘£“'zb+>\s)Fﬁ)\(g _ E)f(z, 5) dz ds
Denoting 2A(&p - 24 + &a - 25) + As by Ji(s, 2,€), it follows that
<Bf,£f) (—2X&p, —2A&q, —A) = /eiJA(szvf)e—A(E—EP—52)Fﬁ’)\(§ — g)eA(IE—E\Q—IEP)f(z’ s)dz ds.
Using that
e)\‘g_E‘Q _ Z (E . Z)a)\|a‘(§ — Z)a’

ol
aeNd
and observing that the above series is normally convergent on any compact, we deduce that

laf

‘ Q).
M A (- 7) = Z(E—z)“(%) 25 RN

|
aeN? IB



4.4. -TRUNCATION OPERATORS 79

This leads, since f € D(R**1), to

(Blef) (~226 2060 - = 3 e—W(*)i 1 [(B+a)

et 2 al B!

x / N2 MEFP P o (6 = 2)(E — 2)° f(2, ) dz ds.

Recalling that
o - 2 |e12
A)x,{f(z’s) :Fak(é Z)e Ale—="lel )f(Z,S),
we get

<Biéf)A(—2A§ba—2A§a,—A) — Ze—AsQ(A>3i (8+ )!

aeN? 2/ p!

x (Afga(g - z)o‘f> (—2\Ep, —2AEa, — ).
Let us study separately each term of the above series. By Lemma A.2 and using the fact
—A .
for A >0, Q; = J;, we obtain

Flz HNE = o5 [%, F(HNIE.
In particular, for any v € N%,

F(eNVE ) = 55 (0 FUNE,AQ) — FHN Fya(6)).

The frequency localization of the function f in the ring 22mC(\) implies then that the support
in A of F((§; — ) f)(N)Fy A (§) is included in the same ring 2*™C(A). An immediate induction
implies that for any multi-index a the support in A of F((€ — 2)*f)(A)F, »(€) is still included
in the same ring 22™C(\). Therefore, the support in A of

(A28 E - 9)°) (—20, ~22&0,—N)
is included in the ring 22"C()\).

As each term of the series is supported in a fixed ring, the same holds for the function

(BYef) (=206, 2260, -\,
which ends the proof of the lemma. O

The following results will also be useful in Chapter 5.
Lemma 4.17. — There exists a constant C' such that for any function f,
(4.4.7) [Am A fll poo ey < CllAGS | oo (a0

for any integers m and q.
Moreover if p is a nonnegative real number, then there exists a constant C such that for any
function f

(4.4.8) 1A f 1l oo aaty < C27™ N f o -
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Proof. — Let us first prove (4.4.7). We shall only give the general idea of the proof, as the
method follows closely a strategy initiated in [7] for the study of Littlewood-Paley operators,
and followed also in [6] in the analysis of the heat operator.

Recall that
F(AmAgf)A) = o272 NF(F)(A)(f)R*(2724Dy).

where ¢ and R* are smooth radial functions with values in the interval [0, 1] supported in a
unit ring of R. This can be also written

F(AmAgf)(A) = 627"\ F(f)(A R (27> Dy) R*(27D;)
where R* is a smooth radial function compactly supported in a unit ring so that R*R* = R*.

According to the fact that the Fourier transform exchanges convolution and composition, we
have

AmAqf = Aqf‘khrﬂ,q,
where the function h,, 4 is defined by
Fhmg)(N) = ¢(27*™N)R*(27%Dy).

Taking advantage of Young’s inequalities, it therefore suffices to prove that the function h,, 4
belongs to L' (H?) uniformly in m and q.

By rescaling, we are reduced to investigating the function h; defined by

def

F(hj)(A) = (275N R*(Dy).

By the inversion formula (1.2.31), we get
2d_1 —i\s —25\\ D* — —|\||z
(44.9)  hj(z,8) = mz/e A5 (27N R*(2m + )N LD (27| |2[2)e NI | A4

In order to prove that h; belongs to L'(H?) (uniformly in j), the idea (as in [7] and [6])
consists in proving that the function (z,s) — (is — |2|?)*h;(z,s) belongs to L>°(H?) with
uniform bounds in j.

Let us start by considering the case £ = 0. It is easy to see that the Laguerre polynomials
defined in (1.2.30) page 21 satisfy for all y > 0

1LYV (y)e #| < Cy(m + 1)+

Since ¢ is bounded, this gives easily after the change of variables 8 = (2m + d)\
1 D*
(4410) i) < €3 s [ 1R (8)las.

To deal with the case k # 0, we use the result proved in [7] (see also Proposition 1.11 recalled
in the introduction) stating that for any radial function g, one has

F ((ZS - ‘2’2)9(27 3)) (N Fa\ = Qra\()‘)Fa,M
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where for all m > 1,

Q) = @n() = TQn) = Qua (V) A0,
AN = 52 + Q) = Q) A <0

while @, is given by
f(g(z, 5)) ()‘)Fa,)\ = Q|o¢\()‘)Fa,)\-

The proof then consists in applying Taylor formulas in the above expressions in order to reduce
the problem to an estimate of the same type as (4.4.10). The only difference with the case
treated in [7] and [6] lies in the dependence on j. However it can be noticed that due to the
support assumptions on ¢ and fi*, there are two positive constants ¢; and ce such that

2d71

hj(z,5) = e G2 PN R ((2m + AN LD 2|A]|2%)e I A d

d+1
s
meC;

with C} def {meN, ¢127% < 2m +d < 27 %}. Now let us decompose h; into two parts:

hj(z,s) = h}(z, s) + h?(z, s), where
2d71

) &
T d+1
i
mEC'j

1 —i\s * d—1 2\ —|A\z[2 1y 1 d
hi(z,s e p((2m + d)NR*((2m + d)N) LD (2] )] |z|?)e =M= N 4@,

The term h]l is dealt with exactly in the same way as in [7] and [6].

For h? we shall use the Taylor formula

1
H(27UN) — p((2m 4+ d)N) = (27 — (2m + d))A / ¢ (127N + (1 —t)(2m + d)N) dt.
0
But for any m € O}, one can find ay, € [c; !, ¢ !] such that
27% = a,,(2m + d).
It follows that one can write
1
H(27HN) — d((2m + d)N) = (g — 1)(2m + d)X / ¢ ([tam + (1 = )](2m + d)N) dt
0
and the change of variables u = ta,, + (1 —t) gives

R*((2m +d)N) (6(27%N) — o((2m + d)N)) = (2m + d)AR* ((2m + d)))
X / ¢ (u(2m + d)X) 11 4, du.
R

This form is of the same kind that considered in [7], and allows to end the proof of (4.4.7)
exactly in the same way.

Let us prove now (4.4.8). On the support of the Fourier transform of A,A,,, we have Dy ~ 22p
and |\| ~ 22™. Therefore, 22(P=m) has to be greater than or equal to 1. This implies that the
only indexes (p, m) that we have to consider are those such that 0 < m < p. So

Apf = Ap(Id = Sp1) f.
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Therefore using (4.4.7), we have
1Al ooy < C D I1AmAGF Il oo ey

gzm—1

< C Z HAquLoo(Hd)
g>m—1

< C S 2 fll ey
g>m—1

so finally

That proves the lemma.



CHAPTER 5

THE ACTION OF PSEUDODIFFERENTIAL OPERATORS
ON SOBOLEV SPACES

In this chapter we shall be giving the proof of Theorem 5. In the first paragraph we reduce the
study to the case of operators of order zero, and in the second paragraph we show that it is
possible to restrict our attention to a fixed regularity index in a certain range. We then follow
the strategy of the proof of continuity of pseudodifferential operators in the R? case due to R.
Coifman and Y. Meyer [22]. The proof is based on the two following ideas: we introduce the
notion of reduced symbols (see Section 5.3) of which we prove the continuity. Then, we obtain
in Section 5.4 that any symbol a of order 0 on the Heisenberg group is a sum of a convergent
series of reduced symbols, and finally deduce the continuity for the operator Op(a).

Let us mention that the proof below would be much easier if the symbols were only functions
of (w,y,n), and not also of A : in that case, one would not need to use an additional cutoff
in A via the operators A, (see Section 5.5), which will induce some technicalities.

5.1. Reduction to the case of operators of order zero

In this paragraph we shall reduce the study to the case of zero-order operators. Suppose
therefore that the result has been proved for any zero-order operator, meaning that for any
operator b € Sya(0) of regularity C?(H?) and for any |s| < p if p > 2(2d + 1) (resp. 0 < 5 < p
if p > 0), the operator Op(b) maps continuously H*(H?) into itself.

Let a be a symbol of order u € R. Then for any f € H*(H?),
2d71

Op(a) () = g7 [ 10 (s FPOA(w)) A A

with
FHNAN(w) = F(f)(A)Jxop® (a(w, X)) Jx
= F((1d = Aga)® )N T3 op" (m)#a) Ty
This can be written
Op(a) f(w) = Op(b)(Id — Aga)® f(w),

where b def mg‘g#a is a symbol of order 0. The boundedness of Op(b) from H* #* to H5H
for |s — u| < p (resp. 0 < s < p if p > 0) then yields the existence of constants C' and C’ such
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that
ﬁ
10p(a) fllgs—w < CI(Ad = Aga) 2 fllgs—n < C || f |15

Therefore it suffices to prove the theorem for symbols of order 0, which we will assume from
now on.

5.2. Reduction to the case of a fixed regularity index

In this paragraph, we shall reduce the study of the continuity of pseudodifferential operators of
order 0 on Sobolev spaces from arbitrary Sobolev spaces H t(Hd), to one Sobolev space H S(Hd)
with a regularity index s such that 0 < s < g, where &y (chosen equal to p — [p]) will be the
index entering the assumptions of Proposition 4.14, page 72.

In order to do so, let us suppose that the continuity in H* (Hd) is proved for any symbol of
order 0 with 0 < s < dy (note that dy < p). Consider a symbol a(w, A, &, n) of order 0. Let «
be a multi-index in N¢ with |a| < [p] and, using Proposition 2.9, define the C% symbol b, by
1]
Op(ba) = 2°0Op(a)(Id — Aga)” 2.
Then Op(b,) maps H'(HY) into itself for 0 < ¢t < &y. Therefore, there exists a constant C
such that for any f e H*t[P)(HY),

la|
HOp(a)fH?{th](Hd) = Z HOp(ba)(Id - AHd) 2 f”?{t(Hd)
| <[p]
la|
< COY = Ay F FI gy = C 11 -
| <[p]

Therefore, Op(a) maps H*(H?) into itself for s =t + [p], t < &, whence for 0 < s < p.

Assuming p > 2(2d+1) and using the fact that the adjoint of a pseudodifferential operator is a
pseudodifferential operator of the same order, we get the continuity on H*(H?) for 0 < |s| < p.

Then s = 0 is obtained by interpolation.

5.3. Reduced and reduceable symbols

Let us start by defining the notion of reduced and reduceable symbols.

Definition 5.1. — Let t be a symbol. Then t is reduceable if it can be decomposed in the
following way: for all (w,\,&,n) € H? x R* x R

t(w,\,&,n) = Ztk(w,)\,f,n), where
kez?

tF(w, A &m) = B (w, VEFNEm) + ) b (w, N@E(A, &, m).
p=0
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with
d
5N, € ) < BE(V/INE, IN) while B5(¢,5) @ e ETETG (2722 4 ?))
and ® is a smooth function with values in [0,1], compactly supported in ]0, col.

Similarly

whO € m) T (INE, VINT) where B (g, 5) = eFEDw(E 4 ?)
and W a smooth function with values in [0, 1], compactly supported in | — 1, 1].

Finally the functions bf(-,\) belong to the Hélder space CP(H?) with

(5.3.1) SUF Hbl;(-,)\)HCp(Hd) = Ay, < o0.
p7

The symbols t* are called reduced symbols.

It follows from the analysis of the examples of Chapter 2, Section 2.1 that for any k € Z?
and p € N, the operator Op(b‘;(w7 A)@’;(A,g, 1)) is bounded in H*(H?) since one can write by
easy functional calculus

Op (b (1, N5 (A€ )) = Op(b(w, 1)) o Op(@5(X.&,1))

where the two operators of the right-hand side are bounded operators on H*(H%) (see Chap-
ter 1, Sections 2.1.2 and 2.1.4 respectively).

The same fact is true for Op<b’il(w, PN AIOWS 77)) . Besides, by Proposition 2.2 stated page 35,
there is a constant C' (independent of k) such that

(5.3.2) 10P(® 4 (0, VO &) ey < € Aw [ ¥¥lsagy and
10D (w, NEENE ) gigre ey < C A 1B hnisir)

where we recall that ¢ is the harmonic oscillator metric of Section 1.3.2 in Chapter 1.

IN

The main ingredient in the proof of Theorem 5 is the following result.

Proposition 5.2. — Let k be fized in Z*¢ and t* be a reduced symbol as defined in Defini-
tion 5.1. The operator Op(tF) maps continuously H*(H) into itself for 0 < s < p. Its operator
norm is bounded by CAg(1 + |k|)"™ for some integer n, where C is a constant (independent

of k).

The proof of this proposition is postponed to Section 5.5.

Remark 5.3. — Due to Proposition 5.2, a reduceable symbol t is the symbol of a bounded
operator on H*(HY) as soon as (Ap(1 + |K[)™) pez2a belongs to N (Z29).
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5.4. Decomposition into reduced symbols and proof of the theorem

The aim of this section is to prove the following lemma.

Lemma 5.4. — Let a be a symbol of order 0. Then a is reduceable and, with the notation of
Definition 5.1, for any integer N, there is a constant Cy such that for any k € Z*¢,
Cn
5.4.1 < TN
41 ST )

In view of Remark 5.3, Lemma 5.4 gives directly Theorem 5 (up to the proof of Proposi-
tion 5.2).

Proof. — Let us consider ¥ and ¢ defining a partition of unity as in (4.4.1) page 76: one can
write

(5.4.2) VL&) €R R 4 (A +77) + Do (27E +77) = L.
p>0
Then
a(w, X &n) = alw, &Y (AE +77) + > alw, X, &n)¢ (27 |A[(€ +n?))
p>0
= o (w, A VINE VA + Y bp(w, A 27PVAE 277V )
p=>0
with
def ~
bor(w, A Em) = alw, A Eme(€¥ +1°) and

bp(w N &) Gw, X 26 2o +P) for p>0,

where a(w, \,§,n) = def 3 il ). The functions b, are compactly supported in (£,7),

7)‘7 T Ao
VI VA

in the ring C for p > 0 and in the ball B for p = —1. Moreover, denoting by 0 a differentiation
in £ or 1, we have, for all p > —1,
Obp(w, A, €,1m) = 2P(9a) (w, A, 27€,2Pn)p(6% + 1) + 2€4' (€2 + n?)a(w, A, 2P, 2Pn).
We deduce that
op

C

VI + (2762 + (2n)?
‘)‘a)\bp(w7)‘7§7n)’ < C‘)\a}\’d(w7)\’2p§7 2p77)‘

‘3bp(w7)\a§a77)’ and

(& + )| + ClE| | (€2 + 1),

so using the boundedness of the symbol norm of a and the fact that ¢ is compactly supported,
and arguing similarly for higher order derivatives, one gets the following uniform norm bound
on by:

(543) pS;l?nH()\a)\) 8( 7n)b]!?('?)‘75777)“671(]1-]1‘1) < Cﬁ,m-
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Now, since for p > 0 the functions b, are compactly supported in (§,7), in a ring C independent
of p, we can write a decomposition in Fourier series:

bp(w, A, &m) = D M EDbE(w, \)p (& + 1),

kEZ2d

where 5 is a smooth, radial function, compactly supported in a unit ring, so that ¢$ = ¢. We
have of course

1 _Z' .
gt [ s

(5.4.4) bE(w, ) =

Along the same lines, we get
bor(w A ) = S HEMBE (w )€ + ),
kez2d
where 1; is a smooth, radial function, compactly supported in a unit ball, so that 1/1{/; = .
Defining
Ok (g, ) E e MENG(E2 4 ?),

it turns out that

a(w,\,&,n) = boa(w, A VNG VA + D bE(w, \)F(27PV/INE, 277/ [AIn)

D,k

= b (w, A VINE VI + Y (w, A &),
k

That concludes the fact that a is reduceable. It remains to prove (5.4.1). From the integral
formula (5.4.4), we infer that for any multi-index § and, to simplify, for p > 0

‘ 1

k8w, )| = / K= e, (w, A, €, n)d&ln‘

)d
¢ [ |ofpotw g acan

IN

Using (5.4.3), we deduce that

(5.4.5) Sup Hkﬁbk ,)\)‘

cr(Hd) —

and Lemma 5.4 is proved. O

5.5. Proof of Proposition 5.2

Now it remains to prove Proposition 5.2. We will first give the main steps of the proof and
peform some reductions, and then prove the result.
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5.5.1. Reductions. — Let us give the main steps of the proof. An easy computation gives
that there is a constant C' such that for any integer p and any k € Z?,

Ik Fk
(5.5.1) 1% |n;s01,9) + 1 Ppllnss1,9) < C (1 + [E]™

Therefore, in view of (5.3.2), one has
Op (B (1w, )W (A, €, 7)

It remains to consider p € N, and in particular to control the sum over p. The fact that b'; (w, \)
depends on A induces a serious difficulty, which we shall deal with by considering a partition
of unity in A. Thus by the same trick as before, we use functions ¢ and 1 such that (4.4.1)
holds and we write

< CAR(L+ K™

> HE(HS(]HId))

b (w, A) = b (w, Np(A) + > b (w, \)p (27> A).
reN

Using the fact that ¢ is compactly supported, we decompose the function bl;(w, 22" \)o() in
Fourier series and write

bk w )\ Zbkj U)\w Z bkj zj2_2TA5(2—27")\)’
JEL reN,jeZ

where
B (1) = /B e N (1, A (N) A, B () = /c ¢ N (w, 227 V() dA

and %, {/; are smooth and compactly supported respectively in C and B, such that &b = o,
and ¢ = 1. We observe that Estimate (5.4.3) satisfied by b, ensures that for all integers N,
there is a constant Cy such that for all indexes p,r, j, k, we have

. C
N 1.k N
(55.2) sup(1+ 3D 1652 ooty < 7 s

Indeed, by the Leibniz formula

SR W) < ey

/ TN )™ (068 ) (w, 22 A)ATT(OY T B)(A) dA

m<n

< C sup ‘kﬁ(uau)mb];(w,u)‘
mén

S C Sl)l\p ‘()\8)\)7”8(65 n)bp(w7)‘7y7n)‘ .
m<n

Owing to (5.4.3), we deduce that (5.5.2) holds. That estimate will ensure the convergence
in j of the series. In the following, we therefore consider, for each j and k, the quantities

(w6 Zb’“ﬂ (ML €,m) and
; def o
9w, A& m) L Zb’;zwwz ZN)BE(N €, )
p7r

where ¢7(\) = e7*¢()\), and ¥7(\) = Y p()\). Then we will consider the summation in &
and j of ¢tk and ¢%7.
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The analysis of the convergence of t*7 follows the same lines as that of t*/ with great sim-
plifications since the summation is only on one index, namely p. Therefore, we focus on the
convergence of t*/ and leave to the reader the easy adaptation of the proof to the case of t*J

Let us therefore now study t*/. We truncate bp » into high and low frequencies, by defining
(for some integer M to be chosen large enough later, independently of all the other summation
indices),

1 — S, p)bh

(5.5.3) lpr 5, At and ki
where S}, is a Littlewood-Paley truncation operator on the Heisenberg group, as defined in
Chapter 4, Section 4.1. Let us notice that by Lemma 4.13, one has the following norm

estimates on £y, and hy,:

SUP”eercp(Hd) < S‘lprl;,]}Hcp(Hd)
p7r

)

sup ||herLoo(Hd) < 27PPsup pr,erCp(Hd)
T b,r

IN

27P plp=o) SuprerCP (H?)>

Sup ”hpv"”co(Hd)
r p7

for 0 <o <p.

This allows us to write 5/ = ¢# + F’ with

P A\ Em) CS by () (277 N2 VIN €277/ [An) and
p7
P\ Em) EY e (w)gd (27N @F 2PN €, 277N ),
p7

We have dropped the indexes k and j to avoid too heavy notations. Before performing the
study of each of those operators, we begin by a remark which will happen to be crucial for
our purpose.

5.5.2. Spectral localization. — In this subsection, we take advantage of Proposition 4.14
of Chapter 4 (see page 72) to use spectral localisation. We first observe that

A& ) = VIIRETETII N (€ 1))
= VINRETETMH27 (€% + 7)) 227N (€7 + ),
where ® is a smooth radial function compactly supported in a unit ring so that PP = .
Symbolic calculus gives that for any N € N, there exists a symbol r,(cf\;) such that
op”(®y) = op”(Py - ap)
= op"(®}) 0 0p"(ay) + 0p" (r}}),
where a,(y,7) = ®(272|\|(y% + n?)) and for any integer n one has

N .
‘|7"](g7p)||n;5(1,g) <C(l1+ |k‘|)N+ 9—Np.
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One obtains that for some integer n,
N _
lop” (i, ) uaqeay < C (L RV 277,

and since Op(rlg\;)) is a Fourier multiplier we get

(5.5.4) 1OD(re Yul s 2y < C27NP (L + [N g0 -

Since we deal with Fourier multipliers, we have

Op(‘blg)u = Op(ap)Op(q)];)u + Op(r,(g]’\;))u.

Finally, by Proposition 4.14 of Chapter 4, we get

Op(®F)u = A,0p(ay)Op(®X)u + > A0p(ay)Op(@E)u + Op(ryy Ju
a7#Pp
(5.5.5) = A,0p(ay)O0p(®))u + Z AR, ,Op(® )u + Op(r,(g],\;))u,
q7#p
where
(556) HRPHHL(HS(HUZ)) S 02750|p7q‘.

Therefore we can write
Op(t) = Op(t*) + Op(#’) + Op(t")
with, writing ¢%()\) = ¢/ (272" \)

(5.5.7) Op(th) = thr )A;A,0p(a,)Op(¢ D))
+ Z hpr (W) Ay Ag Ry 4Op(¢1)

qsﬁp
(5.5.8) Op(¥’) = Zﬁpr )A+A,Op(a,)Op (¢l @ ) and

+ Z Cor(W)Ar ARy, qOP(Qﬂ )

qsﬁp
. N)
(5.5.9) Op(t) = > b (w)A,Op(r)))
p,Tr

with A, = Op($(2_2r)\)) and 5 is a compactly supported function in C such that 5(;53 = ¢,

In the following, we are going to study each of these three terms, beginning by Op(th) which
is a remainder term. Besides, in order to simplify the notation we shall write

Op(¢} @} )u,

and we recall that due to (5.5.1) and to the fact that Op((ﬂfbg) = Op(qﬁf;)Op(CD’;) with Op(¢)
of norm 1, there is a constant C' such that for all indexes p,r, k, j,

(5.5.10) [ukd s < C(L+ k)™ |ul s

def
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Moreover, by quasi-orthogonality (see Chapter 4, Subsection 4.4), we have
(5.5.11) HApArul;ﬁHLg <C A+ k)" eper 277 |lul| ps

where C is a constant and ¢, ¢, denote from now on generic elements of the unit sphere

of (2(Z).

5.5.3. The remainder term. — We drop the kj-exponent in blgfr for simplicity and de-
compose by, » in A-frequencies: b,, = > A;,bp , so that Op(tu) is now a sum on three indices.
We decompose this sum into two parts, depending on whether r < m + M or » > m + M
where M is the threshold of Proposition 4.15 stated page 77.

Let us consider the first case, when r < m + M;. We choose ¢ such that s < o < p and by
Lemma 4.17 page 79, we find constants C' such that

N N
18m Br) Ar ORI Nl ey < C 1B (Bl | OB Yl st
—m(p—0o N
< 2 me )AkHOp(T;g,p))uHHs(Hd)
< C2mlemo) g 07 NP(1 4 ‘k’)N+n“u|’Hs(Hd)

where we have used estimates (4.4.8) and (5.5.4). We then obtain

Z A (bp.r) ArOp(r,g{\;))u
m,p,r <m+ My HS(]HId)

<C (Z(m + M1)2m(””)2Np> (1 + [ED Aglfu] s gzay

m7p
which ends the first step.
We now focus on the sum for r > m + M; and we use that by Proposition 4.15, the func-
tion Ay, (bp.,r) ArOp(r(N))u is A\-localized in a ring of size 2". Therefore, in view of (4.4.4), it is

k.p
enough to control the H*(H%)-norm of > pm A (bp.r) ArOp(r,g]\;))u by ¢, with (c.) € 2. We

observe that by Lemma 4.17 and (4.4.4), there exists a constant C' such that

. N
1A p) A, OB Yl ey < ClAm by € 10Dl s
< 27 Ak, 27PN (14 (RNl s

where s < 0 < p and where we have used again (4.4.8) and(5.5.4). Therefore, we obtain

Z A (bp 1) ArOp(r,(g)))u
m?p

m7p

< ¢ (Z 2_m(p_0)2_Np> (1+ ’k‘)NJrnAkHu”Hs(Hd)
Hs (H?)

which achieves the control of the remainder term.
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5.5.4. The high frequencies. — Let us estimate Op(t*)u in H® for any |s| < p. For any
function u belonging to H*(H?), we have

Op(t)u = Z(uﬁr + wf)r) with
p?T‘

pr
q#p

Let us deal with ulﬁ,r. As noticed in Chapter 4 Section 4.4, on the support of the Fourier
transform of A,Op(4(272"\)) we have Dy ~ 22 and |\| ~ 22". Therefore, 22°=7) has to be
greater than or equal to 1. This implies that the only indexes (p,r) that we have to consider

are those such that 0 < r < p. We will then simply bound the sum of norms of the terms ugr.

To do so, let us choose o such that |s| < o < p. This leads, by Lemma 4.13, to the following
estimate

prlls < C27P gyl gl 1

Finally, thanks to (5.5.10) and to the definition of h,, recalled in (5.5.3), we obtain for some
integer n (recalling that 0 < r < p)

[

D lubllas < O+ kD ullas Y p27707 sup Ayl
p,r P r
< C+ R ulme Y p2 ) Ay

p

Since 0 < p and p > —1, we infer that v — Zu&,r is bounded in the space £(H*(HY)), by

p7r
the constant C(1 + |k|)™ Ag.

Let us now study wf;r. Arguing as before, we restrict the sum on the integers r such that r < ¢
and we get

Dokl <€ Y 277 gsup [Ihylloo2 P (L + k)" ul| -
pr P4F#P '
As before, we get a control by C(1 + |k|)™ Ay.

So the high frequency part of ¥ satisfies the required estimate.

5.5.5. The low frequencies. — We recall that by (5.5.8), we have for any function «
belonging to H*(HY)
Op(#)u = Z(uzr + w;r) with
p7r
U;;r = KPTApArOp(ap)ulgﬁ and w;r = ZﬁprAqAer,q ul;ﬁ
q#p

In the following, we are going to use the frequency localization induced by A, in the sense
of Definition 4.1. In particular, using Proposition 4.1 of [5] (the statement is recalled in
Proposition 4.9 page 67), we will be able to say something of the localisation of a product of
localised terms. We want to use also the localization in A induced by A,.. For that purpose, we
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truncate £, and in doing so, we add a new index of summation. We set £,, = Z Aty and we

m
immediately remark that since £, is a low frequency term, then for m > p we have A,,,¢,, = 0.
Therefore, the index m is controled by p.

According to (4.4.8), one deduce that
(5.5.12) HAmEPTHLOO(Hd) < €27 sup Hb];,erCP(Hd),
p7r

where C' is a universal constant.

We can now go into the proof of the proposition for u;r. Let us start by studying

uk def AmfprApArOp(ap)ugﬁ.

prm
As soon as the threshold M is large enough, u];ﬂm is frequency localized, in the sense of
Definition 4.1, in a ring of size 2P due to Proposition 4.9 page 67. So we can use Lemma 4.8
ki
to compute the H® norm of Zupf,m.
P

Consider the threshold M; given by Proposition 4.15. We shall argue differently depending
on whether r < m — My, r > m + My, or |[r —m| < M.

For r < m — M, it is enough (due to Lemmas 4.8 and 4.15) to prove that for any p,m € N,
(5.5.13) S bl < C A1+ K] ey e ull o2
r<m-—DM

We observe that

lp?g’m ”L2

IN

HAmgerLoo HApAv"Op(ap)ug”B
Cl[AmLprl| Lo cp er (L + k)™ 277 [lul[ s
by (5.5.10) and (5.5.11). Therefore, for all integers m we have
Yo lupdlle < COFIED 27 Julla: Y erllAmbprllz=

r<m—DM; r<m—DM;
< O+ kD)™ ep 27 [Jull s Vmesup || Amlpy || Lo
p?T‘

lu

IN

by the Cauchy-Schwartz inequality. So it is enough to have

(5.5.14) vm sup || Ap Ly || oo

p7r

< CA
2w

to ensure that (5.5.13) is satisfied, which is implied by (5.5.12).

Let us now consider the indexes r > m + M;. This time, it is enough to prove

(5.5.15) S Nk < CAL+ ()" ¢p e 277 [ .

prm
m<r—DM;
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We have, following the same computations as above,

S Nuballz SC Y IAmbprllzoecper (1 )" fule 2

m<r—DM; m<r—M;
Therefore, if
(5.5.16) > " sup [Ambpr |l oo < C A,
m p7r

we obtain the expected result, namely (5.5.15). Condition (5.5.16) is obviously ensured
by (5.5.12) which achieves the estimate of (5.5.15).

Finally, let us consider the case |[r —m| < M;. We shall analyze for j* € NU{—1} the quantity
Ay <Am€prApArOp(ap)ul;j>. We claim that

G517) | S Ay <Am€prApArOp(ap)ul;j> < C Ap(1+ ) cjr cpllull =277,
N B

which by quasi-orthogonality will prove the result.

We observe indeed that by Proposition 4.15, there exists a constant Ms such that
> Ay (Amlorph,Op(ap)ufl) = > Agr (AmlyrAyArOp(ay)ul)
rm r—m|< My

b
[r—m|<My 75— Mo

Therefore arguing as before,

> Mg (AmlprpA,Op(ay)ut?)

b
|r—m|<M;

L2
SCO+ k) 2Pl Y crsup [Ambpr|ree.

. p,r

j'<r—Mjy

|r—m|<M
The property
(5.5.18) Jeg > 0, sup(sup |[Amlpr||L=2"") < C Ay

m P

induces that the sequence Z 27™%0¢,. belongs to 6?,, which is enough to prove the
mz>j’

claim (5.5.17). Estimate (5.5.12) implies (5.5.18) which concludes the proof of (5.5.17).

Now let us turn to wy,. We shall separate w,, into three parts, depending on whether ¢ > p

or ¢ < p, or g ~ p. More precisely, let Ny € N be a fixed integer, to be chosen large enough
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at the end, and let us define
v =0+ +0of = Z(vﬁr + vlbw + vfn,) = Z w;r with w;r = vgr + vlbw + /U]h)r while
b,r p,r

R kj b _ kj
Vpy = Cpr AN Ry quyy)  and - vy, = Cpr Ag A Ry, g
q=p+No q+No<p

Recall that to compute the H® norm of v, one needs to compute the 2 norm in j of 27%||Av|| 2.
We are going to decompose as before £, = > A;,¢, and consider the cases m < r — Mj,
m > r+ M and |r —m| < M,. For each term, we use the same strategy as the one developed
before, in the case of u'l’,r. We shall only write the proof for the indexes m < r — M7 and leave
the other cases to the reader.

By quasi-orthogonality, it is enough to prove
(5.5.19) |A0r |2 < CAL(1+ k)" ¢jcr 2778 Ju| g,

where vy = ) wp, and * stands for {, b or f.

e The term v': Let j > —1 be fixed. We recall that Ly is frequency localized in a ball of

size 2P~ M and AqAer,qulgi in a ring of size 29, so by the frequency localization of the product
(see Proposition 4.9 page 67), there is a constant N; such that

Ai= 3 S Y 4 (AmfprAqAarqul;ﬁ).

m<r—M; |j—q|<N1 g=p+No

Therefore, we have

Al < 20 Y Y Y A (Al AgAr Ry qud) |2

m<r—M; |j—q|<N1 ¢2p+No

SC 2j3 Z Z Z HAmeerLooHAqATRp,quplngL2

m<r—M; |j—q|<N1 gZp+No

<c Y S Y 20D Al |y 20O (1 + )™ ulla,

m<r—M; |j—q|<N1 g=p+No
where we have used the fact that

2% HAqAervqu];Z [l 2

IN

Iy
Ceq crHRp,qupyj»HHS

Ceq ey 20PD || uhd || s

IN

by (5.5.6), and then (5.5.10). Assuming (5.5.16), the result follows from Young’s inequality
which ends the proof of (5.5.19) for v* thanks to (5.5.12).

e The term ¢”: Using again the frequency localization of the product, one can write that for
some constant Nj,
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WAl < 02 S ST ST Al Mg A Ry qubi 12
m<r—M;j j—p<N3 q+No<p
< 0P 3 3 ST b2 e gl Ry gugd

m<r—M;i j—p<N3 q+No<p

< C2° Y T Y [ Amlprllze2 % e 2P uld | s

m<r—Mi j—p<N3 q+No<p
< CO+ kD) ellulm Y Ambprll= D 20770 37 20079
m<r—M; Jj—p<N3 q+No<p
thanks to (5.5.6) and (5.5.10).
Applying Young inequality, we thus obtain for 0 < s < §g
(5.5.20) 27|80 2 < CA+ BN erllullrs D> [Ambprllze Y 20777,
m<r—M; l7—pl<N3
This ends the proof of the result by Estimate (5.5.12).

e The term v’: We recall that
= Y Y Al ARy uld.
m<r—M1 |p—q|<No
It follows that

2Dl < 2 ST N Al | AgAr Ry gl 12
m<r—M; —1<j<q+Ns
Ip—q|<No
(5.5.21) < OO+ elullme Y MAmbpllie Y 2079 ¢ 2000,
m<r—M; J<q+Ns

Ip—q|<No

and we conclude as in the case of v”. We point out that it is at this very place that we crucially
use that s > 0.

The proposition is proved. O



APPENDIX A: SOME USEFUL RESULTS ON THE
HEISENBERG GROUP

A.1l. Left invariant vector fields

Let us recall that on a Lie group G, a vector field
X:G—TG
is said to be left invariant whenever the following diagram commutes for all h € G :

¢ I @

X 1 X

¢ TG
where 7, is the left translate on G defined by 7,(g) = h - g. It turns out that for any h € G,
(A.1.1) Xor,=dm,oX.

In particular,

X (h) =dm(e)X(e),
where e denotes the identity of G. Therefore, as soon as the vector field X is known on e, so
is its value everywhere.

Let us mention that this infinitesimal characterization is equivalent to saying that, for all
smooth functions f,

(A.1.2) (X fn) = (X f)n,
where fj, is the left translate of f on H?, given by f;, = f o 7.

To start with the proof of the equivalence of the two characterizations, let us perform differ-
ential calculus in (A.1.1). We infer that (A.1.1) is equivalent to

(X om)f = (dr, 0 X)f,
for any function f € C*°(G). This can be written for any h, g belonging to G
(X ) (7r(9)) = df (Tn(9))(dTn(9) X (g)) = d(f o m)(9) X (9) = X(f o 7)(9)-
In other words
(Xf)omn=X(fom),
for any h € G, which leads to the result.
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A.2. Bargmann and Schrodinger representations

In this paragraph we discuss some useful results concerning Bargmann and Schrédinger repre-
sentations, starting with the formula giving the Schrodinger representation, if the Bargmann
representation and the intertwining operator are known.

In a next subsection we prove some useful commutation results.

A.2.1. Connexion between the representations. — In section we shall give a formula
for the Schrodinger representation, which is linked to the Bargmann representation by an
intertwining operator. This formula is of course classical, but we present it here for the sake
of completeness.

We recall that the Bargmann representation is defined by

ugsF(g) = F(§ —2)est2ME=1217/2) for N >0,
UQSF(@ — F(f _ Z)ez‘As—QA(§~E—\z\2/2) for A <0,

and we also recall the definition of the intertwining operator, as given in (1.2.32) page 22:

det YL i (L L O\ e
(Ka)(§) = —grpe™ 2 ¢ <—ma—£> e :

Proposition A.1. — Let v}, be the Schridinger representation, defined by
VF € Hy, KyuphF =v)K\F.

Then vi‘,s 1s given by the following formula:
V) f(€) = XNV p(e _op) YA ER”
Proof. — It turns out to be easier to split the representation ufl‘} into three parts, using the

simple fact that
w=(x+1iy,s) = (0,s+2y-x) - (x,0) - (iy,0).

Let us prove the following relations: for A € R, z,y € R? and s € R, VF € H, and n e RY:

(A.2.1) (Kauly ) F) () = ™ (KF) (),
(A.2.2) (KxudoF) () = (KaF)(n —22),
(A.23) (KaulyoF) () = 7 (KyF) (n).

Notice that those relations give

(K,\u{\UF) (n) = (KAU?O,SJ&m-y)u?x,O)uéy,O)F) (n)

— oiA(s+2ya) <wa' F) (n — 22)

_ ei)\8+2i)\y-n—2i>\y~az (K)\F) (77 o 2.%,)
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which is precisely the expected result.

So it remains to prove the basic relations (A.2.1)-(A.2.3). The first one comes trivially from
the fact that uf‘o 5) is the multiplication by the phasis e,

For the two other ones, we write, for any function F' in H) and using Proposition IV.2 of [29],

™

5d/4
() = (L) B [ e i)
R2d

Therefore, for A > 0, we have on the one hand

( A A\ Y a2 —2i\v-(n—n") =Xl P =Aly[>+2ixy-(iv) '
Kyug, 0)) Fn) = (- e 2 e F(i(v+vy))dvdn
, RQd

s

™

5d/4

A \77\ . . . 2 2 .

— (_ AT 2iAy o 2w (n=n"=iy) =200y XY AN (o) dudny
R2d

A 5d/4 ]2
= <_> e)\nTJr?i)\y-n/ ef2i)\u-(nfn”)f)\\n”|2F(Z~u) du dnl/
R2d

= MWK \F)(n).

On the other hand, one has

5d/4 2
<KAU€\1,O)F) (n) = < > o / o2 (=) =N P2z v=Ael iy — 2 dy dy
R2d
o
sdj4
- ( > n_ e 2iu(n=2a=1") =" 1* B (joy) du dy”
R2d

= K)\F — 2.%')

W\ 2 . ’ 2 .
)\ +2A|z| —2>\7]J1/ e—22>\u(7]—7] —z)—An'—x| F(zu) du dn/
R2d

Similarly, for A < 0,

pd/4 _Alnl? 2i\v-(n—1" )+ |24+ |y|2+2idy-(iv) 1/ /
e 2 e = A Y YW E(i(v+y)) dvdn
RQd

/|\
| >
N~

<K)\Uf\iy7o)> F(n) =

5d/4 )
o~ M= H2idyn / e2idus (n—n'+iy)—2ixy 1’ = Ay >+ X[’ ‘QF(z'u)dudn’
R2d

I
R
3| >
N——— 3

5d/4

> 3>
N—

Il
D
®
>
<
3
—~
4
g
~—
—~
=
~—

NIy . Nt (o 712 i
e A +2Myn/ e2Mu (n—n")+Xn"| F(zu) dud?]/l
R24
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and

<KAU€\J;70)F> (m) =

ot
[SH
~
~

2
e_é%_t/' eman—#)+MWF_2M$”+AMF1?@”“x)dvdn/
RQd

5d/4 )
e)\7’22)\|m|2+2>\n-m/ e2i)\u(n777’f:v)+)\|n’f:v\2F(iu) du d77/
R2d

I
/T\/Tf\
S>> N> 3>
N— " — 7

5d/4 In—222 ) 1 112
e_)\T / eZzAu(T]—Qx_n )+Am"| F(’Lu) du d’r}”
R2d

— (K\F)(n - 20).

This proves the estimates, hence the proposition is proved. ]

A.2.2. Some useful formulas. — This section is devoted to various properties for
Bargmann representation that we collect in the following lemma.

Lemma A.2. — The following commutation fm’mulas hold true:

1 _
QL) =zl and (@) ud) = u

for any X\ € R* and any w = (z,s) € H?.

A
w*

Proof. — In order to prove Lemma A.2, let us first recall formulas (1.2.27) giving the expres-
sion of Q;‘ and a;\

A 2IA¢ if A >0, =X | 0O if A>0,
@ —{ B, if A <0, and Q5 =\ D i A <o.

Let us now prove the first formula, in the case when A > 0. On the one hand, it is obvious
that

FunF(€) = —2Muy F(€).
On the other hand, an easy computation implies that
Up Q) F(§) = —2M(g — 7)) N TRE IR 7).
which implies that —%;ug, = %[Q], u)], for A > 0. In the case when A < 0 one has
JunF(E) = 9 (upF(6))
= uld, F(€) — 2xz;0 N 2EZ P2 e — 2)
= up0e,F(§) - 2/\%‘”qu(€)

which ends the proof of the commutation properties — [Qj, w]

It remains to check the formula for [Q Arguing as before, one gets for A > 0

Y ’LU]
J
- uga@F(@ + 20z FRAEET R P - 7)
= updg F(€) + 2Xzjup, F(§),
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which gives the formula in the case when A > 0. Finally, for A <0
QuiF(€) = 22l F (€)

and .,
up@Q;F (&) = 2M\(& — 2j)up F(€).

This leads easily to the second commutation property. O

Lemma A.2 allows to infer the following result, which is useful in particular to prove
Lemma 2.7.

Lemma A.3. — One has the following properties:

A A A
Zju, 1 = Qjuy, 1 and Zu —1 —Q] u)

J %w -1

w

for any X\ € R* and any w = (z,s) € H?.

Proof. — First, let us compute Zjui‘u _; in the case when A is positive. By definition, one has
Zjuy 1 F(€) = (0 +1iZ;0s)uy1 F(€)
_ (@] +i2;0,)F(€ + Z)e —iAs+2A(—¢€-2—2]2/2)
= (=2X\ — AFj +iZ(—iN)ul - F(€)
= —2Xgup1 F(€).
Whence the first formula thanks to (1.2.27).
Along the same lines, when A is negative one can write
Zjup 1 F(€) = (s +1i%0s)u 1 F ()
= (0, +1izj0s)F (£ + 2)e —iAs—2A(—€3—|2|2/2)
= (N7 + iz (—i\)ud  F(€) + uf‘v_l(?ng(g)
=zl F(E) + 106 Q).

We deduce thanks to (1.2.27) that Zjuw,1 = 2)z;u)) o1t u Q)‘ Let us remind that by
Lemma A.2, Q;‘ ud — up) Q;‘ = —2\7;u), which can be also ertten

A A A A oy= A
G Un—1 — Uy -1 QF = 2AZjuy, 1.

This implies that Zjui\v = Q? ug _1, which ends the proof of the first assertion.
Now, let us compute 7]“3; _1. Again, one can write for A > 0
Zjup 1 F() = (9s, —iz0s)ul 1 F()
_ (az ZZ] ) (5 + Z) —iAsH2N(—€-2—|2|2/2)
J

= ufﬂ,la@ (&) — (Mzj + sz(—z')\))ufﬂ,lF(f)

= uf‘v_l(?ng(g) — 2\zjud  F(¢€).
We point out that, again by (1.2.27), this can be expressed as follows

= A

Zjuf‘u,l = uij,le — 2)\zju3},1.
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=\ =\ . .
But Lemma A.2 states that Q; ud — uf‘UQj = 2)z;u;, which can be also written

j\uA — u;)rl@;\ = —2)\zjuf1‘},1
This ensures that 7juf‘u = @j uf‘u _, in the case when A > 0.
Finally, in the case when A < 0, one gets
Zi A F(€) = (05, — iz0)ul F(€)
_ (& —iz;0 )P (€ + 2)e —ids—2\(—£-2—|2|2/2)
= (2 + Az —izi(—id))up -1 F(€)
- 2A£Ju LF(€)
= juw—l F(¢)

where we have used one more time (1.2.27) for the last equality. This ends the proof of the
lemma. O

Finally let us state one last result, which provides the symbol of the multiplication operator
by s.

Lemma A.4. — Leta € Sga(p), © = (2,5) € H? and w € H?, then

/tr (iéuf‘bJj\kopw(a(w,)\))J)\) AT dX = /tr (u)‘mijopw (g(w, N)) J)\> IA[TdX

with g € Sga(p) and

(A.2.4) o(g) = =0 (o(a))
or equivalently
1
(A.2.5) g=—0a+5y > 00y, + &0 )a
1<j<d

Proof. — Let us first observe that by Proposition 1.23 page 29, the function g defined by
(A.2.4) is a symbol of order p since

—18l \/3\
A+P+2+m) 2 A+ FT <O+ PN+ +7) 2 A+~
Besides, by the definition of u;, (see (1.2.15)) we have

oy, = (is +2¢ -z — |2]?) up for A >0,
o = (is—26-z+ |z|2) u) for A < 0.

Therefore, using Lemma A.2 and using formulas (1.2.27), we have for A > 0

isufl‘} = (%\ufﬂ— Z < 2)\262)‘[@]’ w] 4)\2 [Q [Q]a w]})
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Similarly, for A < 0, we have

isuﬁ} = 3)\u + Z ( )\QQ Q]7 w] 4)\2 |:Q [@]7 1)1\}]:|>

1<_7<d

= o+ > (b Q10 + @l Q))).

2
)‘ 1<j<d

Setting Ay (w) = Jyop®”(a(w, A))Jy and using tr(AB) = tr(BA) we get

tr <i§uf‘;}A>\(w)>:tr (8>\uf‘;}A>\(w))—$ Z tr <uf}} _j\ Alw )Q)‘ Q;‘AA(w)]) if A >0,
1<j<d

tr (i5uns Ay (w) )=tr (Oyuy Ax(w) —{——2 uy QJ , Ax(w )Q] +QJA)\( w)| ) if A <O0.
A 1<j<d

By (1.2.37), using the fact that op*(n;) = —idg; and op*(§;) = &;, along with formula (2.3.3)
recalled page 41, we get for A > 0,

@) AR} + @A) = AT [T, + & 0p" (alw, N, — &) + (9, — &)op" ()] Ty

1<j<d

2 J;\kopw <2da + Z (77]' + ij)(iagja — 8,7].(1)) .

Similarly, for A < 0,

Q;‘ , AA(w)é;\ + G?A)\(w) = —2XJyop” | —2da + Z (n; +1&;)(i0¢;a — Oy;a) | Ja.
1<j<d
Set
(A.2.6) b(w, A, y,n) = —2da+ Y (n; +1i;)(id;a — dy,a),
1<j<d

we have obtained
A A 1 A pr o w
(A.2.7) VA #0, tr (zsuwAA(w)> =tr (8,\2%14)\(11))) — ﬁtr (uﬂ}J/\op (b)JA) .

We focus now on the term 9yuj Ay (w). We have

tr <3>\u;}}A>\(w)) = 0y (tr (u{}A,ﬂw))) —tr <uf}}3>\A>\(w)) .

This implies, by integration by parts, that
d
/tr <3>\uf‘DA>\(w)) IAddr = — / Xtr <uf‘DA>\(w)) A4 dA — /tr <u)‘w(9>\A>\(w)) |4 d.

We claim that

1
(A.2.8) ({9)\14)\(?1}) = Jyop® (({9)\0,()\,11)) + o Z (§j8nja — njagja)) Jy.

1<j<d
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This yields, with (A.2.6) and (A.2.7),

. « w( d i
/tr (zsu%Aﬂw)) AT dX = /tr(uf‘bJAop <—Xa—(9)\a— o Z (§§0y,a — njO¢,a)

1<j<d

d 1 . .
—i—Xa — ﬁ Z (77]‘ + ij)(lagja — 8nja)> J)\> ’)\’d dA

1<j<d

1
=/tr %KW”—@MEXE:%%H{@WLA AIdA.
1<j<d

We then set 1
g=—0a+ gy > (10, + &0, )a

1<5<d
and observe that a simple computation implies (A.2.4). Therefore, in order to finish the proof
of the lemma, it only remains to prove (A.2.8).
Let us now prove (A.2.8). We have, recalling that Ay(w) = Jop”(a(w, \))J\ and using the
fact that Ox(JxJ%) =0,

NnAx(w) = Jxop® (Oxa(A, w)) Jx + JX [op®(a(w, A)) ; (OxJr)J3] Ix-
Besides, for o € N¢, we have I Fy \ = ho whence
(OaJx)Far = —Jn(OrFy 2)-

Let us recall that for & € CY, Fox(§) = (V/ ‘)\‘)\045_ so that O\F, ) = MFa,\. We get
) \/a ) 2A )
Va € N% (96J\) J5ha = (OnJx)Fax = _gha = —5(52 — A¢ — d)ha.
Therefore,
* 1 2 d
(OnI)IX = = (€ = Bg) + 7y 1d

We then obtain

* 1 w

[op“(a), (OxJr)Jy] = I [op®(a) , € — A¢]
7: w
= ﬁ Z op (5]0,7].(1 - njafja’),
1<5<d

which proves the lemma. O



APPENDIX B: WEYL-HORMANDER SYMBOLIC
CALCULUS ON THE HEISENBERG GROUP

In this appendix, we discuss results of Weyl-Hormander calculus associated to the Harmonic
Oscillator, and in particular we prove Propositions 1.21, 1.23 and 1.18 stated in the Introduc-
tion.

B.1. M-dependent metrics

This section is devoted to the proof of Proposition 1.21 stated page 28. We therefore consider
the A\-dependent metric and weight

A (d€* + dn?)
VA £0.YO e R Mg d def [A|(dE” + di”)
7& ’ S ’ g@ ( 67 77) 1+|>\|(1+®2)

and we aim at proving that the structural constants, in the sense of Definition 1.12 page 23,
may be chosen uniformly of A; the second point stated in Proposition 1.21 is obvious to check.

and m™(©) def (1+ [N+ @2))1/2,

It turns out that the proofs for the metric and for the weight are identical, so let us concentrate
on the metric from now on, for which we need to prove the uncertainty principle, as well as
the fact that the metric is slow and temperate.

The uncertainty principle is very easy to prove, since of course

1+ N1+ 02?)

2 2
N (d&* + dn”)

9 (de, dn)

and

A <141+ 62).
The slowness property is also not so difficult to obtain. We notice indeed that, with obvious
notation,

Mg _on - NOe-ep
96" (® 9)_1+|A|(1+@2)

and we want to prove that there is a constant C, independent of A, such that if

M@ — P <T 1+ N1 +62%),
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then

L+N(1+67)  1+N(1+67%)

1+ MN(1+072) 1+ AM(1+62) —
To do so, we shall decompose the phase space R?? into regions in terms of the respective sizes
of ©2 and ©"2. In the following we shall write ©% < 0" if, say ©2 < 100”2, and |©| ~ |©/|

1
will mean that, say EGQ <0? <1002

Suppose first that ©2 <« ©’2. Then of course

L+ A1 +6%) <1+ [M(1+07),
so we assume that C' > 1. Moreover, using the obvious algebraic inequality

07 <2/ - 0> + 2072,
we deduce that
INO72 < 2\|© — @)%+ 2J\O% < (2T " +2)(1 + |A\|(1 + ©2))
which leads immediately to the result as soon as
20 ' +2<C.

Conversely if ©2 > ©'2, then it is clear that

L+ [A[(1+67) < 1+|A|(1+62).
Along the same lines as above we get

INO2 < 2072 +20 (14 |M(1+62)
< (20 +2)(1+ N1 +62),

which choosing C' large enough (independently of \) gives the result. Since the estimate is ob-
vious when |©| ~ |©’|, the slowness property is proved, with a structural constant independent

of \.

Finally let us prove that the metric is tempered, with uniform structural constants. This is
again slightly more technical. We need to find a uniform constant C' such that

1+w(1+92)>ﬂ _< 1+ [M(1+62) ,2>
<(Cll+ ——m—‘l® -0 .
(1 aren) SOVt 9@

Notice that in the case when |©] ~ |@’|, then the estimate is obvious because the left-hand

side is bounded by a uniform constant. Let us now deal with the two other types of cases,
namely |0]?> < |©’|%, and |0'|? < |©]2.

Let us start with the case when the left-hand side has power +1. If |©|? < |©’|?, then the left-
hand side is uniformly bounded so the result follows with C' > 1. Conversely if |0'|2 < |02,
then we notice that if 0 < |A\| < 1, then the left-hand side is bounded by 2 + ©2 while the
right-hand side is larger than C(1 + c©2(1 4+ ©?)) so the estimate is true. On the other hand
when |A| > 1 then factorizing the left-hand side by A\ and using the fact that [\~ < 1
and (A|7'+14+60%)71 < (14+607%)~! we get

1+ |A(1+©?) 1+ 072

<2 < 2(1 +©2).
T er < Tyes <21Te)
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Again, since in that case |© — ©’|> > ¢©2, it comes

2
(1 v W\@ - @’12> > (14 c02(1 + 0?))

which implies easily the result.

Now let us deal with the case when the left-hand side has power -1. The arguments are
similar. Indeed if |©’|> < |02 then the left-hand side is uniformly bounded so the result
follows. Conversely if |©|? < |©'|? then when 0 < [A\| < 1 we use the fact that the left-hand
side is bounded by 2+ ©'2 whereas the right-hand side is larger than c¢(1+©"?). When || > 1
then as above we write

1+ AN(1+07%)  _1+07

<2 < 2(1+07?),
T+ I+e?) = (1+6%)

1402~

and the result follows again from the fact that since in that case |© — ©'|> > ¢©'2, one has

2
(1 n %@ _ @,|2> > (14 c02(1402) > (1+c07).

The proposition is proved. O

B.2. A-dependent symbols

In this subsection we shall prove Proposition 1.23 stated page 29, giving an equivalent defini-
tion of symbols in terms of the scaling function o.

For any multi-index 3 satisfying || < n, we have

_ 18] 5 .
A () (w200 )|

a(Bym) (U(a)(w,A,é,n))‘ —

(B:2.1) < Nalhngs o (1+ A+ +7)

Besides, there exists a constant C' > 0 such that for A € R,

(o (@@ em)| < C|((on)a) (w,A,sgn

&
Vo) m)‘

g n—S_ 1
(8(5,17)(1) <w,)\,sg (A)m,\/W)‘

123
< Cllallk,s, (o (1+ M+ +7%)?

_Ek 9 2\ E
+C D DTRE )

The converse inequalities come easily: one has a € Sya(p) if and only if for all k,n € N,
there exists a constant C), j, such that for any 8 € N satisfying |8 < n and for all (w, \,y,7)
belonging to HY x R2+1

r—18|

(B.2.2) |av*ar,, (@) < Cup (1+ N+ +07) 2

cr(HY)
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We then remark that if [A\| < 1, the smoothness of o(a) yields that (B.2.1) implies on the
compact {|A| <1},

r—18]

(L4 WDF||050f (@], < O (L N+ €2 +0%) 2

&m

ce(Hd)

Besides, for |A| > 1, (B.2.2) gives

p=18l _
|50 @], gy < Gt (L N2 427) 2 (L )
: : : AP
Conversely, if (1.4.2) holds, then one gets (B.2.2) since the function A+ ) is bounded for
any integer p € {0,--- ,k}. This ends the proof of the proposition. O

B.3. Symbols of functions of the harmonic oscillator

In this section we aim at proving that an operator R(£2 — A¢) given as a function of the
harmonic oscillator by functional calculus is a pseudodifferential operator, and at computing
its (formal) symbol. We refer to Proposition 1.18 stated page 27 for a precise statement.
Taking the inverse Fourier transform, we have by functional calculus

1 ) ~
R(E? — A¢) = /R T E DI R(1) dr.

T on

We then use Mehler’s formula as in [32], which gives (1.3.14) after an obvious change of
variables.

We therefore have formally
1

"o

(B.3.1) r(z) / (cos 7) "4l @BT=YT) R(y)dr dy,
R xR

and let us now prove that the function r is well defined outside = = 0, and that it satisfies the
symbol estimates of the class S(m*, g). After that proof we shall actually give a more precise
description of r near z = 0 (see Lemma B.2 page 117).

If z € R* is fixed, then (B.3.1) defines () as an oscillatory integral. Indeed the change of
variables u = tg7 performed on each interval of the form ]—g +km, km+ 5 [ for k € Z turns

the integral into a series of oscillatory integrals: we have r(x) = Z ri(z) with

keZ
def 1 kd izu 2y9-1
rp(x) = %(—1) Re R (km + Arctgu) (1 +u”)2 ™ du
1

— %(_1)kd /R . eixu—iyArctgu—iyler (y) (1 + UZ)%—ldu dy
X
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We remark that these integrals have a non stationary phase for |k| > 1. This fact will be used
below. We also observe that for Ny € N, by integrations by parts,

ijOTk(fE) _ ikNo(_l)kd / eixu—iyArctgu—iylmR (y) (1 + UZ)%—ldu dy

2m RxR
1 (=)Mo kd jru—iyk 2\4—1 AN, iyArct

— 2_ To(_l) / glau—iy 7T(1 Y )5— (:)yo (R(y)e_ly rc gu) dudy
T R xR
1 (—4)No . 4

- ( Z]\)f (_1)kd/ ez:vufzylmrfzyArctgu(l + UQ)%fIfNO (y’ u)du dy
2 T4V0 RxR

where fn,(y,u) = eiyArCtguaéVO (R(y)e~wArctew) - The fact that the integrals ry(z) are well
defined away from zero and that the series in k£ converges then comes from the following
lemma.

Lemma B.1. — Let f and g be two smooth functions on R such that

vr—nmn

vneN, 3C >0, Yu R, [0"g(u)] < C(1+u?) 2
¥neN, 3C >0, YyeR, [0"f(y)|<CL+y)",
for some p,v € R. Then for any py > 0, there exists a constant Cy > 0 such that the function
1(f.)(w) & [ ettt ) g ) dy du
RxR

satisfies
3

]zl > po, I(f,9)(x)] < Co(1 +2?)

Before proving this lemma, let us show how to use it. The function fy,(y,u) above writes
as a sum of terms satisfying the assumptions of the Lemma. Therefore, (1 + |x|)~#kNory(x)
is uniformly bounded in k and |z| > pp whence the convergence of the series. To prove the
symbol estimate, we notice that two integrations by parts give

xr'(x) = zx/ (cosT) ~dtgre BT R(y)dydr
R xR
tor . 4
= x/ (COST)7d£emthﬂyTR/(y)dydT
R xR T

= —i/ (COST)_dth(l + (tgr)?) 1o, (eixth) e W R (y)dydr
R xR

T

tgT

= /R T [—iy ((COST)dT(l - (tg7)2)1>

+0- ((COST)dthT(l + (tg7’)2)1> R/ (y)dydr.

This last integral is an oscillatory integral of the same kind as the one defining r(z), and can
also be studied using Lemma B.1. This allows to obtain the symbol bounds, by iteration of
the argument to any order of derivatives.

Now let us prove Lemma B.1. The idea, as is often the case in this paper, is to use a stationary
phase method. The variable x may be seen as a parameter in the problem, and one notices
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easily that x may be factorized out of the phase after having the change of variable y = x(1+t).
Moreover one notices that the phase is stationary at the point ¢ = u = 0, when k£ = 0. This
implies that one should use a dyadic partition of unity centered at that stationary point. One
furthermore notices that if |u|?> < |¢|, then the u-derivative of the phase is bounded from
below, so it is enough to use a 0, vector field in the integrations by parts. As it produces
naturally negative powers of ¢, one can deduce the convergence of the dyadic series. In the
case |t| < |u|? however that vector field cannot work since the u-derivative of the phase may
vanish. One must then use the whole vector field (in both u and t directions), and gaining
negative powers of u turns out to be more difficult.

So let us start by performing the change of variables y = (1 + t) so that I(f,g) writes
I(79)(@) =z ok [ = (a1 4 0))g(u)drd
R xR
where
Dy (u,t) def (u — Arctgu) — t (Arctgu + k).
The phase ®;, satisfies

u? —t

1+ u?

When k # 0, &y, is therefore non stationary, whereas when & = 0, &y has a non-degenerate
stationary point in (0,0). Therefore, we introduce a partition of unity on the real line:

VzeER, 1= >  (2)

peNU{-1}

0; P = —Arctgu — knr  and 0,P =

with (1 compactly supported in a ball and for p € N, (,(z) = ((27P%z) where ( is compactly
supported in a ring. We get

I(f,9) =™ 3" Ly(f9)
p,geNU{—-1}
with
def

gl £.9)@) Lo [ e, (0, ()] ({1 + 0)g(w)dtd

RxR

These integrals are now well-defined because they are integrals of smooth compactly supported
functions. We have to prove the convergence of the series in p and ¢. As explained above,
we shall argue differently whether |u|?> < [t| or not. So let us fix a parameter ¢ < 1/3, to

be chosen appropriately below, and let us separate the study into two subcases, depending
whether 2P > 224(04¢) (which corresponds to the case |u|? < |t]) or 2P < 22¢(1+),

Let us suppose p > 2¢(1 +¢). We observe that in that case one has u? —t # 0 on the support
of (p(t)(q(u), so as explained above one can use integrations by parts with the vector field

(B.3.2) 0% Go,@,) 7 9,

Of course one has
¢ (exp (izPy)) = zexp (izPy) .
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Performing N integrations by parts for N € N, we find
L (f,9)(z) = 9{;11\7/]R ] o, (5*)N<f(g;(1 + t))g(U)Cp(t)Cq(u)>dtdu.
X

We then write

= —0+ic
where
Jdef Oy u(l4t) (14w’ u(l+t)
O (0uPr)2 T (1 Hu)? (w212 T (u? —t)?

Let us analyze the properties of £*. If (u,t) belongs to the support of (,(u)(,(t), we have for
p>2q(1+¢)

e 2P < 2P — 0122 < |t —u?| < O 2P(1 + 2297P) < Oy 2P,

We infer that
laufbk\_l < C27PT2 and lc| < C27PT1,

Using q < 2(1]:_ 5)’ we have

so that there exists some § > 0 such that on the integration domain
(B.3.3) 10, Pp| ! + |¢| < € 2700+,

By induction one actually also can prove that

(B.3.4) VmeN, [0l < 2 mota),

Now we shall use the Leibniz formula in order to evaluate (£*) (f(x(l + t))g(u)Cp(t)Cq(u)>.

This generates three typical terms:

(1) L (0,80)NVOY (Clu)g(w)) Fla (1 +8)G(1),

(2) def cNCq(u)g(u)f(x(l—i—t))Cp(t) and
B) LN are (9.84) 7T (Gw)g(w)) fla(l+ )G (D).
et

Due to the estimates (B.3.3) and (B.3.4), it turns out that the term (3) is an intermediate
case between (1) and (2) so we shall only study the two first types of terms here.

We observe that defining ¢(u) = sup |¢™ (u)| and using the symbol estimate on g, we have
n<N

108 (Cy(w)g(w) | < C (1 +[ul)” 27N y(u)
so by (B.3.3) and using the symbol estimate on f we obtain that
(1)] < € 272 NEHD) (14 Jul) (14 |2(1 + 1)) G (£)Cg (w).
Using Peetre’s inequality

1+ 2L+ )" < C (1 + a1+ |at]),
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we therefore conclude that (recalling that z is away from zero)
(B.3.5) xl—N/ |(1)|dtdu < C |x|#|z|~NHrg=oN (p+a)+av+plul+pra—aN
RxR

A similar argument allows to deal with the second term. Indeed we have
(B.3.6) |(2)] < C 27NEHD (1 [ul)” (1 + (L + )" Gp(2)Gy (w)

By integration we obtain

xlN/ |(2)| dudz < C|x|,u|x|17N+|,u|275N(p+q)+ql/+p|ﬂ|+p+q.
RxR

Therefore, choosing N > 6~ 'Max(v + 1, |u| + 1), we obtain the convergence in p and ¢ of the
series, uniformly with respect to k and z in the set {|z| > a}, with the expected bound |z|*.

Let us now suppose p < 2¢(1 + ¢). The objective is now to gain negative powers of 2¢. The
difficulty then comes from the fact that 9,9, may vanish. We observe that for this range
of indexes p and ¢, we have ¢ > 0 so that the integral is supported far from u = 0. For
this reason, if x is a smooth radial cut-off function, compactly supported in the unit ball and
identically equal to one near zero, then the function

(t,u) = x (t ;:2>

is a smooth function for any x € R. The value of x will be chosen later.

We now cut I, , into two parts, writing I, , = Iziq + qu with

o) o [ o (1o (S0 a1+ 00006 (06wt

Let us study first I} .. We notice that on the domain of integration, one has [t — u?| > Clul",
so on the support of ¢, we have |t —u?| > C 2% It follows that

t —u?
> (' 2(k—2)q
' 1+u?| ~ ¢ ’
which leads to
(B.3.7) 10,057t < 02772,

Therefore the u-derivative of the phase does not vanish in this case, so we may use again the
vector field £ defined in (B.3.2). The coefficients of that vector field are now of order 2~ (%2)4
and one has

q D
(B'3'8) |C| = —2% < % < C2—2f€q+3q(1+5).
u —
We therefore choose k such that 2k > 3(1 + ). By induction, one sees that
(B.3.9) Vm eN, [97c| < C 2 ma2rat3a(lte)

We can write
2

e = [ ey | (1o (P ) ) st £t + 0) 0
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Compared to the case studied above, the terms generated by (f*)N are of the form

) = @0 (13 (S58)) Glwstn)) £+ 0600
2

(2) o <1 —x <t ;Hu )) Co(w)g(u) f(x(1 +1))¢p(t)  and

ur
n+m—+p=N
n,m,p<N

)) ctwstw) fati+ )60,

As in the previous case and due to (B.3.8) and (B.3.9), it is enough to control the two first
terms.

Thanks to (B.3.8), the term (2') is bounded exactly as before, assuming that 2x > 3(1 + ¢).
Now let us study (1’). As above we apply the Leibniz formula, which compared to the
previous case generates derivatives of x. However they produce negative powers of 29, as one
differentiation gives the term

,(t—u? 2 k[t —u?
X uk sl oy ur

which may easily be bounded by

2 2
\ <75 u > [ 2 _& (t v >” < 027 4 9e) < ¢gal)

uk uh—l oy uk

assuming moreover that x < 2, which is possible since ¢ < 1/3. Similarly m derivatives
produce 2-75=)m and it is easy to conclude that (1) may be dealt with as above, hence can
also be summed over ¢ and p (recalling that p < 2¢(1 + €), so that decay in 29 is enough to
conclude to both summations).

Now let us study Ig’q, which is more challenging as the wu-derivative of the phase can now
vanish. We therefore need to use the full vector field

def 1

Ly = =|V®,| 2V, -V

i
which satisfies

Ly, (exp (iz®y)) = = exp (ixPy) .
Let us check that this vector field is well defined: on the one hand if £k = 0, then the

assumption ¢ > implies ¢ > 0, thus u is supported on a ring and |Arctgu| > ¢

p
2(1+¢)
on the support of (,(u). On the other hand one notices that |V®.|* > (Arctgu + kr)? > ¢
for £k > 1. It follows that there is a universal constant such that for any £ > 0 and on the
domain of integration, the following bound holds:

Vo~ < C.

Moreover we have

Lz = —Lk + ¢k
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with
def 1 _
a = —=V- (V@ 2V Dy,)
= —= v -2 05 P10, P, + 05,910 D) — 2 05, P10, P
i LWW Tyt (G + TuPiibe) = 2 0Dy ’f}
1] 029 2
R LV‘I)/jQ L ((0u®r)* 2Py + 26152u‘1)k5t‘1>k5u‘1)k)} .
In view of
2 u(l+1) 2 1
D=2 —5 d o, — ———
8u k (1—|—U2)2 an 8ut k 1+u2
we have
(B.3.10) x| < C |V, 72 (2p73q + 272q) < 9129,

An easy induction left to the reader actually shows that
(B.3.11) Vo e N, |00, x| < €2 (eltD=2)a,

We then write for N € N

By = [et 1 [ (L8 el + 05606 w0)] ded

Now we need to understand the action of the operator (L})". The main difficulty will come
from the t-derivative, which does not produce directly negative powers of u. However we
notice that on the domain of integration, one has

t=u?+ Zu" with|Z| <1,
so since x has been chosen smaller than 2, there is a constant ¢ > 0 such that
[t] > |uf® = Zu"| > clul®.
This means that the domain of summation is actually essentially restricted to
(B.3.12) 29 <p<2q(1+e)
so it suffices to gain negative powers of ¢ to conclude to convergence.

The constant term ¢ has already been computed and estimated in (B.3.10)-(B.3.11). More-
over following similar computations to above, for any given function F' one may write that

(L)NF| < Cls‘llI])V|8(O;,t)F|+|C]kVF|
al=

(B.3.13) + C > 1ol lek™ 100, F -

|o+B|+m=N
lal,|Bl,m<N

The first step of the analysis therefore consists in estimating, for any |5 < N, the quantity

> oo (x (58 atiswig o+ ).

mtm'=| 4
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t— u?

Let us start by studying the action of the u-differentiations on y (

> g(u)(y(u). On the

one hand one has, using the symbol estimate on g,

103 (Co(w)g(w))] < €217 (w)

def

where Eq( ) = sup \amgq( )|. This can in turn be written
(B.3.14) 10 (G (w)g(w)| < C2707™((27 )
where ¢ is a nonnegative, smooth compactly supported function such that ¢ = 1 on the

support of (.

On the other hand, as we have seen above one has the following identity:

oo (x(5) - (%) -3 ()

so we get on the support of ¢, the following estimate:

)
Dy <x (t uﬁu >)‘ < C(274l 4970y < C27Un D),

as soon as kK < 2. Actually by induction one also has

.2
o5 sere

The Leibniz formula yields for any m < N

o3 (3)

: t—u?
o ((50)
uﬁ
whence by (B.3.14) and (B.3.15) the estimate

a$<x(t‘“><q<><>>\<C2Q<HWZ( ).

Now let us consider t-derivatives. The Leibniz formula again implies that for any m’ < N

o (x (58 s+ ) =x (S8 ) o (g 00+ 1)
(B.3.17) - ( m ) o5 (X (t ;f)) o7 (G0 F 1+ 1))

o<n/<m/

(B.3.15) ¥m e N,

Ou (Cqlu)g(w)|

(B.3.16)

For the second term in the right-hand side of (B.3.17), one uses the fact that on the support
of (4, one has the estimate
(n/) (t — u2> '
X e

n’ t—u2 1
g <X< u~ ))‘ = Jaf

(B.3.18) < Co 'k,
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In order to also control the action of multiple differentiations in the ¢ and u directions

£ — 2
of Oy Y , it is useful to notice that
X wr

t—u? 2, (t—u? K [t —u?
a“ X uk - _unflx uk + EX uk
~. . . t—u?
where X is a smooth compactly supported function. So t-derivatives of d, | x — are
U

. t—u?
controled exactly like 0; | x " .

Estimate (B.3.18) gives, along with the symbol estimate satisfied by f, for any n’ < m/,

o (x (S25)) o (a0t + )

where again ¢ is a nonnegative, smooth compactly supported function such that ¢ = 1 on the
support of (.

< Oy P I (14 Ja(1 4+ )] T2,

Peetre’s inequality allows finally to write that for any m’ < N and any 0 < n/ < m/,

o (x (S8)) o (sl e +09)

hence for any m’ < N, we get

()((

C(1+ |z)"(1 + |t ¢ (27Pt) Z 9—qn'kg—p(m’—n’)

o<n/<m’

<C(1+ |x|)“+‘“‘z(2_pt)2p‘“‘ Z 9—qn’ko—2q(m’—n/)
o<n/<m/’

(B.3.19) < C(1 + ||+ (27Pr)2plrig=am's

thanks to (B.3.12). Finally let us deal with the first term on the right-hand side of (B.3.17).
We write, using Peetre’s inequality again, that
2

X (t — > " (G (21 + t)))‘ < (1 + ||y HIE Py —p =l
and plugging (B.3.19) and (B.3.20) into (B.3.17) therefore gives
6;”' <X <t —u > Cp(t) f(x(1+ t)))‘ <O+ ’x‘)/H'W\Z(Q—pt)QPW(Q—qm’m I 2_pm/).

Putting the above estimate together with (B.3.16) allows to obtain that

> oror (v (58) awsts s+ )

m+m/=|8|

< CQ_QR,HQ—p(m,—nI)(1+‘x’)u(1+‘xt‘)|N|Z(2_pt)’

E)) o (qotet+ o)

o<n/<m/

(B.3.20)

C(1 + |z|)* I (27P)C (27 %) 2P 1M Z 24(v=(rk=1)m) (g—qm'r | o=pm'y
mA+m’=|5|
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hence, bounding p by 2¢(1 + ), we get

(el S arer (v (5 “) GG O (1 +1)

uli
mm/ =3

(B3.21) < 2009 Py (27 0) Y gmalsTlm(gram’s 4 g=2am’)
mm/=|8|

in light of (B.3.12). Finally let us go back to (B.3.13). Denoting def 2|u|(1+¢) and choosing

ul{

def [t —u?
P () e+ )6 (06 ),
one has the following estimate:

A+ )~ MLV F] < CZ(2—pt)Z(2—qu)2q(v+ﬁ>(
xS Y 2 (al-2aen(-2ea—atemm g=a(IBl—min y g-2a(l5-m))

laf+|B|+n=N m<|g]|
lal,|Bl,n<N

+ 27N(172e)q+ Z 2fq(n71)m(27qm/n+272qm/)>.
m—+m’'=N

using the above estimate along with (B.3.11) and (B.3.21).

This ends the proof of the lemma. O

Now for the sake of completeness, let us study the singularity at 0 of the function r. The
result we shall prove is the following.

Lemma B.2. — Let R be a function in S(R). Then x — r(z) is not smooth in 0 and

ford>1
—+oco
/ 0?2 cos v dv.
0

xdflr(x) N 2(—i)d [Z(—l)nR(zn +d)

T
neL

Note that the integral in v should be understood in the distributional sense (as an oscillatory
integral).

Proof. — The proof of that lemma relies on another expression for » which comes from Poisson
formula: we recall that

v € S(R), m > d(kr) =Y (2n).

keZ neL

We use this latter equation for the function v, :  — e *“TR(z + d) where s is a real-valued
parameter. Then we have

~

hs(€) = UETIR(E + 5)
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and we obtain

STDMR(kT +5) = e (k)

keZ keZ
efids
= — > b(2n)
nez
e—ids )
= Z e 25 R(2n + d)
T nez
which yields
1 . . .
(B322) T(.%') _ ; /ezxue—szrctgu(l +u2)d/2—1 (Z e—anArctguR(Qn —|—d)> du.
nez

Equation (B.3.22) allows to consider r as the inverse Fourier transform of the function
Qs 207 1ATBY (] 4, 2)0/27 1 (2 Arctgu)
with '
VteR, a(t) = Z e "™ R(2n + d).
nez

The function ¢ — a(t) is 2m-periodic, and smooth. Therefore, the function u — a (2Arctgu)
is smooth. Now it is well-known (see for instance [1], page 67) that if a is a classical symbol,
the map z — [ €""“a(u)du is smooth near zero if and only if a € S(R). In view of this result,

let us study the behavior at infinity of the function a (which is obviously a symbol in the
classical sense). We remark that

|a(u)| ~ |ul?2 (Z(—l)"R(Qn + d)) as |u| — o0

nez
so a(u) is not in S(R), therefore r is not smooth in 0.

In order to analyze more precisely the singularity at 0, we perform the change of variable
v =wuz in (B.3.22) and let x go to 0. We obtain

1 ‘ 02 d/2—1 ' v
rix) = — [ev <1 + —2> e idATete s <2Arctg—> dv
T X X
1 ; ; v
_ W /ew(xQ + UQ)d/Z—le—szrctg;a (QAYCtg%) dv

When z goes to 07, we need to distinguish whether v > 0 or v < 0. We get

—idZ dZ 0
r(z) ~ a(me 2 /+OO v?= 2 dy 4 alzme?s / vd= 2 dy
0 —0oo

Trd—1 ard—1
) [y [5° ing S
~ y [a(ﬂ)/ vd2ewdv+a(—7r)/ vd2ewdv].
T 0 0

The fact that

a(m) = Z e " R(2n 4 d) and a(—7) = Z ™ R(2n + d)
nez nez
concludes the proof. O
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B.4. The symbol of Littlewood-Paley operators on the Heisenberg group
Applying Proposition 1.18 to A-dependent functions of the harmonic oscillator, we obtain the
(generalized) symbol of our Littlewood-Paley operators, as stated in the next proposition.

Proposition B.3. — The operators A, (resp. Sp) are generalized pseudodifferental operators
in the sense of Remark 1.14. If we denote by ®p(X\, &, n) (resp. V(A &, n)) their generalized
symbols, there exist two functions ¢(N,-) and (A, -) in 8'(R), smooth outside {0} and rapidly
decreasing at infinity such that for A # 0,

©,(N, € n) = 627N 27PA(E +1?)) and Wy(A, &) = w27 27 P A(E? + n?).
More precisely one has

(B.4.1) VA£O,Vp#0, ¢\ p) =

and a similar formula for 1.

sgn A

/(cos T)fdeil (=rr+eten) R* (4r)drdr,

Remark B.j. — The stationary phase theorem implies that the function ¢(\,p) of (B.4.1)
has an asymptotic expansion in powers of A as A goes to 0, the first term of which is R*(p).
Besides, the change of variables T — —7 gives that (=X, p) = ¢(X, p). Therefore, the function

(y,n) — @, <A,Sgn

& n
N m)

is equal to ¢(27%|\[,272P(£2 +1?)) and is smooth close to A = 0.

Proof. — Recall that as defined in Definition 4.3,
F(Ap/)A) = F(HNR* (27 Dy) = F(f)(A) T3 R* (27PN (—A¢ +€2))Jy.

If x is a smooth cut-off function compactly supported on R and such that x(A) =1 for |\| < 4
and x(A) = 0 for || > 5, then

F(Apf)A) = F(HNIRR (274N (—A¢ +€7))x (27 N) .
It will be important in the following to notice that for fixed p, we are only concerned with
bounded frequencies A.

We now apply Proposition 1.18 and write
R (274N (—A¢ +€%)) = op” (2p(N, €, m))
with
1

(B.4.2) P,(N\, &) = %/R . (cost) @ ei((£2+"2)tg77”)R*(2*2p+2\)\\r)dr dr.
X

For \ # 0, a change of variable shows that ®,(\, &, 1) = ¢(272|\[,272|\|(€2 + n?)) as stated
in Proposition B.3.

Let us prove now that @, satisfies symbol estimates of order p for any p € R. Actually
due to the comment above, it is enough to prove that result for the function (A&, n) —
@, (N, &,m)x(27%P)). It is moreover enough to prove it for p = 0.
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We first observe that by Proposition 1.18, ®g ()\, sgn()\)L L) = (A, &% +n?) is well

VI VIA
defined for A # 0 and is a generalized symbol in S(1, g) for any A. Besides, Remark B.4 gives
that ®g has the required regularity close to A = 0, and as noted above one can also restrict
our attention to a compact set in A. All those observations imply that to prove the result,
it is enough due to Proposition 1.21 to prove the following estimate: for any compact set K
of R*,
(B.4.3)

Vk,n €N, 3Chn >0, Yp e R\{0}, VA€ K, |(1+ %) 2 (A\FOI6(N, p)| < Crp

We point out that by Proposition 1.18, we already now that this estimate is true for A fixed
in R*. Moreover since A belongs to a compact set, it is enough to consider the A3 derivatives
and to prove that (Ady)¢(A, p) may be bounded independently of A.

In fact we shall prove that A9 ¢ (A, p) has the same integral form as ¢, which by a direct
induction will allow to conclude the proof of the proposition. So let us compute Ady\@ (A, p).
We have

1 i ]
AOAD(N, p) = o (cosT)~dex(rteT=rT) (—%(pth —r7) — 1> R*(4r)dr dr,

so integrating by parts we get
1 i t
AoxB(Np) = — 51— (cosT)"dex(pteT=rT) [ar <(p£ — r)R*(4r)> + R*(4r)} drdr,
T T
which gives finally

A6A¢(A7 p) =

One then notices that

ptgr —rr

T2

(COST)_dei(pth_rT) [4
-

(R*)’(4r)] dr dr.

peX P50 — 2(1 4 (tg7)) 10, (37,
7
which allows to transform the integral into

AP(N, p) = %/(COST)_dei(pth_rT)(R*)/(4T) drdr

2 —d th —irT Lot /
- — —_—— a(kpgT)R*lldd.
— /(COST) 0T (th)Q)e - e (R*)(4r) drdr
The first integral on the right-hand side is exactly of the same form as ¢, so to conclude we
need to prove that the second integral can also be written in a similar way. Let us perform
an integration by parts in the 7 variable. This produces the following identity:

—d tgr —irT 1otgr
/(COST) oy o) (th)Q)e 0r (eA ) drdr

i ) _ tgT
— irT+ 5 ptgT -9 d R* 14 drd
/e <27° - ((COST) 0T () (tg7‘)2)>> (R*) (4r) dr dr
which again is of a similar form that can be dealt with as in the proof of Proposition 1.18
(using Lemma B.1). The proof of Proposition B.3 is complete. U
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